JP4684639B2 - Hydrocarbon reforming catalyst, method for producing the catalyst, and reforming method using the catalyst - Google Patents

Hydrocarbon reforming catalyst, method for producing the catalyst, and reforming method using the catalyst Download PDF

Info

Publication number
JP4684639B2
JP4684639B2 JP2004356491A JP2004356491A JP4684639B2 JP 4684639 B2 JP4684639 B2 JP 4684639B2 JP 2004356491 A JP2004356491 A JP 2004356491A JP 2004356491 A JP2004356491 A JP 2004356491A JP 4684639 B2 JP4684639 B2 JP 4684639B2
Authority
JP
Japan
Prior art keywords
catalyst
active metal
coating layer
hydrotalcite
solid solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004356491A
Other languages
Japanese (ja)
Other versions
JP2006181399A (en
Inventor
一矢 秋山
貴史 後藤
興二 原
彰一 加賀野井
俊則 山崎
英樹 栗村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikki Universal Co Ltd
Inpex Corp
Original Assignee
Nikki Universal Co Ltd
Inpex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikki Universal Co Ltd, Inpex Corp filed Critical Nikki Universal Co Ltd
Priority to JP2004356491A priority Critical patent/JP4684639B2/en
Publication of JP2006181399A publication Critical patent/JP2006181399A/en
Application granted granted Critical
Publication of JP4684639B2 publication Critical patent/JP4684639B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

本発明は、ハイドロタルサイト化合物に由来する被覆層を有する炭化水素改質触媒、該触媒の製造方法、及び該触媒による改質方法に関する。   The present invention relates to a hydrocarbon reforming catalyst having a coating layer derived from a hydrotalcite compound, a method for producing the catalyst, and a reforming method using the catalyst.

炭化水素の改質反応は、水素燃料や燃料電池やメタノール合成の原料となる水素あるいは合成ガスを得る手段として注目されており、外部から熱を供給する外熱式と反応熱を利用する内熱式とに大別される。外熱式の例としては水蒸気改質が挙げられ、内熱式の例としては自己熱改質(ATR)が挙げられる。   Hydrocarbon reforming reactions are attracting attention as a means of obtaining hydrogen or synthesis gas as a raw material for hydrogen fuel, fuel cells, and methanol synthesis, and external heating that supplies heat from the outside and internal heat that uses reaction heat. It is broadly divided into formulas. An example of the external heat type is steam reforming, and an example of the internal heat type is autothermal reforming (ATR).

自己熱改質は、そのエネルギー効率の高さから、近年脚光を浴びている。この方法は、触媒層に炭化水素成分と改質剤としての酸化剤(例えば、空気及び酸素)とを含む原料ガスを供給し、改質反応を行う。この反応は発熱反応であるため、外部から熱を供給しなくても反応部は高温となる。しかし、高効率で水素や合成ガスを製造するには、反応熱に加えて外部から熱を供給し、更に温度を上昇させることが望ましい。   Autothermal reforming has attracted attention in recent years because of its high energy efficiency. In this method, a reforming reaction is performed by supplying a raw material gas containing a hydrocarbon component and an oxidizing agent (for example, air and oxygen) as a modifying agent to a catalyst layer. Since this reaction is an exothermic reaction, the reaction part becomes high temperature without supplying heat from the outside. However, in order to produce hydrogen and synthesis gas with high efficiency, it is desirable to supply heat from the outside in addition to the heat of reaction and further raise the temperature.

この様に、外熱式及び内熱式を問わず、炭化水素の改質反応は高温で行うことが望まれている。そこで改質触媒も、高温で使用しても活性を保持し、物理的な損傷、例えばクラックの発生、並びに活性層の剥離及び粉化を起こしにくい触媒が求められている。   Thus, it is desired that the reforming reaction of hydrocarbons be performed at a high temperature regardless of the external heat type or the internal heat type. Accordingly, there is a need for a catalyst that retains its activity even when used at high temperatures, and that is unlikely to cause physical damage such as cracks and peeling and pulverization of the active layer.

ハイドロタルサイトを原料として調製した触媒は改質反応に高い活性を示すことが知られている(特許文献1−3を参照)。これらの文献では、活性金属で置換されたハイドロタルサイト(特許文献1)又は層間に活性金属イオンがインターカレートされた金属含有ハイドロタルサイト化合物(特許文献2及び3)を焼成することにより、活性金属の微粒子が担持された触媒組成物を調製できることが記載されている。   It is known that a catalyst prepared using hydrotalcite as a raw material exhibits high activity in the reforming reaction (see Patent Documents 1-3). In these documents, by firing a hydrotalcite substituted with an active metal (Patent Document 1) or a metal-containing hydrotalcite compound in which an active metal ion is intercalated between layers (Patent Documents 2 and 3), It is described that a catalyst composition carrying fine particles of active metal can be prepared.

しかし、これらの触媒組成物を成形して実用に供することは困難であった。具体的には、該触媒組成物は成形性に乏しく、球状や円柱状に成形加工しても、成形品の機械強度は不十分であった。ハイドロタルサイトを予め成形して活性金属化合物の水溶液に含浸しても、ハイドロタルサイトに特有の相転移挙動によって乾燥及び焼成中にクラックが生じ、実用的な触媒は得られなかった。   However, it has been difficult to mold these catalyst compositions for practical use. Specifically, the catalyst composition has poor moldability, and the mechanical strength of the molded product was insufficient even when being molded into a spherical or cylindrical shape. Even when hydrotalcite was previously molded and impregnated in an aqueous solution of an active metal compound, cracks occurred during drying and firing due to the phase transition behavior unique to hydrotalcite, and a practical catalyst could not be obtained.

以上の通り、従来の方法でハイドロタルサイトから調製した触媒では、耐久性に問題がある。特に700−1100℃で行われることの多い炭化水素改質では、耐熱性に優れ、高温でも優れた活性及び物理的強度を保持し、コーキングが抑制され、寿命の長い触媒が求められている。それに加え、使用する活性金属量を低減することも求められている。
特開平11−27893号明細書 特開2003−225566号明細書 特開2003−290657明細書
As described above, a catalyst prepared from hydrotalcite by a conventional method has a problem in durability. In particular, hydrocarbon reforming, which is often performed at 700 to 1100 ° C., requires a catalyst having excellent heat resistance, excellent activity and physical strength even at high temperatures, suppressing coking, and having a long life. In addition, it is also required to reduce the amount of active metal used.
JP-A-11-27893 Japanese Patent Application Laid-Open No. 2003-225566 Japanese Patent Application Laid-Open No. 2003-290657

本発明は上記の事情に鑑みなされたものであり、活性が高く耐久性に優れた炭化水素改質触媒、該触媒の製造方法、及び該触媒による改質方法を提供する。   The present invention has been made in view of the above circumstances, and provides a hydrocarbon reforming catalyst having high activity and excellent durability, a method for producing the catalyst, and a reforming method using the catalyst.

本発明者らはこれらの課題を解決すべく鋭意検討を進めた結果、耐熱性成形体上に活性金属含有ハイドロタルサイト化合物(M―HT)を前駆体として被覆層を形成することにより、活性が高く耐久性に優れた炭化水素改質触媒が得られることを見出し、本発明を完成させた。   As a result of diligent investigations to solve these problems, the present inventors have found that an active metal-containing hydrotalcite compound (M-HT) is used as a precursor to form a coating layer on a heat-resistant molded article. The present invention was completed by finding that a hydrocarbon reforming catalyst having high durability and excellent durability can be obtained.

即ち、本発明は、以下のものを提供する。
[1] 耐熱性無機酸化物の成形体;及び、活性金属(M)とハイドロタルサイト固溶体とを含有する活性金属含有固溶体組成物(M+HT/S)を含む、該成形体表面上の被覆層;
を含む、炭化水素改質用触媒。
[2] 活性金属含有固溶体組成物(M+HT/S)が、式(1):
〔Mg 2+ (1-x)Alx 3+(OH)2〕(Ax/n)・m H2O (1)
(式中、xは0.1〜0.5の範囲にあり、mは0または正の整数であり、nは1〜6の整数であり、Aは電荷nのアニオン基を表す)
で表されるハイドロタルサイト化合物(HT)の層状骨格に活性金属(M)が挿入された構造を有する活性金属含有ハイドロタルサイト化合物(M−HT)を加熱して得られる組成物である[1]に記載の炭化水素改質用触媒。
[3] 耐熱性無機酸化物が式(1)のハイドロタルサイト化合物(HT)、ハイドロタルサイト固溶体(HT/S)、MgO、CaO、BaO、ZnO、Al2O3、ZrO2、CeO2、コージェライト、ムライト、又はそれらの組み合わせである、[1]又は[2]に記載の炭化水素改質用触媒。
[4] 耐熱性無機酸化物が式(1)のハイドロタルサイト化合物(HT)、ハイドロタルサイト固溶体(HT/S)、コージェライト、又はそれらの組み合わせである、[3]に記載の炭化水素改質用触媒。
[5] 耐熱性無機酸化物が、100重量部のハイドロタルサイト化合物(HT)、ハイドロタルサイト固溶体(HT/S)、又はそれらの組み合わせ;及び、5〜50重量部のMgO、CaO、BaO、ZnO、Al2O3、ZrO2、CeO2、コージェライト、ムライト、又はそれらの組み合わせ;との混合物である、[3]に記載の炭化水素改質触媒。
[6] 耐熱性無機酸化物の熱収縮率ki及びハイドロタルサイト化合物(HT)のkhが以下の式:
0.80≦kh/ki≦1.20
(式中、ki及びkhは、
(球状の粒子の500℃における半径)/(80℃における半径)×100
によって求められる)
を充たす、[1]−[5]の何れかに記載の炭化水素改質触媒。
[7] 活性金属がロジウム(Rh)、ルテニウム(Ru)、パラジウム(Pd)、白金(Pt)、イリジウム(Ir)、コバルト(Co)、ニッケル(Ni)、又はそれらの組み合わせである、[1]−[6]の何れかに記載の炭化水素改質触媒。
[8] 活性金属含有固溶体組成物(M+HT/S)の平均粒径が0.1−100μmの範囲にある、[1]−[7]の何れかに記載の炭化水素改質触媒。
[9] 水素又は合成ガスを製造するための、[1]−[8]の何れかに記載の炭化水素改質触媒。
[10] 炭化水素改質が水蒸気改質又は自己熱改質である、[1]−[9]の何れかに記載の炭化水素改質触媒。
[11] 活性金属含有ハイドロタルサイト化合物(M―HT)を含む水スラリーを耐熱性無機酸化物で構成される成形体の表面に塗布し、M―HTを含む被覆層を形成する工程;及び、該被覆層を設けた成形体を還元雰囲気下で450℃以上の温度に加熱し、還元処理する工程;を含む、炭化水素改質触媒の製造方法。
[12] 水スラリーが塗布される耐熱性無機酸化物が、式(1)のハイドロタルサイト化合物(HT)、ハイドロタルサイト固溶体(HT/S)、コージェライト、又はそれらの組み合わせである、[11]に記載の製造方法。
[13]
[1]−[10]の何れかに記載の触媒の存在下で、炭化水素成分及び改質剤を含む原料ガスを接触反応させる工程を含む、炭化水素の改質方法。
[14] 炭化水素成分が置換又は未置換の炭素数1〜15個の飽和脂肪族炭化水素の1種または2種以上を含み、改質剤が水蒸気及び/又は酸素を含む、[13]に記載の炭化水素の改質方法。
[15] 接触反応工程が700−1100℃で行われる[14]に記載の炭化水素の改質方法。
That is, the present invention provides the following.
[1] A molded body of a heat-resistant inorganic oxide; and an active metal-containing solid solution composition (M + HT / S) containing an active metal (M) and a hydrotalcite solid solution on the surface of the molded body Coating layer;
A catalyst for hydrocarbon reforming, comprising:
[2] The active metal-containing solid solution composition (M + HT / S) has the formula (1):
[Mg 2+ (1-x) Al x 3+ (OH) 2 ] (A x / n ) · m H 2 O (1)
(In the formula, x is in the range of 0.1 to 0.5, m is 0 or a positive integer, n is an integer of 1 to 6, and A represents an anionic group of charge n)
Is a composition obtained by heating an active metal-containing hydrotalcite compound (M-HT) having a structure in which an active metal (M) is inserted into the layered skeleton of the hydrotalcite compound (HT) represented by the formula [ [1] The hydrocarbon reforming catalyst according to [1].
[3] Hydrotalcite compound (HT), hydrotalcite solid solution (HT / S) of formula (1), MgO, CaO, BaO, ZnO, Al 2 O 3 , ZrO 2 , CeO 2 The catalyst for hydrocarbon reforming according to [1] or [2], which is cordierite, mullite, or a combination thereof.
[4] The hydrocarbon according to [3], wherein the heat-resistant inorganic oxide is a hydrotalcite compound (HT) of formula (1), a hydrotalcite solid solution (HT / S), cordierite, or a combination thereof. Catalyst for reforming.
[5] The heat-resistant inorganic oxide is 100 parts by weight of hydrotalcite compound (HT), hydrotalcite solid solution (HT / S), or a combination thereof; and 5 to 50 parts by weight of MgO, CaO, BaO. The hydrocarbon reforming catalyst according to [3], which is a mixture with ZnO, ZnO, Al 2 O 3 , ZrO 2 , CeO 2 , cordierite, mullite, or a combination thereof.
[6] The heat shrinkage ratio k i of the heat-resistant inorganic oxide and the k h of the hydrotalcite compound (HT) are as follows:
0.80 ≦ k h / k i ≦ 1.20
(Where k i and k h are
(Radius of spherical particles at 500 ° C.) / (Radius at 80 ° C.) × 100
Requested by
The hydrocarbon reforming catalyst according to any one of [1] to [5], wherein
[7] The active metal is rhodium (Rh), ruthenium (Ru), palladium (Pd), platinum (Pt), iridium (Ir), cobalt (Co), nickel (Ni), or a combination thereof. [1 ] The hydrocarbon reforming catalyst according to any one of [6].
[8] The hydrocarbon reforming catalyst according to any one of [1] to [7], wherein the average particle size of the active metal-containing solid solution composition (M + HT / S) is in the range of 0.1 to 100 μm.
[9] The hydrocarbon reforming catalyst according to any one of [1] to [8], for producing hydrogen or synthesis gas.
[10] The hydrocarbon reforming catalyst according to any one of [1] to [9], wherein the hydrocarbon reforming is steam reforming or autothermal reforming.
[11] A step of applying a water slurry containing an active metal-containing hydrotalcite compound (M-HT) to the surface of a molded body composed of a heat-resistant inorganic oxide to form a coating layer containing M-HT; And a step of heating the molded body provided with the coating layer to a temperature of 450 ° C. or higher under a reducing atmosphere to perform a reduction treatment.
[12] The heat-resistant inorganic oxide to which the water slurry is applied is a hydrotalcite compound (HT) of formula (1), a hydrotalcite solid solution (HT / S), cordierite, or a combination thereof. 11].
[13]
[1] A method for reforming hydrocarbons, comprising the step of catalytically reacting a raw material gas containing a hydrocarbon component and a modifier in the presence of the catalyst according to any one of [10].
[14] In [13], the hydrocarbon component includes one or more of substituted or unsubstituted saturated aliphatic hydrocarbons having 1 to 15 carbon atoms, and the modifier includes water vapor and / or oxygen. The hydrocarbon reforming method as described.
[15] The hydrocarbon reforming method according to [14], wherein the catalytic reaction step is performed at 700 to 1100 ° C.

以下、本発明の記載にあたり使用する語句を説明する。
ハイドロタルサイト化合物(HT)
式(1):
〔Mg 2+ (1-x)Alx 3+(OH)2〕(Ax/n)・m H2O (1)
(式中、xは0.1〜0.5の範囲にあり、mは0または正の整数であり、nは1〜6の整数であり、Aは電荷nのアニオン基を表す)
で表される化合物であり、Mg及び/又はAlのサイトが他の金属で置換された化合物も含む。
ハイドロタルサイト固溶体(HT/S)
Mg酸化物とAl酸化物の固溶体を含む組成物であり、ハイドロタルサイト化合物(HT)を焼成することによって得てもよい。
活性金属含有ハイドロタルサイト化合物(M−HT)
活性金属(M)を含む式(1)の化合物の類縁体であり、式(1)の層状骨格を有し層間にMが挿入された構造の化合物を含む。式(1)を焼成して得られる固溶体(HT/S)と活性金属含有化合物との反応により得ることができる。ここで反応には、イオン交換、インターカレーション、及び活性金属微粒子の生成が含まれる。
金属含有固溶体組成物(M+HT/S)
ハイドロタルサイト固溶体(HT/S)と活性金属(M)とを含む組成物であり、M−HTを焼成して得てもよい。
以下に本発明の触媒について詳しく説明する。
Hereinafter, terms used in describing the present invention will be described.
Hydrotalcite compound (HT)
Formula (1):
[Mg 2+ (1-x) Al x 3+ (OH) 2 ] (A x / n ) · m H 2 O (1)
(In the formula, x is in the range of 0.1 to 0.5, m is 0 or a positive integer, n is an integer of 1 to 6, and A represents an anionic group of charge n)
And a compound in which Mg and / or Al sites are substituted with other metals.
Hydrotalcite solid solution (HT / S)
It is a composition containing a solid solution of Mg oxide and Al oxide, and may be obtained by firing a hydrotalcite compound (HT).
Active metal-containing hydrotalcite compound (M-HT)
It is an analog of the compound of the formula (1) containing the active metal (M), and includes a compound having a layered skeleton of the formula (1) and having a structure in which M is inserted between the layers. It can be obtained by reacting a solid solution (HT / S) obtained by firing Formula (1) with an active metal-containing compound. Here, the reaction includes ion exchange, intercalation, and generation of active metal fine particles.
Metal-containing solid solution composition (M + HT / S)
It is a composition containing a hydrotalcite solid solution (HT / S) and an active metal (M), and may be obtained by firing M-HT.
The catalyst of the present invention will be described in detail below.

本発明の触媒は、耐熱性無機酸化物の成形体を芯(コア)とし、活性金属含有固溶体組成物(M+HT/S)を含む被覆層が該コア上に形成された構造を有する、成形触媒である。
本発明でいう耐熱性無機酸化物は、1000℃以下、好ましくは1200℃以下の温度領域で安定であり、改質反応に不利な影響を及ぼすことがなく又はその程度が小さく、被覆層を形成しやすく、被覆層の接着性のよい材料が好ましい。耐熱性無機酸化物の例としては、MgO、CaO、BaO、ZnO、Al2O3、ZrO2、CeO2、コージェライト、ムライト、ハイドロタルサイト化合物(HT)、ハイドロタルサイト固溶体(HT/S)、又はそれらの組み合わせが挙げられる。これらの中でも、被覆層との接着性及び高温での機械的強度の観点からは、耐熱性無機酸化物はHT、HT/S、コージェライト、又はそれらの組み合わせを含むことが好ましい。その理由は、被覆層とコア(耐熱性無機酸化物)の熱収縮率の差を小さくすることにより、高温での損傷を低減できるからである。
The catalyst of the present invention has a structure in which a molded body of a heat-resistant inorganic oxide is used as a core, and a coating layer containing an active metal-containing solid solution composition (M + HT / S) is formed on the core. It is.
The heat-resistant inorganic oxide referred to in the present invention is stable in a temperature range of 1000 ° C. or less, preferably 1200 ° C. or less, and does not adversely affect the reforming reaction or its degree is small, and forms a coating layer. A material that is easy to handle and has good adhesion of the coating layer is preferable. Examples of heat-resistant inorganic oxides include MgO, CaO, BaO, ZnO, Al 2 O 3 , ZrO 2 , CeO 2 , cordierite, mullite, hydrotalcite compound (HT), hydrotalcite solid solution (HT / S ), Or a combination thereof. Among these, from the viewpoint of adhesion to the coating layer and mechanical strength at high temperature, the heat-resistant inorganic oxide preferably contains HT, HT / S, cordierite, or a combination thereof. The reason is that damage at high temperatures can be reduced by reducing the difference in thermal shrinkage between the coating layer and the core (heat-resistant inorganic oxide).

後述する通り、本願発明の触媒の製造方法の1つとして、活性金属含有ハイドロタルサイト化合物(M−HT)をコアに付着させ、加熱する方法が挙げられる。その際、M−HTの層状骨格は800℃以上でスピネル構造のMgAl2O4に転移するため、熱収縮率が大きく、コアから剥離したり、クラックが生じることがある。そこで、被覆層の前駆体であるM−HTと同程度の熱収縮率を有する材料をコアに用いることが好ましい。具体的には、耐熱性無機酸化物の熱収縮率ki及びハイドロタルサイト化合物(HT)のkhが以下の式:
0.80≦kh/ki≦1.20
(式中、ki及びkhは、
(球状の粒子の500℃における半径)/(80℃における半径)×100
によって求められ、球状粒子として粒径が2−5mmの範囲にあるものを用いる。耐熱性無機酸化物が加熱によって相転移等の変化を起こす場合、80℃における半径には変化前の状態での値を用いる。)
を充たすことが好ましい。コアの無機化合物にHTを用いる場合には、上記式が充足される。
As will be described later, one method for producing the catalyst of the present invention includes a method in which an active metal-containing hydrotalcite compound (M-HT) is attached to a core and heated. At that time, since the layered skeleton of M-HT transitions to MgAl 2 O 4 having a spinel structure at 800 ° C. or higher, the thermal contraction rate is large, and peeling from the core or cracking may occur. Therefore, it is preferable to use a material having a thermal contraction rate similar to that of M-HT, which is a precursor of the coating layer, for the core. Specifically, the heat shrinkage ratio k i of the heat-resistant inorganic oxide and the k h of the hydrotalcite compound (HT) are represented by the following formula:
0.80 ≦ k h / k i ≦ 1.20
(Where k i and k h are
(Radius of spherical particles at 500 ° C.) / (Radius at 80 ° C.) × 100
The spherical particles having a particle diameter in the range of 2-5 mm are used. When the heat-resistant inorganic oxide undergoes a change such as a phase transition by heating, the value in the state before the change is used for the radius at 80 ° C. )
It is preferable to satisfy When HT is used as the core inorganic compound, the above formula is satisfied.

別の態様では、HT及びHT/Sの和100重量部に対して、MgO、CaO、BaO、ZnO、Al2O3、ZrO2、CeO2、コージェライト、ムライトなどの粘土質、又はそれらの組み合わせを5〜50重量部混合したものを耐熱性無機酸化物として使用できる。 In another embodiment, the clay, such as MgO, CaO, BaO, ZnO, Al 2 O 3 , ZrO 2 , CeO 2 , cordierite, mullite, or the like with respect to 100 parts by weight of the sum of HT and HT / S, What mixed 5-50 weight part of combinations can be used as a heat resistant inorganic oxide.

耐熱性無機酸化物は、天然原料に由来する金属を含有してもよい。耐熱性無機酸化物に更に活性金属を添加してもよく、添加しなくてもよい。耐熱性無機酸化物として、活性金属含有量が5wt%以下、好ましくは1wt%以下の材料を用いることができる。例えば、本発明の触媒中の活性金属総量のうち、90wt%以上、好ましくは95wt%以上が被覆層に存在するよう、耐熱性無機酸化物を選択することができる。   The heat resistant inorganic oxide may contain a metal derived from a natural raw material. An active metal may or may not be added to the heat-resistant inorganic oxide. As the heat-resistant inorganic oxide, a material having an active metal content of 5 wt% or less, preferably 1 wt% or less can be used. For example, the heat-resistant inorganic oxide can be selected so that 90% by weight or more, preferably 95% by weight or more of the total amount of active metals in the catalyst of the present invention is present in the coating layer.

本発明の触媒では耐熱性無機酸化物を成形体として用いる。その形状は改質装置のリアクター構造、反応条件、その他の条件に応じて適宜選択される。形状の例として、球形状、ペレット状、円柱状、筒状、ハニカム状などが挙げられる。代表的な球形状の成形体では、平均粒径が約0.1mm〜20mmである。代表的な円柱状あるいは筒状の成形体では、直径が約1〜10mm、長さが約5〜20mmである。   In the catalyst of the present invention, a heat-resistant inorganic oxide is used as a molded body. The shape is appropriately selected according to the reactor structure of the reformer, reaction conditions, and other conditions. Examples of the shape include a spherical shape, a pellet shape, a columnar shape, a tubular shape, and a honeycomb shape. In a typical spherical shaped body, the average particle size is about 0.1 mm to 20 mm. A typical cylindrical or cylindrical shaped body has a diameter of about 1 to 10 mm and a length of about 5 to 20 mm.

本明細書において、活性金属には、ロジウム(Rh)、ルテニウム(Ru)、パラジウム(Pd),白金(Pt)、イリジウム(Ir)、コバルト(Co)、ニッケル(Ni)、又はそれらの組み合わせが含まれる。触媒の重量に対する活性金属の総量に特に制限はなく、一般に0.1wt%以上、好ましくは1wt%以上であり、10wt%である。2種以上の活性金属、例えばRuとPdを使用する場合、Ruを0.1〜5%、Pdを0.1〜5%の範囲での組み合わせが適当である。NiとPd又はPtとの組み合わせでは、1〜5%のNi、及び0.1〜3%のPd又はPtが好ましい。   In this specification, the active metal includes rhodium (Rh), ruthenium (Ru), palladium (Pd), platinum (Pt), iridium (Ir), cobalt (Co), nickel (Ni), or a combination thereof. included. There is no restriction | limiting in particular in the total amount of the active metal with respect to the weight of a catalyst, Generally it is 0.1 wt% or more, Preferably it is 1 wt% or more, and is 10 wt%. When two or more kinds of active metals such as Ru and Pd are used, a combination of 0.1 to 5% of Ru and 0.1 to 5% of Pd is appropriate. In the combination of Ni and Pd or Pt, 1-5% Ni and 0.1-3% Pd or Pt are preferred.

本発明の成形触媒において、耐熱性無機酸化物を含む成形体表面には、活性金属含有固溶体組成物(M+HT/S)を含む被覆層が形成されている。以下被覆層の組成につき説明する。   In the molding catalyst of the present invention, a coating layer containing an active metal-containing solid solution composition (M + HT / S) is formed on the surface of the molding containing the heat-resistant inorganic oxide. Hereinafter, the composition of the coating layer will be described.

式(1)の化合物は、公知の方法で合成することができ、x、m、n、及びAを適宜調整することができる。合成方法の例として、以下の方法が挙げられる。まず、Mg(NO32・nH2OとAl(NO33・nH2Oの水溶液にNa2CO3水溶液を添加し、pHを8〜12に維持し、40〜90℃で24時間攪拌し、熟成する。得られた沈殿を濾過、水洗浄、乾燥することにより、式(1)のハイドロタルサイト化合物が得られる。 The compound of the formula (1) can be synthesized by a known method, and x, m, n, and A can be appropriately adjusted. Examples of the synthesis method include the following methods. First, an aqueous solution of Na 2 CO 3 is added to an aqueous solution of Mg (NO 3 ) 2 · nH 2 O and Al (NO 3 ) 3 · nH 2 O, and the pH is maintained at 8 to 12 at 24 to 40 ° C. Stir for hours and age. The obtained precipitate is filtered, washed with water and dried to obtain the hydrotalcite compound of the formula (1).

活性金属含有ハイドロタルサイト化合物(M−HT)は、公知の方法で合成することができる。例えば特開2003−290675号明細書には、活性金属がハイドロタルサイト(HT)の層状結晶の層間に挿入(インターカレーション)された構造を有するM−HTの例が記載されている。より詳細には、水溶性有機または無機金属錯体の水溶液を、ハイドロタルサイト固溶体(HT/S)と接触させる。ここでハイドロタルサイト固溶体とは、ハイドロタルサイトを加熱して得られるMg酸化物とAl酸化物の固溶体であり、例としてMgAl2O4が挙げられる。HT/S中に、一部にMg酸化物及び/又はAl酸化物あるいはハイドロタルサイト化合物が残存していてもよい。上述の通り、HT/Sはハイドロタルサイトを前駆体として調製することができるが、ハイドロタルサイト以外の原料、例えばMg-Al複合酸化物又はMg化合物とAl化合物との混合物を用いて調製してもよい。 The active metal-containing hydrotalcite compound (M-HT) can be synthesized by a known method. For example, Japanese Patent Application Laid-Open No. 2003-290675 describes an example of M-HT having a structure in which an active metal is inserted (intercalated) between layers of a layered crystal of hydrotalcite (HT). More specifically, an aqueous solution of a water-soluble organic or inorganic metal complex is brought into contact with a hydrotalcite solid solution (HT / S). Here, the hydrotalcite solid solution is a solid solution of Mg oxide and Al oxide obtained by heating hydrotalcite, and an example is MgAl 2 O 4 . In HT / S, Mg oxide and / or Al oxide or hydrotalcite compound may partially remain. As described above, HT / S can be prepared using hydrotalcite as a precursor, but it is prepared using raw materials other than hydrotalcite, such as Mg-Al composite oxide or a mixture of Mg compound and Al compound. May be.

水溶性有機錯形成剤として、例えばエチレンジアミン四酢酸(EDTA)、イミノ二酢酸、ニトリロ三酢酸、ヒドロキシエチルイミノ二酢酸、エチレンジエチルトリアミンーN,N,N'、N'五酢酸などのポリカルボン酸、クエン酸、リンゴ酸などのオキシカルボン酸、およびその水溶塩などが例示される。水溶性無機錯体の形成には、例えば硝酸塩、アンモニウム塩、硝酸ニトロシル塩、酢酸塩、塩酸塩、炭酸塩、シュウ酸塩などの水溶性塩が使用できる。これらにより、活性金属錯体を作成する。   Examples of water-soluble organic complexing agents include polycarboxylic acids such as ethylenediaminetetraacetic acid (EDTA), iminodiacetic acid, nitrilotriacetic acid, hydroxyethyliminodiacetic acid, ethylenediethyltriamine-N, N, N ', N'pentaacetic acid And oxycarboxylic acids such as citric acid and malic acid, and water-soluble salts thereof. For the formation of the water-soluble inorganic complex, for example, water-soluble salts such as nitrate, ammonium salt, nitrosyl nitrate, acetate, hydrochloride, carbonate, oxalate and the like can be used. With these, an active metal complex is prepared.

該活性金属錯体の水溶液をHT固溶体(HT/S)に含浸させることにより、HT/SはHTの層状構造に戻るとともに、活性金属が結晶層間に挿入(インターカレーション)され、M−HTが得られる。該M−HTを450−900℃に加熱することにより、活性金属含有固溶体組成物(M+HT/S)が得られる。該M+HT/Sを含む被覆層が前記耐熱性無機酸化物成形体の表面に担持されている。耐熱性無機酸化物成形体の表面に形成される被覆層の平均厚さには特に制限はない。一般には、平均厚さは、5μm以上、好ましくは10μm以上であり、500μm以下である。平均厚さが上記範囲未満では充分な活性が得られないことがあり、上記範囲を超えると活性及び耐久性は十分ではあるが、活性金属使用量が増加するため経済的でない。   By impregnating the HT solid solution (HT / S) with an aqueous solution of the active metal complex, HT / S returns to the layered structure of HT, and the active metal is inserted (intercalated) between the crystal layers, so that M-HT can get. By heating the M-HT to 450-900 ° C., an active metal-containing solid solution composition (M + HT / S) is obtained. The coating layer containing M + HT / S is supported on the surface of the heat-resistant inorganic oxide molded body. There is no restriction | limiting in particular in the average thickness of the coating layer formed in the surface of a heat resistant inorganic oxide molded object. In general, the average thickness is 5 μm or more, preferably 10 μm or more, and 500 μm or less. If the average thickness is less than the above range, sufficient activity may not be obtained. If the average thickness exceeds the above range, the activity and durability are sufficient, but the amount of active metal used increases, which is not economical.

被覆層の形成には、該M+HT/Sのスラリーを塗布し、乾燥、焼成してもよい。スラリー中のM+HT/Sの平均粒径は0.1μm以上、好ましくは0.1μm以上であり、100μm以下、好ましくは10μmである。   In forming the coating layer, the slurry of M + HT / S may be applied, dried and fired. The average particle size of M + HT / S in the slurry is 0.1 μm or more, preferably 0.1 μm or more, and 100 μm or less, preferably 10 μm.

本願発明の触媒では、活性金属が炭化水素と接触する薄い被覆層に選択的に、高度に分散して存在するため、通常の活性金属含有量の表示値より、4〜6倍高い含有量に相当する活性を有する。したがって触媒全体としての活性金属含有量を削減できる。   In the catalyst of the present invention, the active metal is selectively dispersed in a thin coating layer in contact with the hydrocarbon, so that the content is 4 to 6 times higher than the normal active metal content. Has corresponding activity. Therefore, the active metal content of the entire catalyst can be reduced.

本発明は、前述の炭素水素改質触媒の製造方法にも関する。本発明の製造方法は、活性金属含有ハイドロタルサイト化合物(M−HT)を含む水スラリーを耐熱性無機酸化物で構成される成形体の表面に塗布し、M−HTを含む被覆層を形成する工程;及び、および該被覆層を設けた成形体(以下、触媒前駆体と表記する)を還元雰囲気下で500℃以上の温度に加熱し、還元処理する工程;を含む。本発明の触媒製造法の例を図1−aに示す。   The present invention also relates to a method for producing the aforementioned carbon hydrogen reforming catalyst. In the production method of the present invention, a water slurry containing an active metal-containing hydrotalcite compound (M-HT) is applied to the surface of a molded body composed of a heat-resistant inorganic oxide to form a coating layer containing M-HT. And a step of heating and reducing the molded body provided with the coating layer (hereinafter referred to as catalyst precursor) to a temperature of 500 ° C. or higher in a reducing atmosphere. An example of the catalyst production method of the present invention is shown in FIG.

M−HTを含む水スラリーの濃度に特に制限はないが、希薄すぎると目的の量を塗布しにくく、濃度が高すぎると塗布作業が困難であるため、水1L当たり150〜300gであることが好ましい。この水スラリーを耐熱性無機酸化物で構成される成形体の表面に塗布する。塗布方法に特に制限はなく、公知の方法の何れも使用することができ、中でもスラリーが均一に塗布できる方法が好ましい。例えば、耐熱性無機酸化物の成型体を加熱噴霧造粒機に入れ、加熱した空気を流しながら、触媒スラリーを噴霧して触媒層の被覆を行ってもよい。この態様では、被覆層の厚さは、触媒スラリーの噴霧量により被覆層の厚さを調整できる。スラリーのM-HT微粒子の濃度と塗布されるスラリー量により、被覆層中の活性金属含有量を調整できる。   Although there is no restriction | limiting in particular in the density | concentration of the water slurry containing M-HT, since it will be difficult to apply | coat the target quantity if it is too dilute, and application | coating operation | work will be difficult if the density | concentration is too high, it may be 150-300g per liter of water. preferable. This water slurry is applied to the surface of a molded body composed of a heat-resistant inorganic oxide. There is no restriction | limiting in particular in the application method, Any of the well-known methods can be used, and the method which can apply | coat a slurry uniformly is especially preferable. For example, the molded body of the heat-resistant inorganic oxide may be put in a heat spray granulator, and the catalyst layer may be coated by spraying the catalyst slurry while flowing heated air. In this embodiment, the thickness of the coating layer can be adjusted by the spray amount of the catalyst slurry. The active metal content in the coating layer can be adjusted by the concentration of the M-HT fine particles in the slurry and the amount of slurry applied.

塗布後の成形体は、適宜乾燥させた後、焼成及び/又は還元工程に供される。焼成工程及び還元工程は1つの工程で行ってもよく、2以上の工程で行ってもよい。焼成工程はHTおよびまたはM−HTが固溶体に変化する温度条件、すなわち500℃以上、好ましくは600℃以上、1000℃以下、であればよいが、好ましくは酸素が存在しない雰囲気のほうが活性低下を防止できる。窒素ガスやアルゴンガスなどの不活性雰囲気下で500〜1000℃に加熱することにより行うことができる。還元工程は活性を発揮させるものであり、還元雰囲気下で500℃以上、好ましくは600℃以上、1200℃以下、好ましくは1000℃以下で行うことができる。還元雰囲気としては、水素含有ガスが挙げられる。還元工程のみでも焼成の目的は達成できるから、焼成は必須工程ではない。   The molded body after coating is appropriately dried and then subjected to a firing and / or reduction process. The firing step and the reduction step may be performed in one step, or may be performed in two or more steps. The firing step may be a temperature condition in which HT and / or M-HT changes to a solid solution, that is, 500 ° C. or higher, preferably 600 ° C. or higher and 1000 ° C. or lower. Can be prevented. It can carry out by heating to 500-1000 degreeC under inert atmosphere, such as nitrogen gas and argon gas. The reduction step exhibits activity, and can be performed at 500 ° C. or more, preferably 600 ° C. or more and 1200 ° C. or less, preferably 1000 ° C. or less in a reducing atmosphere. Examples of the reducing atmosphere include a hydrogen-containing gas. Since the purpose of firing can be achieved only by the reduction step, firing is not an essential step.

被覆層のM−HTとコアのHTとを同時に焼成及び/又は還元する場合、被覆層とコアとの熱収縮の差によってクラックの発生を防止することができ、耐熱性及び耐久性に優れた触媒が得られる。   When M-HT of the coating layer and HT of the core are fired and / or reduced at the same time, the occurrence of cracks can be prevented due to the difference in thermal shrinkage between the coating layer and the core, and the heat resistance and durability are excellent. A catalyst is obtained.

本発明は、前述の触媒を用いた炭化水素の改質方法にも関する。改質は外熱式であっても内熱式であってもよく、水蒸気改質、自己熱改質、二酸化炭素改質、部分酸化が挙げられる。本発明の改質方法は、本発明の触媒の存在下で、炭化水素成分及び改質剤を含む原料ガスを接触反応させる工程を含む。ここで炭化水素成分は置換又は未置換の炭素数1〜15(C1-15)の1種または2種以上の飽和脂肪族炭化水素を含み、具体的にはメタン、エタン、プロパン、ブタン、n−ヘプタン、n−オクタン、イソオクタン、デカン、ウンデカン、ドデカンなどが例示される。これら炭化水素成分の1種または2種以上が石油精製工場や石油化学工場などの製造工程で発生するオフガスや分解ガス、天然ガス、都市ガス、プロパンガス、ナフサ、灯油、又は軽油留分に主成分として含有されるから、改質反応の原料として好ましく使用される。改質剤として、水蒸気改質では水蒸気が挙げられ、自己熱改質では、水蒸気及び酸素や空気等の酸化剤が、二酸化炭素改質ではCO2が挙げられる。 The present invention also relates to a hydrocarbon reforming method using the aforementioned catalyst. The reforming may be an external heating type or an internal heating type, and examples thereof include steam reforming, autothermal reforming, carbon dioxide reforming, and partial oxidation. The reforming method of the present invention includes a step of catalytically reacting a raw material gas containing a hydrocarbon component and a reforming agent in the presence of the catalyst of the present invention. Here, the hydrocarbon component includes one or more saturated aliphatic hydrocarbons having 1 to 15 carbon atoms (C 1-15 ) which are substituted or unsubstituted, and specifically include methane, ethane, propane, butane, Examples include n-heptane, n-octane, isooctane, decane, undecane, dodecane and the like. One or more of these hydrocarbon components are mainly produced in off-gas, cracked gas, natural gas, city gas, propane gas, naphtha, kerosene, or light oil fractions generated in the manufacturing process of oil refineries and petrochemical plants. Since it is contained as a component, it is preferably used as a raw material for the reforming reaction. Examples of the reforming agent include steam in steam reforming, steam and oxidizing agents such as oxygen and air in autothermal reforming, and CO 2 in carbon dioxide reforming.

改質剤/(炭化水素成分の総和)の体積比は適宜選択することができ、0.3〜10の範囲にあることが好ましい。空間速度は適宜選択することができ、炭化水素成分の総和について液空間速度LHSV(ここでは触媒の単位体積あたりの、時間あたりの原料炭化水素成分と水の合計供給量(液体換算)比で表す。)は大きいほど生産速度が高く好ましく、具体的には1hr-1以上、好ましくは10 hr-1以上であり、また上限には格別制限はないが、触媒の活性と反応条件と改質装置の規模を考えると1000 hr-1以下である。 The volume ratio of modifier / (total hydrocarbon components) can be selected as appropriate, and is preferably in the range of 0.3 to 10. The space velocity can be selected as appropriate, and the liquid space velocity LHSV (here, the total supply amount of raw material hydrocarbon component and water per unit volume of the catalyst per unit volume (liquid conversion) ratio) of the sum of hydrocarbon components .) Is preferably as high as possible, and the production rate is preferably high. Specifically, the production rate is 1 hr −1 or more, preferably 10 hr −1 or more, and there is no particular limitation on the upper limit. Is less than 1000 hr -1 .

改質反応で得られる生成ガスとして、水素、一酸化炭素、合成ガス(水素及び一酸化炭素の混合物)が挙げられる。
接触反応させる工程は、700℃以上、好ましくは900℃以上、1200℃以下、好ましくは1000℃以下で行われる。この工程は、固定床、懸濁床、移動床の何れで行ってもよい。
Examples of the product gas obtained by the reforming reaction include hydrogen, carbon monoxide, and synthesis gas (a mixture of hydrogen and carbon monoxide).
The step of contact reaction is performed at 700 ° C. or higher, preferably 900 ° C. or higher, 1200 ° C. or lower, preferably 1000 ° C. or lower. This step may be performed in any of a fixed bed, a suspended bed, and a moving bed.

以下、実施例により本発明を説明するが、本発明はこれらの実施例に限定されるものではない。
参考例1] (被覆層:Ru・Pt + HT/S;耐熱性無機酸化物:コージェライト)
<Ru・Pt + HT/Sの製造>
Ru(NO)(NO水溶液(Ruとして4.46wt%)91.516gと、白金P−ソルト水溶液(Ptとして4.54wt%の)22.475gとの混合物に脱イオン水250mlを加えた溶液と、18.272gのEDTA-4Na・4HOを脱イオン水250mlに溶解した溶液とを混合し、この混合液にNaOH水溶液を加えてpHを10.5に調整し、Ru+PtのEDTA錯体溶液を用意した。
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples.
[ Reference Example 1] (Coating layer: Ru · Pt + HT / S; heat-resistant inorganic oxide: cordierite)
<Manufacture of Ru / Pt + HT / S>
A solution obtained by adding 250 ml of deionized water to a mixture of 91.516 g of Ru (NO) (NO 3 ) 3 aqueous solution (4.46 wt% as Ru) and 22.475 g of platinum P-salt aqueous solution (4.54 wt% as Pt) 1 and a solution 2 in which 18.272 g of EDTA-4Na · 4H 2 O is dissolved in 250 ml of deionized water, are mixed with an aqueous NaOH solution to adjust the pH to 10.5, and Ru + Pt An EDTA complex solution was prepared.

このRu及びPtのEDTA錯体溶液に、ハイドロタルサイト(HT)粉末(協和化学工業製、Mg/Al原子比=3/1)を500℃で焼成して得た固溶体(HT/S)粉末250gを投入し、24時間攪拌して熟成すると、沈殿が生じた。なお、HT/Sを金属錯体水溶液に加えると、HT/SがHTの層状構造に戻るとともに、層間に金属がインターカレートされることが知られている。従って、得られた沈殿は、RuとPtがHTの層間にインターカレートされた構造であるRu・Pt−HTといえる。   250 g of solid solution (HT / S) powder obtained by firing hydrotalcite (HT) powder (Kyowa Chemical Industry, Mg / Al atomic ratio = 3/1) at 500 ° C. in this Ru and Pt EDTA complex solution Was added, and the mixture was aged with stirring for 24 hours. It is known that when HT / S is added to an aqueous metal complex solution, the HT / S returns to the layered structure of HT and the metal is intercalated between the layers. Therefore, the obtained precipitate can be said to be Ru · Pt-HT, which is a structure in which Ru and Pt are intercalated between HT layers.

反応液をろ過して沈殿を分離し、水洗して得たケーキを80℃で2時間乾燥した後、乳鉢で粉砕し、Ru・Pt−HTの粒子を得た。該粒子をIPC分析した結果、この粒子のRu含有量は1.60重量%、Pt含有量は0.4%であった。
<Ru・Pt−HTスラリーの製造>
246 gの該Ru・Pt−HT粒子を754 mLの脱イオン水に投入し、ボールミルで粉砕してスラリーにした。スラリー中の微粒子の平均粒径をレーザー散乱法によって測定したところ、4μmであった。
<被覆層の形成>
かさ比重0.79g/cc、直径2mmの球形コージェライト 292gを加熱噴霧造粒機に入れ、前述のRu・Pt−HT微粒子スラリー775gを噴霧し、ついで80℃で乾燥して、コージェライトにRu・Pt−HT微粒子を被覆担持した触媒前駆体を得た。ついでこの触媒前駆体を水素雰囲気のもと、500℃で、2時間、焼成・還元処理して、コージェライトのコア上にRu及びPtを含む金属含有固溶体組成物(Ru・Pt+HT/S)の被膜層を形成した。この様にして得られた触媒を、以下E1と表記する。
The reaction solution was filtered to separate the precipitate, washed with water, and then dried at 80 ° C. for 2 hours, and then pulverized in a mortar to obtain Ru · Pt-HT particles. As a result of IPC analysis of the particles, the Ru content of the particles was 1.60% by weight and the Pt content was 0.4%.
<Manufacture of Ru / Pt-HT slurry>
246 g of the Ru · Pt-HT particles were put into 754 mL of deionized water and ground by a ball mill to form a slurry. The average particle size of the fine particles in the slurry was measured by a laser scattering method and found to be 4 μm.
<Formation of coating layer>
292 g of spherical cordierite with a bulk specific gravity of 0.79 g / cc and a diameter of 2 mm is put into a heat spray granulator, sprayed with 775 g of the aforementioned Ru · Pt-HT fine particle slurry, and then dried at 80 ° C. -The catalyst precursor 1 which coat | covered and carry | supported the Pt-HT fine particle was obtained. Next, this catalyst precursor 1 was calcined and reduced at 500 ° C. for 2 hours in a hydrogen atmosphere, and a metal-containing solid solution composition containing Ru and Pt on the cordierite core (Ru · Pt + HT / S) A coating layer was formed. The catalyst thus obtained is hereinafter referred to as E1.

触媒E1の活性金属含有量(重量%)は、成形触媒全体ではRuが0.29%、Ptが0.07%、合計0.36%、被覆層部分ではRuが1.60%、Ptが0.40%、合計2.0%、また触媒の1リットルあたりのRuは2.1g/L、Ptが0.50g/L、合計=2.6g/Lであった。なお触媒E1のABD(みかけ密度)は0.45g/ccであった。
[実施例2](被覆層:Ru・Pt + HT/S;耐熱性無機酸化物:HT/S )
ハイドロタルサイト(協和化学工業製、Mg/Al比=3/1)粉末1000gを転動造粒機において脱イオン水をスプレーしながら造粒し、球状成形体を得た。この成形体を80℃で乾燥し、直径約2.5mmの球状HT成形体を調製した。
The active metal content (% by weight) of the catalyst E1 is 0.29% for Ru and 0.07% for Pt in the entire formed catalyst, 0.36% in total, and 1.60% for Ru in the coating layer portion, and Pt for 0.40%, a total of 2.0%, and Ru per liter of the catalyst was 2.1 g / L, Pt was 0.50 g / L, and the total was 2.6 g / L. The ABD (apparent density) of the catalyst E1 was 0.45 g / cc.
[Example 2] (Coating layer: Ru · Pt + HT / S; heat-resistant inorganic oxide: HT / S)
1000 g of hydrotalcite (manufactured by Kyowa Chemical Industry Co., Ltd., Mg / Al ratio = 3/1) powder was granulated while spraying deionized water in a rolling granulator to obtain a spherical molded body. This molded body was dried at 80 ° C. to prepare a spherical HT molded body having a diameter of about 2.5 mm.

この球状HT成形体220gを加熱噴霧造粒機に投入し、参考例1に記載の通り作成したRu・Pt含有HTスラリー(Ru・Pt−HT微粒子スラリー)680gを噴霧して、コート層厚さ100μmの被覆層を形成した成形体(触媒前駆体)を得た。これを80℃で乾燥し、水素雰囲気下、500℃で焼成・還元処理して、コアであるハイドロタルサイト固溶体(HT/S)粒子上にRu・Pt+HT/Sの被覆層を形成した。この触媒を以下E2とする。 220 g of this spherical HT compact was put into a heat spray granulator, and 680 g of Ru / Pt-containing HT slurry (Ru / Pt-HT fine particle slurry) prepared as described in Reference Example 1 was sprayed to obtain a coating layer thickness. A molded body (catalyst precursor 2 ) having a 100 μm coating layer was obtained. This was dried at 80 ° C. and calcined and reduced at 500 ° C. in a hydrogen atmosphere to form a Ru · Pt + HT / S coating layer on the hydrotalcite solid solution (HT / S) particles as the core. This catalyst is hereinafter referred to as E2.

触媒E2の活性金属含有量(重量%)は、触媒全体についてRuが0.46%、Ptが0.115%、合計0.575%、被覆層部分についてRuが1.60%、Ptが0.40%、合計2.0%であった。触媒の1リットルあたりのRuは2.1g/L、Ptが0.50g/L、合計=2.6g/Lであった。触媒E2のABD(みかけ密度)は0.45g/ccであった。   The active metal content (% by weight) of the catalyst E2 is as follows: Ru for the entire catalyst is 0.46%, Pt is 0.115%, 0.575% in total, Ru is 1.60% for the coating layer portion, and Pt is 0 40%, total 2.0%. Ru per liter of the catalyst was 2.1 g / L, Pt was 0.50 g / L, and the total was 2.6 g / L. The ABD (apparent density) of the catalyst E2 was 0.45 g / cc.

触媒E2の断面SEM写真を図2−aに、電子線マイクロアナライザー(EPMA)によるRu及びPtの線分析結果を図3−a及びbに示す。これらの結果は、コアと被覆層の接着性が良いこと;被覆層及びコアにクラックが観察されないこと;RuとPtが被覆層に選択的に分布していること;被覆層の厚さは100μmであること;を示す。
[比較例1](含浸法)
重量比1:1.3のハイドロタルサイト粉(協和化学工業製)と水とをニーダーにて混練して、均一な混煉物を得た。押出し成形機により、この混練物から直径2mmの円柱状のHT成形体を得た。この成形体を80℃で乾燥後、500℃にて2時間焼成して、直径2mmの円柱状ハイドロタルサイト固溶体(HT/S)をつくり、担体とした。
A cross-sectional SEM photograph of the catalyst E2 is shown in FIG. 2-a, and the results of Ru and Pt line analysis using an electron beam microanalyzer (EPMA) are shown in FIGS. 3-a and b. These results indicate that the adhesion between the core and the coating layer is good; no cracks are observed in the coating layer and the core; Ru and Pt are selectively distributed in the coating layer; and the thickness of the coating layer is 100 μm. Indicates that
[Comparative Example 1] (Impregnation method)
Hydrotalcite powder having a weight ratio of 1: 1.3 (Kyowa Chemical Industry Co., Ltd.) and water were kneaded with a kneader to obtain a uniform blend. A cylindrical HT compact having a diameter of 2 mm was obtained from this kneaded product by an extruder. This molded body was dried at 80 ° C. and then calcined at 500 ° C. for 2 hours to produce a cylindrical hydrotalcite solid solution (HT / S) having a diameter of 2 mm, which was used as a carrier.

次にRu(NO)(NO3)3 の11.256gおよびEDTA−4Na・4H2Oの2.250gを、各々250mlの水に溶解し、ついで両溶液を混合し、NaOH水溶液でpHを10.5に調整して得たRu―EDTA錯体水溶液を、前記HT/S触媒担体に含浸し、ついで80℃に乾燥した後、水素ガス流通下にて500℃で2時間焼成・還元処理して、触媒R1を得た。 Next, 11.256 g of Ru (NO) (NO 3) 3 and 2.250 g of EDTA-4Na · 4H 2 O were dissolved in 250 ml of water, and then both solutions were mixed, and the pH was adjusted to 10. with an aqueous NaOH solution. The Ru-EDTA complex aqueous solution obtained by adjusting to 5 was impregnated into the HT / S catalyst support, then dried to 80 ° C., and then calcined and reduced at 500 ° C. for 2 hours under hydrogen gas flow. Catalyst R1 was obtained.

触媒R1の断面SEM写真を図2−bに示す。芯(コア)に割れと表面層に荒れが観察され、反応実験は実施しなかった。触媒R1には調製終了時点で物理的な損傷が生じているため、反応条件下での耐久性が劣ると推測される。   A cross-sectional SEM photograph of the catalyst R1 is shown in FIG. Cracks in the core and roughness in the surface layer were observed, and no reaction experiment was performed. Since the catalyst R1 is physically damaged at the end of preparation, it is presumed that the durability under the reaction conditions is inferior.

含浸触媒での損傷は、以下の経過により生じると推測される。HT/S固溶体の担体を金属錯体水溶液に含浸すると、担体の表面が選択的に水と接触してハイドロタルサイト構造(M−HT)に転移する一方、担体の内部には水分が供給されずHT/S構造が保持される。この担体を加熱すると、担体の外殻は緻密なHT/S構造に転移するため、担体の内部と外殻との間で応力が生じ、破壊に至ると考えられる。
[比較例2] (Ru・Pt−HTの造粒触媒)
参考例1に記載の方法で調製したRuとPtを含有するハイドロタルサイト粉末(Ru・Pt‐HT)を、転動造粒機にて、脱イオン水をスプレーしながら造粒し、RuとPtを含有する直径2mmのハイドロタルサイト球状成型体を得た。この成型体を80℃で乾燥したところ、乾燥中に割れが発生して、球状成型触媒は得られなかった。M−HT成形触媒の焼成時の損傷は、乾燥中に成形体内部から発生する水蒸気の圧力に起因するものと推測される。
[比較例3]
参考例1と同様にして調製したRuとPtを含有するハイドロタルサイト粉末(Ru・Pt‐HT)を、500℃で焼成したRuとPtを含有する固溶体粉末(Ru・Pt+‐HT/S)を圧縮成型法により、球状成型触媒R3を得た。この成型触媒を1000℃で3時間加熱した後、耐熱試験を行ったところ、触媒表面が粉っぽくなり、機械的強度においても、非常にもろいものであったため、反応条件下での耐久性が劣ると推測される。このため反応実験は実施しなかった。800℃以上でMgAl2O4のスピネルが生成する時に収縮が原因で機械的強度低下に起因するものと推測される。
[評価例]
実施例2の触媒E2を、ノルマルドデカン(n−C12)の改質反応により評価した。改質剤として、水蒸気及び酸素を用いた。評価条件は、後述する2種類である。
It is assumed that damage in the impregnated catalyst is caused by the following process. When the metal complex aqueous solution is impregnated with the HT / S solid solution carrier, the surface of the carrier selectively contacts with water and transitions to the hydrotalcite structure (M-HT), while moisture is not supplied to the inside of the carrier. HT / S structure is retained. When this carrier is heated, the outer shell of the carrier is transformed into a dense HT / S structure, and therefore stress is generated between the inside and the outer shell of the carrier, leading to destruction.
[Comparative Example 2] (Ru · Pt-HT granulation catalyst)
The hydrotalcite powder (Ru · Pt-HT) containing Ru and Pt prepared by the method described in Reference Example 1 is granulated in a tumbling granulator while spraying deionized water. A 2 mm diameter hydrotalcite spherical molded body containing Pt was obtained. When this molded body was dried at 80 ° C., cracks occurred during drying, and a spherical molded catalyst could not be obtained. It is estimated that the damage during firing of the M-HT molded catalyst is caused by the pressure of water vapor generated from the inside of the molded body during drying.
[Comparative Example 3]
Ru and Pt-containing hydrotalcite powder (Ru · Pt-HT) prepared in the same manner as in Reference Example 1 and solid solution powder containing Ru and Pt calcined at 500 ° C (Ru · Pt + -HT / S) A spherical molded catalyst R3 was obtained by compression molding. The molded catalyst was heated at 1000 ° C. for 3 hours and then subjected to a heat resistance test. As a result, the catalyst surface became powdery and very fragile in mechanical strength. Presumed to be inferior. For this reason, the reaction experiment was not carried out. It is presumed that due to shrinkage, MgAl 2 O 4 spinel is generated at a temperature of 800 ° C. or higher due to a decrease in mechanical strength.
[Evaluation example]
The catalyst E2 of Example 2 was evaluated by the reforming reaction of n-dodecane (n-C 12). Steam and oxygen were used as modifiers. There are two types of evaluation conditions to be described later.

反応試験には図4の装置を用いた。反応管の周囲から電気炉で加熱し、触媒層内部(上、中、下)3箇所並びに原料入口及び改質ガス出口の5箇所に熱電対を設け、温度を計測した。反応管の上部より、水蒸気、ガス状のn−C12、及び酸素の原料ガスを供給し、生成した改質ガスの流量及び組成を分析した。 The apparatus of FIG. 4 was used for the reaction test. The reactor was heated from around the reaction tube with an electric furnace, and thermocouples were provided at three locations inside the catalyst layer (upper, middle, and lower) and at five locations of the raw material inlet and reformed gas outlet, and the temperature was measured. From the top of the reaction tube, the water vapor, supplying a gaseous n-C 12 and oxygen source gas, and analyzed the flow rate and composition of the resulting reformed gas.

生成ガスの組成について、H2、CO、CO2、O2、CH4、エチレン、エタン、プロパン、プロピレンについてガスクロマトグラフィー(FID、TCD)により分析した。改質ガスの流量は、改質ガス出口においてガスメーターで測定した。各生成ガス成分の選択率及び原料の転化率は、以下の式により計算した。 The composition of the product gas was analyzed by gas chromatography (FID, TCD) for H 2 , CO, CO 2 , O 2 , CH 4 , ethylene, ethane, propane, and propylene. The flow rate of the reformed gas was measured with a gas meter at the reformed gas outlet. The selectivity of each product gas component and the conversion rate of the raw material were calculated by the following formulas.

CH4選択率(%)=(出口CH4濃度/A)× 100
CO選択率(%)=(出口CO濃度/A)× 100
H2選択率(%)=(出口H2濃度/A) × 100
CO2選択率(%)=(出口CO2濃度/A) × 100
A=出口CH4濃度+出口CO濃度+出口H2濃度+出口CO2濃度
n−C12の転化率 =100−[(出口CH4、CO及びCO2モル数の総和/分)/(供給n-C12モル数/分)]×100
(注;n−C12の転化率は単位時間あたりにフィードしたn-C12のモル数、並びに、生成したCH4、CO、及びCO2の合計モル数より上記式で計算した。いずれの評価においても、生成ガス中に酸素、エチレン、エタン、プロパン、及びプロピレンは検出されなかった。)
改質反応試験1<条件1>
・供給原料; n−C12:酸素:水蒸気(モル比)=1:7.2:30
(水蒸気/炭素(モル比)=2.5、酸素/炭素(モル比)=0.6)
・触媒の充填量; 50cc
・LHSV=3.0、4.0、5.0hr-1
(注;LHSV=[(n−C12の供給量(cc/hr)+H2Oの供給量(cc/hr)]/触媒量(cc)
・圧力;常圧
条件1での改質実験結果
まず触媒層出口温度が750℃になるよう、電気炉を電圧制御しながら加熱し、LHSV3.0hr-1の条件で改質反応を行った。次いでLHSV4.0hr-1、その後5.0hr-1の条件で反応を実施した。LHSVが5.0hr-1の条件では、中途で外部加熱を中止した状態で、原料供給を続けた。反応中は加熱炉の電力負荷状況にもとづき、発熱と吸熱の状況を把握した。この間の改質反応生成物の組成推移を図5aに示す。 LHSVが5.0hr-1の条件で一旦反応を中止し、反応装置全体を室温にした後、再度外部加熱して750℃に設定しておいて、前述のLHSV5.0hr-1(一定)の条件で原料を供給して反応を開始した。開始67分後、電気炉による加熱を中止した状態で、原料の供給を2時間継続した。その間の生成物組成推移を図5bに、また各生成物組成を表1に示す。
CH 4 selectivity (%) = (Outlet CH 4 concentration / A) × 100
CO selectivity (%) = (Outlet CO concentration / A) x 100
H 2 selectivity (%) = (Outlet H 2 concentration / A) × 100
CO 2 selectivity (%) = (Outlet CO 2 concentration / A) x 100
A = outlet CH 4 concentration + outlet CO concentration + outlet H 2 concentration + outlet CO 2 concentration
n-C 12 conversion = 100-[(total number of outlet CH 4 , CO and CO 2 moles / minute) / (feed nC 12 moles / minute)] × 100
(Note: n-C 12 conversion was calculated by the above formula from the number of moles of nC 12 fed per unit time and the total number of moles of CH 4 , CO, and CO 2 produced. In addition, oxygen, ethylene, ethane, propane, and propylene were not detected in the product gas.)
Reforming reaction test 1 <Condition 1>
· Feed; n-C 12: Oxygen: water vapor (molar ratio) = 1: 7.2: 30
(Water vapor / carbon (molar ratio) = 2.5, oxygen / carbon (molar ratio) = 0.6)
・ Packing amount of catalyst: 50cc
・ LHSV = 3.0, 4.0, 5.0 hr −1
(Note: LHSV = [(n-C 12 supply amount (cc / hr) + H 2 O supply amount (cc / hr)] / catalyst amount (cc)
・ Pressure: Normal pressure
Results of reforming experiments under condition 1 ;
First, the electric furnace was heated while controlling the voltage so that the catalyst layer outlet temperature was 750 ° C., and the reforming reaction was performed under the condition of LHSV 3.0 hr −1 . Subsequently, the reaction was carried out under conditions of LHSV 4.0 hr −1 and then 5.0 hr −1 . Under the condition of LHSV of 5.0 hr −1 , the raw material supply was continued with external heating stopped halfway. During the reaction, the situation of heat generation and endotherm was grasped based on the power load of the heating furnace. The composition transition of the reforming reaction product during this period is shown in FIG. 5a. Once the reaction was stopped under the condition of LHSV of 5.0 hr −1, the whole reactor was brought to room temperature, then externally heated again and set to 750 ° C., and the above-mentioned LHSV 5.0 hr −1 (constant) The reaction was started by supplying the raw materials under the conditions. 67 minutes after the start, the supply of raw materials was continued for 2 hours in a state where heating by the electric furnace was stopped. The transition of the product composition during that time is shown in FIG. 5b and each product composition is shown in Table 1.

LHSVが3〜5hr-1の間でのn−C12の転化率は100%であった。LHSV5hr-1の条件では、外部からの熱供給なしで、すなわち酸化熱のみで改質反応(ATR)が進行することを確認した。反応期間中の水素の選択率は60モル%、一酸化炭素の選択率は15〜16モル%であり、改質ガスは熱力学的平衡に達した。
改質反応試験2 <条件2>
上記装置を用いて、空間速度(LHSV)を高めて、以下の条件にて改質反応試験を行った。
・触媒充填量;50cc
・供給原料ガス;n−C12:酸素:水蒸気(モル比)=1:6.5:30
(水蒸気/炭素(モル比)=2.5、酸素/炭素(モル比)=0.55)
・反応圧力;常圧
・温度;反応初期だけ触媒層の出口温度を750℃に設定
・LHSV;12、15、18、20hr-1
(注;LHSVの定義は条件1に同じ)
・電気炉による加熱;反応開始時以外は加熱を行わなかった。
条件2での改質実験結果
表2および図6に示すとおり、LHSVが12〜20hr-1 においても、酸化による反応熱により自己熱改質反応(ATR)が継続し、n−C12の転化率はほぼ100%、水素60モル%、一酸化炭素約16〜17モル%の合成ガスが安定的に得られた。
The conversion of n-C 12 was 100% when LHSV was between 3 and 5 hr −1 . Under the condition of LHSV 5 hr −1 , it was confirmed that the reforming reaction (ATR) proceeds without external heat supply, that is, only with oxidation heat. The selectivity of hydrogen during the reaction period was 60 mol%, the selectivity of carbon monoxide was 15 to 16 mol%, and the reformed gas reached thermodynamic equilibrium.
Reforming reaction test 2 <Condition 2>
Using the above device, the space velocity (LHSV) was increased and the reforming reaction test was conducted under the following conditions.
・ Catalyst filling amount: 50cc
· Feed gas; n-C 12: Oxygen: water vapor (molar ratio) = 1: 6.5: 30
(Water vapor / carbon (molar ratio) = 2.5, oxygen / carbon (molar ratio) = 0.55)
・ Reaction pressure; normal pressure and temperature; the catalyst layer outlet temperature is set to 750 ° C. only at the beginning of the reaction. ・ LHSV: 12, 15, 18, 20 hr −1
(Note: LHSV definition is the same as condition 1)
-Heating with an electric furnace; heating was not performed except at the start of the reaction.
Results of reforming experiments under condition 2 :
As shown in Table 2 and FIG. 6, even when the LHSV is 12 to 20 hr −1 , the autothermal reforming reaction (ATR) is continued by the reaction heat due to oxidation, the conversion of n—C 12 is almost 100%, hydrogen 60 A synthesis gas having a mol% of about 16 to 17 mol% of carbon monoxide was stably obtained.

反応後の触媒観察結果
条件1および条件2での合計12時間の反応終了後に、反応管から回収した触媒E2には、目視観察の結果、コーキングはみられなかった。また反応終了後、触媒を触媒層上部から4分割して抜き出し、それぞれにつき、触媒粒子の表面を目視観察して、クラック発生状態を調べた結果、クラック発生は1%以下であった。
Result of observation of catalyst after reaction Coking was not observed in the catalyst E2 recovered from the reaction tube after completion of the reaction for 12 hours under the conditions 1 and 2, as a result of visual observation. Moreover, after completion | finish of reaction, the catalyst was extracted in four parts from the upper part of the catalyst layer, and as a result of observing the surface of the catalyst particle visually and examining the crack generation state, crack generation was 1% or less.

以上より、本発明の触媒E2は自己熱改質に適していることが確認できた。   From the above, it was confirmed that the catalyst E2 of the present invention is suitable for autothermal reforming.

本発明の触媒は、炭化水素の改質反応に高い活性を示し、コーキングが低減され、改質反応に望まれる700−1200℃といった高温領域でも優れた強度を有する。従って、本発明の触媒は、置換又は未置換の炭素数1〜15の飽和脂肪族炭化水素の1種または2種以上を含む炭化水素を改質剤により改質して水素もしくは合成ガスを製造するプロセスに有用である。   The catalyst of the present invention exhibits high activity in the reforming reaction of hydrocarbons, has reduced coking, and has excellent strength even in a high temperature region such as 700 to 1200 ° C. desired for the reforming reaction. Therefore, the catalyst of the present invention produces hydrogen or synthesis gas by reforming a hydrocarbon containing one or more of substituted or unsubstituted C1-C15 saturated aliphatic hydrocarbons with a modifier. Useful for the process.

図1−aは、実施例2の触媒E2の製造方法の概略を示す。FIG. 1-a shows an outline of a method for producing the catalyst E2 of Example 2. 図1−bは、比較例1の触媒R1の製造方法の概略を示す。1-b shows an outline of a method for producing the catalyst R1 of Comparative Example 1. FIG. 図2−aは、製造直後の触媒E2の断面SEM写真を示す。FIG. 2-a shows a cross-sectional SEM photograph of catalyst E2 immediately after production. 図2−bは、製造直後の触媒R1の断面SEM写真を示す。FIG. 2-b shows a cross-sectional SEM photograph of the catalyst R1 immediately after production. 図3−aは、実施例2の触媒E2についてRuの断面EPMA分析を行った結果を示す。FIG. 3-a shows the results of Ru cross-sectional EPMA analysis of the catalyst E2 of Example 2. 図3−bは、実施例2の触媒E2についてPtの断面EPMA分析を行った結果を示す。FIG. 3-b shows the results of cross-sectional EPMA analysis of Pt for the catalyst E2 of Example 2. 図4は、改質反応試験に用いた装置の概略図である。FIG. 4 is a schematic view of an apparatus used for the reforming reaction test. 図5−aは、実施例2の触媒E2を条件1で、改質反応試験を実施した際の反応生成物組成の推移を示す。FIG. 5-a shows the transition of the reaction product composition when the reforming reaction test is performed on the catalyst E2 of Example 2 under the condition 1. 図5−bは、実施例2の触媒(E2)を条件1で、加熱を停止して改質反応試験を行った結果を示す。LHSVは5.0 hr-1である。FIG. 5B shows the result of the reforming reaction test performed on the catalyst (E2) of Example 2 under the condition 1 while stopping heating. LHSV is 5.0 hr −1 . 図6は、実施例2の触媒E2を、条件2(LHSVが12〜20Hr-1)で加熱を停止して改質反応試験を行った結果を示す。FIG. 6 shows the result of a reforming reaction test performed by stopping heating of the catalyst E2 of Example 2 under condition 2 (LHSV is 12 to 20 Hr −1 ).

Claims (9)

炭化水素改質用触媒の製造方法であって、
(工程1) 活性金属(M)含有ハイドロタルサイト化合物(M−HT)の粒子を含む水スラリーを、ハイドロタルサイト(HT)で形成された成形体の表面に塗布し、該成形体の表面に活性金属(M)含有ハイドロタルサイト化合物(M−HT)を含む被覆層を形成する工程;
(工程2) 該被覆層を設けた成形体を500〜1000℃に加熱し、該成形体をハイドロタルサイト固溶体(HT/S)よりなる成形体に変換するとともに、前記被覆層の活性金属(M)含有ハイドロタルサイト化合物(M−HT)を活性金属含有固溶体組成物(M+HT/S)よりなる被覆層に同時に変換する工程;及び、
(工程3) 前記被覆層を設けた成形体を還元雰囲気下で加熱して、被覆層中の活性金属(M)を還元する、還元処理工程;
を含む、前記炭化水素改質用触媒の製造方法。
A method for producing a hydrocarbon reforming catalyst, comprising:
(Step 1) A water slurry containing particles of an active metal (M) -containing hydrotalcite compound (M-HT) is applied to the surface of a molded body formed of hydrotalcite (HT), and the surface of the molded body Forming a coating layer containing an active metal (M) -containing hydrotalcite compound (M-HT) on
(Step 2) The molded body provided with the coating layer is heated to 500 to 1000 ° C. to convert the molded body into a molded body made of a hydrotalcite solid solution (HT / S), and the active metal ( M) a step of simultaneously converting the containing hydrotalcite compound (M-HT) into a coating layer comprising an active metal-containing solid solution composition (M + HT / S); and
(Step 3) A reduction treatment step of heating the molded body provided with the coating layer in a reducing atmosphere to reduce the active metal (M) in the coating layer;
The manufacturing method of the said catalyst for hydrocarbon reforming containing.
前記炭化水素改質用触媒が、ハイドロタルサイト固溶体よりなる成形体を芯とし、その表面に活性金属含有固溶体組成物よりなる被覆層を形成した構造を有する成形触媒である、請求項1に記載の炭化水素改質用触媒の製造方法。   2. The molded catalyst according to claim 1, wherein the hydrocarbon reforming catalyst is a molded catalyst having a structure in which a molded body made of a hydrotalcite solid solution is used as a core and a coating layer made of an active metal-containing solid solution composition is formed on the surface thereof. Of producing a hydrocarbon reforming catalyst. 工程3を、工程2に続いて、水素雰囲気下、500〜1000℃の温度で行う、請求項1または2に記載の炭化水素改質用触媒の製造方法。   The method for producing a hydrocarbon reforming catalyst according to claim 1 or 2, wherein step 3 is carried out following step 2 at a temperature of 500 to 1000 ° C under a hydrogen atmosphere. 工程2における加熱を、水素雰囲気下で行うことにより、工程2の加熱処理と工程3の還元処理とを1つの工程で行う、請求項1または2に記載の炭化水素改質用触媒の製造方法。   The method for producing a hydrocarbon reforming catalyst according to claim 1 or 2, wherein the heat treatment in step 2 is performed in a hydrogen atmosphere, whereby the heat treatment in step 2 and the reduction treatment in step 3 are performed in one step. . 活性金属含有固溶体組成物(M+HT/S)よりなる被覆層の厚さが10〜500μmである、請求項1〜4のいずれかに記載の炭化水素改質用触媒の製造方法。   The manufacturing method of the catalyst for hydrocarbon reforming in any one of Claims 1-4 whose thickness of the coating layer which consists of an active metal containing solid solution composition (M + HT / S) is 10-500 micrometers. 前記活性金属(M)がロジウム(Rh)、ルテニウム(Ru)、パラジウム(Pd)、白金(Pt)、イリジウム(Ir)、コバルト(Co),ニッケル(Ni)、またはこれらの組み合わせである、請求項1〜5のいずれかに記載の炭化水素改質用触媒の製造方法。   The active metal (M) is rhodium (Rh), ruthenium (Ru), palladium (Pd), platinum (Pt), iridium (Ir), cobalt (Co), nickel (Ni), or a combination thereof. Item 6. A method for producing a hydrocarbon reforming catalyst according to any one of Items 1 to 5. 前記活性金属(M)の90重量%以上が、前記活性金属含有固溶体組成物(M+HT/S)よりなる被覆層に含まれる触媒である、請求項1〜6のいずれかに記載の炭化水素化改質用触媒の製造方法。   The hydrocarbonation according to any one of claims 1 to 6, wherein 90% by weight or more of the active metal (M) is a catalyst contained in a coating layer made of the active metal-containing solid solution composition (M + HT / S). A method for producing a reforming catalyst. 前記ハイドロタルサイト固溶体(HT/S)よりなる成形体が、平均粒径0.1mm〜20mmの球形状、もしくは直径1mm〜10mm、長さ5〜20mmの円柱状あるいは円筒状の形状をした成形体である、請求項1〜7のいずれかに記載の炭化水素改質用触媒の製造方法。   Molded body made of the hydrotalcite solid solution (HT / S) has a spherical shape with an average particle diameter of 0.1 mm to 20 mm, or a cylindrical or cylindrical shape with a diameter of 1 mm to 10 mm and a length of 5 to 20 mm. The manufacturing method of the catalyst for hydrocarbon reforming in any one of Claims 1-7 which is a body. 前記改質用触媒が自己熱改質用触媒である、請求項1〜8のいずれかに記載の炭化水素改質用触媒の製造方法。   The method for producing a hydrocarbon reforming catalyst according to claim 1, wherein the reforming catalyst is an autothermal reforming catalyst.
JP2004356491A 2004-12-09 2004-12-09 Hydrocarbon reforming catalyst, method for producing the catalyst, and reforming method using the catalyst Active JP4684639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004356491A JP4684639B2 (en) 2004-12-09 2004-12-09 Hydrocarbon reforming catalyst, method for producing the catalyst, and reforming method using the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004356491A JP4684639B2 (en) 2004-12-09 2004-12-09 Hydrocarbon reforming catalyst, method for producing the catalyst, and reforming method using the catalyst

Publications (2)

Publication Number Publication Date
JP2006181399A JP2006181399A (en) 2006-07-13
JP4684639B2 true JP4684639B2 (en) 2011-05-18

Family

ID=36734889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004356491A Active JP4684639B2 (en) 2004-12-09 2004-12-09 Hydrocarbon reforming catalyst, method for producing the catalyst, and reforming method using the catalyst

Country Status (1)

Country Link
JP (1) JP4684639B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4852361B2 (en) * 2006-07-06 2012-01-11 日立造船株式会社 Honeycomb catalyst for hydrocarbon reforming and method of using the same
JP2008074657A (en) * 2006-09-21 2008-04-03 Hitachi Zosen Corp Method for starting self-heating reforming reaction at a low temperature
JP2008094665A (en) * 2006-10-12 2008-04-24 Idemitsu Kosan Co Ltd Method for producing hydrogen-containing gas
KR101068995B1 (en) * 2008-12-08 2011-09-30 현대중공업 주식회사 Preparation method of methanol through synthesis gas derived from the combined reforming of methane gas with mixture of steam and carbon dioxide
JP5537960B2 (en) * 2010-01-15 2014-07-02 日揮ユニバーサル株式会社 Hydrocarbon reforming catalyst, method for producing the catalyst, and reforming method using the catalyst
GB201102502D0 (en) * 2011-02-14 2011-03-30 Johnson Matthey Plc Catalysts for use in reforming processes
FR2996783B1 (en) * 2012-10-17 2014-11-21 IFP Energies Nouvelles CATALYST DENSE LOADING SYSTEM IN BAIONNETTE TUBES FOR VAPOREFORMING EXCHANGER REACTOR USING REMOVABLE HELICOIDAL ELEMENTS
KR101799384B1 (en) 2015-09-21 2017-11-21 서울과학기술대학교 산학협력단 Method for manufacturing catalyst for reforming hydrocarbon fuel using electro-spray

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11276893A (en) * 1998-03-31 1999-10-12 Mitsubishi Heavy Ind Ltd Metal fine particle-supported hydrocarbon modifying catalyst and its production
JP2001038212A (en) * 1999-07-30 2001-02-13 Kyowa Chem Ind Co Ltd Granular solid basic catalyst and its manufacturing method
JP2003135967A (en) * 2001-08-20 2003-05-13 Hiroshima Industrial Promotion Organization Catalyst for reaction of hydrocarbon with water vapor and method for manufacturing hydrogen from hydrocarbon by using the catalyst
JP2003225566A (en) * 2002-02-01 2003-08-12 Hiroshima Industrial Promotion Organization Catalyst for decomposing hydrocarbon and production method therefor
JP2003290657A (en) * 2002-01-31 2003-10-14 National Institute Of Advanced Industrial & Technology Catalyst for reforming hydrocarbon, manufacture method therefor, method for manufacturing synthetic gas and catalyst precursor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11276893A (en) * 1998-03-31 1999-10-12 Mitsubishi Heavy Ind Ltd Metal fine particle-supported hydrocarbon modifying catalyst and its production
JP2001038212A (en) * 1999-07-30 2001-02-13 Kyowa Chem Ind Co Ltd Granular solid basic catalyst and its manufacturing method
JP2003135967A (en) * 2001-08-20 2003-05-13 Hiroshima Industrial Promotion Organization Catalyst for reaction of hydrocarbon with water vapor and method for manufacturing hydrogen from hydrocarbon by using the catalyst
JP2003290657A (en) * 2002-01-31 2003-10-14 National Institute Of Advanced Industrial & Technology Catalyst for reforming hydrocarbon, manufacture method therefor, method for manufacturing synthetic gas and catalyst precursor
JP2003225566A (en) * 2002-02-01 2003-08-12 Hiroshima Industrial Promotion Organization Catalyst for decomposing hydrocarbon and production method therefor

Also Published As

Publication number Publication date
JP2006181399A (en) 2006-07-13

Similar Documents

Publication Publication Date Title
JP6247344B2 (en) Catalysts used in steam reforming processes
JP4763455B2 (en) Use of metal-supported copper catalysts for alcohol reforming
Nair et al. Nanocast LaNiO3 perovskites as precursors for the preparation of coke-resistant dry reforming catalysts
JP4414951B2 (en) Catalyst for catalytic partial oxidation of hydrocarbons and process for producing synthesis gas
Lai et al. Hydrogen production via low-temperature steam–methane reforming using Ni–CeO2–Al2O3 hybrid nanoparticle clusters as catalysts
JP4332733B2 (en) Hydrocarbon cracking catalyst and method for producing hydrogen using the hydrocarbon cracking catalyst
JP5537960B2 (en) Hydrocarbon reforming catalyst, method for producing the catalyst, and reforming method using the catalyst
JP4684639B2 (en) Hydrocarbon reforming catalyst, method for producing the catalyst, and reforming method using the catalyst
JP2017170430A (en) Catalyst for fuel synthesis and fuel synthesis system
US20180043340A1 (en) Use of nickel-manganese olivine and nickel-manganese spinel as bulk metal catalysts for carbon dioxide reforming of methane
JP2008546533A (en) Hydrogen production catalyst and hydrogen production system
JP2007069105A (en) Catalyst and its manufacturing method
JP4701455B2 (en) Catalyst for hydrogen production, method for producing the same, and method for producing hydrogen
KR102092736B1 (en) Preparation Method of Reduced Carbon Poisoning Perovskite Catalyst Impregnated with Metal Ion, and Methane Reforming Method Threrewith
EP1703979B1 (en) Catalyst for manufacturing synthesis gas and method of manufacturing synthesis gas using the same
JP3944142B2 (en) Method for producing metal particle dispersed oxide
PL240039B1 (en) Method for the catalytic conversion of carbon monoxide or dioxide to methane and a catalyst bed for carrying out the method
JP5562049B2 (en) Catalyst for catalytic partial oxidation of hydrocarbons and process for producing synthesis gas
JP2006061759A (en) Catalyst for cracking of hydrocarbon, method of manufacturing the catalyst and a method of manufacturing hydrogen using the catalyst
US20240132347A1 (en) Systems and methods for processing ammonia
KR20100120773A (en) Metal-structure for catalyst layer for autothermal methane reforming to synthetic gas for fischer-tropsch process, manufacturing method thereof and metal-structured catalyst
WO2023178418A1 (en) Low temperature methane steam reforming to produce hydrogen
JP3769051B2 (en) Catalyst and method for producing catalyst
Mileva et al. NANOSIZED MESOPOROUS CuO-CeO 2-TiO 2 AND CuO-ZrO 2-TiO 2 COMPOSITES AS CATALYSTS FOR METHANOL DECOMPOSITION: EFFECT OF MODIFICATION PROCEDURE.
JP2024060913A (en) Molded catalyst for methanation of carbon dioxide and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070918

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4684639

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250