JP4207538B2 - Sensorless brushless motor - Google Patents

Sensorless brushless motor Download PDF

Info

Publication number
JP4207538B2
JP4207538B2 JP2002328718A JP2002328718A JP4207538B2 JP 4207538 B2 JP4207538 B2 JP 4207538B2 JP 2002328718 A JP2002328718 A JP 2002328718A JP 2002328718 A JP2002328718 A JP 2002328718A JP 4207538 B2 JP4207538 B2 JP 4207538B2
Authority
JP
Japan
Prior art keywords
voltage
circuit
exciting
electromotive voltage
brushless motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002328718A
Other languages
Japanese (ja)
Other versions
JP2004166382A (en
Inventor
健一 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2002328718A priority Critical patent/JP4207538B2/en
Publication of JP2004166382A publication Critical patent/JP2004166382A/en
Application granted granted Critical
Publication of JP4207538B2 publication Critical patent/JP4207538B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Ac Motors In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば種々の小型モータに適用して好適なセンサレスブラシレスモータに関する。
【0002】
【従来の技術】
一般に例えば小型モータとしてロータの回転位置検出用のセンサを有さない例えば3相センサレスブラシレスモータが提案されている。これはセンサ例えばホール素子を用いず、ロータが回転するときに3相のステータを構成する励磁コイルU,V,Wに誘起される逆起電圧を用いてロータの位置を検出し、各励磁コイルU,V,Wへの通電タイミングを決めて通電してロータを回転することにより、励磁感応素子例えばホール素子等より成る位置検出センサを不要としたものである。
【0003】
斯るセンサレスブラシレスモータの例として図5、図6、図7に示す如き3相アウターロータ型のセンサレスブラシレスモータが提案されている。この3相アウターロータ型のセンサレスブラシレスモータのロータ1としては図6に示す如く、環状にN極及びS極が順次4極着磁された筒状体より成り、またステータ2としては図6に示す如く、この筒状体のロータ1内に配され、ロータ1に対応し、図6に示す如く鉄芯に巻装された3相の励磁コイルU,V,Wが電気角で順次120°間隔で配置されたものである。
【0004】
このスタータ2の3相の励磁コイルU,V,Wは図5に示す如くY字状に接続され、励磁コイル通電回路3は励磁電流を例えば先ず励磁コイルU→Vと流し、次に励磁コイルU→Wと流し、順次励磁コイルV→W、励磁コイルV→U、励磁コイルW→U、励磁コイルW→Vと順次切換えて流し、これを順次繰り返す如くする。
【0005】
この場合、逆起電圧検出励磁コイル選択回路4により励磁電流が流れない励磁コイル例えば励磁電流が励磁コイルU→Vと流れるときは励磁コイルWを選択する如くし、この励磁電流が流れない励磁コイルに発生するロータ1の回転による逆起電圧である端子間電圧を雑音除去用のローパスフィルタ5を介して演算増幅回路より成る電圧比較回路6の一方の入力端子に供給すると共にこの励磁コイルU,V,Wの接続中点に得られる中点電圧を電圧比較回路6の他方の入力端子に供給する。
【0006】
この電圧比較回路6の出力側には、この励磁電流が流れない励磁コイルに得られるロータ1の位置検出用の逆起電圧に応じた矩形波信号が得られ、このロータ1の位置検出用の逆起電圧に応じた矩形波信号を通電タイミング信号生成回路7及び逆起電圧検出励磁コイル選択タイミング信号生成回路8に供給する。
【0007】
この通電タイミング信号生成回路7においてはロータ1の位置検出用の矩形波信号を受け、通電すべき励磁コイルU,V,Wを選択する図7A,B及びCに示す如き順次位相が120°づつ異なる通電タイミング信号US,VS及びWSを発生し、この通電タイミング信号生成回路7に得られる通電タイミング信号US,VS及びWSを励磁コイル通電回路3に供給し、励磁電流を通電する2相の励磁コイルを順次切換る如くする。
【0008】
また、逆起電圧検出励磁コイル選択タイミング信号生成回路8は、この電圧比較回路6の出力側に得られるロータ1の位置検出用の矩形波信号を受け、通電されない逆起電圧検出用の励磁コイルを選択する選択タイミング信号を生成する。この逆起電圧検出励磁コイル選択タイミング信号生成回路8に得られる選択タイミング信号を逆起電圧検出励磁コイル選択回路4に供給し、逆起電圧検出用の励磁コイルを選択する。
【0009】
また、図5において、9はこのセンサレスブラシレスモータの回転トルクを制御するためのパルス幅変調回路を示し、このパルス幅変調回路9は適切なデューティの図7Dに示す如きパルス幅変調信号を生成し、このパルス幅変調回路9で生成した、回転トルクに応じた適切なデューティのパルス幅変調信号を励磁コイル通電回路3に供給する如くする。
【0010】
この励磁コイル通電回路3においては、図7A,B,Cに示す如き通電タイミング信号US,VS,WSとこの図7Dに示す如きパルス幅変調信号との論理積で励磁コイルU,V,Wに順次通電し所定の回転トルクを得る如くしている。
【0011】
センサレスブラシレスモータにおいて、この通電タイミング信号とパルス幅変調信号との論理積で励磁コイルU,V,Wに順次通電するようにしたものが先に提案されている(特許文献1)。
【0012】
【特許文献1】
特開2002−84774号公報
【0013】
【発明が解決しようとする課題】
斯るセンサレスブラシレスモータにおいてはホール素子等の位置センサを用いず、ロータ1の回転により励磁コイルU,V,Wに発生する逆起電圧を検出することによりロータ1の位置を検出する。このため、この逆起電圧に何らかのノイズが重畳すると、このロータ1の位置検出精度が低下する。
【0014】
特に低速回転時には、この逆起電圧自体が小さいため検出精度は更に低下する。この逆起電圧に重畳するノイズは様々なものが考えられるが、上述の如くパルス幅変調信号を使用してロータ1を駆動するようにしたときには、通電されている励磁コイルからの漏れ磁束の影響が顕著となる。
【0015】
この励磁コイルの漏れ磁束によるノイズの発生につき更に述べるに、通電中の励磁コイル例えば励磁コイルが発生する磁束は他の通電中の励磁コイル例えば励磁コイルVにその殆どが鎖交するが、一部は逆起電圧を検出している励磁コイル例えば励磁コイルWにも漏れ磁束が鎖交する(図6参照)。
【0016】
この漏れ磁束が時間変化すると、逆起電圧検出中の励磁コイル例えば励磁コイルWには電磁誘導の法則により漏れ磁束の時間微分波形に比例した電圧Δeが誘起されるため、これが逆起電圧に重畳するノイズとなる。以下この電圧Δeを誘導ノイズという。
【0017】
この誘導ノイズΔeの大きさにつき説明するに、この誘導ノイズΔeは通電中の励磁コイルの漏れ磁束の時間微分波形に比例し、この通電中の励磁コイルの漏れ磁束の時間微分波形は、通電中の励磁コイルの電流の時間微分波形に比例する。
【0018】
この励磁コイルU,V,Wにパルス幅変調の電流を流したときは、この励磁コイルU,V,Wに流れる電流は図8Aに示す如く三角波状の電流になるため、この三角波状の電流の時間微分波形は図8Bに示す如く方形波状になり比較的大きなものとなる。
【0019】
図5に示す如き従来例においては、この誘導ノイズΔeを除去するために、ローパスフィルタ5を設けているが、このローパスフィルタ5のフィルタ定数をモータ特性に影響がないように設定するので、このフィルタ定数の合せ込みに時間がかかる上、この誘導ノイズΔeの減衰の度合いはそれほど大きくできない不都合があった。
【0020】
このため、図5に示す如き従来例においては、この誘導ノイズΔeの影響が大きく、この電圧比較回路6の出力側に得られるロータ1の位置の検出信号の精度が低くなってしまっていた不都合があった。
【0021】
本発明は斯る点に鑑み、この逆起電圧に重畳する誘導ノイズを抑制し、この逆起電圧を常に安定して精度良く検出できるようにすることを目的とする。
【0022】
【課題を解決するための手段】
本発明センサレスブラシレスモータは逆起電圧を基に形成した通電タイミング信号とパルス幅変調信号との論理積でステータを構成する複数の励磁コイルに順次通電する励磁コイル通電回路を制御してロータの回転トルクを制御するようにしたセンサレスブラシレスモータにおいて、通電中の複数の励磁コイルの端子間電圧の平均電圧と逆起電圧検出中の励磁コイルの端子間電圧との合成によりこの逆起電圧を得るようにしたものである。
【0023】
斯る本発明においては、通電中の複数の励磁コイルの端子間電圧の平均電圧と逆起電圧検出中の励磁コイルの端子間電圧との合成により逆起電圧を得るようにしており、通電中の複数の励磁コイルの端子間電圧の平均電圧に逆起電圧検出中の励磁コイルの端子間電圧に含まれる誘導ノイズΔeと逆相でほぼαが1に近い値の−αΔeの成分が含まれており、この合成より得た逆起電圧は誘導ノイズΔeがほぼ除去されたものとなり、この逆起電圧を常に安定して精度良く検出でき、センサレスブラシレスモータの回転精度を向上できると共に起動特性、低速回転駆動を向上でき、且つローパスフィルタ5を省略できる。
【0024】
【発明の実施の形態】
以下、図1を参照して本発明センサレスブラシレスモータの実施の形態の例につき説明する。図1につき説明するに図5に対応する部分には同一符号を付して示す。
【0025】
この図1例も3相アウターロータ型のセンサレスブラシレスモータに適用した例を示す。この3相アウターロータ型のセンサレスブラシレスモータのロータ1としては、例えば図6に示す如く環状にN極及びS極が等間隔に順次4極着磁された筒状体より成り、またステータ2としては例えば図6に示す如く、この筒状体のロータ1内に配され、ロータ1に対応し、図6に示す如く鉄芯に巻装された3相の励磁コイルU,V,Wが電気角で順次120°間隔で配置されたものである。
【0026】
このステータ2の3相の励磁コイルU,V,Wは図1に示す如くY字状に接続され、励磁コイル通電回路3は励磁電流を例えば励磁コイルU→Vと流し、次に励磁コイルU→Wと流し、順次励磁コイルV→W、励磁コイルV→U、励磁コイルW→U、励磁コイルW→Vと順次切換えて流し、これを順次繰り返す如くする。
【0027】
この場合、逆起電圧検出励磁コイル選択回路4により励磁電流が流れない励磁コイル例えば励磁電流が励磁コイルU→Vと流れるときは、励磁コイルWを選択する如くし、この逆起電圧検出励磁コイル選択回路4の出力側に得られるこの励磁電流が流れない逆起電圧検出中の励磁コイルに発生するロータ1の回転による端子間電圧を電圧合成回路10の一方の入力端子に供給する。
【0028】
この場合、この逆起電圧検出励磁コイル選択回路4の出力側には図4Bに示す如く正弦波の逆起電圧Eに図8Bに示す如き矩形波の誘導ノイズΔeが重畳したものとなる。
【0029】
この電圧合成回路10の出力側に得られる逆起電圧を演算増幅回路より成る電圧比較回路6の一方の入力端子に供給すると共にこの励磁コイルU,V,Wの接続中点に得られる中点電圧をこの電圧比較回路6の他方の入力端子に供給する。
【0030】
この電圧比較回路6の出力側には、励磁電流が流れない逆起電圧検出中の励磁コイルに得られるロータ1の位置検出用の逆起電圧に応じた矩形波信号が得られ、このロータ1の位置検出用の逆起電圧に応じた矩形波信号を通電タイミング信号生成回路7、逆起電圧検出励磁コイル選択タイミング信号生成回路8及び電圧平均化励磁コイル選択タイミング信号生成回路11に供給する。
【0031】
この通電タイミング信号生成回路7においては、ロータ1の位置検出用の矩形波信号を受け、通電すべき励磁コイルU,V,Wを選択する図7A,B及びCに示す如き、順次位相が120°づつ異なる通電タイミング信号US,VS及びWSを発生し、この通電タイミング信号生成回路7に得られる通電タイミング信号US,VS及びWSを励磁コイル通電回路3に供給し、励磁電流を通電する2相の励磁コイルを順次切換る如くする。
【0032】
また、逆起電圧励磁コイル選択タイミング信号生成回路は、この電圧比較回路6の出力側に得られるロータ1の位置検出用の矩形波信号を受け、通電されない逆起電圧検出用の励磁コイルを選択する選択タイミング信号を生成する。この逆起電圧検出励磁コイル選択タイミング信号生成回路8に得られる選択タイミング信号を逆起電圧検出励磁コイル選択回路4に供給し、逆起電圧検出用の励磁コイルを選択する如くする。
【0033】
また、電圧平均化励磁コイル選択タイミング信号生成回路11は、この電圧比較回路6の出力側に得られるロータ1の位置検出用の矩形波信号を受け、励磁電流が通電される励磁コイルを選択する複数本例では2個の励磁コイルを選択する選択タイミング信号を生成する。この電圧平均化励磁コイル選択タイミング信号生成回路11に得られる選択タイミング信号を電圧平均化励磁コイル選択回路12に供給する。
【0034】
この電圧平均化励磁コイル選択回路12は、3相の励磁コイルU,V及びWの夫々の一端に接続され、励磁電流が通電される複数例えば2個の励磁コイルを選択し、この選択された2個の励磁コイルの端子間電圧を夫々電圧平均値回路13に供給する。この電圧平均値回路13の出力信号を電圧合成回路10の他方の入力端子に供給する。
【0035】
また図1において、9はこのセンサレスブラシレスモータの回転トルクを制御するためのパルス幅変調回路を示し、このパルス幅変調回路9は所望の回転トルクに応じたデューティの図7Dに示す如きパルス幅変調信号を生成し、このパルス幅変調回路9で生成した回転トルクに応じた適切なデューティのパルス幅変調信号を励磁コイル通電回路3に供給する如くする。
【0036】
この励磁コイル通電回路3においては、図7A,B,Cに示す如き通電タイミング信号US,VS,WSとこの図7Dに示す如きパルス幅変調信号との論理積で、励磁電流を励磁コイルU,V,Wに順次通電し、ロータ1を回転し、所望の回転トルクを得る如くしている。
【0037】
ここで電圧平均値回路13の出力側に得られる平均電圧につき更に説明するに今、3相の励磁コイルU,V,Wの内の2相例えば図4Aに模式的に示す如く励磁コイルU,V,Wに図7A,B,Cに示す如き通電タイミング信号US,VS,WSと図7Dに示す如きパルス幅変調信号との論理積で、励磁電流が通電されており、残りの1相の励磁コイルWで逆起電圧を検出していたとする。
【0038】
この場合、既に述べたように逆起電圧検出中の励磁コイルWにロータ1の回転により発生する逆起電圧Eには図4Bに示す如く通電中の励磁コイルU,Vからの漏れ磁束により誘起される誘導ノイズΔeが重畳されている。
【0039】
ここで、通電中の2相の励磁コイルU,Vの端子電圧の平均電圧(図4AのV2C)に注目したところ、励磁コイルU,V,Wの中点電位VCを基準として考えた場合、平均電圧V2Cには逆起電圧検出中の励磁コイルWの端子電圧V0に含まれる誘導ノイズΔeと逆相の成分−αΔeが現れることを見いだした。
【0040】
すなわち、以下の式が成立する。
V0−VC=E+Δe ・・・・(1)
V2C−VC=−1/2E−αΔe ・・・・(2)
ここでαは係数である。
【0041】
この式(2)の右辺の−1/2Eは以下の式より導かれる。

Figure 0004207538
この式(3)は、120°づつ位相がずれた3相正弦波の和が常に0となることを表したものである。
【0042】
3相モータの励磁コイルU,V,Wに発生する逆起電圧は、120°づつ位相がずれた正弦波になるため、ある2相の励磁コイル例えば励磁コイルU,V,Wの端子電圧の和は残り1相の励磁コイル例えば励磁コイルWの端子電圧の符号を反転したものと等しくなる。
【0043】
図4Aにおいて、V2Cは2相の励磁コイルU,Vの端子電圧を同一抵抗値の抵抗器Rにより抵抗分割したもの(和をとって2で割ったもの(平均値))であるから、式(3)の結果を用いれば、V2CはV0に現れる逆起電圧Eの符号を反転してこれを2で割った成分−1/2Eを含むことが分かる。
【0044】
またV2CにV0に重畳する誘導ノイズと逆相の成分αΔeが現れることに関しては、通電中の励磁コイル例えば励磁コイルU,Vの自己インダクタンスによるものであると考えられる。
【0045】
実験の結果、V2Cに現れる誘導ノイズ逆相成分−αΔeの大きさはV0に重畳する誘導ノイズΔeの大きさと完全には同じではない(α≠1)が、このαがほぼ1に近い値となることが分かっている。
【0046】
従って電圧平均値回路13の出力側には式(2)で示す平均電圧である図4Cに示す如き−1/2Eの電圧に逆相の誘導ノイズ成分−αΔeが重畳された電圧が得られる。
【0047】
このため電圧合成回路10において、通電中の励磁コイルの端子間電圧の平均電圧V2Cに含まれる誘導ノイズ逆位相成分−αΔeと逆起電圧検出中の励磁コイルの端子間電圧V0に含まれる誘導ノイズΔeとの合成の割合を所定の割合とすればこの電圧合成回路10の出力側に図4Dに示す如く逆起電圧より誘導ノイズΔeを除去することができる。
【0048】
本例によれば電圧合成回路10の出力側に誘導ノイズΔeが除去された逆起電圧を得ることができるので、逆起電圧を常に安定して精度良く検出でき、この逆起電圧を電圧比較回路6に供給することにより、この電圧比較回路6の出力側に精度の高いロータ1の位置検出信号を得ることができ、このセンサレスブラシレスモータの回転精度が向上する。
【0049】
また、本例によればモータ起動時においても逆起電圧対ノイズ比が改善されるので起動特性が向上すると共に低速回転時においても逆起電圧対ノイズ比が改善されるので、低速回転駆動が可能になる。
【0050】
本例によれば逆起電圧を得るのに従来例に比しローパスフィルタが不要となるので外部端子数を削減することができると共に更なる高速回転駆動が可能になる。
【0051】
また本例によれば回転トルクを制御するパルス幅変調信号のデューティによらず安定して逆起電圧が検出できるので、負荷変動の逆起電圧検出精度への影響を抑えることができると共にモータ定数や電流リミッタの変更に伴う再検討項目を必要最低限に抑えることができる。
【0052】
図2及び図3は夫々図1例における電圧平均値回路13及び電圧合成回路10を夫々具体化した例を示す。この図2及び図3につき説明するに、この図2及び図3において、図1に対応する部分には同一符号を付し、その詳細説明は省略する。
【0053】
図2例は電圧平均値回路13及び電圧合成回路10を、全て抵抗器による分圧で実現したものである。この図2例では電圧平均化励磁コイル選択回路12はアナログスイッチにより実現し、これを用いて通電中の2相の励磁コイルの端子電圧を電圧平均値回路13を構成する2個の直列接続された同一抵抗値の抵抗器R及びRの一端及び他端に供給する如くする。
【0054】
この抵抗器R及びRの接続中点に得られる平均電圧V2Cを電圧合成回路10を構成する直列接続された抵抗器RA及びRBの一端に供給し、逆起電圧検出励磁コイル選択回路4の出力側に得られる端子電圧V0をこの直列回路の他端に供給する。
【0055】
この電圧合成回路10の電圧合成比率は抵抗器RAとRBとの抵抗値の比率を変化することにより決定する。この抵抗器RA及びRBの接続中点に得られた電圧合成回路10の出力電圧を比較回路6を構成する演算増幅回路の一方の入力端子に供給し、励磁コイルU,V,Wの接続中点の電圧をこの演算増幅回路らの他方の入力端子に供給する。この図2例はその他は図1例と同様に構成する。
【0056】
この図2例においては、図1例同様の作用効果が得られるほかに、抵抗器だけで電圧平均値回路13及び電圧合成回路10を構成したので、構成が簡単となる利益がある。
【0057】
また図3例は、電圧平均値回路3及び電圧合成回路10を1つの演算増幅回路20により構成したものである。この図3例では電圧平均化励磁コイル選択回路12はアナログスイッチにより実現し、これを用いて通電中の2相の励磁コイルの端子電圧を夫々抵抗器R及びRを介して、この演算増幅回路20の一方の入力端子に供給し、逆起電圧検出励磁コイル選択回路4の出力側に得られる逆起電圧検出用の励磁コイルに得られる端子電圧V0を抵抗器RAと介して演算増幅回路20の一方の入力端子に供給する。この演算増幅回路20の他方の入力端子を抵抗器を介して接地する。
【0058】
この場合、演算増幅回路20の出力側に通電中の2相の励磁コイルの端子電圧の平均電圧と逆起電圧検出用の励磁コイルの端子電圧との合成電圧が得られる。この電圧合成の比率は抵抗器Rと抵抗器RAとの抵抗値の比率により任意に変更できる。また演算増幅回路20の帰還抵抗器RBの抵抗値を変更することにより電圧合成部にゲインを持たせることができる。
【0059】
この演算増幅回路20の出力電圧を比較回路6を構成する演算増幅回路の一方の入力端子に供給し、励磁コイルU,V,Wの接続中点の電圧をこの演算増幅回路6の他方の入力端子に供給する。この図3例においては、その他は図1例と同様に構成する。
【0060】
この図3例においては、図1例と同様の作用効果が得られることは容易に理解できよう。
【0061】
尚、本発明は上述例に限ることなく、本発明の要旨を逸脱することなく、その他種々の構成が採り得ることは勿論である。
【0062】
【発明の効果】
本発明によれば逆起電圧を常に安定した精度良く検出することができ、センサレスブラシレスモータの回転精度を向上できると共に起動特性、低速回転駆動を向上でき且つローパスフィルタを省略できる。
【図面の簡単な説明】
【図1】本発明センサレスブラシレスモータの実施の形態の例を示す構成図である。
【図2】図1例の一部具体例の一例を示す構成図である。
【図3】図1例の一部具体例の他の例を示す構成図である。
【図4】本発明の説明に供する線図である。
【図5】従来のセンサレスブラシレスモータの例を示す構成図である。
【図6】センサレスブラシレスモータの説明に供する線図である。
【図7】本発明の説明に供する線図である。
【図8】本発明の説明に供する線図である。
【符号の説明】
1‥‥ロータ、2‥‥ステータ、3‥‥励磁コイル通電回路、4‥‥逆起電圧検出励磁コイル選択回路、6‥‥電圧比較回路、7‥‥通電タイミング信号生成回路、8‥‥逆起電圧検出励磁コイル選択タイミング信号生成回路、9‥‥パルス幅変調回路、10‥‥電圧合成回路、11‥‥電圧平均化励磁コイル選択タイミング信号生成回路、12‥‥電圧平均化励磁コイル選択回路、13‥‥電圧平均値回路[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sensorless brushless motor suitable for application to various small motors, for example.
[0002]
[Prior art]
In general, for example, a three-phase sensorless brushless motor having no sensor for detecting the rotational position of the rotor has been proposed as a small motor. This does not use a sensor, for example, a Hall element, but detects the position of the rotor using back electromotive voltages induced in the excitation coils U, V, and W constituting the three-phase stator when the rotor rotates, and each excitation coil By determining the energization timing of U, V, W and energizing and rotating the rotor, a position detection sensor composed of an excitation sensitive element such as a Hall element is made unnecessary.
[0003]
As an example of such a sensorless brushless motor, a three-phase outer rotor type sensorless brushless motor as shown in FIGS. 5, 6, and 7 has been proposed. As shown in FIG. 6, the rotor 1 of this three-phase outer rotor type sensorless brushless motor is formed of a cylindrical body in which N poles and S poles are sequentially magnetized in four poles, and the stator 2 is shown in FIG. As shown, the three-phase exciting coils U, V, W arranged in the cylindrical rotor 1 and corresponding to the rotor 1 and wound around the iron core as shown in FIG. They are arranged at intervals.
[0004]
The three-phase exciting coils U, V, W of the starter 2 are connected in a Y shape as shown in FIG. 5, and the exciting coil energizing circuit 3 first applies the exciting current, for example, exciting coil U → V, and then the exciting coil. U → W is flowed, and the exciting coil V → W, the exciting coil V → U, the exciting coil W → U, and the exciting coil W → V are sequentially switched, and this is sequentially repeated.
[0005]
In this case, the excitation coil in which the excitation current does not flow by the back electromotive voltage detection excitation coil selection circuit 4, for example, when the excitation current flows from the excitation coil U → V, the excitation coil W is selected, and the excitation coil in which this excitation current does not flow. The inter-terminal voltage, which is a counter electromotive voltage generated by the rotation of the rotor 1 generated in the circuit 1, is supplied to one input terminal of a voltage comparison circuit 6 comprising an operational amplifier circuit through a low-pass filter 5 for noise removal, and the exciting coils U, The midpoint voltage obtained at the connection midpoint of V and W is supplied to the other input terminal of the voltage comparison circuit 6.
[0006]
On the output side of the voltage comparison circuit 6, a rectangular wave signal corresponding to the back electromotive voltage for detecting the position of the rotor 1 obtained in the exciting coil through which this exciting current does not flow is obtained. A rectangular wave signal corresponding to the counter electromotive voltage is supplied to the energization timing signal generation circuit 7 and the counter electromotive voltage detection excitation coil selection timing signal generation circuit 8.
[0007]
In this energization timing signal generation circuit 7, a rectangular wave signal for detecting the position of the rotor 1 is received, and the excitation coils U, V, W to be energized are selected and the phases are sequentially 120 ° as shown in FIGS. 7A, 7B and 7C. Two energization timing signals US, VS and WS are generated, and the energization timing signals US, VS and WS obtained in the energization timing signal generation circuit 7 are supplied to the excitation coil energization circuit 3 to energize the excitation current. The coils are switched sequentially.
[0008]
The back electromotive voltage detection excitation coil selection timing signal generation circuit 8 receives the rectangular wave signal for detecting the position of the rotor 1 obtained on the output side of the voltage comparison circuit 6 and is not energized to detect the back electromotive voltage detection excitation coil. A selection timing signal for selecting is generated. The selection timing signal obtained by the back electromotive voltage detection excitation coil selection timing signal generation circuit 8 is supplied to the back electromotive voltage detection excitation coil selection circuit 4 to select an excitation coil for back electromotive voltage detection.
[0009]
In FIG. 5, reference numeral 9 denotes a pulse width modulation circuit for controlling the rotational torque of the sensorless brushless motor. The pulse width modulation circuit 9 generates a pulse width modulation signal having an appropriate duty as shown in FIG. 7D. The pulse width modulation signal generated by the pulse width modulation circuit 9 and having an appropriate duty corresponding to the rotational torque is supplied to the exciting coil energization circuit 3.
[0010]
In the exciting coil energizing circuit 3, the exciting coils U, V, and W are obtained by ANDing the energizing timing signals US, VS, WS as shown in FIGS. 7A, 7B, 7C and the pulse width modulation signal as shown in FIG. Electric power is sequentially applied to obtain a predetermined rotational torque.
[0011]
A sensorless brushless motor has been proposed in which the excitation coils U, V, and W are sequentially energized by the logical product of the energization timing signal and the pulse width modulation signal (Patent Document 1).
[0012]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-84774
[Problems to be solved by the invention]
In such a sensorless brushless motor, the position of the rotor 1 is detected by detecting a counter electromotive voltage generated in the exciting coils U, V, W by the rotation of the rotor 1 without using a position sensor such as a Hall element. For this reason, if any noise is superimposed on the counter electromotive voltage, the position detection accuracy of the rotor 1 is lowered.
[0014]
In particular, at the time of low-speed rotation, the detection accuracy is further lowered because the back electromotive voltage itself is small. Various noises can be considered to be superimposed on the back electromotive voltage. However, when the rotor 1 is driven using the pulse width modulation signal as described above, the influence of the leakage magnetic flux from the energized exciting coil. Becomes prominent.
[0015]
The generation of noise due to the leakage flux of the exciting coil will be further described. The magnetic flux generated by the energized exciting coil such as the exciting coil is mostly linked to the other energized exciting coil such as the exciting coil V. The leakage magnetic flux is also linked to the exciting coil detecting the counter electromotive voltage, for example, the exciting coil W (see FIG. 6).
[0016]
When this leakage magnetic flux changes with time, a voltage Δe proportional to the time differential waveform of the leakage magnetic flux is induced in the exciting coil, for example, the exciting coil W during detection of the counter electromotive voltage by the law of electromagnetic induction, and this is superimposed on the counter electromotive voltage. Noise. Hereinafter, this voltage Δe is referred to as induction noise.
[0017]
The magnitude of the induction noise Δe will be described. The induction noise Δe is proportional to the time differential waveform of the leakage flux of the exciting coil being energized, and the time differential waveform of the leakage flux of the excitation coil being energized is Is proportional to the time differential waveform of the current of the exciting coil.
[0018]
When a pulse width modulation current is passed through the exciting coils U, V, W, the current flowing in the exciting coils U, V, W becomes a triangular wave current as shown in FIG. As shown in FIG. 8B, the time differential waveform becomes a square wave and becomes relatively large.
[0019]
In the conventional example as shown in FIG. 5, the low-pass filter 5 is provided in order to remove the induction noise Δe. The filter constant of the low-pass filter 5 is set so as not to affect the motor characteristics. In addition to the time required for adjusting the filter constants, the degree of attenuation of the induction noise Δe cannot be increased so much.
[0020]
Therefore, in the conventional example as shown in FIG. 5, the influence of the induction noise Δe is large, and the accuracy of the detection signal of the position of the rotor 1 obtained on the output side of the voltage comparison circuit 6 is low. was there.
[0021]
In view of this point, an object of the present invention is to suppress the induced noise superimposed on the counter electromotive voltage and to detect the counter electromotive voltage stably and accurately.
[0022]
[Means for Solving the Problems]
The sensorless brushless motor of the present invention controls the rotation of the rotor by controlling the excitation coil energization circuit that sequentially energizes the plurality of excitation coils constituting the stator by the logical product of the energization timing signal and the pulse width modulation signal formed based on the back electromotive voltage. In a sensorless brushless motor designed to control torque, the counter electromotive voltage is obtained by combining the average voltage between the terminals of a plurality of exciting coils being energized with the voltage between the terminals of the exciting coil being detected. It is a thing.
[0023]
In the present invention, the counter electromotive voltage is obtained by synthesizing the average voltage between the terminals of the plurality of exciting coils being energized and the voltage between the terminals of the exciting coil being detected. The average voltage of the inter-terminal voltages of a plurality of exciting coils includes a component of -αΔe in which α is close to 1 and is in a phase opposite to the induction noise Δe included in the inter-terminal voltage of the exciting coil during detection of the counter electromotive voltage. The counter electromotive voltage obtained from this synthesis is the one in which the induced noise Δe is substantially removed, and this counter electromotive voltage can always be detected stably and accurately, and the rotational accuracy of the sensorless brushless motor can be improved and the starting characteristics, Low-speed rotation drive can be improved, and the low-pass filter 5 can be omitted.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the sensorless brushless motor of the present invention will be described with reference to FIG. As will be described with reference to FIG. 1, parts corresponding to those in FIG.
[0025]
This FIG. 1 example also shows an example applied to a three-phase outer rotor type sensorless brushless motor. The rotor 1 of the sensorless brushless motor of this three-phase outer rotor type is composed of a cylindrical body in which, for example, as shown in FIG. For example, as shown in FIG. 6, the three-phase exciting coils U, V, and W arranged in the cylindrical rotor 1 and corresponding to the rotor 1 and wound around the iron core as shown in FIG. The corners are sequentially arranged at intervals of 120 °.
[0026]
The three-phase exciting coils U, V, W of the stator 2 are connected in a Y-shape as shown in FIG. 1, and the exciting coil energizing circuit 3 causes the exciting current to flow, for example, exciting coil U → V, and then exciting coil U → W, and sequentially turn the exciting coil V → W, exciting coil V → U, exciting coil W → U, exciting coil W → V, and sequentially repeat this.
[0027]
In this case, an excitation coil in which an excitation current does not flow by the counter electromotive voltage detection excitation coil selection circuit 4, for example, when the excitation current flows from the excitation coil U → V, the excitation coil W is selected, and this counter electromotive voltage detection excitation coil is selected. The voltage between the terminals due to the rotation of the rotor 1 generated in the exciting coil during detection of the counter electromotive voltage in which this exciting current does not flow obtained on the output side of the selection circuit 4 is supplied to one input terminal of the voltage synthesis circuit 10.
[0028]
In this case, on the output side of the back electromotive voltage detection exciting coil selection circuit 4, a rectangular wave induction noise Δe as shown in FIG. 8B is superimposed on a sinusoidal back electromotive voltage E as shown in FIG. 4B.
[0029]
A counter electromotive voltage obtained on the output side of the voltage synthesizing circuit 10 is supplied to one input terminal of a voltage comparison circuit 6 comprising an operational amplifier circuit, and a midpoint obtained at the midpoint of connection of the exciting coils U, V, W. A voltage is supplied to the other input terminal of the voltage comparison circuit 6.
[0030]
On the output side of the voltage comparison circuit 6, a rectangular wave signal corresponding to the counter electromotive voltage for detecting the position of the rotor 1 obtained in the exciting coil during detection of the counter electromotive voltage where no exciting current flows is obtained. A rectangular wave signal corresponding to the back electromotive voltage for position detection is supplied to the energization timing signal generation circuit 7, the back electromotive voltage detection excitation coil selection timing signal generation circuit 8, and the voltage averaging excitation coil selection timing signal generation circuit 11.
[0031]
The energization timing signal generation circuit 7 receives a rectangular wave signal for detecting the position of the rotor 1 and selects excitation coils U, V, and W to be energized, as shown in FIGS. Two energization timing signals US, VS, and WS that are different from each other are generated, and the energization timing signals US, VS, and WS obtained in the energization timing signal generation circuit 7 are supplied to the excitation coil energization circuit 3 to energize the excitation current. The exciting coils are sequentially switched.
[0032]
The back electromotive voltage excitation coil selection timing signal generation circuit receives the rectangular wave signal for detecting the position of the rotor 1 obtained on the output side of the voltage comparison circuit 6 and selects the excitation coil for detecting the back electromotive voltage that is not energized. A selection timing signal is generated. The selection timing signal obtained by the counter electromotive voltage detection excitation coil selection timing signal generation circuit 8 is supplied to the counter electromotive voltage detection excitation coil selection circuit 4 to select an excitation coil for detecting the counter electromotive voltage.
[0033]
The voltage averaging excitation coil selection timing signal generation circuit 11 receives a rectangular wave signal for detecting the position of the rotor 1 obtained on the output side of the voltage comparison circuit 6 and selects an excitation coil to which an excitation current is applied. In this example, a selection timing signal for selecting two exciting coils is generated. The selection timing signal obtained by the voltage averaged excitation coil selection timing signal generation circuit 11 is supplied to the voltage averaged excitation coil selection circuit 12.
[0034]
This voltage-averaged excitation coil selection circuit 12 is connected to one end of each of the three-phase excitation coils U, V, and W, and selects a plurality of, for example, two excitation coils that are energized with an excitation current. The voltage between the terminals of the two exciting coils is supplied to the voltage average value circuit 13 respectively. The output signal of the voltage average value circuit 13 is supplied to the other input terminal of the voltage synthesis circuit 10.
[0035]
In FIG. 1, reference numeral 9 denotes a pulse width modulation circuit for controlling the rotational torque of the sensorless brushless motor. The pulse width modulation circuit 9 has a pulse width modulation as shown in FIG. 7D having a duty corresponding to a desired rotational torque. A signal is generated, and a pulse width modulation signal having an appropriate duty corresponding to the rotational torque generated by the pulse width modulation circuit 9 is supplied to the exciting coil energization circuit 3.
[0036]
In this exciting coil energizing circuit 3, the exciting current is obtained by ANDing the energizing timing signals US, VS, WS as shown in FIGS. 7A, 7B and 7C with the pulse width modulation signal as shown in FIG. 7D. V and W are sequentially energized to rotate the rotor 1 so as to obtain a desired rotational torque.
[0037]
Now, the average voltage obtained on the output side of the voltage average value circuit 13 will be described further. Two of the three-phase excitation coils U, V, W, for example, the excitation coil U, as schematically shown in FIG. V and W are logical products of energization timing signals US, VS, WS as shown in FIGS. 7A, 7B and 7C and pulse width modulation signals as shown in FIG. It is assumed that the counter electromotive voltage is detected by the exciting coil W.
[0038]
In this case, as described above, the counter electromotive voltage E generated by the rotation of the rotor 1 in the exciting coil W during detection of the counter electromotive voltage is induced by the leakage magnetic flux from the energizing coils U and V as shown in FIG. 4B. Induced noise Δe is superimposed.
[0039]
Here, when attention is paid to the average voltage (V2C in FIG. 4A) of the terminal voltages of the two-phase exciting coils U and V being energized, when considering the midpoint potential VC of the exciting coils U, V, and W as a reference, It has been found that a component -αΔe having a phase opposite to that of the induction noise Δe included in the terminal voltage V0 of the exciting coil W during detection of the counter electromotive voltage appears in the average voltage V2C.
[0040]
That is, the following expression is established.
V0−VC = E + Δe (1)
V2C−VC = −1 / 2E−αΔe (2)
Here, α is a coefficient.
[0041]
-1 / 2E on the right side of the equation (2) is derived from the following equation.
Figure 0004207538
This expression (3) represents that the sum of three-phase sine waves whose phases are shifted by 120 ° is always zero.
[0042]
Since the back electromotive force voltage generated in the excitation coils U, V, W of the three-phase motor is a sine wave whose phase is shifted by 120 °, the terminal voltage of a certain two-phase excitation coil, for example, the excitation coils U, V, W, The sum is equal to the one obtained by inverting the sign of the terminal voltage of the remaining one-phase excitation coil, for example, the excitation coil W.
[0043]
In FIG. 4A, V2C is obtained by dividing the terminal voltages of the two-phase exciting coils U and V by the resistor R having the same resistance value (summing and dividing by 2 (average value)). Using the result of (3), it can be seen that V2C includes a component -1 / 2E obtained by inverting the sign of the counter electromotive voltage E appearing at V0 and dividing this by 2.
[0044]
Further, the appearance of the component αΔe having the opposite phase to the induction noise superimposed on V0 on V2C is considered to be due to the self-inductance of the energized exciting coils, for example, the exciting coils U and V.
[0045]
As a result of the experiment, the magnitude of the induced noise anti-phase component −αΔe appearing in V2C is not completely the same as the magnitude of the induced noise Δe superimposed on V0 (α ≠ 1), but this α is a value close to approximately 1. I know it will be.
[0046]
Therefore, on the output side of the voltage average value circuit 13, a voltage obtained by superimposing a negative phase induced noise component -αΔe on the voltage of -1 / 2E as shown in FIG.
[0047]
Therefore, in the voltage synthesizing circuit 10, the induced noise reverse phase component −αΔe included in the average voltage V2C of the voltage between the terminals of the exciting coil being energized and the induced noise included in the voltage V0 between the terminals of the exciting coil being detected in the counter electromotive voltage. When the ratio of synthesis with Δe is set to a predetermined ratio, the induction noise Δe can be removed from the back electromotive voltage on the output side of the voltage synthesis circuit 10 as shown in FIG. 4D.
[0048]
According to this example, a counter electromotive voltage from which the induction noise Δe has been removed can be obtained on the output side of the voltage synthesis circuit 10, so that the counter electromotive voltage can always be detected stably and accurately. By supplying it to the circuit 6, a highly accurate position detection signal of the rotor 1 can be obtained on the output side of the voltage comparison circuit 6, and the rotational accuracy of the sensorless brushless motor is improved.
[0049]
Further, according to this example, since the counter electromotive voltage to noise ratio is improved even at the time of starting the motor, the starting characteristics are improved and the counter electromotive voltage to noise ratio is also improved at the time of low speed rotation. It becomes possible.
[0050]
According to this example, a low-pass filter is not required to obtain the back electromotive voltage as compared with the conventional example, so that the number of external terminals can be reduced and further high-speed rotation driving is possible.
[0051]
In addition, according to this example, the back electromotive voltage can be detected stably regardless of the duty of the pulse width modulation signal for controlling the rotational torque, so that the influence of load fluctuation on the back electromotive voltage detection accuracy can be suppressed and the motor constant And the review items associated with the change of the current limiter can be minimized.
[0052]
2 and 3 show examples in which the voltage average value circuit 13 and the voltage synthesis circuit 10 in the example of FIG. 1 are embodied. 2 and FIG. 3, in FIG. 2 and FIG. 3, portions corresponding to FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
[0053]
In the example of FIG. 2, the voltage average value circuit 13 and the voltage synthesis circuit 10 are all realized by voltage division using resistors. In this example of FIG. 2, the voltage averaging excitation coil selection circuit 12 is realized by an analog switch, and using this, the terminal voltages of the two-phase excitation coils that are energized are connected in series to two that constitute the voltage average value circuit 13. The resistors R and R having the same resistance value are supplied to one end and the other end.
[0054]
The average voltage V2C obtained at the connection midpoint of the resistors R and R is supplied to one end of the resistors RA and RB connected in series constituting the voltage synthesis circuit 10, and the output of the back electromotive voltage detection exciting coil selection circuit 4 is supplied. The terminal voltage V0 obtained on the side is supplied to the other end of the series circuit.
[0055]
The voltage synthesis ratio of the voltage synthesis circuit 10 is determined by changing the ratio of the resistance values of the resistors RA and RB. The output voltage of the voltage synthesizing circuit 10 obtained at the connection midpoint of the resistors RA and RB is supplied to one input terminal of the operational amplifier circuit constituting the comparison circuit 6, and the excitation coils U, V, W are being connected. The voltage at the point is supplied to the other input terminal of the operational amplifier circuit. The other example of FIG. 2 is configured in the same manner as the example of FIG.
[0056]
In the example of FIG. 2, the same effects as in the example of FIG. 1 can be obtained. In addition, since the voltage average value circuit 13 and the voltage synthesis circuit 10 are configured only by resistors, there is an advantage that the configuration is simplified.
[0057]
In the example of FIG. 3, the voltage average value circuit 3 and the voltage synthesis circuit 10 are configured by one operational amplifier circuit 20. In the example of FIG. 3, the voltage averaging excitation coil selection circuit 12 is realized by an analog switch, and using this, the terminal voltage of the energized two-phase excitation coil is supplied to the operational amplifier circuit via resistors R and R, respectively. 20 is supplied to one input terminal 20 and the terminal voltage V0 obtained in the exciting coil for detecting the back electromotive voltage obtained on the output side of the back electromotive voltage detecting exciting coil selection circuit 4 is connected to the operational amplifier circuit 20 through the resistor RA. Is supplied to one input terminal. The other input terminal of the operational amplifier circuit 20 is grounded through a resistor.
[0058]
In this case, a combined voltage of the average voltage of the terminal voltages of the two-phase exciting coils being energized on the output side of the operational amplifier circuit 20 and the terminal voltage of the exciting coil for detecting the back electromotive voltage is obtained. The ratio of the voltage synthesis can be arbitrarily changed according to the ratio of the resistance values of the resistor R and the resistor RA. Further, by changing the resistance value of the feedback resistor RB of the operational amplifier circuit 20, the voltage synthesis unit can be gained.
[0059]
The output voltage of the operational amplifier circuit 20 is supplied to one input terminal of the operational amplifier circuit constituting the comparison circuit 6, and the voltage at the connection midpoint of the exciting coils U, V, W is input to the other input of the operational amplifier circuit 6. Supply to the terminal. In the example of FIG. 3, the other configuration is the same as that of the example of FIG.
[0060]
In the example of FIG. 3, it can be easily understood that the same effects as those of the example of FIG. 1 can be obtained.
[0061]
Of course, the present invention is not limited to the above-described examples, and various other configurations can be adopted without departing from the gist of the present invention.
[0062]
【The invention's effect】
According to the present invention, the back electromotive voltage can always be detected with stable accuracy, the rotation accuracy of the sensorless brushless motor can be improved, the starting characteristics and the low speed rotation drive can be improved, and the low pass filter can be omitted.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an example of an embodiment of a sensorless brushless motor of the present invention.
FIG. 2 is a configuration diagram showing an example of a partial specific example of the example of FIG. 1;
FIG. 3 is a configuration diagram illustrating another example of the specific example of the example in FIG. 1;
FIG. 4 is a diagram for explaining the present invention.
FIG. 5 is a configuration diagram showing an example of a conventional sensorless brushless motor.
FIG. 6 is a diagram for explaining a sensorless brushless motor.
FIG. 7 is a diagram for explaining the present invention.
FIG. 8 is a diagram for explaining the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Rotor, 2 ... Stator, 3 ... Excitation coil energization circuit, 4 ... Back electromotive voltage detection excitation coil selection circuit, 6 ... Voltage comparison circuit, 7 ... Energization timing signal generation circuit, 8 ... Reverse Electromotive voltage detection excitation coil selection timing signal generation circuit, 9 pulse width modulation circuit, 10 voltage synthesis circuit, 11 voltage averaging excitation coil selection timing signal generation circuit, 12 voltage averaging excitation coil selection circuit , 13 Voltage average circuit

Claims (2)

逆起電圧を基に形成した通電タイミング信号とパルス幅変調信号との論理積でステータを構成する複数の励磁コイルに順次通電する励磁コイル通電回路を制御してロータの回転トルクを制御するようにしたセンサレスブラシレスモータにおいて、
通電中の複数の励磁コイルの端子間電圧の平均電圧と逆起電圧検出中の励磁コイルの端子間電圧との合成により前記逆起電圧を得るようにしたことを特徴とするセンサレスブラシレスモータ。
To control the rotational torque of the rotor by controlling the exciting coil energizing circuit that sequentially energizes the plurality of exciting coils constituting the stator by the logical product of the energizing timing signal and the pulse width modulation signal formed based on the back electromotive voltage. Sensorless brushless motor
A sensorless brushless motor characterized in that the counter electromotive voltage is obtained by synthesizing an average voltage between terminals of a plurality of exciting coils being energized and a voltage between terminals of the exciting coil being detecting a counter electromotive voltage.
請求項1記載のセンサレスブラシレスモータにおいて、
前記複数の通電中の励磁コイルの端子間電圧の平均電圧と前記逆起電圧検出中の励磁コイルの端子間電圧との合成の割合を所定の割合としたことを特徴とするセンサレスブラシレスモータ。
The sensorless brushless motor according to claim 1,
A sensorless brushless motor, characterized in that a ratio of synthesis of an average voltage between terminals of the plurality of energized exciting coils and a voltage between terminals of the exciting coil during detection of the counter electromotive voltage is set to a predetermined ratio.
JP2002328718A 2002-11-12 2002-11-12 Sensorless brushless motor Expired - Fee Related JP4207538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002328718A JP4207538B2 (en) 2002-11-12 2002-11-12 Sensorless brushless motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002328718A JP4207538B2 (en) 2002-11-12 2002-11-12 Sensorless brushless motor

Publications (2)

Publication Number Publication Date
JP2004166382A JP2004166382A (en) 2004-06-10
JP4207538B2 true JP4207538B2 (en) 2009-01-14

Family

ID=32806948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002328718A Expired - Fee Related JP4207538B2 (en) 2002-11-12 2002-11-12 Sensorless brushless motor

Country Status (1)

Country Link
JP (1) JP4207538B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4762779B2 (en) * 2006-05-01 2011-08-31 株式会社タイテック Three-phase motor control device
JP5850073B2 (en) 2014-03-18 2016-02-03 ダイキン工業株式会社 Power converter

Also Published As

Publication number Publication date
JP2004166382A (en) 2004-06-10

Similar Documents

Publication Publication Date Title
JP4954284B2 (en) Method and apparatus for determining a voltage value of a sampled back electromotive force and / or a sampled inductance value based on a sensorless technique, pulse width modulation period
JP3829838B2 (en) Sensorless brushless motor
JP2015213424A (en) Controller for driving stepper motor
JP2004015925A (en) Method of controlling brushless motor
US7443128B2 (en) Method and device for controlling motors
US20160056743A1 (en) Motor drive control apparatus and motor drive control method
KR19980079541A (en) Current control of switched reluctance motors
JP5668949B2 (en) Back electromotive force detection circuit, motor drive control device and motor using the same
US20110074321A1 (en) Motor drive control circuit
JP4207538B2 (en) Sensorless brushless motor
JP3687732B2 (en) Motor speed control signal generator
JP3393366B2 (en) Device and method for detecting rotor position of sensorless motor
JP6383128B1 (en) Method for estimating inductance electromotive force of motor and field position estimating method
KR100629006B1 (en) Apparatus for Driving three phase Brushless DC motor without position sensors
JP3309828B2 (en) Motor drive control device
JPH09154294A (en) Driving of brushless dc motor
JP3575895B2 (en) Motor rotation abnormality detection device
JP2000295890A (en) Driving controller of brushless motor
JP2897210B2 (en) Sensorless drive for brushless motor
JP5930264B2 (en) Driving device and driving method for two-phase brushless motor
US20030210009A1 (en) Pulse width modulated drive system for electronically commutated motors
KR101539850B1 (en) Back elecromotive force detecting circuit and motor driving apparatus using the same
JP4131510B2 (en) Resistance value selection method for brushless motor device
JP2007228773A (en) Motor, motor drive unit and motor drive method
JP2007135304A (en) Rotational position sensing device and driving method for permanent-magnet motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051018

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051018

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081013

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees