JP4208448B2 - Porcelain capacitor and manufacturing method thereof - Google Patents

Porcelain capacitor and manufacturing method thereof Download PDF

Info

Publication number
JP4208448B2
JP4208448B2 JP2001297262A JP2001297262A JP4208448B2 JP 4208448 B2 JP4208448 B2 JP 4208448B2 JP 2001297262 A JP2001297262 A JP 2001297262A JP 2001297262 A JP2001297262 A JP 2001297262A JP 4208448 B2 JP4208448 B2 JP 4208448B2
Authority
JP
Japan
Prior art keywords
ceramic
internal electrode
firing
green sheet
dielectric layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001297262A
Other languages
Japanese (ja)
Other versions
JP2003100544A (en
Inventor
洋一 水野
浩敏 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2001297262A priority Critical patent/JP4208448B2/en
Publication of JP2003100544A publication Critical patent/JP2003100544A/en
Application granted granted Critical
Publication of JP4208448B2 publication Critical patent/JP4208448B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、温度特性及び寿命特性に優れた磁器コンデンサとその製造方法に関するものである。
【0002】
【従来の技術】
一般に、磁器コンデンサはチップ状の素体と、該素体の両側に形成された一対の電極とからなる。積層タイプの磁器コンデンサの場合、該素体は一般に誘電体層と内部電極とが交互に多数層積層された積層体からなる。該内部電極のうち、隣り合う内部電極は誘電体層を介して対向し、別々の外部電極と電気的に接続されている。
【0003】
ここで、前記誘電体層としては、例えばチタン酸ジルコン酸バリウム{Ba(TiZr)O}を主成分とし、これに希土類元素を添加した、耐還元性を有する誘電体磁器組成物が使用されている。また、前記内部電極としては、例えばNi金属粉末を主成分とする導電性ペーストを焼結させたものが使用されている。
【0004】
前記素体は、セラミックグリーンシートと内部電極パターンとを交互に一体的に積層させたチップ状の積層体を脱バインダした後、非酸化性雰囲気中において1200〜1300℃程度の高温で焼成し、その後、弱酸化性雰囲気中で再酸化させることにより製造されている。
【0005】
【発明が解決しようとする課題】
ところで、電子機器の性能向上のため、磁器コンデンサについて、温度特性や寿命特性の良いものが求められ、そのため、種々の磁器コンデンサが提案されている。
【0006】
しかし、近年における電子機器の性能の向上に対する要求はとどまるところがなく、そのため、電子部品の電気的特性に対する要求も益々厳しいものがあり、磁器コンデンサについても、その電気的特性に対する要求は益々厳しいものがあり、特に、温度特性や寿命特性の更に良いものが求められている。
【0007】
本発明は、温度特性及び寿命特性に優れた磁器コンデンサとその製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明に係る磁器コンデンサは、誘電体磁器組成物からなる誘電体層と、該誘電体層を挟持している内部電極と、該内部電極に電気的に接続されている外部電極とを備え、該誘電体磁器組成物が所定の成分元素の濃度を異にする2種以上のセラミック粒子からなることを特徴とするものである。
【0009】
ここで、前記所定の成分元素は前記内部電極間で濃度勾配を有していてもよい。ここで、所定の成分元素について濃度勾配を有するとは、内部電極に近付くにつれて、又は遠ざかるにつれて所定の成分元素の濃度が連続的に増加又は減少することをいう。また、あるセラミック粒子について、特定の成分元素の濃度が高くなるにつれて他の成分元素の濃度が低くなってもよいし、その逆でもよい。更に、セラミック粒子内における所定の成分元素の濃度は均一でもよいし、表面近傍と内部で濃度勾配を有していてもよい。
【0010】
前記所定の成分元素はBa、Ti,Zr,希土類元素,Mn,Si,Cr,V,Co,Mo及びWから選択された1種又は2種以上を挙げることができるが、磁器コンデンサの寿命特性を良好ならしめるものであればこれら以外の元素でもよい。
【0011】
また、この発明に係る磁器コンデンサの製造方法は、基本工程として、セラミック原料を調整するセラミック原料調整工程と、セラミック原料を用いてセラミックグリーンシートを形成するシート形成工程と、該セラミックグリーンシートに導電性ペーストからなる内部電極パターンを印刷する印刷工程と、該内部電極パターンを印刷したセラミックグリーンシートを積層して積層体を得る積層工程と、該積層体を内部電極パターン毎に裁断してチップ状の積層体を得る裁断工程と、該チップ状の積層体を非酸化性雰囲気中で焼成する焼成工程と、該焼成工程を経た該積層体を弱酸化性雰囲気中で焼成する再酸化工程とを備えている。
【0012】
そして、この発明に係る一の磁器コンデンサの製造方法は、該原料調製工程が、2種以上の化合物、例えばHoとMn、を仮焼してなる添加成分粉末を形成する工程と、強誘電性を有する主成分粉末と該添加成分粉末とを混合する工程とを備え、他の磁器コンデンサの製造方法は、該原料調製工程が、強誘電性を有する2種以上の主成分粉末、例えばBaTiOとBaZrO、を混合する工程を備え、この発明に係る更に他の磁器コンデンサの製造方法は、該導電性ペーストが成分元素を含み、該成分元素はBa,Ti,Zr,希土類元素,Mn,Si,Cr,V,Co,Mo及びWから選択された1種又は2種以上からなることを特徴とするものである。
【0013】
【実施例】
実施例1: まず、BaTi0.854Zr0.1463粉末を合成し、これをポットミルで解砕し、粒径D50(%)=0.55μmの主成分粉末を得た。また、Ho23を29.6g、Mn34を9.6g、各々秤量し、これらをビーズとともにポットミルに入れ、湿式で攪拌・混合し、得られたスラリーを取り出して乾燥させ、これを1000℃で2時間仮焼してHo−Mnの仮焼物を得た。次に、このHo−Mnの仮焼物をビーズとともにポットミルに入れ、乾式で粉砕し、粒度D50(%)=1.5μmの添加成分粉末を得た。
【0014】
次に、主成分{BaTi0.854Zr0.1463}粉末500gにSiO2を1.26g添加し、これらをZrO2ビーズとともにポットミルに入れ、湿式で攪拌・混合し、粒度D50(%)が0.46μmになったとき、先に準備した添加成分(Ho−Mn仮焼物)粉末を3.92g添加し、1時間・攪拌・混合し、得られたスラリーを取り出して乾燥させ、誘電体材料粉末を得た。なお、前記各粉末の粒度D50(%)はレーザー回折粒度分布計によって測定した。
【0015】
次に、この誘電体材料粉末1000g(100重量部)に、アクリル酸エステルポリマー、グリセリン、縮合リン酸塩の水溶液からなる有機バインダーを15重量%添加し、更に、50重量%の水を加え、これらをボールミルに入れ、粉砕及び混合してスラリーを作成した。
【0016】
次に、このスラリーを真空脱泡機に入れて脱泡した後、リバースロールコータに入れ、ポリエステルフィルム上にこのスラリーからなる薄膜を形成した。そして、この薄膜をポリエステルフィルム上で100℃に加熱して乾燥させ、打ち抜き、厚さ約5μmで、10cm×10cmの正方形のグリーンシートを得た。
【0017】
一方、平均粒径が0.5μmのニッケル粉末10gと、エチルセルロース0.9gをブチルカルビトール9.1gに溶解させたものとを撹拌機に入れ、10時間撹拌して、内部電極用の導電性ペーストを得た。そして、上記グリーンシートにこの導電性ペーストからなる導電パターンを印刷し、乾燥させた。
【0018】
次に、上記導電パターンの印刷面を上にしてグリーンシートを11枚積層した。この際、隣接する上下のシートにおいて、その印刷面がパターンの長手方向に約半分程ずれるように配置した。更に、この積層物の上下両面に導電パターンの印刷の施されていないグリーンシートを積層した。
【0019】
次に、この積層物を約50℃の温度で厚さ方向に約40トンの圧力を加えて圧着させ、その後、この積層物を格子状に裁断し、縦4.0mm×横2.0mmの積層チップを得た。
【0020】
次に、内部電極が露出する積層チップの端面にNi外部電極をディップで形成し、この積層チップを雰囲気焼成が可能な炉に入れ、N雰囲気中で加熱して有機バインダを除去させ、続いて、酸素分圧が10−5〜10−10atmの条件下、1260℃〜1360℃で1〜5時間焼成し、その後、N雰囲気下、600〜800℃で再酸化処理を行ない、積層磁器コンデンサを得た。
【0021】
次に、積層磁器コンデンサの誘電体層を形成しているセラミック粒子30〜50個についてTEM−EDSを用いて成分組成を分析し、その結果をHoとMnの濃度に注目して3種(粒子A,B,C)に分類したところ、表1の実施例1の欄に示すようになった。そして、粒子A/粒子B/粒子Cの組成比は35/26/39であった。
【0022】
なお、この誘電体層は図1に示すような微細構造になっていると考えられる。また、表1の各組成値は、セラミック粒子の一粒を3点分析して得られた3個の組成値の平均値である。
【0023】
次に、得られた積層磁器コンデンサの電気的特性を測定したところ、表2に示す通りであった。
【0024】
電気的特性は次の要領で測定した。
【0025】
(A) 比誘電率εは、温度20℃、周波数1kHz、電圧(実効値)1.0Vの条件で静電容量を測定し、この測定値と、一対の内部電極14の対向面積と、一対の内部電極間の誘電体磁器層の厚さから計算で求めた。
【0026】
(B) 誘電損失tanδ(%)は、上記した比誘電率の測定の場合と同一の条件で測定した。
【0027】
(C) 容量変化率ΔC(%)は、恒温槽の中に試料を入れ、−25℃及び+85℃の各温度において、周波数1kHz、電圧(実効値)1.0Vの条件で静電容量を測定し、20℃の静電容量に対する静電容量の変化率を求めることによって得た。
【0028】
(D) 加速寿命(sec)は、150℃/20V/μmの直流電界下にて絶縁抵抗率(ρ)が1×1010Ωcmになるまでの時間を測定して得た。
【0029】
実施例2: まず、BaTiOとBaZrOを合成し、これらを各々粉砕して粒度D50(%)=0.52μmのBaTiOと、粒度D50(%)=0.65μmのBaZrOを形成した。
【0030】
次に、BaTiO229.45g,BaZrO270.55g,Ho2.96g,SiO1.26g,Mn0.96gを秤量し、これらをZrOビーズとともにポットミルに入れ、粒度D50(%)=0.48μmになるまで湿式で撹拌・混合し、得られたスラリーを取り出して乾燥させ、誘電体材料粉末を得た。
【0031】
次に、実施例1と同様にして積層磁器コンデンサを作成し、誘電体層を形成しているセラミック粒子30〜50個についてTEM−EDSを用いて成分組成を分析し、その結果をTiとZrの濃度に注目して3種(粒子D,E,F)に分類をしたところ、表1に示すようになった。そして、粒子D,粒子E,粒子Fの組成比は29/40/31であった。この誘電体層も図1に示すような微細構造をしているものと考えられる。ただし、図1中、粒子Aは粒子Dと、粒子Bは粒子Eと、粒子Cは粒子Fと置き換えて考える。
【0032】
次に、得られた積層磁器コンデンサの電気的特性を実施例1と同様にして測定したところ、表2に示す通りであった。
【0033】
比較例1: 予め合成し、解砕したBaTi0.854Zr0.1463{D50(%)=0.53μm}500gにHo2.96g,SiO1.26g,Mn0.96gを添加し、これらをZrO2ビーズとともにポットミルに入れ、湿式で攪拌・混合し、粒度D50(%)=0.45μmとなるまで撹拌・混合し、得られたスラリーを取り出して乾燥させ、誘電体材料粉末を得た。
【0034】
次に、実施例1と同様にして積層磁器コンデンサを作成し、誘電体層を形成しているセラミック粒子30〜50個についてTEM−EDSを用いて成分組成を分析したところ、表1の比較例1に示すようになった。この誘電体層の微細構造は図3に示すようになっていると考えられる。
【0035】
次に、得られた積層磁器コンデンサの電気的特性を実施例1と同様にして測定したところ、表2に示す通りであった。
【0036】
実施例3: 予め合成し、解砕したBaTi0.854Zr0.1463{D50(%)=0.53μm}500gにHo2.96g,SiO1.26g,Mn0.96gを添加し、これらをZrO2ビーズとともにポットミルに入れ、湿式で攪拌・混合し、粒度D50(%)=0.45μmとなるまで撹拌・混合し、得られたスラリーを取り出して乾燥させ、誘電体材料粉末を得た。そして、実施例1と同様にしてグリーンシートを形成した。
【0037】
一方、平均粒径が0.5μmのニッケル粉末10gと、エチルセルロース0.9gをブチルカルビトール9.1gに溶解させたものと、添加材(焼結遅延材)2.5gを撹拌機に入れ、10時間撹拌して、内部電極用の導電性ペーストを得た。添加材としてはZrOが上記グリーンシートより20mol%多い材料を用いた。そして、上記グリーンシートにこの導電性ペーストからなる導電パターンを印刷し、乾燥させた。
【0038】
そして、実施例1と同様にして積層磁器コンデンサを作成し、誘電体層を形成しているセラミック粒子30〜50個についてTEM−EDSを用いて成分組成を分析したところ、表1の実施例3に示すようになった。また、得られた積層磁器コンデンサの電気的特性を実施例1と同様にして測定したところ、表2に示す通りであった。なお、この誘電体層の微細構造は図2に示すような微細構造になっていると考えられる。
【0039】
実施例4: 予め合成し、解砕したBaTi0.854Zr0.1463{D50(%)=0.53μm}500gにHo2.96g,SiO1.26g,Mn0.96gを添加し、これらをZrO2ビーズとともにポットミルに入れ、湿式で攪拌・混合し、粒度D50(%)が0.45μmになるまで撹拌・混合し、得られたスラリーを取り出して乾燥させ、誘電体材料粉末を得た。そして、実施例1と同様にしてグリーンシートを形成した。
【0040】
一方、平均粒径が0.5μmのニッケル粉末10gと、エチルセルロース0.9gをブチルカルビトール9.1gに溶解させたものと、添加材(焼結遅延材)2.5gを撹拌機に入れ、10時間撹拌して、内部電極用の導電性ペーストを得た。添加材としてはMnが上記グリーンシートより2atomic%多い材料を用いた。そして、上記グリーンシートにこの導電性ペーストからなる導電パターンを印刷し、乾燥させた。
【0041】
そして、実施例1と同様にして積層磁器コンデンサを作成し、誘電体層を形成しているセラミック粒子30〜50個についてTEM−EDSを用いて成分組成を分析したところ、表1に示すようになった。また、得られた積層磁器コンデンサの電気的特性を実施例1と同様にして測定したところ、表2に示す通りであった。なお、この誘電体層の微細構造も図2に示すような微細構造になっていると考えられる。ただし、図2中、粒子Hは粒子Kと、粒子Iは粒子Lと、粒子Jは粒子Mと置き換えて考える。
【0042】
実施例5: 予め合成し、解砕したBaTi0.854Zr0.1463{D50(%)=0.53μm}500gにHo2.96g,SiO1.26g,Mn0.96gを添加し、これらをZrO2ビーズとともにポットミルに入れ、湿式で攪拌・混合し、粒度D50(%)=0.45μmとなるまで撹拌・混合し、得られたスラリーを取り出して乾燥させ、誘電体材料粉末を得た。そして、実施例1と同様にしてグリーンシートを形成した。
【0043】
一方、平均粒径が0.5μmのニッケル粉末10gと、エチルセルロース0.9gをブチルカルビトール9.1gに溶解させたものと、添加材(焼結遅延材)2.5gを撹拌機に入れ、10時間撹拌して、内部電極用の導電性ペーストを得た。添加材としてはMn,Cr,Co,Vが上記グリーンシートより2atomic%多い材料を用いた。そして、上記グリーンシートにこの導電性ペーストからなる導電パターンを印刷し、乾燥させた。
【0044】
そして、実施例1と同様にして積層磁器コンデンサを作成し、誘電体層を形成しているセラミック粒子30〜50個についてTEM−EDSを用いて成分組成を分析したところ、表1に示すようになった。また、得られた積層磁器コンデンサの電気的特性を実施例1と同様にして測定したところ、表2に示す通りであった。なお、この誘電体層の微細構造も図2に示すような微細構造になっていると考えられる。ただし、図2中、粒子Hは粒子Nと、粒子Iは粒子Oと、粒子Jは粒子Pと置き換えて考える。
【0045】
実施例6: 予め合成し、解砕したBaTi0.854Zr0.1463{D50(%)=0.53μm}500gにHo2.96g,SiO1.26g,Mn0.96gを添加し、これらをZrO2ビーズとともにポットミルに入れ、湿式で攪拌・混合し、粒度D50(%)が0.45μmになるまで撹拌・混合し、得られたスラリーを取り出して乾燥させ、誘電体材料粉末を得た。そして、実施例1と同様にしてグリーンシートを形成した。
【0046】
一方、平均粒径が0.5μmのニッケル粉末10gと、エチルセルロース0.9gをブチルカルビトール9.1gに溶解させたものと、添加材(焼結遅延材)2.5gを撹拌機に入れ、10時間撹拌して、内部電極用の導電性ペーストを得た。添加材としてはSm,Gd,Yが上記グリーンシートより2atomic%多い材料を用いた。そして、上記グリーンシートにこの導電性ペーストからなる導電パターンを印刷し、乾燥させた。
【0047】
そして、実施例1と同様にして積層磁器コンデンサを作成し、誘電体層を形成しているセラミック粒子30〜50個についてTEM−EDSを用いて成分組成を分析したところ、表1に示すようになった。また、得られた積層磁器コンデンサの電気的特性を実施例1と同様にして測定したところ、表2に示す通りであった。なお、この誘電体層の微細構造も図2に示すような微細構造になっていると考えられる。ただし、図2中、粒子Hは粒子Qと、粒子Iは粒子Rと、粒子Jは粒子Sと置き換えて考える。
【0048】
実施例7: 予め合成し、解砕したBaTi0.854Zr0.1463{D50(%)=0.53μm}500gにHo2.96g,SiO1.26g,Mn0.96gを添加し、これらをZrO2ビーズとともにポットミルに入れ、湿式で攪拌・混合し、粒度D50(%)が0.45μmになるまで撹拌・混合し、得られたスラリーを取り出して乾燥させ、誘電体材料粉末を得た。そして、実施例1と同様にしてグリーンシートを形成した。
【0049】
一方、平均粒径が0.5μmのニッケル粉末10gと、エチルセルロース0.9gをブチルカルビトール9.1gに溶解させたものと、添加材(焼結遅延材)2.5gを撹拌機に入れ、10時間撹拌して、内部電極用の導電性ペーストを得た。添加材としてはMo,Wが上記グリーンシートより2atomic%多い材料を用いた。そして、上記グリーンシートにこの導電性ペーストからなる導電パターンを印刷し、乾燥させた。
【0050】
そして、実施例1と同様にして積層磁器コンデンサを作成し、誘電体層を形成しているセラミック粒子30〜50個についてTEM−EDSを用いて成分組成を分析したところ、表1に示すようになった。また、得られた積層磁器コンデンサの電気的特性を実施例1と同様にして測定したところ、表2に示す通りであった。なお、この誘電体層の微細構造も図2に示すような微細構造になっていると考えられる。ただし、図2中、粒子Hは粒子Tと、粒子Iは粒子Uと、粒子Jは粒子Vと置き換えて考える。
【0051】
【表1】

Figure 0004208448
【0052】
【表2】
Figure 0004208448
【0053】
表1,2から、誘電体層を構成している誘電体磁器組成物が成分組成を異にする粒子から構成される場合、磁器コンデンサの寿命特性が良好になることがわかる。
【0054】
【発明の効果】
本発明によれば、電気的特性の良い、特に寿命特性に優れた磁器コンデンサを得ることができるという効果がある。
【図面の簡単な説明】
【図1】実施例1,2に係る誘電体層の微細構造を模式的に示した説明図である。
【図2】実施例3〜7に係る誘電体層の微細構造を模式的に示した説明図である。
【図3】比較例1に係る誘電体層の微細構造を模式的に示した説明図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ceramic capacitor excellent in temperature characteristics and life characteristics and a manufacturing method thereof.
[0002]
[Prior art]
In general, a ceramic capacitor is composed of a chip-like element body and a pair of electrodes formed on both sides of the element body. In the case of a laminated type ceramic capacitor, the element body generally comprises a laminated body in which a large number of dielectric layers and internal electrodes are alternately laminated. Among the internal electrodes, adjacent internal electrodes face each other via a dielectric layer and are electrically connected to separate external electrodes.
[0003]
Here, as the dielectric layer, for example, a dielectric ceramic composition having reduction resistance, which is mainly composed of barium zirconate titanate {Ba (TiZr) O 3 } and added with a rare earth element, is used. ing. Moreover, as the internal electrode, for example, a sintered conductive paste mainly composed of Ni metal powder is used.
[0004]
The element body, after debinding a chip-like laminate in which ceramic green sheets and internal electrode patterns are alternately and integrally laminated, is fired at a high temperature of about 1200 to 1300 ° C. in a non-oxidizing atmosphere, Thereafter, it is manufactured by reoxidation in a weak oxidizing atmosphere.
[0005]
[Problems to be solved by the invention]
By the way, in order to improve the performance of electronic equipment, a ceramic capacitor having good temperature characteristics and life characteristics is required. For this reason, various ceramic capacitors have been proposed.
[0006]
However, in recent years, the demand for improving the performance of electronic devices has not been limited. Therefore, the requirements for the electrical characteristics of electronic components are increasingly severe, and the requirements for the electrical characteristics of porcelain capacitors are also increasingly severe. In particular, those having better temperature characteristics and life characteristics are required.
[0007]
An object of this invention is to provide the ceramic capacitor excellent in the temperature characteristic and lifetime characteristic, and its manufacturing method.
[0008]
[Means for Solving the Problems]
A ceramic capacitor according to the present invention includes a dielectric layer made of a dielectric ceramic composition, an internal electrode sandwiching the dielectric layer, and an external electrode electrically connected to the internal electrode, The dielectric ceramic composition comprises two or more kinds of ceramic particles having different concentrations of predetermined component elements.
[0009]
Here, the predetermined component element may have a concentration gradient between the internal electrodes. Here, having a concentration gradient with respect to a predetermined component element means that the concentration of the predetermined component element continuously increases or decreases as the internal electrode is approached or moved away. Moreover, about a certain ceramic particle, the density | concentration of another component element may become low as the density | concentration of a specific component element becomes high, and vice versa. Furthermore, the concentration of the predetermined component element in the ceramic particles may be uniform, or may have a concentration gradient near and inside the surface.
[0010]
The predetermined component element may include one or more selected from Ba, Ti, Zr, rare earth elements, Mn, Si, Cr, V, Co, Mo, and W. Any element other than these may be used as long as it makes the material good.
[0011]
The ceramic capacitor manufacturing method according to the present invention includes, as basic steps, a ceramic raw material adjusting step for adjusting a ceramic raw material, a sheet forming step for forming a ceramic green sheet using the ceramic raw material, and a conductive material for the ceramic green sheet. A printing process for printing an internal electrode pattern made of a conductive paste, a laminating process for laminating ceramic green sheets printed with the internal electrode pattern to obtain a laminated body, and cutting the laminated body for each internal electrode pattern to form a chip A cutting step for obtaining a laminated body, a firing step for firing the chip-like laminated body in a non-oxidizing atmosphere, and a reoxidation step for firing the laminated body that has undergone the firing step in a weakly oxidizing atmosphere. I have.
[0012]
In the method for manufacturing a ceramic capacitor according to the present invention, the raw material preparation step forms an additive powder obtained by calcining two or more compounds, for example, Ho 2 O 3 and Mn 3 O 4 . And a step of mixing the main component powder having ferroelectricity and the additive component powder. In another method of manufacturing a ceramic capacitor, the raw material preparation step includes two or more main components having ferroelectricity. The method further comprises a step of mixing component powders, for example, BaTiO 3 and BaZrO 3 , and according to another method of manufacturing a ceramic capacitor according to the present invention, the conductive paste contains component elements, and the component elements are Ba, Ti, Zr. , Rare earth elements, Mn, Si, Cr, V, Co, Mo, and W selected from one or more.
[0013]
【Example】
Example 1: First, BaTi 0.854 Zr 0.146 O 3 powder was synthesized and pulverized with a pot mill to obtain a main component powder having a particle size D50 (%) = 0.55 μm. Also, 29.6 g of Ho 2 O 3 and 9.6 g of Mn 3 O 4 were weighed, put into a pot mill with beads, stirred and mixed in a wet manner, and the resulting slurry was taken out and dried. Was calcined at 1000 ° C. for 2 hours to obtain a Ho—Mn calcined product. Next, this Ho-Mn calcined product was placed in a pot mill together with beads and pulverized in a dry manner to obtain an additive component powder having a particle size D50 (%) = 1.5 µm.
[0014]
Next, 1.26 g of SiO 2 is added to 500 g of the main component {BaTi 0.854 Zr 0.146 O 3 } powder, and these are put together with ZrO 2 beads into a pot mill, and are agitated and mixed in a wet manner. When the thickness becomes 46 μm, 3.92 g of the previously prepared additive component (Ho-Mn calcined product) powder is added, and stirred and mixed for 1 hour. The resulting slurry is taken out and dried to obtain a dielectric material powder. Obtained. The particle size D50 (%) of each powder was measured with a laser diffraction particle size distribution meter.
[0015]
Next, to this dielectric material powder 1000 g (100 parts by weight), 15% by weight of an organic binder composed of an aqueous solution of an acrylate polymer, glycerin and condensed phosphate is added, and further 50% by weight of water is added. These were put into a ball mill, and pulverized and mixed to prepare a slurry.
[0016]
Next, this slurry was put in a vacuum defoamer and defoamed, and then put in a reverse roll coater to form a thin film made of this slurry on a polyester film. Then, this thin film was heated to 100 ° C. on a polyester film, dried, punched out, and a 10 cm × 10 cm square green sheet having a thickness of about 5 μm was obtained.
[0017]
On the other hand, 10 g of nickel powder having an average particle size of 0.5 μm and 0.9 g of ethyl cellulose dissolved in 9.1 g of butyl carbitol are placed in a stirrer and stirred for 10 hours. A paste was obtained. And the conductive pattern which consists of this electrically conductive paste was printed on the said green sheet, and it was made to dry.
[0018]
Next, 11 green sheets were laminated with the printed surface of the conductive pattern facing up. At this time, the upper and lower sheets adjacent to each other were arranged so that their printing surfaces were shifted by about half in the longitudinal direction of the pattern. Furthermore, the green sheet in which the conductive pattern was not printed was laminated | stacked on both upper and lower surfaces of this laminated body.
[0019]
Next, the laminate was pressure-bonded by applying a pressure of about 40 tons in the thickness direction at a temperature of about 50 ° C., and then the laminate was cut into a lattice shape, having a length of 4.0 mm × width 2.0 mm. A laminated chip was obtained.
[0020]
Next, a Ni external electrode is formed by dip on the end face of the multilayer chip where the internal electrode is exposed, and this multilayer chip is placed in a furnace capable of atmospheric firing, and heated in an N 2 atmosphere to remove the organic binder. Then, baking is performed at 1260 ° C. to 1360 ° C. for 1 to 5 hours under a condition where the oxygen partial pressure is 10 −5 to 10 −10 atm, and then re-oxidation treatment is performed at 600 to 800 ° C. in an N 2 atmosphere. A porcelain capacitor was obtained.
[0021]
Next, 30 to 50 ceramic particles forming the dielectric layer of the multilayer ceramic capacitor were analyzed for the component composition using TEM-EDS, and the results were focused on the concentrations of Ho and Mn. A, B, and C) were classified as shown in the column of Example 1 in Table 1. The composition ratio of particle A / particle B / particle C was 35/26/39.
[0022]
This dielectric layer is considered to have a fine structure as shown in FIG. Each composition value in Table 1 is an average value of three composition values obtained by analyzing three ceramic particles.
[0023]
Next, when the electrical characteristics of the obtained multilayer ceramic capacitor were measured, they were as shown in Table 2.
[0024]
The electrical characteristics were measured as follows.
[0025]
(A) The relative dielectric constant ε is a capacitance measured under the conditions of a temperature of 20 ° C., a frequency of 1 kHz, and a voltage (effective value) of 1.0 V. The measured value, the opposing area of the pair of internal electrodes 14, It calculated | required by calculation from the thickness of the dielectric ceramic layer between internal electrodes.
[0026]
(B) The dielectric loss tan δ (%) was measured under the same conditions as in the measurement of the dielectric constant described above.
[0027]
(C) Capacitance change rate ΔC (%) is obtained by placing a sample in a thermostatic chamber and measuring the capacitance under the conditions of a frequency of 1 kHz and a voltage (effective value) of 1.0 V at each temperature of −25 ° C. and + 85 ° C. It was obtained by measuring and determining the rate of change of capacitance with respect to the capacitance of 20 ° C.
[0028]
(D) The accelerated lifetime (sec) was obtained by measuring the time until the insulation resistivity (ρ) reached 1 × 10 10 Ωcm under a DC electric field of 150 ° C./20 V / μm.
[0029]
Example 2: First, BaTiO 3 and BaZrO 3 were synthesized and pulverized to form BaTiO 3 with a particle size D50 (%) = 0.52 μm and BaZrO 3 with a particle size D50 (%) = 0.65 μm. .
[0030]
Next, BaTiO 3 229.45 g, BaZrO 3 270.55 g, Ho 2 O 3 2.96 g, SiO 2 1.26 g, Mn 3 O 4 0.96 g were weighed and placed in a pot mill together with ZrO 2 beads. Stirring and mixing in a wet manner until the particle size D50 (%) = 0.48 μm, the resulting slurry was taken out and dried to obtain a dielectric material powder.
[0031]
Next, a laminated ceramic capacitor was prepared in the same manner as in Example 1, and the component composition was analyzed using TEM-EDS for 30 to 50 ceramic particles forming the dielectric layer. Table 1 shows the results of classification into three types (particles D, E, and F) by paying attention to the concentration of. The composition ratio of particles D, particles E, and particles F was 29/40/31. This dielectric layer is also considered to have a fine structure as shown in FIG. However, in FIG. 1, particle A is replaced with particle D, particle B is replaced with particle E, and particle C is replaced with particle F.
[0032]
Next, when the electrical characteristics of the obtained multilayer ceramic capacitor were measured in the same manner as in Example 1, it was as shown in Table 2.
[0033]
Comparative Example 1: BaTi 0.854 Zr 0.146 O 3 {D50 (%) = 0.53 μm} 500 g previously synthesized and crushed, Ho 2 O 3 2.96 g, SiO 2 1.26 g, Mn 3 O 4 0.96 g These are put together with ZrO 2 beads in a pot mill, stirred and mixed in a wet process, stirred and mixed until the particle size becomes D50 (%) = 0.45 μm, and the resulting slurry is taken out and dried. A material powder was obtained.
[0034]
Next, a laminated ceramic capacitor was prepared in the same manner as in Example 1, and the component composition was analyzed using TEM-EDS for 30 to 50 ceramic particles forming the dielectric layer. It came to show in 1. It is considered that the fine structure of the dielectric layer is as shown in FIG.
[0035]
Next, when the electrical characteristics of the obtained multilayer ceramic capacitor were measured in the same manner as in Example 1, it was as shown in Table 2.
[0036]
Example 3: BaTi 0.854 Zr 0.146 O 3 {D50 (%) = 0.53 μm} pre-synthesized and crushed in 500 g Ho 2 O 3 2.96 g, SiO 2 1.26 g, Mn 3 O 4 0.96 g These are put in a pot mill together with ZrO 2 beads, wet-stirred and mixed, and stirred and mixed until the particle size D50 (%) = 0.45 μm. The resulting slurry is taken out and dried to obtain a dielectric. A material powder was obtained. A green sheet was formed in the same manner as in Example 1.
[0037]
On the other hand, 10 g of nickel powder having an average particle size of 0.5 μm, 0.9 g of ethyl cellulose dissolved in 9.1 g of butyl carbitol, and 2.5 g of additive (sintering delay material) were placed in a stirrer. The mixture was stirred for 10 hours to obtain a conductive paste for internal electrodes. As the additive, a material having 20 mol% ZrO 2 more than the green sheet was used. And the conductive pattern which consists of this electrically conductive paste was printed on the said green sheet, and it was made to dry.
[0038]
Then, a multilayer ceramic capacitor was prepared in the same manner as in Example 1, and the component composition was analyzed using TEM-EDS for 30 to 50 ceramic particles forming the dielectric layer. It came to show in. Further, the electrical characteristics of the obtained multilayer ceramic capacitor were measured in the same manner as in Example 1, and as shown in Table 2. The fine structure of the dielectric layer is considered to be a fine structure as shown in FIG.
[0039]
Example 4: BaTi 0.854 Zr 0.146 O 3 {D50 (%) = 0.53 μm} pre-synthesized and crushed in 500 g Ho 2 O 3 2.96 g, SiO 2 1.26 g, Mn 3 O 4 0.96 g These are put into a pot mill together with ZrO 2 beads, wet-stirred and mixed, stirred and mixed until the particle size D50 (%) becomes 0.45 μm, and the resulting slurry is taken out and dried. A material powder was obtained. A green sheet was formed in the same manner as in Example 1.
[0040]
On the other hand, 10 g of nickel powder having an average particle size of 0.5 μm, 0.9 g of ethyl cellulose dissolved in 9.1 g of butyl carbitol, and 2.5 g of additive (sintering delay material) were placed in a stirrer. The mixture was stirred for 10 hours to obtain a conductive paste for internal electrodes. As the additive, a material having 2 atomic% more Mn 3 O 4 than the green sheet was used. And the conductive pattern which consists of this electrically conductive paste was printed on the said green sheet, and it was made to dry.
[0041]
Then, a multilayer ceramic capacitor was prepared in the same manner as in Example 1, and the component composition was analyzed using TEM-EDS for 30 to 50 ceramic particles forming the dielectric layer, as shown in Table 1. became. Further, the electrical characteristics of the obtained multilayer ceramic capacitor were measured in the same manner as in Example 1, and as shown in Table 2. The fine structure of the dielectric layer is also considered to be a fine structure as shown in FIG. However, in FIG. 2, the particle H is replaced with the particle K, the particle I is replaced with the particle L, and the particle J is replaced with the particle M.
[0042]
Example 5: BaTi 0.854 Zr 0.146 O 3 {D50 (%) = 0.53 μm} 500 g previously synthesized and crushed, Ho 2 O 3 2.96 g, SiO 2 1.26 g, Mn 3 O 4 0.96 g These are put together with ZrO 2 beads in a pot mill, stirred and mixed in a wet process, stirred and mixed until the particle size becomes D50 (%) = 0.45 μm, and the resulting slurry is taken out and dried. A material powder was obtained. A green sheet was formed in the same manner as in Example 1.
[0043]
On the other hand, 10 g of nickel powder having an average particle size of 0.5 μm, 0.9 g of ethyl cellulose dissolved in 9.1 g of butyl carbitol, and 2.5 g of additive (sintering delay material) were placed in a stirrer. The mixture was stirred for 10 hours to obtain a conductive paste for internal electrodes. As the additive, a material having Mn, Cr, Co, and V 2 atomic% more than the green sheet was used. And the conductive pattern which consists of this electrically conductive paste was printed on the said green sheet, and it was made to dry.
[0044]
And when the laminated ceramic capacitor was created like Example 1 and the component composition was analyzed using TEM-EDS about 30-50 ceramic particles which have formed the dielectric material layer, as shown in Table 1. became. Further, the electrical characteristics of the obtained multilayer ceramic capacitor were measured in the same manner as in Example 1, and as shown in Table 2. The fine structure of the dielectric layer is also considered to be a fine structure as shown in FIG. However, in FIG. 2, the particle H is replaced with the particle N, the particle I is replaced with the particle O, and the particle J is replaced with the particle P.
[0045]
Example 6: BaTi 0.854 Zr 0.146 O 3 {D50 (%) = 0.53 μm} 500 g previously synthesized and crushed, Ho 2 O 3 2.96 g, SiO 2 1.26 g, Mn 3 O 4 0.96 g These are put into a pot mill together with ZrO 2 beads, wet-stirred and mixed, stirred and mixed until the particle size D50 (%) becomes 0.45 μm, and the resulting slurry is taken out and dried. A material powder was obtained. A green sheet was formed in the same manner as in Example 1.
[0046]
On the other hand, 10 g of nickel powder having an average particle size of 0.5 μm, 0.9 g of ethyl cellulose dissolved in 9.1 g of butyl carbitol, and 2.5 g of additive (sintering delay material) were placed in a stirrer. The mixture was stirred for 10 hours to obtain a conductive paste for internal electrodes. As the additive, a material having Sm, Gd, and Y 2 atomic% higher than that of the green sheet was used. And the conductive pattern which consists of this electrically conductive paste was printed on the said green sheet, and it was made to dry.
[0047]
Then, a multilayer ceramic capacitor was prepared in the same manner as in Example 1, and the component composition was analyzed using TEM-EDS for 30 to 50 ceramic particles forming the dielectric layer, as shown in Table 1. became. Further, the electrical characteristics of the obtained multilayer ceramic capacitor were measured in the same manner as in Example 1, and as shown in Table 2. The fine structure of the dielectric layer is also considered to be a fine structure as shown in FIG. However, in FIG. 2, the particle H is replaced with the particle Q, the particle I is replaced with the particle R, and the particle J is replaced with the particle S.
[0048]
Example 7: BaTi 0.854 Zr 0.146 O 3 {D50 (%) = 0.53 μm} 500 g previously synthesized and crushed, Ho 2 O 3 2.96 g, SiO 2 1.26 g, Mn 3 O 4 0.96 g These are put into a pot mill together with ZrO 2 beads, wet-stirred and mixed, stirred and mixed until the particle size D50 (%) becomes 0.45 μm, and the resulting slurry is taken out and dried. A material powder was obtained. A green sheet was formed in the same manner as in Example 1.
[0049]
On the other hand, 10 g of nickel powder having an average particle size of 0.5 μm, 0.9 g of ethyl cellulose dissolved in 9.1 g of butyl carbitol, and 2.5 g of additive (sintering delay material) were placed in a stirrer. The mixture was stirred for 10 hours to obtain a conductive paste for internal electrodes. As the additive, a material having Mo and W 2 atomic% higher than the green sheet was used. And the conductive pattern which consists of this electrically conductive paste was printed on the said green sheet, and it was made to dry.
[0050]
Then, a multilayer ceramic capacitor was prepared in the same manner as in Example 1, and the component composition was analyzed using TEM-EDS for 30 to 50 ceramic particles forming the dielectric layer, as shown in Table 1. became. Further, the electrical characteristics of the obtained multilayer ceramic capacitor were measured in the same manner as in Example 1, and as shown in Table 2. The fine structure of the dielectric layer is also considered to be a fine structure as shown in FIG. However, in FIG. 2, the particle H is replaced with the particle T, the particle I is replaced with the particle U, and the particle J is replaced with the particle V.
[0051]
[Table 1]
Figure 0004208448
[0052]
[Table 2]
Figure 0004208448
[0053]
From Tables 1 and 2, it can be seen that when the dielectric ceramic composition constituting the dielectric layer is composed of particles having different component compositions, the life characteristics of the ceramic capacitor are improved.
[0054]
【The invention's effect】
According to the present invention, there is an effect that it is possible to obtain a ceramic capacitor having good electrical characteristics, particularly excellent life characteristics.
[Brief description of the drawings]
FIG. 1 is an explanatory view schematically showing a fine structure of a dielectric layer according to Examples 1 and 2. FIG.
FIG. 2 is an explanatory view schematically showing a fine structure of a dielectric layer according to Examples 3 to 7.
3 is an explanatory view schematically showing a fine structure of a dielectric layer according to Comparative Example 1. FIG.

Claims (4)

誘電体磁器組成物からなる誘電体層と、該誘電体層を挟持している内部電極と、該内部電極に電気的に接続されている外部電極とを備え、該誘電体磁器組成物が所定の成分元素の濃度を異にする2種以上のセラミック粒子からなり、前記所定の成分元素は前記内部電極間で濃度勾配を有し、前記所定の成分元素は前記内部電極に近いセラミック粒子程濃度が高くなる濃度勾配を有し、前記所定の成分元素がMnであることを特徴とする磁器コンデンサ。A dielectric layer composed of a dielectric ceramic composition; an internal electrode sandwiching the dielectric layer; and an external electrode electrically connected to the internal electrode, wherein the dielectric ceramic composition is a predetermined one. Ri Do from the concentration of two or more ceramic particles having different components elements, the predetermined component elements has a concentration gradient between the inner electrodes, the predetermined component elements as ceramic particles close to the inner electrode a concentration gradient that the concentration is high, the magnetic capacitor that said predetermined component elements and wherein Mn der Rukoto. 誘電体磁器組成物からなる誘電体層と、該誘電体層を挟持している内部電極と、該内部電極に電気的に接続されている外部電極とを備え、該誘電体磁器組成物が所定の成分元素の濃度を異にする2種以上のセラミック粒子からなり、前記所定の成分元素は前記内部電極間で濃度勾配を有し、前記所定の成分元素は前記内部電極に近いセラミック粒子程濃度が高くなる濃度勾配を有し、前記所定の成分元素がMn及び希土類元素であることを特徴とする磁器コンデンサ。 A dielectric layer composed of a dielectric ceramic composition; an internal electrode sandwiching the dielectric layer; and an external electrode electrically connected to the internal electrode, wherein the dielectric ceramic composition is a predetermined one. The predetermined component element has a concentration gradient between the internal electrodes, and the predetermined component element has a concentration of ceramic particles closer to the internal electrode. a concentration gradient which increases, porcelain capacitors said predetermined component elements you wherein Mn and rare earth elements der Rukoto. セラミック原料を調整するセラミック原料調整工程と、セラミック原料を用いてセラミックグリーンシートを形成するシート形成工程と、該セラミックグリーンシートに導電性ペーストからなる内部電極パターンを印刷する印刷工程と、該内部電極パターンを印刷したセラミックグリーンシートを積層して積層体を得る積層工程と、該積層体を内部電極パターン毎に裁断してチップ状の積層体を得る裁断工程と、該チップ状の積層体を非酸化性雰囲気中で焼成する焼成工程と、該焼成工程を経た該積層体を酸化性雰囲気中で焼成する再酸化工程とを備え、該導電性ペーストがMnを前記セラミックグリーンシートより多く含むことを特徴とする磁器コンデンサの製造方法。 A ceramic raw material adjusting step for adjusting a ceramic raw material, a sheet forming step for forming a ceramic green sheet using the ceramic raw material, a printing step for printing an internal electrode pattern made of a conductive paste on the ceramic green sheet, and the internal electrode A laminating step of laminating ceramic green sheets printed with a pattern to obtain a laminated body, a cutting step of cutting the laminated body for each internal electrode pattern to obtain a chip-like laminated body, A firing step of firing in an oxidizing atmosphere; and a re-oxidation step of firing the laminate through the firing step in an oxidizing atmosphere, wherein the conductive paste contains more Mn than the ceramic green sheet. method for producing a porcelain capacitors you characterized. セラミック原料を調整するセラミック原料調整工程と、セラミック原料を用いてセラミックグリーンシートを形成するシート形成工程と、該セラミックグリーンシートに導電性ペーストからなる内部電極パターンを印刷する印刷工程と、該内部電極パターンを印刷したセラミックグリーンシートを積層して積層体を得る積層工程と、該積層体を内部電極パターン毎に裁断してチップ状の積層体を得る裁断工程と、該チップ状の積層体を非酸化性雰囲気中で焼成する焼成工程と、該焼成工程を経た該積層体を酸化性雰囲気中で焼成する再酸化工程とを備え、前記導電性ペーストがMn及び希土類元素を前記セラミックグリーンシートより多く含むことを特徴とする磁器コンデンサの製造方法。 A ceramic raw material adjusting step for adjusting a ceramic raw material, a sheet forming step for forming a ceramic green sheet using the ceramic raw material, a printing step for printing an internal electrode pattern made of a conductive paste on the ceramic green sheet, and the internal electrode A laminating step of laminating ceramic green sheets printed with a pattern to obtain a laminated body, a cutting step of cutting the laminated body for each internal electrode pattern to obtain a chip-like laminated body, A firing step of firing in an oxidizing atmosphere; and a re-oxidation step of firing the laminate through the firing step in an oxidizing atmosphere, wherein the conductive paste contains more Mn and rare earth elements than the ceramic green sheet. method for producing a porcelain capacitors you comprising.
JP2001297262A 2001-09-27 2001-09-27 Porcelain capacitor and manufacturing method thereof Expired - Lifetime JP4208448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001297262A JP4208448B2 (en) 2001-09-27 2001-09-27 Porcelain capacitor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001297262A JP4208448B2 (en) 2001-09-27 2001-09-27 Porcelain capacitor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003100544A JP2003100544A (en) 2003-04-04
JP4208448B2 true JP4208448B2 (en) 2009-01-14

Family

ID=19118372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001297262A Expired - Lifetime JP4208448B2 (en) 2001-09-27 2001-09-27 Porcelain capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4208448B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4182007B2 (en) 2004-01-30 2008-11-19 Tdk株式会社 Multilayer ceramic capacitor
JP4407299B2 (en) * 2004-01-30 2010-02-03 Tdk株式会社 Multilayer ceramic capacitor
JP2005294314A (en) 2004-03-31 2005-10-20 Tdk Corp Multilayer ceramic capacitor
JP4073416B2 (en) 2004-03-31 2008-04-09 Tdk株式会社 Multilayer ceramic capacitor
JP5153069B2 (en) * 2005-10-26 2013-02-27 京セラ株式会社 Dielectric porcelain
JP4920520B2 (en) * 2007-07-31 2012-04-18 太陽誘電株式会社 Dielectric porcelain, manufacturing method thereof, and multilayer ceramic capacitor using the same
JP2015126219A (en) 2013-12-27 2015-07-06 株式会社村田製作所 Multilayer ceramic capacitor
JP2015126220A (en) 2013-12-27 2015-07-06 株式会社村田製作所 Multilayer ceramic capacitor
KR101659182B1 (en) * 2014-12-23 2016-09-22 삼성전기주식회사 multilayer ceramic electronic component and method of manufacturing the same

Also Published As

Publication number Publication date
JP2003100544A (en) 2003-04-04

Similar Documents

Publication Publication Date Title
JP5246185B2 (en) Dielectric ceramic and multilayer ceramic capacitor
KR101274408B1 (en) Dielectric porcelain composition and ceramic electronic component
WO2011125543A1 (en) Dielectric ceramic and multilayered ceramic capacitor including same
JPH07118431B2 (en) Porcelain capacitor and method of manufacturing the same
JP2001006966A (en) Ceramic capacitor and its manufacture
JP2004214539A (en) Dielectric ceramic and laminated ceramic capacitor
JP5233763B2 (en) Barium titanate-based dielectric raw material powder, method for producing the same, method for producing ceramic green sheet, and method for producing multilayer ceramic capacitor
JP4208448B2 (en) Porcelain capacitor and manufacturing method thereof
JP2003124049A (en) Laminated ceramic capacitor
JP4622518B2 (en) Manufacturing method of multilayer ceramic capacitor
JP2001307940A (en) Laminated ceramic capacitor and its manufacturing method
JP4661203B2 (en) Ceramic electronic component and manufacturing method thereof
JP3323801B2 (en) Porcelain capacitors
JP3806580B2 (en) Porcelain capacitor
JPH10223424A (en) Multilayer inductor
JP2001230148A (en) Laminated ceramic capacitor and method of manufacturing it
JP3908458B2 (en) Method for producing dielectric ceramic composition
JPWO2011162044A1 (en) Dielectric ceramic composition and multilayer ceramic electronic component
JP5159682B2 (en) Multilayer ceramic capacitor
JP4594049B2 (en) Multilayer ceramic capacitor
JP4111754B2 (en) Ceramic capacitor, dielectric composition thereof, and method for producing the same
JP3935762B2 (en) Multilayer electronic component and manufacturing method thereof
JP2006111468A (en) Method for production of dielectric ceramic composition, electronic component, and laminated ceramic capacitor
KR20160042119A (en) Ceramic green sheet, method for manufacturing multilayer ceramic capacitor, and multilayer ceramic capacitor
JPH02270313A (en) Dielectric porcelain composition, laminated ceramic capacitor using the composition and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081021

R150 Certificate of patent or registration of utility model

Ref document number: 4208448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250