JP4212526B2 - Three-dimensional sheet material - Google Patents

Three-dimensional sheet material Download PDF

Info

Publication number
JP4212526B2
JP4212526B2 JP2004229709A JP2004229709A JP4212526B2 JP 4212526 B2 JP4212526 B2 JP 4212526B2 JP 2004229709 A JP2004229709 A JP 2004229709A JP 2004229709 A JP2004229709 A JP 2004229709A JP 4212526 B2 JP4212526 B2 JP 4212526B2
Authority
JP
Japan
Prior art keywords
heat
fiber
fiber layer
sheet material
shrinkable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004229709A
Other languages
Japanese (ja)
Other versions
JP2006045724A (en
Inventor
祥一 種市
渉 坂
泰樹 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2004229709A priority Critical patent/JP4212526B2/en
Publication of JP2006045724A publication Critical patent/JP2006045724A/en
Application granted granted Critical
Publication of JP4212526B2 publication Critical patent/JP4212526B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Nonwoven Fabrics (AREA)

Description

本発明は、凹凸を有し嵩高な構造を有する立体シート材料に関する。   The present invention relates to a three-dimensional sheet material having irregularities and a bulky structure.

表面に凹凸を有する立体シート材料として、熱収縮性繊維及び該熱収縮性繊維の熱収縮開始温度よりも融点の低い樹脂からなる熱融着性繊維を含む第一繊維層の片面に、非熱収縮性繊維からなる第二繊維層が積層されてなる多皺性不織布が提案されている(特許公報1参照)。この多皺性不織布における両繊維層は、線状熱融着により厚さ方向に一体化され、熱融着部が凹部、該熱融着部間が凸部になっており、第二繊維層に筋状の多数の皺が形成されている。この多皺性不織布は、第一繊維層と第二繊維層とを重ね合わせ、前記熱収縮性繊維の熱収縮開始温度よりも低い温度で、両繊維層を熱融着によって一体化させた後、前記熱収縮温度以上の熱風を吹き付けて前記熱収縮性繊維を熱収縮させることで得られる。   As a three-dimensional sheet material having irregularities on the surface, non-heat is applied to one side of the first fiber layer including heat-shrinkable fibers and heat-fusible fibers made of a resin having a melting point lower than the heat-shrink start temperature of the heat-shrinkable fibers. A multi-layered nonwoven fabric obtained by laminating a second fiber layer made of shrinkable fibers has been proposed (see Patent Publication 1). Both fiber layers in this multi-layered nonwoven fabric are integrated in the thickness direction by linear heat fusion, the heat fusion part is a concave part, and the space between the heat fusion parts is a convex part. A large number of streak-like ridges are formed. This multi-layered nonwoven fabric is obtained by laminating the first fiber layer and the second fiber layer and integrating the two fiber layers by heat fusion at a temperature lower than the heat shrink start temperature of the heat shrinkable fiber. The heat-shrinkable fiber is obtained by heat-shrinking the heat-shrinkable fiber by blowing hot air having a temperature equal to or higher than the heat-shrink temperature.

また、本出願人は、平面方向へ伸張させた場合の回復性及び厚み方向へ圧縮させたときの圧縮変形性が充分な立体シートを提供することを目的として、第1層とこれに隣接する第2層とを有し、第1層と第2層とが所定パターンの接合部によって部分的に接合されており、該接合部間で第1層が3次元的立体形状をなしており、第2層がエラストマー的挙動を示す材料で構成され、シート全体がエラストマー的挙動を示すと共に通気性を有する立体シート材料を提案した(特許文献2参照)。特許文献2には、この立体シート材料の製造方法として、第1層と第2層とを部分的に接合した後、第2層を熱収縮させる方法が記載されている。   In addition, the applicant of the present invention is adjacent to the first layer for the purpose of providing a three-dimensional sheet having sufficient recoverability when stretched in the plane direction and sufficient compressive deformation when compressed in the thickness direction. A second layer, the first layer and the second layer are partially joined by a joint of a predetermined pattern, the first layer has a three-dimensional solid shape between the joints, A three-dimensional sheet material was proposed in which the second layer is composed of a material exhibiting an elastomeric behavior, and the entire sheet exhibits an elastomeric behavior and has air permeability (see Patent Document 2). Patent Document 2 describes a method for manufacturing the three-dimensional sheet material, in which a first layer and a second layer are partially joined and then the second layer is thermally contracted.

特許第3131557号明細書Japanese Patent No. 3131557 特開2002−187228号公報JP 2002-187228 A

特許文献1記載の多皺性不織布はその製造において、前記熱収縮性繊維の熱収縮を、前記熱融着性繊維の構成樹脂の融点よりも高温で行うので、熱収縮の際に該熱融着性繊維が溶融してしまい、得られる不織布が硬い風合いとなってしまう。また、特許文献2の立体シート材料においては、風合いの更なる向上の観点等から改善の余地がある。   In the production of the multi-layered nonwoven fabric described in Patent Document 1, the heat shrinkage of the heat-shrinkable fiber is performed at a temperature higher than the melting point of the constituent resin of the heat-fusible fiber. The adherent fibers melt and the resulting nonwoven fabric has a hard texture. Further, the three-dimensional sheet material of Patent Document 2 has room for improvement from the viewpoint of further improving the texture.

従って、本発明の目的は、嵩高で風合いが良く、外観が良好な立体シート材料を提供することにある。また、本発明の目的は、嵩高で風合いが良く、外観が良好な立体シート材料の効率的な製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a three-dimensional sheet material that is bulky, has a good texture, and has a good appearance. Another object of the present invention is to provide an efficient method for producing a three-dimensional sheet material that is bulky, has a good texture, and has a good appearance.

本発明は、熱収縮性繊維を含む第1繊維層と、非熱収縮性繊維からなる第2繊維層とが積層され、前記両繊維層が、熱融着によって部分的に形成された多数の熱融着部によって厚さ方向に一体化されており、前記熱融着部の間では、第1繊維層の収縮によって第2繊維層が突出して凸部を形成している立体シート材料であって、第1繊維層の最大収縮率発現温度が、第2繊維層中の前記非熱収縮性繊維の融点よりも低く、前記最大収縮率発現温度が130℃以下である立体シート材料を提供することにより前記目的を達成したものである。   In the present invention, a first fiber layer containing heat-shrinkable fibers and a second fiber layer made of non-heat-shrinkable fibers are laminated, and the both fiber layers are formed in part by heat-sealing. It is a three-dimensional sheet material which is integrated in the thickness direction by the heat-sealed portion, and the second fiber layer protrudes by the shrinkage of the first fiber layer to form a convex portion between the heat-fused portions. And a three-dimensional sheet material in which the maximum shrinkage rate expression temperature of the first fiber layer is lower than the melting point of the non-heat-shrinkable fibers in the second fiber layer, and the maximum shrinkage rate expression temperature is 130 ° C. or less. Thus, the object is achieved.

また本発明は、前記立体シート材料の好ましい製造方法として、熱エンボス加工によって、第1及び第2繊維層を部分的に熱融着して熱融着部を形成した後、第2繊維層中の前記非熱収縮性繊維の融点よりも低い温度で熱処理して第1繊維層を熱収縮させ、熱融着部間の第2繊維層を突出させて凸部を形成させる立体シート材料の製造方法を提供するものである。   Further, in the present invention, as a preferable manufacturing method of the three-dimensional sheet material, after the first and second fiber layers are partially heat-sealed by heat embossing to form a heat-sealed portion, Manufacturing a three-dimensional sheet material in which the first fiber layer is thermally contracted by heat treatment at a temperature lower than the melting point of the non-heat-shrinkable fiber, and the second fiber layer is protruded between the heat-fused portions to form a convex portion. A method is provided.

本発明の立体シート材料は、嵩高で風合いが良く、外観が良好である。
本発明の立体シート材料の製造方法によれば、嵩高で風合いが良く、外観が良好な立体シート材料を効率的に製造することができる。
The three-dimensional sheet material of the present invention is bulky, has a good texture, and has a good appearance.
According to the method for producing a three-dimensional sheet material of the present invention, it is possible to efficiently produce a three-dimensional sheet material that is bulky, has a good texture, and has a good appearance.

以下本発明を、その好ましい実施形態に基づき図面を参照しながら説明する。 図1には、本発明の立体シート材料の一実施形態の斜視図が示されており、図2には図1のX−X線断面が模式的に示されている。   The present invention will be described below based on preferred embodiments with reference to the drawings. FIG. 1 shows a perspective view of an embodiment of the three-dimensional sheet material of the present invention, and FIG. 2 schematically shows a cross section taken along line XX of FIG.

図1に示す立体シート材料10は、第1繊維層1及びこれに隣接する第2繊維層2を備えている不織布からなる。第1繊維層1は、繊維の集合体から構成されている。一方、第2繊維層2は、第1繊維層1を構成する繊維と異なる種類及び/又は配合の繊維の集合体から構成されている。第1繊維層1と第2繊維層2とは、多数の接合部3によって部分的に接合されている。本実施形態における接合部3は、いわゆる千鳥状のパターン(図3参照)で配されており、個々の接合部3は、それぞれ平面視円形で不連続に形成されている。接合部3が不連続に形成されていることによって、第1繊維層1に含まれる熱収縮性繊維の収縮が阻害されなくなるので好ましい。接合部3は圧密化されており、立体シート材料10における他の部分に比して厚みが小さく且つ密度が大きくなっている。   The three-dimensional sheet material 10 shown in FIG. 1 consists of a nonwoven fabric provided with the 1st fiber layer 1 and the 2nd fiber layer 2 adjacent to this. The first fiber layer 1 is composed of an aggregate of fibers. On the other hand, the second fiber layer 2 is composed of an aggregate of fibers of a different type and / or blend from the fibers constituting the first fiber layer 1. The first fiber layer 1 and the second fiber layer 2 are partially bonded by a large number of bonding portions 3. The joint portions 3 in the present embodiment are arranged in a so-called zigzag pattern (see FIG. 3), and each joint portion 3 is formed discontinuously in a circular shape in plan view. Since the joining part 3 is formed discontinuously, the shrinkage of the heat-shrinkable fibers contained in the first fiber layer 1 is not inhibited, which is preferable. The joint portion 3 is consolidated, and has a smaller thickness and a higher density than other portions of the three-dimensional sheet material 10.

接合部3は、第1繊維層1と第2繊維層2とが熱エンボスによって熱融着されて形成された熱融着部となっている。この熱融着部によって両繊維層は厚さ方向に一体化されている。尚、本実施形態における個々の接合部3の形状は円形であるが、接合部3の形状は、円形の他、楕円形、三角形、矩形又はこれらの組み合わせ等であってもよい。また接合部3を、連続した形状、例えば直線や曲線などの線状、格子状等に形成してもよい。接合部の形成パターンの他の例を図4に示した。   The joint portion 3 is a heat-sealed portion formed by heat-sealing the first fiber layer 1 and the second fiber layer 2 by heat embossing. Both fiber layers are integrated in the thickness direction by this heat-sealed portion. In addition, although the shape of each junction part 3 in this embodiment is circular, the shape of the junction part 3 may be an ellipse, a triangle, a rectangle, or a combination thereof other than a circle. Moreover, you may form the junction part 3 in the continuous shape, for example, linear shapes, such as a straight line and a curve, a grid | lattice shape. Another example of the joint pattern is shown in FIG.

立体シート材料10の面積に対する接合部3の面積率(立体シート材料10単位面積当りの接合部3の面積)は、立体シート材料10の具体的な用途等にもよるが、第1繊維層1と第2繊維層2との接合を十分に高くする点、及び凸状の立体的な三次元形状を十分に形成して嵩高さを発現させる点から、接合部3の形成後且つ第1繊維層1の熱収縮前においては3〜50%、特に5〜35%であることが好ましく、熱収縮後においては4〜90%、特に5〜70%であることが好ましい。   The area ratio of the joint portion 3 with respect to the area of the three-dimensional sheet material 10 (the area of the joint portion 3 per unit area of the three-dimensional sheet material 10) depends on the specific use of the three-dimensional sheet material 10, but the first fiber layer 1 From the point of sufficiently increasing the bonding between the second fiber layer 2 and the formation of the convex three-dimensional three-dimensional shape to express the bulk, the first fiber is formed after the bonding portion 3 is formed. Before heat shrinkage of the layer 1, it is preferably 3 to 50%, particularly preferably 5 to 35%, and after heat shrinkage, it is preferably 4 to 90%, particularly preferably 5 to 70%.

立体シート材料10は、接合部3の間において、第1繊維層1の熱収縮によって第2繊維層2が突出して多数の凸部4を形成している。本実施形態においては、第2繊維層2における、接合部3同士間に位置する部分(詳細には、四隅部に接合部3を有する矩形状部分)が凸状(ドーム状)に***しており、それにより立体シート材料10の第2繊維層2側の面に多数の凸部4が形成されている。接合部3は、凸部4に対して相対的に凹部となっている。各凸部4の内部は、第2繊維層2を構成する繊維で満たされており、また、接合部同士間における第1繊維層1と第2繊維層2との界面は、接合はされていないが全域に亘って密着した状態とされている。
立体シート材料10の第1繊維層1側の面は、接合部3間はほぼ平坦面を保っている(図2参照)。そして、立体シート材料10全体として見ると、その第1繊維層1側がほぼ平坦であり、且つ第2繊維層2側に凹凸を有する構造となっている。
In the three-dimensional sheet material 10, the second fiber layer 2 protrudes by the thermal contraction of the first fiber layer 1 between the joint portions 3 to form a large number of convex portions 4. In this embodiment, the part (specifically, the rectangular part which has the junction part 3 in the four corners) located between the junction parts 3 in the 2nd fiber layer 2 protrudes in convex shape (dome shape). As a result, a large number of convex portions 4 are formed on the surface of the three-dimensional sheet material 10 on the second fiber layer 2 side. The joint portion 3 is a concave portion relative to the convex portion 4. The inside of each convex part 4 is filled with the fibers constituting the second fiber layer 2, and the interface between the first fiber layer 1 and the second fiber layer 2 between the joined parts is joined. Although not, it is in a state of being in close contact over the entire area.
The surface on the first fiber layer 1 side of the three-dimensional sheet material 10 maintains a substantially flat surface between the joint portions 3 (see FIG. 2). And when it sees as the solid sheet material 10 whole, the 1st fiber layer 1 side is substantially flat, and it has a structure which has an unevenness | corrugation in the 2nd fiber layer 2 side.

立体シート材料10に十分に高い嵩高性を付与する点から、第2繊維層2によって形成される凸部4の形状がどのようなものであっても、凸部4の最頂部における立体シート材料10の厚みT(図2参照)と、接合部3における立体シート材料の厚みT’(図2参照)との比T/T’は2以上、特に10以上であることが、凹凸形状が鮮明で外観が良い点から好ましい。T/T’の上限値は、凸部4の保形性や、立体シート材料10の坪量の観点から決定され、具体的には80程度、特に50程度である。   From the point of giving sufficiently high bulkiness to the three-dimensional sheet material 10, the three-dimensional sheet material at the top of the convex portion 4 is whatever the shape of the convex portion 4 formed by the second fiber layer 2 is. The ratio T / T ′ between the thickness T of 10 (see FIG. 2) and the thickness T ′ (see FIG. 2) of the three-dimensional sheet material at the joint portion 3 is 2 or more, particularly 10 or more, and the uneven shape is clear. It is preferable because of its good appearance. The upper limit value of T / T ′ is determined from the viewpoint of the shape retention of the convex portion 4 and the basis weight of the three-dimensional sheet material 10, and is specifically about 80, particularly about 50.

厚みT及びT’は以下の方法で測定される。
先ず、厚みTについては、立体シート材料10に一定圧力49Pa(0.5g/cm2)を加えた状態での厚みを5箇所測定し、その平均値を厚みTとする。サンプルサイズは、一定圧力を加える圧子より大きければ任意でかまわない。また厚みTの具体的な測定方法としては、圧縮試験機(カトーテック株式会社製KES−FB3等)を用いる方法や、49Pa(0.5g/cm2)の圧力になるように調整したプレートを作製し、ダイヤルゲージ式の厚み計やレーザー変位計を使う方法がある。具体的には、厚みTは、面積2〜10cm2程度のプレートを用い、立体シート材料10に49Pa(0.5g/cm2)の圧力を加え、そのときの厚みをレーザー変位計(株式会社キーエンス製、CCDレーザー変位センサーLK−080)で測定した。
The thicknesses T and T ′ are measured by the following method.
First, about thickness T, the thickness in the state which added constant pressure 49Pa (0.5g / cm < 2 >) to the solid sheet material 10 is measured five places, and let the average value be the thickness T. The sample size may be arbitrary as long as it is larger than an indenter that applies a constant pressure. As a specific method for measuring the thickness T, a method using a compression tester (such as KES-FB3 manufactured by Kato Tech Co., Ltd.) or a plate adjusted to a pressure of 49 Pa (0.5 g / cm 2 ) is used. There is a method of making and using a dial gauge type thickness meter or laser displacement meter. Specifically, the thickness T is a plate having an area of about 2 to 10 cm 2, a pressure of 49 Pa (0.5 g / cm 2 ) is applied to the three-dimensional sheet material 10, and the thickness at that time is measured by a laser displacement meter (Inc. Measurement was performed with a CCD laser displacement sensor LK-080 manufactured by Keyence.

一方、厚みT’については、接合部3の大きさと同等またはそれよりも小さいサイズの接触子を接合部3に接触させ、1000〜4000kPaの圧力を加えた状態での厚みを測定する。このようして測定された5箇所の厚みの平均値を接合部3の厚みT’とする。測定機器には、厚みTの測定に用いられるものと同様のものを用いることができる。具体的には、厚みT'は、接触子直径1mm、測定荷重0.2Nのダイヤルゲージ式厚み計(株式会社ミツトヨ製 アップライトゲージ 測定荷重0.2N、測定子直径1mm仕様)を用いて測定した。
また、厚みTおよびT'は、マイクロスコープ(例えば株式会社キーエンス製VH−8000など)を用いた非接触式の測定方法を用いることもできる。この場合、接合部の断面が観察できるように試験片を切り出し、その切断面についてマイクロスコープにて拡大撮影し、厚みTおよび接合部厚みT'を求める。
立体シート材料10の嵩高性は、例えば吸収性物品の構成部材として用いる場合に、肌との接触面積が低減され、また、肌との間に空気の流通空間を形成できるため、肌のかぶれが防止等の観点から特に有効である。
On the other hand, with respect to the thickness T ′, a contact having a size equal to or smaller than the size of the joint 3 is brought into contact with the joint 3 and the thickness in a state where a pressure of 1000 to 4000 kPa is applied is measured. The average value of the five thicknesses thus measured is defined as the thickness T ′ of the joint 3. As the measuring instrument, the same instrument used for measuring the thickness T can be used. Specifically, the thickness T ′ is measured using a dial gauge thickness gauge having a contact diameter of 1 mm and a measurement load of 0.2 N (upright gauge measurement load of 0.2 N, measurement diameter of 1 mm, manufactured by Mitutoyo Corporation). did.
Further, the thicknesses T and T ′ may be a non-contact measurement method using a microscope (for example, VH-8000 manufactured by Keyence Corporation). In this case, the test piece is cut out so that the cross section of the joint portion can be observed, and the cut surface is magnified and photographed with a microscope to obtain the thickness T and the joint portion thickness T ′.
The bulkiness of the three-dimensional sheet material 10 is that, for example, when used as a constituent member of an absorbent article, the contact area with the skin is reduced, and an air circulation space can be formed between the skin and the skin rash. This is particularly effective from the viewpoint of prevention.

また、立体シート材料10に十分な圧縮変形性および嵩高感を発現させる観点から、立体シート材料10はその坪量が20〜200g/m2 、特に40〜150g/m2 であることが好ましい。坪量は、立体シート材料10を50mm×50mm以上の大きさに裁断して測定片を採取し、この測定片の重量を最小表示1mgの電子天秤を用いて測定し坪量に換算することで求める。 Moreover, from the viewpoint of expressing sufficient compressive deformability and bulkiness in the three-dimensional sheet material 10, the three-dimensional sheet material 10 preferably has a basis weight of 20 to 200 g / m 2 , particularly 40 to 150 g / m 2 . The basis weight is obtained by cutting the three-dimensional sheet material 10 into a size of 50 mm × 50 mm or more, collecting a measurement piece, measuring the weight of the measurement piece using an electronic balance with a minimum display of 1 mg, and converting it to the basis weight. Ask.

第1繊維層1は熱収縮性繊維を含んでいる。この熱収縮性繊維は、立体シート材料10中においては熱収縮した状態となっている。熱収縮性繊維としては、後述する最大収縮率発現温度に関する条件を充足し得る限り、公知のものを特に制限無く用いることができる。特に熱収縮性繊維として潜在捲縮性繊維を用いると、第1繊維層1にエラストマー的な性質が付与され、立体シート材料10全体としてもエラストマー的な性質が付与されることから好ましい。立体シート材料10がエラストマー的な性質を有することは、立体シート材料10を例えば吸収性物品の構成部材として用いた場合に、着用者の動作に対する追従性が良好となり、吸収性物品のフィット性が向上し、液漏れが効果的に防止されることから好ましい。潜在捲縮性繊維は、例えば収縮率の異なる2種類の熱可塑性ポリマー材料を成分とする偏心芯鞘型複合繊維又はサイド・バイ・サイド型複合繊維からなる。第1繊維層1中の熱収縮性繊維の量は、第1繊維層1中50〜100重量%、特に70〜100重量%であることが好ましい。   The first fiber layer 1 includes heat-shrinkable fibers. This heat-shrinkable fiber is in a heat-shrinked state in the three-dimensional sheet material 10. As the heat-shrinkable fiber, known fibers can be used without particular limitation as long as the conditions regarding the maximum shrinkage rate expression temperature described later can be satisfied. In particular, it is preferable to use latent crimpable fibers as the heat-shrinkable fibers because the first fiber layer 1 is imparted with elastomeric properties and the three-dimensional sheet material 10 as a whole is imparted with elastomeric properties. The fact that the three-dimensional sheet material 10 has an elastomeric property means that when the three-dimensional sheet material 10 is used as a constituent member of an absorbent article, for example, the followability to the wearer's movement becomes good and the fit of the absorbent article is improved. It is preferable because it improves and liquid leakage is effectively prevented. The latent crimpable fiber includes, for example, an eccentric core-sheath type composite fiber or a side-by-side type composite fiber containing two types of thermoplastic polymer materials having different shrinkage rates as components. The amount of heat-shrinkable fibers in the first fiber layer 1 is preferably 50 to 100% by weight, particularly 70 to 100% by weight in the first fiber layer 1.

第2繊維層2は非熱収縮性繊維からなる。非熱収縮性繊維とは、熱収縮性を示さない繊維、及び熱収縮性を示すが、第1繊維層に用いた熱収縮性繊維の熱収縮開始温度以下では実質的に熱収縮しない繊維である。従って、第2繊維層は、少なくとも熱収縮性繊維の熱収縮開始温度、又は熱収縮性繊維の熱処理温度においては熱収縮性がない。
第2繊維層2を構成する非熱収縮性繊維の少なくとも一部は、熱融着樹脂を含む熱融着性繊維であり、その熱融着性繊維の熱融着樹脂の融点が、第2繊維層中の非熱収縮性繊維の融点である。第2繊維層中に、複数種類の熱融着性繊維を含む場合、第2繊維層中に30重量%以上、好ましくは50重量%以上含まれる熱融着性繊維のうち、熱融着樹脂の融点が最も低い熱融着性繊維の熱融着樹脂の融点を、第2繊維層中の非熱収縮性繊維の融点とする。第2繊維層中に含まれる熱融着性繊維が、融点が異なる複数樹脂からなる複合繊維である場合、構成樹脂の内の融点が最も低い樹脂の融点を、熱融着性繊維の熱融着樹脂の融点とする。
融点とは、示差走査熱量計(DSC)によりポリマーの融解熱測定を行ったときに、DSC曲線が示す吸熱ピーク温度をいう。
尚、第2繊維層として、少なくとも熱収縮性繊維の熱収縮開始温度、又は熱収縮性繊維の熱処理温度において熱収縮性が発現しない範囲であれば、第2繊維層中に熱収縮性繊維を含ませても良い。第2繊維層中に、複数種類の熱融着性繊維を含む場合、総ての熱融着性繊維の熱融着樹脂の融点が、第1繊維層1の最大収縮率発現温度より高いことが好ましい。
The second fiber layer 2 is made of non-heat-shrinkable fibers. Non-heat-shrinkable fibers are fibers that do not show heat-shrinkability and fibers that show heat-shrinkability but do not substantially heat-shrink below the heat-shrink start temperature of the heat-shrinkable fiber used for the first fiber layer. is there. Therefore, the second fiber layer is not heat shrinkable at least at the heat shrink start temperature of the heat shrinkable fiber or the heat treatment temperature of the heat shrinkable fiber.
At least a part of the non-heat-shrinkable fibers constituting the second fiber layer 2 is a heat-fusible fiber containing a heat-fusible resin, and the melting point of the heat-fusible resin of the heat-fusible fiber is the second. It is melting | fusing point of the non-heat-shrinkable fiber in a fiber layer. In the case where the second fiber layer includes a plurality of types of heat-fusible fibers, among the heat-fusible fibers contained in the second fiber layer at 30% by weight or more, preferably 50% by weight or more, a heat-sealing resin. The melting point of the heat-fusible resin of the heat-fusible fiber having the lowest melting point is the melting point of the non-heat-shrinkable fiber in the second fiber layer. When the heat-fusible fiber contained in the second fiber layer is a composite fiber composed of a plurality of resins having different melting points, the melting point of the resin having the lowest melting point among the constituent resins is set to the heat-fusible fiber. Let it be the melting point of the resin.
The melting point is the endothermic peak temperature indicated by the DSC curve when the heat of fusion of the polymer is measured by a differential scanning calorimeter (DSC).
In addition, as the second fiber layer, the heat-shrinkable fiber is contained in the second fiber layer as long as the heat-shrinkability is not exhibited at least at the heat-shrink start temperature of the heat-shrinkable fiber or the heat treatment temperature of the heat-shrinkable fiber. It may be included. When the second fiber layer includes a plurality of types of heat-fusible fibers, the melting point of the heat-sealing resin of all the heat-fusible fibers is higher than the maximum shrinkage rate expression temperature of the first fiber layer 1 Is preferred.

第2繊維層中の非熱収縮性繊維の融点は、第1繊維層1に含まれる熱収縮性繊維の熱収縮開始温度よりも高いことが好ましく、該熱収縮性繊維の最大収縮率発現温度より高いことがより好ましい。前記熱融着性繊維は、第2繊維層2の重量に対して好ましくは70重量%以上、更に好ましくは80重量%以上含まれている。最も好ましくは、第2繊維層2を構成する非熱収縮性繊維は、前記熱融着性繊維100重量%からなる。熱融着性繊維としては、前記熱融着樹脂単成分からなる繊維、または前記熱融着樹脂を10重量%以上、好ましくは30重量%以上含む芯鞘型や偏心型、サイド・バイ・サイド型などの複合繊維が挙げられる。   The melting point of the non-heat-shrinkable fiber in the second fiber layer is preferably higher than the heat-shrink start temperature of the heat-shrinkable fiber contained in the first fiber layer 1, and the maximum shrinkage rate expression temperature of the heat-shrinkable fiber. Higher is more preferred. The heat-fusible fiber is contained in an amount of preferably 70% by weight or more, more preferably 80% by weight or more based on the weight of the second fiber layer 2. Most preferably, the non-heat-shrinkable fiber constituting the second fiber layer 2 is composed of 100% by weight of the heat-fusible fiber. As the heat-fusible fiber, a fiber composed of a single component of the heat-sealing resin, or a core-sheath type, an eccentric type, or side-by-side containing 10% by weight or more, preferably 30% by weight or more of the heat-sealing resin. Examples include composite fibers such as molds.

本発明においては、第1繊維層の最大収縮率発現温度が、第2繊維層中の非熱収縮性繊維の融点よりも低く、前記最大収縮率発現温度が130℃以下である。第1繊維層の最大収縮率発現温度の測定方法については実施例において後述する。   In the present invention, the maximum shrinkage rate expression temperature of the first fiber layer is lower than the melting point of the non-heat-shrinkable fibers in the second fiber layer, and the maximum shrinkage rate expression temperature is 130 ° C. or less. A method for measuring the maximum shrinkage rate expression temperature of the first fiber layer will be described later in Examples.

第1繊維層の最大収縮率発現温度が、第2繊維層中の非熱収縮性繊維の融点よりも低いことで、第1繊維層を熱収縮させる際に、第2繊維層中の熱融着性繊維、特に熱融着性繊維の溶融を防止しつつ、第1繊維層を充分に熱収縮させることができる。これにより、得られる立体シート材料は、嵩高性及び風合いに優れたものとなる。   When the first fiber layer has a maximum shrinkage rate temperature lower than the melting point of the non-heat-shrinkable fiber in the second fiber layer, the heat fusion in the second fiber layer is caused when the first fiber layer is thermally contracted. The first fiber layer can be sufficiently heat-shrinked while preventing melting of the adhesive fiber, particularly the heat-fusible fiber. Thereby, the obtained three-dimensional sheet material becomes excellent in bulkiness and texture.

しかも、第1繊維層の最大収縮率発現温度が130℃以下であることで、第2繊維層の非熱収縮性繊維として、融点が130℃付近の熱可塑性樹脂を含む、繊維自体が柔らかく、且つ繊維表面の摩擦抵抗も小さい繊維を用いることができ、第2繊維層の風合い、肌触りを向上させられるので好ましい。   Moreover, since the maximum shrinkage rate expression temperature of the first fiber layer is 130 ° C. or lower, the non-heat-shrinkable fiber of the second fiber layer contains a thermoplastic resin having a melting point of about 130 ° C., and the fiber itself is soft. Moreover, a fiber having a small frictional resistance on the fiber surface can be used, which is preferable because the texture and feel of the second fiber layer can be improved.

更に、第1繊維層の最大収縮率発現温度が130℃以下であることにより、第1及び第2繊維層の積層体を高速搬送しつつ、熱収縮処理しても第1繊維層を充分に熱収縮させることできるので、立体シート材料の生産性が向上する。   Furthermore, since the maximum shrinkage rate expression temperature of the first fiber layer is 130 ° C. or lower, the first fiber layer can be sufficiently formed even when the first and second fiber layer laminates are conveyed at high speed and subjected to heat shrinkage treatment. Since it can be heat shrunk, the productivity of the three-dimensional sheet material is improved.

第1繊維層の最大収縮率発現温度は、立体シート材料を風合い良く製造する観点から120℃以下であることが、第2繊維層中に融点が130℃周辺の繊維を用いた場合にも、第1繊維層を熱収縮させる際に、第2繊維層中の熱融着性繊維の溶融を防止することができるのでより好ましい。
第1繊維層の最大収縮率発現温度の下限値は、立体シート材料の保存時寸法安定性の観点から80℃程度であることが好ましい。
The maximum shrinkage rate expression temperature of the first fiber layer is 120 ° C. or less from the viewpoint of producing a three-dimensional sheet material with a good texture, even when fibers having a melting point of around 130 ° C. are used in the second fiber layer, When the first fiber layer is subjected to heat shrinkage, it is more preferable because melting of the heat-fusible fiber in the second fiber layer can be prevented.
The lower limit of the maximum shrinkage rate expression temperature of the first fiber layer is preferably about 80 ° C. from the viewpoint of dimensional stability during storage of the three-dimensional sheet material.

第1繊維層の最大収縮率発現温度が130℃以下であることにより、第2繊維層を構成させる繊維として、幅広い繊維を用い得るという利点を有する。
第2繊維層中の非熱収縮性繊維として用い得る繊維としては、レーヨン、コットン、アクリル系繊維や熱可塑性ポリマー材料からなる繊維が好適に用いられる。熱可塑性ポリマー材料としては、ポリエチレンやポリプロピレン等のポリオレフィン、ポリエチレンテレフタレート等のポリエステル、ポリアミドなどが挙げられる。またこれらの熱可塑性ポリマー材料の組合せからなる芯鞘型複合繊維やサイド・バイ・サイド型複合繊維も好適に用いることができる。風合いを柔らかくする場合には、ポリエチレン樹脂を含む繊維が好ましく、更に、高密度ポリエチレン(密度0.92〜0.97g/cm3)樹脂を含む繊維がより好ましい。
When the maximum shrinkage rate expression temperature of the first fiber layer is 130 ° C. or less, there is an advantage that a wide range of fibers can be used as the fibers constituting the second fiber layer.
As the fibers that can be used as the non-heat-shrinkable fibers in the second fiber layer, fibers made of rayon, cotton, acrylic fibers, and thermoplastic polymer materials are preferably used. Examples of the thermoplastic polymer material include polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate, and polyamides. Moreover, a core-sheath type composite fiber or a side-by-side type composite fiber made of a combination of these thermoplastic polymer materials can also be suitably used. When softening the texture, a fiber containing a polyethylene resin is preferable, and a fiber containing a high-density polyethylene (density 0.92 to 0.97 g / cm 3 ) resin is more preferable.

但し、第2繊維層中の非熱収縮性繊維は、その融点が120℃以上、特に130℃以上であることが、立体シート材料を風合い良く製造する観点から好ましい。第2繊維層中の非熱収縮性繊維は、融点が異なる複数樹脂からなる複合繊維であり、融点が最も低い樹脂が、融点125〜135℃の高密度ポリエチレンであることが好ましい。   However, the non-heat-shrinkable fiber in the second fiber layer preferably has a melting point of 120 ° C. or higher, particularly 130 ° C. or higher from the viewpoint of producing a three-dimensional sheet material with a good texture. The non-heat-shrinkable fiber in the second fiber layer is a composite fiber composed of a plurality of resins having different melting points, and the resin having the lowest melting point is preferably high-density polyethylene having a melting point of 125 to 135 ° C.

第1繊維層の最大収縮率発現温度が、第2繊維層中の非熱収縮性繊維の融点よりも低くするためには、第1繊維層中の熱収縮性繊維として、収縮率が異なる複数樹脂からなる複合繊維であって、収縮率が最も高い樹脂の融点が第2繊維層中の非熱収縮性繊維の融点よりも低いものを用いることが好ましい。   In order for the maximum shrinkage rate expression temperature of the first fiber layer to be lower than the melting point of the non-heat-shrinkable fiber in the second fiber layer, a plurality of different shrinkage rates are used as the heat-shrinkable fibers in the first fiber layer. It is preferable to use a composite fiber made of a resin and having a melting point of the resin having the highest shrinkage rate lower than the melting point of the non-heat-shrinkable fiber in the second fiber layer.

第1繊維層中の熱収縮性繊維としては、収縮率の異なる2種類の樹脂を含有する偏心芯鞘型複合繊維又はサイド・バイ・サイド型複合繊維であって、高収縮率樹脂が、エチレンを主成分とする共重合体または低密度ポリエチレンであるものを好ましく用いることができる。エチレンを主成分とする共重合体としては、エチレン−プロピレン共重合体、エチレン−ブテン1−プロピレン3元共重合体、エチレン−酢酸ビニル共重合体、エチレン−メチルアクリレート共重合体、エチレン−エチルアクリレート共重合体等が挙げられ、低密度ポリエチレンとしては、高圧重合法による低密度ポリエチレン、直鎖状低密度ポリエチレン等が挙げられる。この場合、組み合わせる低収縮率樹脂がポリプロピレンやポリエチレンなどのポリオレフィン系樹脂や、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル系樹脂であるものを特に好ましく用いることができる。   The heat-shrinkable fiber in the first fiber layer is an eccentric core-sheath type composite fiber or side-by-side type composite fiber containing two types of resins having different shrinkage rates, and the high shrinkage rate resin is ethylene. It is preferable to use a copolymer having a main component of or a low-density polyethylene. Copolymers mainly composed of ethylene include ethylene-propylene copolymers, ethylene-butene 1-propylene terpolymers, ethylene-vinyl acetate copolymers, ethylene-methyl acrylate copolymers, ethylene-ethyl copolymers. An acrylate copolymer etc. are mentioned, As a low density polyethylene, the low density polyethylene by a high pressure polymerization method, a linear low density polyethylene, etc. are mentioned. In this case, those in which the low shrinkage resin to be combined is a polyolefin resin such as polypropylene or polyethylene, or a polyester resin such as polyethylene terephthalate or polybutylene terephthalate can be particularly preferably used.

第1繊維層中の熱収縮性繊維は、収縮率が異なる2種類の樹脂からなる複合繊維であり、収縮率が高い方の樹脂と低い方の樹脂との融点の差が30℃以上であるものを用いることが、第1繊維層と第2繊維層を部分的に接合するエンボス加工において、第1及び第2繊維層の接合部を融点の低い方の樹脂の溶融固化により強固に接着でき、該接合部に穴等を生じにくくなる。このような構成の立体シート材料は、吸収性物品の構成材料(特に表面シート)として用いたときに、接合部に経血や尿等がしみこみにくく、使用者の肌を経血や尿等で濡れることがなく、また経血が表面からみたときに赤く滲まないので有利である。また、立体シート材料を吸収性物品の構成材料、特に表面シートとして用いる場合に、該吸収性物品に熱エンボスや熱シールにより、防漏溝やエンドシール部を形成する際にも、防漏溝やシール部の形成性が良好であると共に、それらに穴等の欠陥を生じさせないので好ましい。   The heat-shrinkable fiber in the first fiber layer is a composite fiber composed of two types of resins having different shrinkage rates, and the difference in melting point between the resin having the higher shrinkage rate and the resin having the lower shrinkage rate is 30 ° C. or more. In the embossing process in which the first fiber layer and the second fiber layer are partially bonded, the bonding portion of the first and second fiber layers can be firmly bonded by melting and solidifying the resin having the lower melting point. , It becomes difficult to form a hole or the like in the joint. When the three-dimensional sheet material having such a configuration is used as a constituent material (especially a surface sheet) of an absorbent article, menstrual blood, urine, and the like are less likely to permeate into the joint portion, and the user's skin is prevented by menstrual blood, urine, etc. It is advantageous because it does not get wet and menstrual blood does not bleed red when viewed from the surface. Further, when a three-dimensional sheet material is used as a constituent material of an absorbent article, particularly as a surface sheet, the leakage prevention groove is also formed when the leakage prevention groove or the end seal portion is formed on the absorbent article by heat embossing or heat sealing. Further, it is preferable because the formability of the seal portion and the seal portion are good, and defects such as holes are not generated in them.

尚、第1繊維層1には、熱収縮性繊維に加えて他の繊維が含まれていてもよい。他の繊維としては、例えば熱融着性繊維が挙げられる。また、熱融着性繊維の量は、第1繊維層1の質量に対して0〜50重量%であることが凸部の形成性等の観点から好ましい。   The first fiber layer 1 may contain other fibers in addition to the heat-shrinkable fibers. Examples of other fibers include heat-fusible fibers. Further, the amount of the heat-fusible fiber is preferably 0 to 50% by weight with respect to the mass of the first fiber layer 1 from the viewpoint of the formation of the convex portion.

熱収縮する前の第1繊維層1の形態としては、構成繊維が未接合状態にあるウエブ又は不織布が挙げられる。ウエブの形態である第1繊維層1としては、熱収縮性繊維を含み且つカード法によって形成されたウエブが挙げられる。不織布の形態である第1繊維層1としては、熱収縮性繊維を含む、各種不織布製造法で製造された不織布が挙げられる。不織布製造法としては、熱融着法、水流交絡法、ニードルパンチ法、溶剤接着法、スパンボンド法、メルトブローン法が挙げられる。   As a form of the 1st fiber layer 1 before heat-shrinking, the web or nonwoven fabric in which a constituent fiber is an unjoined state is mentioned. As the 1st fiber layer 1 which is the form of a web, the web containing the heat-shrinkable fiber and formed by the card | curd method is mentioned. As the 1st fiber layer 1 which is a form of a nonwoven fabric, the nonwoven fabric manufactured with the various nonwoven fabric manufacturing methods containing a heat-shrinkable fiber is mentioned. Examples of the nonwoven fabric production method include a thermal fusion method, a hydroentanglement method, a needle punch method, a solvent adhesion method, a spun bond method, and a melt blown method.

第1繊維層1に接合させる前の第2繊維層2の形態としては、構成繊維が未接合状態にあるウエブ又は不織布が挙げられる。ウエブの形態である第2繊維層2としては、非熱収縮性繊維を含み且つカード法によって形成されたウエブが挙げられる。不織布の形態である第2繊維層2としては、非熱収縮性繊維を含む、各種不織布製造法で製造された不織布が挙げられる。不織布製造法としては、熱融着法、水流交絡法、ニードルパンチ法、溶剤接着法、スパンボンド法、メルトブローン法が挙げられる。
第1繊維層1に接合させる前の第2繊維層2は、カード法によって得られた繊維ウエブに、エアースルー法により繊維同士の熱融着点を形成したものであることが、嵩高で風合いが良く、外観が良好な立体シート材料を得る観点から好ましい。
As a form of the 2nd fiber layer 2 before making it join to the 1st fiber layer 1, the web or nonwoven fabric in which a constituent fiber is in an unjoined state is mentioned. As the 2nd fiber layer 2 which is a form of a web, the web containing the non heat-shrinkable fiber and formed by the card | curd method is mentioned. As the 2nd fiber layer 2 which is a form of a nonwoven fabric, the nonwoven fabric manufactured with the various nonwoven fabric manufacturing methods containing a non-heat-shrinkable fiber is mentioned. Examples of the nonwoven fabric production method include a thermal fusion method, a hydroentanglement method, a needle punch method, a solvent adhesion method, a spun bond method, and a melt blown method.
The second fiber layer 2 before being bonded to the first fiber layer 1 is a fiber web obtained by the card method and is formed by forming heat-bonding points between the fibers by the air-through method. Is preferable from the viewpoint of obtaining a three-dimensional sheet material having good appearance.

以下、本実施形態の立体シート材料10の好ましい製造方法について説明する。
先ず、所定の方法で第1繊維層1及び第2繊維層2を製造する。次に両繊維層を重ね合わせた後、凹凸ロールと平滑ロールとからなる熱エンボス装置の両ロール間に挿通し、該両繊維層を部分的に熱融着し、両繊維層を厚さ方向に一体化させる。これによって熱融着部からなる接合部3を形成される。両繊維層は、第1繊維層1が平滑ロール側、第2繊維層2が凹凸ロール側となるようにエンボス装置に挿通することが好ましい。エンボス装置における凹凸ロールの加熱温度は、接合部3を強固に接着させ、猶且つ、第1繊維層を構成する熱収縮性繊維の熱収縮が発現しない観点から、第1繊維層の最大収縮率発現温度に対して、+10℃〜+40℃の範囲であることが好ましい。具体的には、繊維の種類にもよるが100〜150℃特に110〜130℃であることが好ましい。
Hereinafter, the preferable manufacturing method of the three-dimensional sheet material 10 of this embodiment is demonstrated.
First, the first fiber layer 1 and the second fiber layer 2 are manufactured by a predetermined method. Next, after superimposing both fiber layers, it is inserted between both rolls of a heat embossing device consisting of a concave and convex roll and a smooth roll, and both the fiber layers are partially heat-sealed, and both fiber layers are in the thickness direction. To be integrated. As a result, the joint portion 3 composed of the heat fusion portion is formed. Both fiber layers are preferably inserted into the embossing device so that the first fiber layer 1 is on the smooth roll side and the second fiber layer 2 is on the uneven roll side. The heating temperature of the concavo-convex roll in the embossing apparatus is the maximum shrinkage rate of the first fiber layer from the viewpoint of firmly bonding the joint 3 and not exhibiting heat shrinkage of the heat-shrinkable fibers constituting the first fiber layer. The range of + 10 ° C. to + 40 ° C. is preferable with respect to the expression temperature. Specifically, although it depends on the type of fiber, it is preferably 100 to 150 ° C, particularly 110 to 130 ° C.

次に、接合一体化された両繊維層を加熱して、第1繊維層1に含まれる熱収縮性繊維を熱収縮させる。加熱には熱風を吹き付けることが好ましい。勿論、他の加熱手段、例えばマイクロウェーブ、蒸気、赤外線、ヒートロールの接触等を用いてもよい。
熱収縮処理温度TTは、第1繊維層中の熱収縮性繊維の熱収縮開始温度TS以上で且つ第2繊維層2中の非熱収縮性繊維の融点TMよりも低い温度とする。熱収縮開始温度TSとは、昇温可能な炉にその繊維を置き、一定速度で昇温したとき、その繊維が実質的に収縮開始した時の実測温度を言う。
熱収縮処理温度TTは、第2繊維層2中の非熱収縮性繊維の融点TMよりも、0〜30℃低いことが好ましく、5〜15℃低いことが好ましい。熱収縮処理温度TTは、例えば100〜120℃とすることができる。尚、熱処理時間は1〜20秒程度とすることができる。
Next, both the fiber layers joined and integrated are heated to heat-shrink the heat-shrinkable fibers contained in the first fiber layer 1. Hot air is preferably blown for heating. Of course, other heating means such as microwave, steam, infrared rays, heat roll contact, etc. may be used.
The heat shrink treatment temperature T T is set to a temperature that is equal to or higher than the heat shrink start temperature T S of the heat shrinkable fiber in the first fiber layer and lower than the melting point T M of the non-heat shrinkable fiber in the second fiber layer 2. . The heat shrinkage start temperature T S is an actually measured temperature when the fiber starts to shrink substantially when the fiber is placed in a furnace capable of raising the temperature and heated at a constant speed.
The heat shrink treatment temperature T T is preferably 0 to 30 ° C. and preferably 5 to 15 ° C. lower than the melting point T M of the non-heat-shrinkable fibers in the second fiber layer 2. The heat shrink treatment temperature T T can be set to 100 to 120 ° C., for example. The heat treatment time can be about 1 to 20 seconds.

熱収縮性繊維の熱収縮によって、第2繊維層2における接合部3間が突出して凸部4が形成される。熱収縮処理温度TTを、第2繊維層2中の非熱収縮性繊維の融点TMよりも低くすることで、第1繊維層を熱収縮させる際に、第2繊維層中の熱融着性繊維の溶融を防止しつつ、第1繊維層を充分に熱収縮させることができる。これにより、得られる立体シート材料は、嵩高性及び風合いに優れたものとなる。 Due to the heat shrinkage of the heat-shrinkable fibers, the joints 3 in the second fiber layer 2 protrude to form the protrusions 4. When the heat shrinkage treatment temperature T T is lower than the melting point T M of the non-heat-shrinkable fibers in the second fiber layer 2, the heat fusion in the second fiber layer is performed when the first fiber layer is heat-shrinked. The first fiber layer can be sufficiently heat-shrinked while preventing the adhesive fibers from melting. Thereby, the obtained three-dimensional sheet material becomes excellent in bulkiness and texture.

本発明の立体シート材料は、例えば1回あるいは数回の使用で廃棄される使い捨て物品の構成部材として好適に使用される。また面ファスナの雌材(ループ材)やパップ材としても使用される。特に、生理用ナプキンや使い捨ておむつなどの使い捨て吸収性物品、掃除用ワイパーや対人ワイパーなどの使い捨てワイパーの構成部材として好適である。使い捨て吸収性物品、例えば液透過性の表面材と、液不透過性の裏面材と、両シート間に介在された吸収体とを有する吸収性物品の構成部材として用いる場合には、その構成部材の一部、例えば表面材、表面材の下に液拡散層として使うサブレイヤー、裏面材、又はサイド立体ガードの何れかの部材の一部として使用される。   The three-dimensional sheet material of the present invention is suitably used as a component of a disposable article that is discarded, for example, once or several times. In addition, it is also used as a female material (loop material) or a poultice material for hook and loop fasteners. In particular, it is suitable as a component of disposable absorbent articles such as sanitary napkins and disposable diapers, and disposable wipers such as cleaning wipers and interpersonal wipers. When used as a component member of a disposable absorbent article, for example, an absorbent article having a liquid-permeable surface material, a liquid-impermeable back material, and an absorbent body interposed between both sheets, the component member For example, a surface material, a sub-layer used as a liquid diffusion layer under the surface material, a back surface material, or a part of any member of a side solid guard.

本発明は前記実施形態に制限されない。例えば前記実施形態においては、第1繊維層1の片面にのみ第2繊維層2が積層されたが、これに代えて第1繊維層1の両面に第2繊維層を積層してもよい。この場合には、立体シート材料の両面に凹凸が形成される。   The present invention is not limited to the embodiment. For example, in the said embodiment, although the 2nd fiber layer 2 was laminated | stacked only on the single side | surface of the 1st fiber layer 1, you may laminate | stack a 2nd fiber layer on both surfaces of the 1st fiber layer 1 instead. In this case, unevenness is formed on both surfaces of the three-dimensional sheet material.

以下実施例により本発明を更に詳細に説明する。しかし、本発明の範囲は斯かる実施例に制限されない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited to such embodiments.

〔実施例1〕
(1)第1繊維層の製造
熱収縮性繊維として潜在捲縮性の偏心芯鞘型複合繊維(芯:ポリプロピレン(PP)、鞘:直鎖状低密度ポリエチレン(LLDPE)、芯/鞘重量比=5/5、繊度2.2dtex、繊維長51mm、熱収縮開始温度90℃)を用いた。この繊維はLLDPEが高収縮率樹脂であり、該樹脂の融点は115℃である。この繊維を原料とし、カード法によって繊維ウェブを形成して、目付25g/m2の第1繊維層のウェブを形成した。
[Example 1]
(1) Production of first fiber layer Latent crimped eccentric core-sheath composite fiber (core: polypropylene (PP), sheath: linear low density polyethylene (LLDPE), core / sheath weight ratio) as heat-shrinkable fiber = 5/5, fineness 2.2 dtex, fiber length 51 mm, heat shrinkage starting temperature 90 ° C.). As for this fiber, LLDPE is a high shrinkage resin, and the melting point of the resin is 115 ° C. Using this fiber as a raw material, a fiber web was formed by a card method to form a first fiber layer web having a basis weight of 25 g / m 2 .

(2)第2繊維層の製造
熱融着性繊維(非熱収縮性繊維)として、芯鞘型複合繊維(芯:ポリエチレンテレフタレート(PET)、鞘:ポリエチレン(PE)、芯/鞘重量比=5/5、繊度2.2dtex、繊維長51mm)を用いた。この繊維を原料として、カード法によって繊維ウェブを形成し、そのウェブにエアースルー法により温度135〜140℃で熱処理を施し、不織布を形成した。得られた不織布は目付25g/m2であった。これを第2繊維層として用いた。
(2) Production of second fiber layer As heat-fusible fiber (non-heat-shrinkable fiber), core-sheath type composite fiber (core: polyethylene terephthalate (PET), sheath: polyethylene (PE), core / sheath weight ratio) 5/5, fineness 2.2 dtex, fiber length 51 mm). Using this fiber as a raw material, a fiber web was formed by a card method, and the web was heat-treated at a temperature of 135 to 140 ° C. by an air-through method to form a nonwoven fabric. The obtained nonwoven fabric had a basis weight of 25 g / m 2 . This was used as the second fiber layer.

(3)立体シート材料の製造
両繊維層のウェブを重ね合わせて、凹凸ロールと平滑ロールとの組合せからなる熱エンボス装置に通し、両ウェブを接合一体化した。エンボスの加工条件は、表1に示す通りとした。第1繊維層側が平滑ロールに当接し、第2繊維層側が凹凸ロールに当接するようにした。凹凸ロールのパターンは図3に示す通りである。
次いで、両繊維層に、熱収縮処理装置によって、熱風処理を施し、第1繊維層を熱収縮させた。熱収縮処理の処理条件を表1に示した。これによって、立体シート材料が得られた。得られた立体シート材料における接合部の間では、第1繊維層の熱収縮によって第2繊維層が突出して多数の凸部を形成していると共に該熱接合部が凹部となっていた。
なお、熱収縮処理装置としては、熱風通過式の熱処理機、シュリンクサーファー式やピンテンター式の熱処理機を適宜用いることができる。
(3) Manufacture of three-dimensional sheet material The webs of both fiber layers were overlapped and passed through a hot embossing device comprising a combination of an uneven roll and a smooth roll, and both webs were joined and integrated. The embossing processing conditions were as shown in Table 1. The first fiber layer side was in contact with the smooth roll, and the second fiber layer side was in contact with the uneven roll. The pattern of the concavo-convex roll is as shown in FIG.
Next, both fiber layers were subjected to hot air treatment by a heat shrink treatment device to heat shrink the first fiber layer. Table 1 shows the heat shrinking treatment conditions. Thereby, a three-dimensional sheet material was obtained. Between the joint parts in the obtained three-dimensional sheet material, the second fiber layer protrudes due to thermal contraction of the first fiber layer to form a large number of convex parts, and the thermal joint parts become concave parts.
In addition, as a thermal contraction processing apparatus, a hot air passage type heat treatment machine, a shrink surfer type, or a pin tenter type heat treatment machine can be used as appropriate.

〔実施例2〜6〕
第2繊維層の製造に用いた熱融着性繊維(非熱収縮性繊維)を表1に示すものとし、製造条件を表1に示す通りとした以外は実施例1と同様にして立体シート材料を得た。得られた立体シート材料における接合部の間では、第1繊維層の熱収縮によって第2繊維層が突出して多数の凸部を形成していると共に該熱接合部が凹部となっていた。
[Examples 2 to 6]
The heat-fusible fiber (non-heat-shrinkable fiber) used for the production of the second fiber layer is shown in Table 1, and the three-dimensional sheet is the same as Example 1 except that the production conditions are as shown in Table 1. Obtained material. Between the joint parts in the obtained three-dimensional sheet material, the second fiber layer protrudes due to thermal contraction of the first fiber layer to form a large number of convex parts, and the thermal joint parts become concave parts.

〔比較例1〜5〕
第1繊維層に用いる熱収縮性繊維及び第2繊維層に用いる非熱収縮性繊維としての繊維を表1に示すものとし、製造条件を表1に示す通りとした以外は実施例1と同様にして立体シート材料を得た。
[Comparative Examples 1-5]
The heat-shrinkable fibers used for the first fiber layer and the non-heat-shrinkable fibers used for the second fiber layer are shown in Table 1, and the manufacturing conditions are the same as in Example 1 except that the manufacturing conditions are as shown in Table 1. Thus, a three-dimensional sheet material was obtained.

尚、表1中の各表記は以下の通りである。
PP/EP:潜在捲縮性の偏心芯鞘型複合繊維(芯:ポリプロピレン(PP)、鞘:エチレン−プロピレン共重合体(EP))
PET/EP:熱融着性繊維(非熱収縮性繊維)の芯鞘型複合繊維(芯:ポリエチレンテレフタレート(PET)、鞘:エチレン−プロピレン共重合体(EP))
PP:熱融着性繊維(非熱収縮性繊維)の単成分繊維 ポリプロピレン(PP)
実施例の第2繊維層のポリエチレン(PE)は高密度ポリエチレンである。
In addition, each notation in Table 1 is as follows.
PP / EP: Latent crimped eccentric core-sheath composite fiber (core: polypropylene (PP), sheath: ethylene-propylene copolymer (EP))
PET / EP: Core-sheath type composite fiber (core: polyethylene terephthalate (PET), sheath: ethylene-propylene copolymer (EP)) of heat-fusible fiber (non-heat-shrinkable fiber)
PP: Single component fiber of heat-fusible fiber (non-heat-shrinkable fiber) Polypropylene (PP)
The polyethylene (PE) of the second fiber layer of the example is high density polyethylene.

実施例及び比較例の各シートについて、それぞれの製造に用いた繊維を用いて下記のサンプルを作製し、各シートについて、第1繊維層の最大収縮率発現温度を求めた。その結果を表1に併せて示した。
第1繊維層の最大収縮率発現温度は、表1に示した繊維を用いて作製した第1繊維層と第2繊維層とを積層し、両者間を部分的に接合して一体化させたものをサンプルとして測定した。
About each sheet | seat of an Example and a comparative example, the following sample was produced using the fiber used for each manufacture, and the maximum shrinkage rate expression temperature of the 1st fiber layer was calculated | required about each sheet | seat. The results are also shown in Table 1.
The maximum shrinkage rate expression temperature of the first fiber layer was obtained by laminating the first fiber layer and the second fiber layer produced using the fibers shown in Table 1, and partially joining and integrating them. Things were measured as samples.

〔サンプルの作製条件〕
第1繊維層:ローラーカードによって開繊したカードウェブを用いる。
第2繊維層:エアスルー法によって作製した不織布を用いる。
目 付:第1繊維層と第2繊維層の目付はほぼ同一とし20〜30g/m2程度とする。
部分的な接合:超音波エンボス法を用いる。エンボスパターンは図3,4に示したパターンを用いる。接合部の面積率は7〜15%程度のものを用いる。
[Sample preparation conditions]
First fiber layer: a card web opened by a roller card is used.
Second fiber layer: A nonwoven fabric produced by an air-through method is used.
Basis weight: The weight per unit area of the first fiber layer and the second fiber layer is substantially the same, and is about 20 to 30 g / m 2 .
Partial bonding: An ultrasonic embossing method is used. The emboss pattern uses the pattern shown in FIGS. The area ratio of the joint is about 7 to 15%.

サンプルは同一構成のものを多数製造しておき、熱収縮処理温度を、熱収縮開始温度程度(100℃)からはじめて5℃ずつ変え、その各温度においてサンプルの熱収縮を行った。サンプルSのサイズ(収縮前)は縦200〜300mm×横200〜300mmの矩形とした。
〔熱収縮方法〕
サンプルSの熱収縮は、温度を一定に維持した強制対流式の恒温乾燥機(図5参照)を用いて行った。
恒温乾燥機にサンプルを入れる前に、乾燥機内の温度が上流温度センサー51と下流温度センサー52で同じであることを確認した。サンプルSは、第1繊維層側をテフロン(登録商標)コートネット53(線径1.0〜1.5mm、3〜5メッシュ)面側(下面)とし、第2繊維層側が熱風の吹付ける面となるように恒温乾燥機内にすばやくセットした。恒温乾燥機内にサンプルSを1分間放置した後、縦横の寸法を測定し収縮後面積率を算出した。このとき、サンプルセット前の上流温度センサーの表示温度を熱収縮処理温度とした。
収縮後面積率は、熱収縮処理温度毎に算出し、最もおおきな収縮後面積率になった熱収縮処理温度を、第1繊維層の最大収縮率発現温度とした。尚、図5中符号54は、温風循環用のファンである。
Many samples having the same configuration were manufactured, and the heat shrinkage treatment temperature was changed by 5 ° C. starting from the heat shrinkage start temperature (about 100 ° C.), and the sample was subjected to heat shrinkage at each temperature. The size of the sample S (before shrinkage) was a rectangle having a length of 200 to 300 mm and a width of 200 to 300 mm.
(Heat shrinkage method)
The sample S was subjected to thermal shrinkage by using a forced convection type thermostatic dryer (see FIG. 5) in which the temperature was kept constant.
Before putting the sample into the constant temperature dryer, it was confirmed that the temperature inside the dryer was the same between the upstream temperature sensor 51 and the downstream temperature sensor 52. In the sample S, the first fiber layer side is a Teflon (registered trademark) coat net 53 (wire diameter 1.0 to 1.5 mm, 3 to 5 mesh) surface side (lower surface), and the second fiber layer side is sprayed with hot air. It was quickly set in a constant temperature dryer so that it would be a surface. After allowing the sample S to stand in a constant temperature dryer for 1 minute, the vertical and horizontal dimensions were measured, and the area ratio after shrinkage was calculated. At this time, the display temperature of the upstream temperature sensor before the sample was set as the heat shrinkage treatment temperature.
The area ratio after shrinkage was calculated for each heat shrinkage treatment temperature, and the heat shrinkage treatment temperature at which the area ratio after shrinkage was the largest was taken as the maximum shrinkage ratio expression temperature of the first fiber layer. In addition, the code | symbol 54 in FIG. 5 is a fan for warm air circulation.

〔収縮後面積率の算出方法〕
熱収縮させる前のサンプルに、サンプル縦方向に離間した2地点及びサンプル横方向に離間した2地点にそれぞれ印を付けた。縦方向に離間した2地点間の距離を縦寸法、横方向に離間した2地点間の距離を横寸法とし、下記式により、収縮後面積率(%)を算出した。
収縮前面積=(収縮前の縦寸法)×(収縮前の横寸法)
収縮後面積=(収縮後の縦寸法)×(収縮後の横寸法)
収縮後面積率(%)=(収縮後面積)/(収縮前面積)×100
収縮前の縦寸法及び横寸法は、何れも150mmとした。
[Calculation method of area ratio after shrinkage]
The sample before heat shrinking was marked at two points spaced apart in the sample longitudinal direction and two points spaced apart in the sample transverse direction. The distance between two points separated in the vertical direction was taken as the vertical dimension, the distance between the two points separated in the horizontal direction was taken as the horizontal dimension, and the area ratio (%) after shrinkage was calculated by the following formula.
Area before shrinkage = (Vertical dimension before shrinkage) x (Horizontal dimension before shrinkage)
Area after shrinkage = (Vertical dimension after shrinkage) x (Horizontal dimension after shrinkage)
Area ratio after shrinkage (%) = (area after shrinkage) / (area before shrinkage) × 100
The vertical dimension and the horizontal dimension before shrinkage were both 150 mm.

得られたシート材料について、坪量(目付)及び剥離強度を測定した。剥離強度は、幅30mm、長さ100mmの試験片を用意し、試験片端より20mm上下層を剥がし、引張試験機(株式会社オリエンテック社製 RTM−100)を用い、上下層を剥がした方の片端をそれぞれ30mm間隔にセットされたチャックに挟み、引張速度300mm/minで試験片を50mm引き剥がし測定した。このとき、測定された剥離強度は、その初荷重を除いた極大点荷重の平均値とした。また試験片は、長さ100mmの方向が立体シート材料を製造する方向の流れ方向(MD方向)となるように採取する。   About the obtained sheet | seat material, basic weight (weight per unit area) and peeling strength were measured. For the peel strength, a test piece having a width of 30 mm and a length of 100 mm was prepared, the upper and lower layers were peeled off from the end of the test piece, and the upper and lower layers were peeled off using a tensile tester (RTM-100 manufactured by Orientec Co., Ltd.). One end was sandwiched between chucks set at intervals of 30 mm, and the test piece was peeled off by 50 mm at a tensile speed of 300 mm / min. At this time, the measured peel strength was the average value of the maximum point loads excluding the initial load. Moreover, a test piece is extract | collected so that the direction of 100 mm in length may turn into the flow direction (MD direction) of the direction which manufactures a solid sheet material.

〔性能評価〕
以下に述べる方法で風合い、熱融着部の液の滲み込み性、収縮の程度及び加工性を評価した。これらの結果を表1に示した。
[Performance evaluation]
The texture, the heat penetration of the heat-bonded part, the degree of shrinkage, and the workability were evaluated by the methods described below. These results are shown in Table 1.

1.風合い
実施例及び比較例で得られた立体シート材料を5人のモニターに肌触りの程度を評価させた。このとき、以下の評価基準に従い、5人のパネラーの平均点を算出した。
〔評価基準〕
風合いが良い 3点
どちらともいえない 2点
風合いが悪い 1点
1. Texture The three-dimensional sheet materials obtained in the examples and comparative examples were evaluated by five monitors on the degree of touch. At this time, the average score of five panelists was calculated according to the following evaluation criteria.
〔Evaluation criteria〕
The texture is good 3 points Neither can be said 2 points The texture is poor 1 point

2.熱融着部の液の滲み込み性
実施例及び比較例で得られた立体シート材料をナプキンの吸収体(商品名:花王株式会社製 ロリエさらさらクッションスリムウイング無し(2004年4月入手))に馬血3gを吸収させた直後、吸収体の上に、サンプルサイズ80mm×60mmの実施例及び比較例で得られた立体シート材料をのせ、さらにその上から、66g/cm2の押付け圧になるように錘をのせて5秒間加圧する。その後直ちに、接合部を第1繊維層側から観察し評価した。評価基準は以下の通りである。
〔評価基準〕
液滲みがほとんどない ○
液滲みがある ×
2. Soaking property of liquid in heat-sealed part The three-dimensional sheet material obtained in Examples and Comparative Examples is used as an absorbent body of napkin (trade name: No Laurie Smooth Cushion Slim Wing manufactured by Kao Corporation (obtained in April 2004)) Immediately after 3 g of horse blood is absorbed, the three-dimensional sheet materials obtained in the examples and comparative examples having a sample size of 80 mm × 60 mm are placed on the absorber, and the pressing pressure is 66 g / cm 2 from above. And apply pressure for 5 seconds. Immediately thereafter, the bonded portion was observed and evaluated from the first fiber layer side. The evaluation criteria are as follows.
〔Evaluation criteria〕
There is almost no liquid bleeding ○
There is liquid bleeding ×

3.収縮の程度
収縮の程度は、充分に収縮し凹凸形状が発現し、嵩高な立体シート材料が得られているかを判断するもので、熱収縮処理時に設定した収縮後面積率の設定値と実際熱収縮処理した後の収縮後面積率の差である。収縮後面積率の実測は、収縮前の積層体に、既知の寸法をマーキング(例えばマジックで、MD(機械の流れ方向), CD(機械の流れ方向と垂直の方向)に一定間隔のマーキングをする)し、そのマーキングが収縮後どれだけ変化したか長さを測定し算出した。
値が小さい程、収縮性が良く、好ましくは6以下であり、さらに好ましくは2以下である。
3. Degree of shrinkage The degree of shrinkage is to judge whether or not a solid sheet material is obtained that is sufficiently shrunk and has an uneven shape. The set value of the post-shrinkage area ratio set during the heat shrinkage treatment and the actual heat This is the difference in area ratio after shrinkage after shrinkage treatment. The actual area ratio after shrinkage is measured by marking known dimensions on the laminate before shrinkage (for example, with magic, MD (machine flow direction) and CD (direction perpendicular to the machine flow direction) at regular intervals. The length of the marking after shrinkage was measured and calculated.
The smaller the value, the better the shrinkage, preferably 6 or less, more preferably 2 or less.

4.加工性(エンボス・ヒートシール性)
実施例及び比較例で得られた立体シート材料にさらに、エンボス加工性やヒートシール性の指標となる成形性の評価を行った。成形性の評価は、第1繊維層1を構成する繊維の融点で熱エンボス加工し評価した。具体的には、エンボス凸部面積2.0〜3.0mm2、圧力100〜200MPaで実施例の場合は、110〜120℃、比較例の場合は140〜150℃の温度の条件で熱エンボス加工の評価を行った。
成形性が良いとは、熱エンボス加工した場合に、熱が加わった部分に穴があいたりすることがなく、またエンボスパターンが鮮明に形成されている場合をいい、成形性が悪いとは、成形性が良い場合とは反対に、熱が加わった部分に穴があいたり、またエンボスパターンが不鮮明な場合をいう。
4). Processability (embossing and heat sealability)
The three-dimensional sheet materials obtained in the examples and comparative examples were further evaluated for formability, which is an index of embossability and heat sealability. The moldability was evaluated by heat embossing with the melting point of the fibers constituting the first fiber layer 1. Specifically, the embossed convex area is 2.0 to 3.0 mm 2 and the pressure is 100 to 200 MPa. In the case of the example, the embossing is performed at 110 to 120 ° C., and in the case of the comparative example, the temperature is 140 to 150 ° C. Processing was evaluated.
Good moldability means that when heat embossing is performed, there is no hole in the heated part, and the embossed pattern is clearly formed. Contrary to the case where the moldability is good, a case where a hole is formed in a portion where heat is applied or the emboss pattern is unclear.

〔評価基準〕
成形性が良い ○
どちらともいえない △
成形性が悪い ×
〔Evaluation criteria〕
Good formability ○
I can say neither
Poor formability ×

Figure 0004212526
Figure 0004212526

表1に示す結果から明らかなように、実施例のシート材料(本発明品)は、嵩高で、風合いが良好であることが判る。
これに対して、比較例1のシート材料は、第1繊維層の最大収縮率発現温度(145℃)の方が、第2繊維層の融点(160℃)よりも低く、風合いは良好であるが、収縮の程度が充分ではなく、また第1繊維層を構成する繊維の融点差が15と小さいため接合部に液が滲み込み、かつ加工性を悪い。
これに対して、比較例2のシート材料は、第1繊維層の最大収縮率発現温度(145℃)の方が、第2繊維層の融点(145℃)と同じであるため、風合いが悪く、また第1繊維層を構成する繊維の融点差が15と小さいため接合部に液が滲み込み、かつ加工性を悪い。
これに対して、比較例3のシート材料は、第1繊維層の最大収縮率発現温度(145℃)の方が、第2繊維層の融点(129℃)と高いため、風合いが悪く、また第1繊維層を構成する繊維の融点差が15と小さいため接合部に液が滲み込み、かつ加工性を悪い。
これに対して、比較例4のシート材料は、第1繊維層の最大収縮率発現温度(145℃)の方が、第2繊維層の融点(129℃)と高いため、風合いが悪く、また第1繊維層を構成する繊維の融点差が15と小さいため接合部に液が滲み込み、かつ加工性を悪い。
これに対して、比較例5のシート材料は、第1繊維層の最大収縮率発現温度(145℃)の方が、第2繊維層の融点(129℃)と高いため、風合いが悪く、また第1繊維層を構成する繊維の融点差が15と小さいため接合部に液が滲み込み、かつ加工性を悪い。
As is apparent from the results shown in Table 1, it can be seen that the sheet material of the example (product of the present invention) is bulky and has a good texture.
In contrast, in the sheet material of Comparative Example 1, the maximum shrinkage rate expression temperature (145 ° C.) of the first fiber layer is lower than the melting point (160 ° C.) of the second fiber layer, and the texture is good. However, the degree of shrinkage is not sufficient, and since the melting point difference of the fibers constituting the first fiber layer is as small as 15, the liquid soaks into the joint and the workability is poor.
On the other hand, the sheet material of Comparative Example 2 has a poor texture because the maximum shrinkage rate expression temperature (145 ° C.) of the first fiber layer is the same as the melting point (145 ° C.) of the second fiber layer. In addition, since the melting point difference of the fibers constituting the first fiber layer is as small as 15, the liquid soaks into the joint and the workability is poor.
In contrast, in the sheet material of Comparative Example 3, the maximum shrinkage rate expression temperature (145 ° C.) of the first fiber layer is higher than the melting point (129 ° C.) of the second fiber layer. Since the melting point difference of the fibers constituting the first fiber layer is as small as 15, the liquid soaks into the joint and the workability is poor.
In contrast, in the sheet material of Comparative Example 4, the maximum shrinkage rate expression temperature (145 ° C.) of the first fiber layer is higher than the melting point (129 ° C.) of the second fiber layer. Since the melting point difference of the fibers constituting the first fiber layer is as small as 15, the liquid soaks into the joint and the workability is poor.
In contrast, in the sheet material of Comparative Example 5, the maximum shrinkage rate expression temperature (145 ° C.) of the first fiber layer is higher than the melting point (129 ° C.) of the second fiber layer, so the texture is poor. Since the melting point difference of the fibers constituting the first fiber layer is as small as 15, the liquid soaks into the joint and the workability is poor.

本発明の立体シート材料の一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of the solid sheet material of this invention. 図1におけるX−X断面を模式的に示す図である。It is a figure which shows typically the XX cross section in FIG. 熱融着部の形成パターン(凹凸ロールの凹凸パターン)を示す図である。It is a figure which shows the formation pattern (concavo-convex pattern of an uneven | corrugated roll) of a heat-fusion part. 熱融着部の他の形成パターン(凹凸ロールの凹凸パターン)を示す図である。It is a figure which shows the other formation pattern (concavo-convex pattern of an uneven | corrugated roll) of a heat-fusion part. 第1繊維層の最大収縮率発現温度の測定方法の説明図である。It is explanatory drawing of the measuring method of the maximum shrinkage rate expression temperature of a 1st fiber layer.

符号の説明Explanation of symbols

1 第1繊維層
2 第2繊維層
3 接合部
4 凸部
10 立体シート材料

DESCRIPTION OF SYMBOLS 1 1st fiber layer 2 2nd fiber layer 3 Joining part 4 Convex part 10 Three-dimensional sheet material

Claims (8)

熱収縮性繊維を含む第1繊維層と、非熱収縮性繊維からなる第2繊維層とが積層され、前記両繊維層が、熱融着によって部分的に形成された多数の熱融着部によって厚さ方向に一体化されており、前記熱融着部の間では、第1繊維層の収縮によって第2繊維層が突出して凸部を形成している立体シート材料であって、
第1繊維層の最大収縮率発現温度が、第2繊維層中の前記非熱収縮性繊維の融点よりも低く、前記最大収縮率発現温度が130℃以下である立体シート材料。
A plurality of heat-sealed portions in which a first fiber layer containing heat-shrinkable fibers and a second fiber layer made of non-heat-shrinkable fibers are laminated, and both the fiber layers are partially formed by heat-sealing. Is a three-dimensional sheet material in which the second fiber layer protrudes due to the contraction of the first fiber layer to form a convex portion between the heat fusion parts,
A three-dimensional sheet material in which the maximum shrinkage rate expression temperature of the first fiber layer is lower than the melting point of the non-heat-shrinkable fibers in the second fiber layer, and the maximum shrinkage rate expression temperature is 130 ° C or lower.
第1繊維層中の前記熱収縮性繊維が、収縮率が異なる2種類の樹脂からなる複合繊維であり、収縮率が高い方の樹脂と低い方の樹脂との融点の差が30℃以上である請求項1記載の立体シート材料。   The heat-shrinkable fiber in the first fiber layer is a composite fiber composed of two types of resins having different shrinkage rates, and the difference in melting point between the resin having the higher shrinkage rate and the resin having the lower shrinkage rate is 30 ° C. or more. The solid sheet material according to claim 1. 第1繊維層中の前記熱収縮性繊維が、収縮率が異なる複数樹脂からなる複合繊維であり、収縮率が最も高い樹脂の融点が、第2繊維層中の前記非熱収縮性繊維の融点よりも低い請求項1又は2記載の立体シート材料。   The heat-shrinkable fiber in the first fiber layer is a composite fiber composed of a plurality of resins having different shrinkage rates, and the melting point of the resin having the highest shrinkage rate is the melting point of the non-heat-shrinkable fiber in the second fiber layer. The three-dimensional sheet material of Claim 1 or 2 lower than this. 第1繊維層を、第2繊維層中の前記非熱収縮性繊維の融点よりも低い温度の熱処理により熱収縮させて得られたものである請求項1〜3の何れか記載の立体シート材料。   The three-dimensional sheet material according to any one of claims 1 to 3, wherein the first fiber layer is obtained by heat shrinking by heat treatment at a temperature lower than the melting point of the non-heat-shrinkable fiber in the second fiber layer. . 第2繊維層中の前記非熱収縮性繊維の融点が120℃以上である請求項1〜4の何れか記載の立体シート材料。   The three-dimensional sheet material according to any one of claims 1 to 4, wherein the non-heat-shrinkable fiber in the second fiber layer has a melting point of 120 ° C or higher. 第2繊維層中の前記非熱収縮性繊維が、融点が異なる複数樹脂からなる複合繊維であり、前記融点が最も低い樹脂が、融点125〜135℃の高密度ポリエチレンである請求項5記載の立体シート材料。   The non-heat-shrinkable fiber in the second fiber layer is a composite fiber composed of a plurality of resins having different melting points, and the resin having the lowest melting point is a high-density polyethylene having a melting point of 125 to 135 ° C. Three-dimensional sheet material. 請求項1記載の立体シート材料の製造方法であって、
熱エンボス加工によって、第1及び第2繊維層を部分的に熱融着して熱融着部を形成した後、第2繊維層中の前記非熱収縮性繊維の融点よりも低い温度で熱処理して第1繊維層を熱収縮させ、熱融着部間の第2繊維層を突出させて凸部を形成させる立体シート材料の製造方法。
It is a manufacturing method of the solid sheet material according to claim 1,
After the first and second fiber layers are partially heat-sealed by hot embossing to form a heat-sealed portion, heat treatment is performed at a temperature lower than the melting point of the non-heat-shrinkable fibers in the second fiber layer. Then, the manufacturing method of the three-dimensional sheet material which heat-shrinks the 1st fiber layer and makes the 2nd fiber layer between heat fusion parts project, and forms a convex part.
熱融着させる前の第2繊維層が、カード法によって得られた繊維ウエブに、エアースルー法により繊維同士の熱融着点を形成したものである、請求項7記載の立体シート材料の製造方法。 The manufacturing of the three-dimensional sheet material according to claim 7 , wherein the second fiber layer before heat-sealing is formed by forming a heat-sealing point between fibers by an air-through method on a fiber web obtained by a card method. Method.
JP2004229709A 2004-08-05 2004-08-05 Three-dimensional sheet material Active JP4212526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004229709A JP4212526B2 (en) 2004-08-05 2004-08-05 Three-dimensional sheet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004229709A JP4212526B2 (en) 2004-08-05 2004-08-05 Three-dimensional sheet material

Publications (2)

Publication Number Publication Date
JP2006045724A JP2006045724A (en) 2006-02-16
JP4212526B2 true JP4212526B2 (en) 2009-01-21

Family

ID=36024632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004229709A Active JP4212526B2 (en) 2004-08-05 2004-08-05 Three-dimensional sheet material

Country Status (1)

Country Link
JP (1) JP4212526B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102459736A (en) * 2009-06-24 2012-05-16 Jnc株式会社 Nonwoven fabric with uneven surface structure, and product using same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5094173B2 (en) * 2007-03-20 2012-12-12 花王株式会社 Absorbent article and manufacturing method thereof
JP5842353B2 (en) 2010-04-13 2016-01-13 Jnc株式会社 Bulky nonwoven fabric
JP5703586B2 (en) 2010-04-13 2015-04-22 Jnc株式会社 Stretchable nonwoven fabric and processed article using the same
JP5796336B2 (en) * 2011-04-28 2015-10-21 Jnc株式会社 Uneven stretch nonwoven fabric
JP5961972B2 (en) * 2011-10-12 2016-08-03 Jnc株式会社 Elastic bulky nonwoven fabric and method for producing the same
JP2017081040A (en) * 2015-10-29 2017-05-18 三井化学株式会社 Nonwoven fabric laminate, sound absorbing material, and method for manufacturing the same
CN115214219B (en) * 2022-07-12 2023-12-08 厦门品达工贸有限公司 Three-dimensional texture forming sandwich fabric and anti-fouling post-finishing processing technology thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3181195B2 (en) * 1995-06-22 2001-07-03 大和紡績株式会社 Nonwoven fabric and surface fastener female material having irregularities on the surface and method for producing the same
JP3131557B2 (en) * 1995-10-19 2001-02-05 大和紡績株式会社 Wrinkled nonwoven fabric and method for producing the same
JP4433567B2 (en) * 1999-05-21 2010-03-17 チッソ株式会社 Latent crimpable conjugate fiber and nonwoven fabric using the same
JP3877682B2 (en) * 2002-03-22 2007-02-07 花王株式会社 Top sheet for absorbent articles
JP3883460B2 (en) * 2002-03-25 2007-02-21 花王株式会社 3D sheet
JP2003306859A (en) * 2002-04-10 2003-10-31 Kao Corp Layered fiber assembly for forming three-dimensional sheet and method for producing three-dimensional sheet
JP3992528B2 (en) * 2002-04-11 2007-10-17 花王株式会社 Heat shrinkable nonwoven fabric

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102459736A (en) * 2009-06-24 2012-05-16 Jnc株式会社 Nonwoven fabric with uneven surface structure, and product using same

Also Published As

Publication number Publication date
JP2006045724A (en) 2006-02-16

Similar Documents

Publication Publication Date Title
JP3625804B2 (en) Three-dimensional sheet material
JP4895710B2 (en) Nonwoven manufacturing method
JP3868892B2 (en) Absorbent article surface sheet
JP2813156B2 (en) Perforated nonwoven fabric and method for producing the same
JP5842353B2 (en) Bulky nonwoven fabric
WO2010074205A1 (en) Surface sheet for absorbent article
JP2002065736A (en) Absorptive article used with surface layer having continuous filament and method of manufacturing for the same
JP4471925B2 (en) Nonwoven manufacturing method
JP5386341B2 (en) Disposable diapers
JP5449056B2 (en) Absorbent article surface sheet
JP5514536B2 (en) Disposable diapers
JP4212526B2 (en) Three-dimensional sheet material
JP4614876B2 (en) Latent crimped fiber
JP2008106375A (en) Stretchable nonwoven fabric
JP3883460B2 (en) 3D sheet
JP3992528B2 (en) Heat shrinkable nonwoven fabric
JP2008144321A (en) Nonwoven fabric
JP3808032B2 (en) Three-dimensional sheet material
JP5211033B2 (en) Nonwoven manufacturing method
JP2008231619A (en) Fiber sheet
JP2005015964A (en) Sheet material
JP2003306859A (en) Layered fiber assembly for forming three-dimensional sheet and method for producing three-dimensional sheet
JP5203349B2 (en) Non-woven
JP5593124B2 (en) Disposable diapers
JP5211032B2 (en) A method for producing a three-dimensional shaped nonwoven fabric.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081028

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4212526

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250