JP4211900B2 - Metal fine particle supported hydrocarbon reforming catalyst and method for producing the same - Google Patents

Metal fine particle supported hydrocarbon reforming catalyst and method for producing the same Download PDF

Info

Publication number
JP4211900B2
JP4211900B2 JP08563798A JP8563798A JP4211900B2 JP 4211900 B2 JP4211900 B2 JP 4211900B2 JP 08563798 A JP08563798 A JP 08563798A JP 8563798 A JP8563798 A JP 8563798A JP 4211900 B2 JP4211900 B2 JP 4211900B2
Authority
JP
Japan
Prior art keywords
catalyst
fine particle
metal fine
concentration
reforming catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08563798A
Other languages
Japanese (ja)
Other versions
JPH11276893A (en
Inventor
耕三 飯田
繁 野島
聡信 安武
勝臣 竹平
哲也 宍戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP08563798A priority Critical patent/JP4211900B2/en
Publication of JPH11276893A publication Critical patent/JPH11276893A/en
Application granted granted Critical
Publication of JP4211900B2 publication Critical patent/JP4211900B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/007Mixed salts

Description

【0001】
【発明の属する技術分野】
本発明は炭化水素の水蒸気及び炭酸ガス改質用触媒、特に高分散化した金属微粒子担持炭化水素改質用触媒に関する。
【0002】
【従来の技術】
炭化水素の水蒸気改質用触媒としては、従来よりα−アルミナ等の耐熱性酸化物を担体として、これに触媒活性成分としてロジウム、ルテニウム等の貴金属或いは酸化ニッケルを担持したものが知られている。更に水蒸気改質については「化学工学論文集」第16巻、第5号(1990)に報告があり、水蒸気改質ではNi系触媒が既に実用化されており、J.R.Rostrup-Nielsen, in “Catalysis, Science and Technology" (Eds.J.R.Anderson and M.Boudart, Springer-Verlag:Berlin, 1984), Vol.5, 1-117に発表されている。
CO2 によるメタンの改質反応触媒としては、貴金属系ではA.T.Ashcroft, A.K.Cheetham, J.S.Foord, M.L.H.Green and P.D.F.Vemon, “Nature" 352, 225 (1991)に報告があり、Ni系触媒は、T.Osaki, T.Horiuchi, K.Suzuki and T.Mori, “J.Chem. Soc., Faraday Trans.", 92, 1627 (1997) に発表されている。
【0003】
現在、合成ガスはこのような触媒を用いた天然ガスの水蒸気改質により製造されているが、この方法は大きな吸熱反応であると同時に触媒上での炭素質の析出を抑制するために多量の水蒸気を用いて操業せざるを得ず、エネルギー的には極めて不利なプロセスである。さらに生成する合成ガスのCO/H2 比は1/3となり、後続するメタノール合成或いはF−T合成に適合させるためには、後段にシフト反応を組み合わせて調整する必要がある。また水蒸気に替わる反応として二酸化炭素によるメタン改質反応とメタンの部分酸化反応がある。
【0004】
【発明が解決しようとする課題】
上記のような炭化水素の水蒸気又は二酸化炭素改質反応、例えば二酸化炭素のメタン改質反応及びメタンの部分酸化反応も現状触媒ではシンタリングやコーキングが顕著なため瞬時に劣化する問題を抱えている。これらの反応においては、操業中の炭素の析出(コーキング)を抑制するための高活性な触媒の開発が必須となる。
従って本発明は炭化水素の水蒸気及び二酸化炭素改質反応において触媒上での炭素の析出を抑制した高活性及び長寿命な金属微粒子担持触媒及びその製造方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するにあたり、従来から用いられている方法として、触媒成分を外部から付着させる含浸担持法では金属粒子径の制御及び触媒成分の強固な担持は困難である。そこで本発明者らは、触媒成分を内部から表面に染み出させることにより、金属超微粒子が高分散且つ強固に担持された金属担持触媒を製造する新規な触媒製造法(本方法を固相晶析法と呼ぶ。)を見いだし本発明を完成するに至った。
【0006】
すなわち、本発明は、ハイドロタルサイト(構造式:Ma 2+b 3+(OH)2a+2b(X) b/2 ・2H2O)の主構成元素として、Ma をMg、Mb をAl、XをCO3 2- とし、Alの全部がSc及びRh、又は、Y及びRhに置換される組成となるように混合水溶液を調製し、該混合水溶液から得られる沈殿物を焼成し、ハイドロタルサイト化合物を得ることを特徴とする金属微粒子担持炭化水素改質用触媒の製造方法を提供することを目的とする。すなわち、ハイドロタルサイトのAlを以下のいずれかで置換するものである。
(1)ScとRh
(2)YとRh
【0007】
さらに本発明は、上記の製造方法により製造されることを特徴とする金属微粒子担持炭化水素改質用触媒を提供するものである。
【0008】
【発明の実施の態様】
本発明において、構成元素の一部を貴金属又は遷移金属で置換する場合、置換する元素の価数が連合すれば、両者の混合による置換も可能であり、また、Ma 、Mb の一部を置換する場合、置換する割合は原子比で0.1〜50%、特に0.1〜10%が好ましい。置換濃度がこの範囲より低いと触媒活性が不適切であり、高過ぎると十分に置換されなくなるという問題が生じるのでこの範囲が好ましい。
本発明において、ハイドロタルサイトを製造するには、Mg、Al及びRhの硝酸塩等のような水溶性塩を適当な比率に混合して水に溶解し混合水溶液を調製し、Na2 CO3 やNaOHのようなアルカリ水溶液を用いて好ましくはpH6〜12、特にpH9〜11の範囲に調整して沈殿を生成させることにより行う。次いで沈殿物は熟成、洗浄、焼成する。熟成は60〜100℃、特に70〜90℃、焼成は400〜900℃、特に600〜900℃で行うのが好ましい。 上記と同様にして、更に遷移金属、貴金属で適宜に置換したハイドロタルサイトを調製する。
【0009】
上記の方法で得られるハイドロタルサイトは、一般式Ma 2+b 3+(OH)2a+2b (X) b/2 ・2H2Oで表されるものであり(但しMa =Mg、Mb =Al、X=CO3 2- )、これを前駆体として用いて、Mg及びAlのそれぞれ一部又は全部を貴金属又は遷移元素で置換された触媒を得る。上記工程における焼成段階において活性金属である貴金属及び遷移金属種が内部から表面に染み出して高分散化した金属微粒子を担持した触媒となり、特に炭化水素の水蒸気、CO2 改質、例えばメタンのCO2 リフォーミング反応、メタンの部分酸化反応、CO及びH2 からメタンを合成するメタネーション反応、メタノールの改質あるいは分解反応による合成ガスの製造等に有効な触媒が得られる。以下、本固相晶析法による触媒調製法及び本触媒を用いた活性評価試験結果を実施例により詳細に説明する。
【0010】
【実施例】
(実施例1)
触媒の調製Mg(NO32 ・6H2 O:7.583g、Al2 (NO3 )・9H2 O:2.311g、Rh(NO3 )3 :0.1gを純水で200mlとし、金属の量論比の混合溶液を調製した。次に、Na2 CO3 ・10H2 O:2.823gを秤量し、純粋で20mlとして四つ口フラスコに入れた。室温でNa2 CO3 溶液を攪拌しながらMg/Al/Rh混合溶液に滴下した。この際、混合溶液のpHを1MのNaOH水溶液を用いて10に保持した。滴下終了後、90℃で40分間攪拌を続けた。攪拌をやめ、90℃で一晩熟成させた後、生成する混濁溶液を、吸収濾過し、過剰のイオン交換水で洗浄した。得られた沈殿物を、約100℃で一晩乾燥させた。乾燥させた沈殿物を粉砕し、650℃で14時間焼成し、次に850℃で5時間焼成させAlの一部をRhで置換した組成比Mg3 Al0.966 Rh0.034 を有するハイドロタルサイト型の参考触媒1を得た。なお、Rh(NO3 3 の量を半分にして組成比Mg3 0.983 Rh0.017 (係数は原子比)を有する参考触媒2を得た。
【0011】
次に、上記参考触媒1と同様な方法において、Rh(NO3 3 の代わりにRuCl3 、Pd(NH3 )2 Cl2 及びNiCl2 ・6H2 Oを原料として各々のハイドロタルサイト型層状酸化物を得た。本触媒を参考触媒1と同様に焼成して各参考触媒を得た。本参考触媒は金属原子比でMg3 Al0.966 Ru0.034 、Mg3 Al0.983Ru0.017 、Mg3 Al0.966 Pd0.034 、Mg3 Al0.983 Pd0.017 、Mg3 Al0.966 Ni0.034 、Mg3 Al0.983 Ni0.017 で表され、各々参考触媒3〜参考触媒8とする。また、参考触媒1においてRh(NO3 )の量を5倍、10倍添加して参考触媒1と同様な方法にて調製し、組成比Mg3 Al0.828 Rh0.172 、Mg3Al0.67Rh0.33参考触媒9、10を得た。更に、参考触媒10の調製法においてAlの代わりにSc、Cr、Fe、Ga、Yを選定し、各々金属硝酸塩を用いて参考触媒10と同様の調製法にてMg3 Fe0.67Rh0.33、Mg3 Cr0.67Rh0.33、Mg3 Ga0.67Rh0.33、Mg3 Sc0.67Rh0.33、Mg3 0.67Rh0.33を得た。本触媒を参考触媒11、12、13、及び触媒1、2とする。
【0012】
さらに、比較触媒として、参考触媒1の方法においてRh(NO3 3 を添加せずに調製したMg3 Alのハイドロタルサイト型の層状化合物を調製し、参考触媒1と同様に焼成した。本触媒を比較触媒1とする。また、αAl2 3 にRh(NO3 3 水溶液でRhを浸漬担持法で含浸させ、乾燥後、500℃、5時間焼成した。本触媒を比較触媒2とする。さらに、参考触媒1にRhを浸漬担持法で含浸し、1000℃で焼成した。本触媒を比較触媒3とする。
【0013】
参考例1)
メタンのCO2 リフォーミング反応試験実施例1にて調製した触媒を用いてメタンのCO2 リフォーミング反応を行った。反応器としては、円筒形反応器に触媒を固定床として保持した形式のものを用いた。反応条件を下記表1に示す。
【0014】
【表1】

Figure 0004211900
【0015】
なお、活性、選択性は下記式により求めた。
CH4 転化率(%)=(1−出口CH4 濃度/入口CH4 濃度)×100
CO転化率(%)=(1−出口CO濃度/入口CO濃度)×100
CO選択率(%)=(生成したCO濃度/反応した(CH4 +CO2 )濃度)×100
2 選択率(%)=(生成したH2 濃度/反応したCH4 濃度×2)×100
【0016】
【表2】
Figure 0004211900
【0017】
【表3】
Figure 0004211900
【0018】
表2に昇温反応におけるCO2 によるメタン改質反応結果を示す。本結果より、参考触媒1〜8の固相晶析法による担持触媒は活性、選択性とも良好であり、CO、H2 の選択性は殆ど90%以上を有した。一方、金属を担持していない比較触媒1や従来の含浸法により調製した比較触媒2は殆ど活性を示さないことがわかった。また、表3に750℃定温反応におけるCH4 及びCO2 の6時間後の転化率、選択性を、さらに図1〜図3には参考触媒2、4、6のCH4 、CO2 の転化率の経時変化を示す。本結果より、参考触媒1、2、4、6はいずれも安定な高い活性を示すことがわかった。一方、比較触媒2は本条件においても殆ど活性を示さないことを確認した。更に参考触媒1〜8及び比較触媒1は850℃焼成後においても高比表面積を有することを確認した。
【0019】
参考例2)
メタンの部分酸化反応試験実施例1で調製した参考触媒を用いて、参考例1と同様の反応器中でメタンの部分酸化反応を行った。反応条件を下記表4に示す。
【0020】
【表4】
Figure 0004211900
【0021】
なお、活性、選択性は下記式により求めた。
CH4 転化率(%)=(1−出口CH4 濃度/入口CH4 濃度)×100
2 転化率(%)=(1−出口O2 濃度/入口O2 濃度)×100
CO選択率(%)=(生成したCO濃度/反応したCH4 濃度)×100
2 選択率(%)=(生成したH2 濃度/反応したCH4 濃度×2)×100
CO2 選択率(%)=(生成したCO2 濃度/反応したCH4 濃度)×100
【0022】
【表5】
Figure 0004211900
【0023】
【表6】
Figure 0004211900
【0024】
表5、表6にRh系の参考触媒及びAl代替3価元素により調製した触媒のCH4 の部分酸化反応結果(昇温反応)を示す。本結果より、参考触媒1、9〜13及び本発明の触媒1、2はいずれも高いCH4 の部分酸化活性を有し、CH4 が高選択率にてCO、H2 に変換されることがわかった。
【0025】
【発明の効果】
結晶性層状化合物(ハイドロタルサイト)を前駆体として、その構成元素の一部を活性金属である貴金属及び遷移金属元素で置換、焼成し、活性金属種を内部から表面に染み出させることにより得られる高分散化した金属微粒子担持触媒を用いて、メタンのCO2 リフォーミング反応及びメタンの部分酸化反応を行った結果、本発明の触媒を用いることにより高活性を示し、高選択率でCO、H2 への変換を可能とし、高温焼成後においても高表面積を有していることが示された。
【図面の簡単な説明】
【図1】図1は触媒2を用いたときのCH4 、CO2 の転化率の経時変化を示す。
【図2】図2は触媒4を用いたときのCH4 、CO2 の転化率の経時変化を示す。
【図3】図3は触媒6を用いたときのCH4 、CO2 の転化率の経時変化を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrocarbon steam and carbon dioxide reforming catalyst, and more particularly to a highly dispersed metal fine particle-supported hydrocarbon reforming catalyst.
[0002]
[Prior art]
As a hydrocarbon steam reforming catalyst, a catalyst in which a heat-resistant oxide such as α-alumina is used as a carrier and a noble metal such as rhodium or ruthenium or nickel oxide is supported thereon as a catalyst active component is known. . Further, steam reforming has been reported in “Chemical Engineering Papers” Vol. 16, No. 5 (1990), and Ni-based catalysts have already been put to practical use in steam reforming. JRRostrup-Nielsen, in “Catalysis, Science and Technology "(Eds. JR Anderson and M. Boudart, Springer-Verlag: Berlin, 1984), Vol. 5, 1-117.
As a reforming reaction catalyst of methane by CO 2 , there are reports on ATAshcroft, AKCheetham, JSFoord, MLHGreen and PDFVemon, “Nature” 352, 225 (1991) for noble metals, and Ni-based catalysts are T. Osaki, T. Horiuchi, K. Suzuki and T. Mori, “J. Chem. Soc., Faraday Trans.”, 92, 1627 (1997).
[0003]
At present, synthesis gas is produced by steam reforming of natural gas using such a catalyst, but this method is a large endothermic reaction, and at the same time, a large amount of carbon dioxide is prevented from being deposited on the catalyst. This process is extremely disadvantageous in terms of energy because it must be operated using steam. Further, the CO / H 2 ratio of the synthesis gas to be produced is 1/3, and in order to adapt to the subsequent methanol synthesis or FT synthesis, it is necessary to adjust by combining the shift reaction in the subsequent stage. In addition, there are methane reforming reaction by carbon dioxide and partial oxidation reaction of methane as reaction instead of steam.
[0004]
[Problems to be solved by the invention]
Hydrocarbon steam or carbon dioxide reforming reactions such as those described above, such as methane reforming reaction of carbon dioxide and partial oxidation reaction of methane, have the problem of instant deterioration due to remarkable sintering and coking in current catalysts. . In these reactions, it is essential to develop a highly active catalyst for suppressing carbon deposition (coking) during operation.
Accordingly, an object of the present invention is to provide a highly active and long-life metal fine particle-supported catalyst that suppresses carbon deposition on the catalyst in a hydrocarbon steam and carbon dioxide reforming reaction, and a method for producing the same.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, it is difficult to control the metal particle diameter and firmly support the catalyst component by the impregnation support method in which the catalyst component is attached from the outside as a conventionally used method. Therefore, the present inventors have developed a novel catalyst production method for producing a metal-supported catalyst in which ultrafine metal particles are highly dispersed and firmly supported by leaching the catalyst component from the inside to the surface (this method is a solid phase crystal). The present invention has been completed.
[0006]
That is, the present invention relates to hydrotalcite (structural formula: M a 2+ M b 3+ (OH) 2a + 2b (X) b / 2. As · 2H main constituent element of the 2 O), a M a and Mg, the M b Al, the X CO 3 2-a, all of Al, Sc and Rh, or, to be the composition which is substituted with Y and Rh An object of the present invention is to provide a method for producing a metal fine particle-supported hydrocarbon reforming catalyst, characterized in that a mixed aqueous solution is prepared and a precipitate obtained from the mixed aqueous solution is calcined to obtain a hydrotalcite compound. . That is, the hydrotalcite Al is substituted with any of the following.
(1) Sc and Rh
(2) Y and Rh
[0007]
Furthermore, the present invention provides a metal fine particle-supported hydrocarbon reforming catalyst produced by the production method described above .
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, when a part of the constituent elements is replaced with a noble metal or transition metal, if the valences of the elements to be replaced are combined, replacement by mixing both of them is possible, and part of M a and M b When substituting, the substitution ratio is 0.1 to 50%, particularly 0.1 to 10% in terms of atomic ratio. If the substitution concentration is lower than this range, the catalyst activity is inappropriate. If the substitution concentration is too high, there is a problem that the substitution is not sufficient.
In the present invention, in order to produce hydrotalcite, water-soluble salts such as Mg, Al and Rh nitrates are mixed in an appropriate ratio and dissolved in water to prepare a mixed aqueous solution, and Na 2 CO 3 or It is carried out by using an aqueous alkali solution such as NaOH, preferably by adjusting the pH in the range of 6 to 12, particularly in the range of pH 9 to 11, to generate a precipitate. The precipitate is then aged, washed and fired. The aging is preferably performed at 60 to 100 ° C, particularly 70 to 90 ° C, and the calcination is performed at 400 to 900 ° C, particularly 600 to 900 ° C. In the same manner as described above, a hydrotalcite further appropriately substituted with a transition metal or a noble metal is prepared.
[0009]
The hydrotalcite obtained by the above method is represented by the general formula M a 2+ M b 3+ (OH) 2a + 2b (X) b / 2 · 2H 2 O (where M a = Mg , M b = Al, X = CO 3 2− ), and using this as a precursor, a catalyst in which a part or all of Mg and Al is replaced with a noble metal or a transition element is obtained. In the calcination stage in the above process, the noble metal and transition metal species which are active metals exude to the surface from the inside and become a catalyst carrying highly dispersed metal fine particles, particularly hydrocarbon steam, CO 2 reforming, such as CO of methane 2 An effective catalyst can be obtained for reforming reaction, partial oxidation reaction of methane, methanation reaction for synthesizing methane from CO and H 2 , production of synthesis gas by reforming or decomposition reaction of methanol. Hereinafter, the catalyst preparation method by this solid-phase crystallization method and the activity evaluation test result using this catalyst will be described in detail by way of examples.
[0010]
【Example】
Example 1
Preparation of catalyst Mg (NO 3 ) 2 · 6H 2 O: 7.583 g, Al 2 (NO 3 ) · 9H 2 O: 2.311 g, Rh (NO 3 ) 3: 0.1 g to 200 ml with pure water, A mixed solution of metal stoichiometric ratio was prepared. Next, 2.823 g of Na 2 CO 3 .10H 2 O: was weighed and put into a four-necked flask as pure 20 ml. The Na 2 CO 3 solution was added dropwise to the Mg / Al / Rh mixed solution with stirring at room temperature. At this time, the pH of the mixed solution was maintained at 10 using 1M NaOH aqueous solution. After completion of dropping, stirring was continued at 90 ° C. for 40 minutes. After the stirring was stopped and the mixture was aged at 90 ° C. overnight, the resulting turbid solution was subjected to absorption filtration and washed with excess ion-exchanged water. The resulting precipitate was dried at about 100 ° C. overnight. The dried precipitate was pulverized, calcined at 650 ° C. for 14 hours, then calcined at 850 ° C. for 5 hours, and a part of Al was replaced with Rh. Hydrotalcite type composition having a composition ratio of Mg 3 Al 0.966 Rh 0.034 Reference catalyst 1 was obtained. Incidentally, Rh (NO 3) 3 amounts to half to the composition ratio Mg 3 A l 0.983 Rh 0.017 (coefficient atomic ratio) to obtain a reference catalyst 2 having a.
[0011]
Next, in the same method as the above-mentioned reference catalyst 1, each hydrotalcite type layered material is made from RuCl 3 , Pd (NH 3 ) 2 Cl 2 and NiCl 2 .6H 2 O instead of Rh (NO 3 ) 3. An oxide was obtained. This catalyst was calcined in the same manner as the reference catalyst 1 to obtain each reference catalyst. This reference catalyst is Mg 3 Al 0.966 Ru 0.034 , Mg 3 Al 0.983 Ru 0.017 , Mg 3 Al 0.966 Pd 0.034 , Mg 3 Al 0.983 Pd 0.017 , Mg 3 Al 0.966 Ni 0.034 , Mg 3 Al 0.983 Ni 0.017 in terms of metal atomic ratio. These are represented by reference catalyst 3 to reference catalyst 8, respectively. Further, 5 times the amount of the reference catalyst 1 Rh (NO 3), was added 10-fold was prepared in a similar manner to Reference Catalyst 1 method, the composition ratio Mg 3 Al 0.828 Rh 0.172, the Mg 3 Al 0.67 Rh 0.33 Reference catalysts 9 and 10 were obtained. Furthermore, Sc instead of Al in the preparation method of Reference catalyst 10, Cr, Fe, Ga, selected the Y, Mg 3 Fe 0.67 Rh 0.33 each using a metal nitrate in the same preparation method as in Reference catalyst 10, Mg 3 Cr 0.67 Rh 0.33, Mg 3 Ga 0.67 Rh 0.33, Mg 3 Sc 0.67 Rh 0.33, to obtain a Mg 3 Y 0.67 Rh 0.33. This catalyst is referred to as reference catalysts 11 , 12 , 13 and catalysts 1 , 2 .
[0012]
Furthermore, as a comparative catalyst, a hydrotalcite-type layered compound of Mg 3 Al prepared without adding Rh (NO 3 ) 3 in the method of Reference Catalyst 1 was prepared and calcined in the same manner as Reference Catalyst 1. This catalyst is referred to as Comparative Catalyst 1. Further, α - Al 2 O 3 was impregnated with Rh (NO 3 ) 3 aqueous solution by an immersion support method, dried, and then fired at 500 ° C. for 5 hours. This catalyst is referred to as Comparative Catalyst 2. Further, Rh was impregnated in the reference catalyst 1 by a dipping support method and calcined at 1000 ° C. This catalyst is referred to as Comparative Catalyst 3.
[0013]
( Reference Example 1)
Methane CO 2 reforming reaction test Using the catalyst prepared in Example 1, methane CO 2 reforming reaction was conducted. As the reactor, a cylindrical reactor in which the catalyst was held as a fixed bed was used. The reaction conditions are shown in Table 1 below.
[0014]
[Table 1]
Figure 0004211900
[0015]
In addition, activity and selectivity were calculated | required by the following formula.
CH 4 conversion (%) = (1−outlet CH 4 concentration / inlet CH 4 concentration) × 100
CO conversion rate (%) = (1−outlet CO concentration / inlet CO concentration) × 100
CO selectivity (%) = (concentrated CO concentration / reacted (CH 4 + CO 2 ) concentration) × 100
H 2 selectivity (%) = (H 2 concentration generated / CH 4 concentration reacted × 2) × 100
[0016]
[Table 2]
Figure 0004211900
[0017]
[Table 3]
Figure 0004211900
[0018]
Table 2 shows the methane reforming reaction result by CO 2 in the heated reaction. From these results, the supported catalysts obtained by the solid-phase crystallization method of Reference Catalysts 1 to 8 had both good activity and selectivity, and the selectivity of CO and H 2 was almost 90% or more. On the other hand, it was found that the comparative catalyst 1 not supporting a metal and the comparative catalyst 2 prepared by the conventional impregnation method showed almost no activity. Table 3 shows the conversion rate and selectivity of CH 4 and CO 2 after 6 hours in a constant temperature reaction at 750 ° C. Further, FIGS. 1 to 3 show the conversion of CH 4 and CO 2 of the reference catalysts 2, 4 , and 6. The change with time is shown. From these results, it was found that all of the reference catalysts 1, 2, 4, and 6 showed stable high activity. On the other hand, it was confirmed that Comparative Catalyst 2 showed almost no activity even under these conditions. Furthermore, it was confirmed that the reference catalysts 1 to 8 and the comparative catalyst 1 have a high specific surface area even after firing at 850 ° C.
[0019]
( Reference Example 2)
Partial oxidation reaction test of methane Using the reference catalyst prepared in Example 1, a partial oxidation reaction of methane was carried out in the same reactor as in Reference Example 1. The reaction conditions are shown in Table 4 below.
[0020]
[Table 4]
Figure 0004211900
[0021]
In addition, activity and selectivity were calculated | required by the following formula.
CH 4 conversion (%) = (1−outlet CH 4 concentration / inlet CH 4 concentration) × 100
O 2 conversion (%) = (1−outlet O 2 concentration / inlet O 2 concentration) × 100
CO selectivity (%) = (concentrated CO concentration / reacted CH 4 concentration) × 100
H 2 selectivity (%) = (H 2 concentration generated / CH 4 concentration reacted × 2) × 100
CO 2 selectivity (%) = (CO 2 concentration produced / CH 4 concentration reacted) × 100
[0022]
[Table 5]
Figure 0004211900
[0023]
[Table 6]
Figure 0004211900
[0024]
Tables 5 and 6 show the CH 4 partial oxidation reaction results (temperature raising reaction) of the catalysts prepared using the Rh-based reference catalyst and the Al-substitute trivalent element. From these results, the reference catalysts 1, 9 to 13 and the catalysts 1 and 2 of the present invention all have high CH 4 partial oxidation activity, and CH 4 is converted to CO and H 2 with high selectivity. I understood.
[0025]
【The invention's effect】
Obtained by using a crystalline layered compound (hydrotalcite) as a precursor, replacing some of its constituent elements with precious metals and transition metal elements, which are active metals, and firing, and leaching active metal species from the inside to the surface. As a result of performing the CO 2 reforming reaction of methane and the partial oxidation reaction of methane using the highly dispersed metal fine particle supported catalyst obtained, the catalyst of the present invention shows high activity, with high selectivity, It was shown that it can be converted to H 2 and has a high surface area even after high temperature firing.
[Brief description of the drawings]
FIG. 1 shows changes with time in the conversion rate of CH 4 and CO 2 when a catalyst 2 is used.
FIG. 2 shows the change over time in the conversion rate of CH 4 and CO 2 when catalyst 4 is used.
FIG. 3 shows the change over time in the conversion rate of CH 4 and CO 2 when catalyst 6 is used.

Claims (2)

ハイドロタルサイト(構造式:Ma 2+b 3+(OH)2a+2b(X) b/2 ・2H2O)の主構成元素として、Ma をMg、Mb をAl、XをCO3 2- とし、Alの全部がSc及びRh、又は、Y及びRhに置換される組成となるように混合水溶液を調製し、該混合水溶液から得られる沈殿物を焼成してハイドロタルサイト化合物を得ることよりなることを特徴とする、金属微粒子担持炭化水素改質用触媒の製造方法。Hydrotalcite (formula: M a 2+ M b 3+ ( OH) 2a + 2b (X) b / 2 As · 2H main constituent element of the 2 O), a M a and Mg, the M b Al, the X CO 3 2-a, all of Al, Sc and Rh, or, to be the composition which is substituted with Y and Rh A method for producing a metal fine particle-supported hydrocarbon reforming catalyst, comprising preparing a mixed aqueous solution and calcining a precipitate obtained from the mixed aqueous solution to obtain a hydrotalcite compound. 請求項1に記載の方法により製造されることを特徴とする、金属微粒子担持炭化水素改質用触媒。  A metal fine particle-supported hydrocarbon reforming catalyst produced by the method according to claim 1.
JP08563798A 1998-03-31 1998-03-31 Metal fine particle supported hydrocarbon reforming catalyst and method for producing the same Expired - Lifetime JP4211900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08563798A JP4211900B2 (en) 1998-03-31 1998-03-31 Metal fine particle supported hydrocarbon reforming catalyst and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08563798A JP4211900B2 (en) 1998-03-31 1998-03-31 Metal fine particle supported hydrocarbon reforming catalyst and method for producing the same

Publications (2)

Publication Number Publication Date
JPH11276893A JPH11276893A (en) 1999-10-12
JP4211900B2 true JP4211900B2 (en) 2009-01-21

Family

ID=13864356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08563798A Expired - Lifetime JP4211900B2 (en) 1998-03-31 1998-03-31 Metal fine particle supported hydrocarbon reforming catalyst and method for producing the same

Country Status (1)

Country Link
JP (1) JP4211900B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2606960A1 (en) * 2011-12-21 2013-06-26 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Rhodium catalysts for ethanol reforming
JP7255745B2 (en) 2020-02-25 2023-04-11 日本電信電話株式会社 Moving object tracking device, moving object tracking method, moving object tracking system, learning device, and program

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002079101A (en) * 2000-09-08 2002-03-19 Hiroshima Industrial Technology Organization Catalyst precursor for methanol steam reforming, catalyst for methanol steam reforming and its manufacturing method
JP2002079100A (en) * 2000-09-08 2002-03-19 Hiroshima Industrial Technology Organization Spherical fine particle catalyst precursor and catalyst for steam-modifying methanol, and method for manufacturing the same
JP2002274852A (en) * 2001-03-14 2002-09-25 Asahi Kasei Corp Metal-immobilized hydrotalcite and method for producing aldehyde, ketone or carboxilic acid using the same
JP4098508B2 (en) * 2001-08-20 2008-06-11 財団法人 ひろしま産業振興機構 Method for producing catalyst for reacting hydrocarbon and water vapor, and method for producing hydrogen from hydrocarbon using the catalyst
JP4870900B2 (en) 2003-02-24 2012-02-08 戸田工業株式会社 Hydrocarbon cracking catalyst and production method thereof, and hydrogen production method using the hydrocarbon cracking catalyst
JP4332724B2 (en) * 2004-02-13 2009-09-16 戸田工業株式会社 Autothermal reforming catalyst and method for producing the same, and method for producing hydrogen using the autothermal reforming catalyst
JP4332733B2 (en) * 2004-08-24 2009-09-16 戸田工業株式会社 Hydrocarbon cracking catalyst and method for producing hydrogen using the hydrocarbon cracking catalyst
JP4340892B2 (en) * 2004-08-24 2009-10-07 戸田工業株式会社 Hydrocarbon cracking catalyst and method for producing the same, and method for producing hydrogen using the hydrocarbon cracking catalyst
JP4684639B2 (en) * 2004-12-09 2011-05-18 日揮ユニバーサル株式会社 Hydrocarbon reforming catalyst, method for producing the catalyst, and reforming method using the catalyst
KR100836907B1 (en) 2006-06-23 2008-06-12 희성촉매 주식회사 Transition metal-substituted hydrotalcite catalysts for the removal of nitrogen oxide from the exhaust of diesel engines by the storage-reduction method
JP4852361B2 (en) * 2006-07-06 2012-01-11 日立造船株式会社 Honeycomb catalyst for hydrocarbon reforming and method of using the same
JP2008080246A (en) * 2006-09-27 2008-04-10 Idemitsu Kosan Co Ltd Method for pretreating hydrogen production catalyst and method for producing hydrogen for fuel cell
JP2008094665A (en) 2006-10-12 2008-04-24 Idemitsu Kosan Co Ltd Method for producing hydrogen-containing gas
JP5477561B2 (en) * 2009-09-09 2014-04-23 戸田工業株式会社 Porous catalyst body for decomposing hydrocarbon and method for producing the same, method for producing mixed reformed gas containing hydrogen from hydrocarbon, and fuel cell system
KR101465776B1 (en) 2013-05-16 2014-12-01 한국과학기술연구원 Co-precipitated nickel based catalysts with alkali earth metal for SCR of natural gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2606960A1 (en) * 2011-12-21 2013-06-26 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Rhodium catalysts for ethanol reforming
JP7255745B2 (en) 2020-02-25 2023-04-11 日本電信電話株式会社 Moving object tracking device, moving object tracking method, moving object tracking system, learning device, and program

Also Published As

Publication number Publication date
JPH11276893A (en) 1999-10-12

Similar Documents

Publication Publication Date Title
JP4211900B2 (en) Metal fine particle supported hydrocarbon reforming catalyst and method for producing the same
KR101994152B1 (en) A Reduced Carbon Poisoning Perovskite Catalyst Impregnated with Metal Ion, Preparation Method Thereof and Methane Reforming Method Threrewith
KR101447683B1 (en) Iron modified Ni-based perovskite type catalyst, Preparing method thereof, and Producing method of synthesis gas from combined steam CO2 reforming of methane using the same
JP5479494B2 (en) Catalyst for use in a method for producing hydrogen by hydrocarbon reforming using steam, method for producing the catalyst, and use of the catalyst in the method for producing hydrogen
JP6830543B2 (en) Manganese-doped nickel-methaneation catalyst
KR102644506B1 (en) Perovskite metal oxide catalyst for high-nickel-containing hydrocarbon reforming reaction and method for producing the same
WO2007029862A1 (en) Catalyst for catalytic partial oxidation of hydrocarbon and process for producing synthesis gas
TWI294413B (en) Method for converting co and hydrogen into methane and water
JP2000000469A (en) Nickel based catalyst for reforming and production of synthetic gas using the same
Zhang et al. A novel Ni–MoCxOy interfacial catalyst for syngas production via the chemical looping dry reforming of methane
JP5531462B2 (en) Carbon dioxide reforming catalyst, method for producing the same, carrier for carbon dioxide reforming catalyst, reformer, and method for producing synthesis gas
KR102092736B1 (en) Preparation Method of Reduced Carbon Poisoning Perovskite Catalyst Impregnated with Metal Ion, and Methane Reforming Method Threrewith
JP4505127B2 (en) Production method of reforming catalyst and production method of synthesis gas using the same
CN113145127B (en) Cu catalyst for preparing hydrogen by reforming methanol and steam, and preparation method and application thereof
JP2003290657A (en) Catalyst for reforming hydrocarbon, manufacture method therefor, method for manufacturing synthetic gas and catalyst precursor
JP2002126529A (en) Method for preparing reforming catalyst
Jun et al. Nickel-calcium phosphate/hydroxyapatite catalysts for partial oxidation of methane to syngas: effect of composition
CN117545554A (en) Method for preparing a water gas shift catalyst, catalyst and method for reducing carbon monoxide content
JP2002126528A (en) Method for preparing reforming catalyst
JP4465478B2 (en) Catalyst for hydrogen production
KR101570943B1 (en) A perovskite-like catalyst supported on alumina having a bimodal pore structure for combined steam and co_2 reforming reaction with methane and a preparation method thereof
JP4175452B2 (en) Dimethyl ether reforming catalyst and dimethyl ether reforming method
KR101400889B1 (en) Carbonhydrate reforming catalyst and the method of preparation thereof
Umar et al. Perovskite modified catalysts with improved coke resistance for steam reforming of glycerol to renewable hydrogen fuel
JP4831800B2 (en) Dimethyl ether reforming catalyst and dimethyl ether reforming method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050311

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070803

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080331

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080331

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080513

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20080620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081003

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term