JP4204794B2 - Reverse transcriptase inhibitor - Google Patents

Reverse transcriptase inhibitor Download PDF

Info

Publication number
JP4204794B2
JP4204794B2 JP2002045552A JP2002045552A JP4204794B2 JP 4204794 B2 JP4204794 B2 JP 4204794B2 JP 2002045552 A JP2002045552 A JP 2002045552A JP 2002045552 A JP2002045552 A JP 2002045552A JP 4204794 B2 JP4204794 B2 JP 4204794B2
Authority
JP
Japan
Prior art keywords
reverse transcriptase
compound
transcriptase inhibitor
group
alkyl group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002045552A
Other languages
Japanese (ja)
Other versions
JP2003238395A (en
Inventor
忠武 奥
俊幸 西尾
隆 河内
壽子 門野
由弘 関野
一成 門倉
麻理 坂井
Original Assignee
保芦 将人
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 保芦 将人 filed Critical 保芦 将人
Priority to JP2002045552A priority Critical patent/JP4204794B2/en
Publication of JP2003238395A publication Critical patent/JP2003238395A/en
Application granted granted Critical
Publication of JP4204794B2 publication Critical patent/JP4204794B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、3−アルキルカテコールを含有する逆転写酵素阻害剤に関する。
【0002】
【従来の技術】
近年、後天性免疫不全症候群(acquired immunodeficiency syndrome,AIDS)やヒト成人T細胞白血病(humanadult T cell leukemia,HALT)が世界的に広まり、これらの予防法や治療法の確立が急務とされている。
【0003】
後天性免疫不全症候群はヒト免疫不全ウィルス(human immunodeficiency virus,HIV)によって発症し、ヒト成人T細胞白血病はヒトT細胞白血病ウィルス(human T cell leukemia virus)によって発症することが知られている。これらのウィルスは、RNAをDNAに変換する逆転写酵素を有することを特徴とするレトロウィルスである。
【0004】
このため、これらのレトロウィルスに存在する逆転写酵素の活性を阻害することによって、ウィルスによるAIDS等の発症を防止する研究が種々なされてきた。その結果、今日までに、逆転写酵素阻害活性を有するさまざまな物質が開発されている。例えば、アジドチミジン、ジデオキシシチジン、ジデオキシノシンが逆転写酵素阻害活性を有するAIDS治療薬として認可されている。しかしながら、これらの治療薬は製造コストが高く、副作用が強いという問題がある。
【0005】
【発明が解決しようとする課題】
そこで、本発明は、低毒性で作用が強い逆転写酵素阻害活性化合物を見出すことによって、新しい逆転写酵素阻害剤を提供することを目的とした。
【0006】
【課題を解決するための手段】
本発明者らは鋭意研究を行った結果、特定の化合物を用いれば低毒性で作用が強い逆転写酵素阻害剤を提供しうることを見出して、本発明に到達した。
すなわち本発明は、下記一般式(1)で表わされる化合物を含有する逆転写酵素阻害剤を提供する。
【化2】

Figure 0004204794
上式において、Rはアルキル基であり、直鎖アルキル基であることが好ましい。Rが表わすアルキル基の炭素数は1〜30であることが好ましく、4〜20であることがより好ましく、炭素数10〜20であることがさらに好ましい。
【0007】
【発明の実施の形態】
以下において、本発明の逆転写酵素阻害剤について詳細に説明する。なお、本明細書において「〜」は、その前後に記載される数値を下限値及び上限値として含む意味で使用される。
【0008】
本発明の逆転写酵素阻害剤は、上記一般式(1)で表わされる化合物を含有する。
一般式(1)において、Rはアルキル基を表わす。アルキル基は、直鎖状であっても、分枝状であっても、これらを組み合わせたものであっても構わない。好ましいのは、直鎖状または分枝状であり、最も好ましいのは直鎖状である。
【0009】
直鎖状のアルキル基としては、炭素数1〜50の直鎖アルキル基が好ましく、炭素数1〜30の直鎖アルキル基がより好ましく、炭素数1〜20の直鎖アルキル基がさらにより好ましく、炭素数4〜20の直鎖アルキル基がさらにより好ましく、炭素数7〜20の直鎖アルキル基がさらにより好ましく、炭素数10〜20の直鎖アルキル基がさらにより好ましく、炭素数10〜16の直鎖アルキル基がさらにより好ましい
【0010】
分枝状のアルキル基としては、直鎖アルキル基の1以上の水素原子がメチル基またはエチル基で置換された基を好ましい例として挙げることができる。具体的には、イソプロピル基、イソブチル基、イソペンチル基、イソヘキシル基、イソヘプチル基、イソオクチル基、イソノニル基、イソデシル基、イソウンデシル基、イソドデシル基、イソトリデシル基、イソテトラデシル基、イソペンタデシル基、イソヘキサデシル基、イソペプタデシル基、イソオクタデシル基、イソノナデシル基を好ましい例として挙げることができる。また、分枝状のアルキル基として2級アルキル基を用いることもできる
【0012】
本発明の逆転写酵素阻害剤は、一般式(1)の化合物を1種類含有するものであってもよいし、2種以上を組み合わせて含有するものであってもよい。また、その他の逆転写酵素阻害活性を示す化合物と組み合わせて含有するものであってもよい。
【0013】
一般式(1)で表わされる化合物の製造方法は特に制限されない。したがって、天然物から抽出などの手段により取得したものであってもよいし、当業者に公知の合成法を組み合わせて合成したものであってもよい。また、天然物から抽出した成分を公知の合成法により変換して一般式(1)で表される化合物を得てもよい。いずれの方法により取得した化合物であっても、一般式(1)で表される構造を有する限り本発明の範囲に包含される。
【0014】
一般式(1)で表される化合物を天然物から取得する場合は、ウルシの抽出物を利用することが有効である。ウルシの中にはウルシオールと呼ばれる3−アルケニルカテコール類や3−アルキルカテコール類が含まれていることが知られている。したがって、ウルシの抽出物の中から目的とする3−アルキルカテコールを精製して、一般式(1)の化合物として本発明で用いることができる。また、ウルシの抽出物を水素添加したり、アルキル化したりした後に精製することによって、目的とする3−アルキルカテコールを得ることもできる。
【0015】
一般式(1)で表される化合物を合成により取得する場合は、例えば下記の実施例に示す合成経路にしたがって合成することができる。また、T. miyakoshi , Y. Saito , Y. Du , Yukagaku, 39 , 660 (1990) や特開昭63−68533号公報に記載される方法も参考にすることができる。
【0016】
本発明の逆転写酵素阻害剤は、HIVなどのレトロウィルスが関与する疾患の治療や予防に有効に用いることができる。また、本発明の逆転写酵素阻害剤は、レトロウィルス感染後の発病を抑制または遅延するための医薬として用いることもできる。さらに、本発明の逆転写酵素阻害剤は、これらの作用を目的とした機能性食品として使用することもできる。
【0017】
本発明の逆転写酵素阻害剤の形態は特に制限されず、医薬として用いる場合には経口的または非経口的に投与することが可能である。例えば、直腸投与、鼻内投与、頬側投与、舌下投与、膣内投与、筋肉内投与、皮下投与、静脈内投与を行なうことが可能である。中でも、本発明の逆転写酵素阻害剤は、経口投与、皮下投与または経皮投与するのが好ましい。
【0018】
経口投与に適した製剤として、錠剤、カプセル剤、散剤、細粒剤、顆粒剤、液剤、シロップ剤などを挙げることができ、非経口投与に適した製剤として、注射剤、点滴剤、坐剤、吸入剤、経皮吸収剤、経粘膜吸収剤、貼付剤などを挙げることができる。注射剤は、静脈注射、筋肉注射、皮下注射、点滴などのいずれに用いるものであってもよい。本発明の逆転写酵素阻害剤は、特に経口用製剤、注射剤、貼付剤のいずれかであるのが好ましい。
【0019】
本発明の逆転写酵素阻害剤には、必要に応じて薬理学的および製剤学的に許容しうる添加物を添加することができる。例えば、乳糖、D−マンニトール、トウモロコシデンプン、結晶セルロース等の賦形剤;カルボキシメチルセルロース、カルボキシメチルセルロースカルシウム等の崩壊剤または崩壊補助剤;ポリビニルピロリドン、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース等の結合剤;タルク、ステアリン酸マグネシウム等の滑沢剤;ポリエチレングリコール等の基剤;白糖、酸化チタン、ヒドロキシプロピルメチルセルロース等のコーティング剤;食塩、ブドウ糖、グリセリン等の等張化剤;色素;希釈剤;溶解剤または溶解補助剤;pH調節剤;安定化剤;噴射剤;粘着剤;湿潤剤などを使用することができる。
【0020】
これらの添加剤を適宜組み合わせて使用することによって、本発明の逆転写酵素阻害剤にさまざまな付加的機能を持たせることができる。例えば、必要に応じて活性成分が徐放されるように設計することができる。また、体内の必要な個所において活性成分が集中的に放出されるように設計することもできる。このような徐放性製剤やドラッグデリバリーシステムは、周知の方法にしたがって設計のうえ製造することができる。
【0021】
本発明の逆転写酵素阻害剤の投与量は、治療または予防の目的、患者の性別、体重、年齢、疾患の種類や程度、剤型、投与経路、投与回数などの種々の条件に応じて適宜決定する。例えば、経口投与する場合には、活性成分を0.01〜1,000mg/kg体重/日で、一日一回から数回に分けて投与することができるが、この範囲に限定されるものではない。
【0022】
一般式(1)の化合物は、各種食品に含ませて機能性食品にすることもできる。例えば、紅茶、清涼飲料水、ジュース、あめ、澱粉質食品、各種加工食品等に活性成分を約0.1〜99重量%の範囲内で含有させて逆転写酵素阻害活性を有する機能性食品にすることができる。
【0023】
【実施例】
以下に実施例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
【0024】
(実施例)
本実施例において、以下の合成経路にしたがって5種類の化合物[7a,7b,7c,7d,7e]を合成した。
【0025】
【化3】
Figure 0004204794
【0026】
上式において、Meはメチル基、Etはエチル基、Tolはp−トリル基、DMFはN,N−ジメチルホルムアミドを表わす。
【0027】
▲1▼ 2,3−ジメトキシベンジルアルコール[2]の合成
2,3−ジメトキシベンズアルデヒド30.00g(180.50mmol)をエタノール200mlに溶解し、水素化ホウ素ナトリウム3.80g(90.30mmol)を加え室温で1時間撹拌した。反応終了後、減圧下で溶媒を留去し、濃縮液を純水200mlに注ぎ、生成物を300mlのジエチルエーテルで抽出した。ジエチルエーテル層を飽和食塩水200mlで1回洗浄した後、無水硫酸ナトリウムで乾燥させ、減圧下で溶媒を留去した。残渣を酢酸エチル、ヘキサンにより再結晶し、針状結晶状の2,3−ジメトキシベンジルアルコール[2]を29.80g(収率=98.2%)得た。
【0028】
▲2▼ 2,3−ジメトキシベンジルブロミド[3]の合成
窒素雰囲気下で2,3−ジヒドロキシベンジルアルコール[2](18.00g,107.00mmol)をジエチルエーテルに溶解し、ピリジン5mLを加え撹拌した。その後、−10℃で三臭化リン4.20ml(40.00mmol)をゆっくりと滴下し、−10℃で5分間撹拌した。反応終了後、反応液を氷水200mlに注ぎ、生成物を300mlのジエチルエーテルで抽出した。ジエチルエーテル層を飽和炭酸水素ナトリウム水溶液、飽和食塩水にて順次洗浄した後、無水硫酸ナトリウムで乾燥させ、減圧下で溶媒を留去した。濃縮液は、シリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=3/1)により精製し、2,3−ジメトキシベンジルブロミド[3]を19.60g(収率=90.0%)得た。
【0029】
▲3▼ 2,3−ジメトキシベンジルp−トリルスルホン[4]の合成
窒素雰囲気下で2,3−ジメトキシベンジルブロミド[3](10.00g,43.50mmol)をメタノール100mlに溶解させ、炭酸水素ナトリウム15.0g、p−トルエンスルフィン酸ナトリウム(8.50g,47.80mmol)を加え5時間撹拌した。反応終了後、純水200mlを注ぎ、生成物を300mlのジエチエルエーテルで抽出した。ジエチルエーテル層を飽和食塩水200mlで洗浄した後、無水硫酸ナトリウムで乾燥させ、減圧下で溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=3/1)により精製し、2,3−ジメトキシベンジルp−トリルスルホン[4]を14.40g(収率=98.9%)得た。
【0030】
▲4▼ 2,3−ジメトキシベンジルp−トリルスルホン[4]のアルキル化による化合物[5]の合成
窒素雰囲気下、乾燥DMF50mlに水素化ナトリウム(15.48mmol,60%オイル分散型の試薬をn−ヘキサンで3回洗浄した後、減圧下で溶媒を留去したもの)を懸濁させ、氷冷下で2,3−ジメトキシベンジルp−トリルスルホン[4](10.32mmol)のDMF溶液10mlを滴下し、0℃で1時間撹拌した。これに1−ブロモアルカン(11.35mmol)のDMF溶液10mlをゆっくりと滴下し、室温で一晩撹拌した。反応終了後、反応液を100mlの水に注ぎ、生成物を酢酸エチル150mlで抽出した。その後抽出液を飽和食塩水100mlで洗浄し、無水硫酸ナトリウムで乾燥させ、減圧下で溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=3/1)で精製し、化合物[5]を得た。
【0031】
上記の1−ブロモアルカンとして1−ブロモプロパンを用いて、n=2の化合物[5a]を収率=23.6%で得た。
5a (n=2):1H NMR (δ, CDCl3):δ0.84 (t, 3H, J=7.3Hz, CH2CH 3), 1.14 (tq, 2H, CH 2CH3), 2.05 (dt, 2H, CHCH 2), 2.38 (s, 3H, ArCH3), 3.55 (s, 3H, OCH3), 3.80 (s, 3H, OCH3), 4.82 (dd, 1H, J=3.5, 11.9Hz, ArCHSO2Tol), 6.84-7.50 (m, 3H, ArH) ; EIMS m/z 348 (MH+).
【0032】
上記の1−ブロモアルカンとして1−ブロモヘキサンを用いて、n=5の化合物[5b]を収率=86.7%で得た。
5b (n=5):1H NMR (δ, CDCl3):δ0.81 (t, 3H, J=7.0Hz, CH2CH 3), 1.16-1.31 (m, 10H, (CH2)5), 2.38 (s, 3H, ArCH3), 3.56 (s, 3H, OCH3), 3.80 (s, 3H, OCH3), 4.82 (dd, 1H, J=3.5, 11.9Hz, ArCHSO2Tol), 6.84-7.27 (m, 3H, ArH) ; EIMS m/z 390 (MH+).
【0033】
上記の1−ブロモアルカンとして1−ブロモオクタンを用いて、n=7の化合物[5c]を収率=67.1%で得た。
5c (n=7):1H NMR (δ, CDCl3):δ0.84 (t, 3H, J=7.3Hz, CH2CH 3), 1.16-1.26 (m, 14H, (CH2)7), 2.38 (s, 3H, ArCH3), 3.56 (s, 3H, OCH3), 3.80 (s, 3H, OCH3), 4.82 (dd, 1H, J=3.6, 11.5Hz, ArCHSO2Tol), 6.84-7.27 (m, 3H, ArH) ; EIMS m/z 418 (MH+).
【0034】
上記の1−ブロモアルカンとして1−ブロモデカンを用いて、n=9の化合物[5d]を収率=59.7%で得た。
5d (n=9):1H NMR (δ, CDCl3):δ0.87 (t, 3H, J=6.5Hz, CH2CH 3), 1.16-1.20 (m, 18H, (CH2)9), 2.38 (s, 3H, ArCH3), 3.56 (s, 3H, OCH3), 3.80 (s, 3H, OCH3), 4.80 (dd, 1H, J=3.5, 11.9Hz, ArCHSO2Tol), 6.84-7.27 (m, 3H, ArH) ; EIMS m/z 446 (MH+).
【0035】
上記の1−ブロモアルカンとして1−ブロモドデカンを用いて、n=11の化合物[5e]を収率=99.0%で得た。
5e (n=11):1H NMR (δ, CDCl3):δ0.88 (t, 3H, J=7.3Hz, CH2CH 3), 1.16-1.28 (m, 22H, (CH2)11), 2.38 (s, 3H, ArCH3), 3.56 (s, 3H, OCH3), 3.80 (s, 3H, OCH3), 4.82 (dd, 1H, J=3.5, 11.9Hz, ArCHSO2Tol), 6.84-7.27 (m, 3H, ArH) ; EIMS m/z 474 (MH+).
【0036】
▲5▼ 脱スルホン化反応による化合物[6]の合成
化合物[5](4.40mmol)をメタノール50mlに溶解させ、6%ナトリウムアマルガム15gを加え室温で3時間撹拌した。反応終了後、水銀をセライト濾過により取り除き、減圧下でメタノールを留去した。残渣を1N塩酸150mlで中和し、生成物を酢酸エチル200mlで抽出した。その後、抽出液を飽和食塩水150mlで洗浄し、無水硫酸ナトリウムで乾燥させ、減圧下で溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=2/1)で精製し、化合物[6]を得た。
【0037】
化合物[5a]を用いて上記反応を行い、n=2の化合物[6a]を収率=90.0%で得た。
6a (n=2):1H NMR (δ, CDCl3):δ0.93 (t, 3H, J=7.3Hz, CH2CH 3), 1.38 (tq, 2H, CH 2CH3), 1.57 (tt, 2H, CH2CH 2CH2), 2.62 (t, 2H, J=7.7Hz, ArCH2), 3.81 (s, 3H, OCH3), 3.85 (s, 3H, OCH3), 6.74-7.00 (m, 3H, ArH) ; EIMS m/z 194 (MH+).
【0038】
化合物[5b]を用いて上記反応を行い、n=5の化合物[6b]を収率=99.1%で得た。
6b (n=5):1H NMR (δ, CDCl3):δ0.88 (t, 3H, J=6.4Hz, CH2CH 3), 1.28-1.58 (m, 10H, (CH2)5), 2.61 (t, 2H, J=7.7Hz, ArCH2), 3.81 (s, 3H, OCH3), 3.85 (s, 3H, OCH3), 6.75-7.00 (m, 3H, ArH) ; EIMS m/z 236 (MH+).
【0039】
化合物[5c]を用いて上記反応を行い、n=7の化合物[6c]を収率=83.6%で得た。
6c (n=7):1H NMR (δ, CDCl3):δ0.88 (t, 3H, J=6.4Hz, CH2CH 3), 1.27-1.58 (m, 14H, (CH2)7), 2.62 (t, 2H, J=8.0Hz, ArCH2), 3.81 (s, 3H, OCH3), 3.85 (s, 3H, OCH3), 6.75-7.00 (m, 3H, ArH) ; EIMS m/z 264 (MH+).
【0040】
化合物[5d]を用いて上記反応を行い、n=9の化合物[6d]を収率=87.1%で得た。
6d (n=9):1H NMR (δ, CDCl3):δ0.88 (t, 3H, J=6.4Hz, CH2CH 3), 1.26-1.60 (m, 18H, (CH2)9), 2.61 (t, 2H, J=7.7Hz, ArCH2), 3.81 (s, 3H, OCH3), 3.85 (s, 3H, OCH3), 6.75-7.00 (m, 3H, ArH) ; EIMS m/z 292 (MH+).
【0041】
化合物[5e]を用いて上記反応を行い、n=11の化合物[6e]を収率=78.4%で得た。
6e (n=11):1H NMR (δ, CDCl3):δ0.88 (t, 3H, J=6.6Hz, CH2CH 3), 1.26-1.62 (m, 22H, (CH2)11), 2.61 (t, 2H, J=7.7Hz, ArCH2), 3.81 (s, 3H, OCH3), 3.84 (s, 3H, OCH3), 6.74-7.00 (m, 3H, ArH) ; EIMS m/z 320 (MH+).
【0042】
▲6▼ 脱メチル化反応による化合物[7]の合成
窒素雰囲気下、−78℃で、三臭化ホウ素(11.00mmol)のジクロロメタン溶液5mlを化合物[6](3.33mmol)のジクロロメタン溶液30mlに滴下し、室温で1時間撹拌した。反応終了後、反応液を氷水140mlに注ぎ、生成物をジクロロメタン140mlで抽出し、抽出液を飽和炭酸水素ナトリウム水溶液140ml、続いて飽和食塩水100mlで洗浄し、無水硫酸ナトリウムで乾燥させ、溶媒を減圧下で留去した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=1/1)で精製し、1,2−ジヒドロキシフェニル−3−アルカン[7]を得た。
【0043】
化合物[6a]を用いて上記反応を行い、1,2−ジヒドロキシフェニル−3−ブタン[7a]を収率=90.6%で得た。
7a (n=2):1H NMR (δ, CDCl3):δ0.94 (t, 3H, J=7.3Hz, CH2CH 3), 1.39 (qt, 2H, CH 2CH3), 1.6 (tt, 2H, ArCH2CH 2), 2.61 (t, 2H, J=7.6Hz, ArCH2), 5.16 (2s, 2H, OH), 6.71 (s, 3H, ArH) ; EIMS m/z 166 (MH+).
【0044】
化合物[6b]を用いて上記反応を行い、1,2−ジヒドロキシフェニル−3−ヘプタン[7b]を収率=86.1%で得た。
7b (n=5):1H NMR (δ, CDCl3):δ0.88 (t, 3H, J=7.3Hz, CH2CH 3), 1.28-1.60 (m, 10H, (CH2)5), 2.60 (t, 2H, J=7.7Hz, ArCH2), 5.11 (s, 1H, OH), 5.13 (s, 1H, OH), 6.71 (s, 3H, ArH) ; EIMS m/z 208 (MH+).
【0045】
化合物[6c]を用いて上記反応を行い、1,2−ジヒドロキシフェニル−3−ノナン[7c]を収率=92.4%で得た。
7c (n=7):1H NMR (δ, CDCl3):δ0.88 (t, 3H, J=6.8Hz, CH2CH 3), 1.27-1.60 (m, 14H, (CH2)7), 2.60 (t, 2H, J=7.7Hz, ArCH2), 5.12 (s, 2H, OH), 6.71 (s, 3H, ArH) ; EIMS m/z 208 (MH+).
【0046】
化合物[6d]を用いて上記反応を行い、1,2−ジヒドロキシフェニル−3−ドデカン[7d]を収率=78.9%で得た。
7d (n=9):1H NMR (δ, CDCl3):δ0.89 (t, 3H, J=6.8Hz, CH2CH 3), 1.26-1.61 (m, 18H, (CH2)9), 2.60 (t, 2H, J=7.6Hz, ArCH2), 5.20 (s, 1H, OH), 5.28 (s, 1H, OH), 6.71 (s, 3H, ArH) ; EIMS m/z 208 (MH+).
【0047】
化合物[6e]を用いて上記反応を行い、1,2−ジヒドロキシフェニル−3−トリデカン[7e]を収率=91.0%で得た。
7e (n=11):1H NMR (δ, CDCl3):δ0.88 (t, 3H, J=6.5Hz, CH2CH 3), 1.25-1.67 (m, 22H, (CH2)11), 2.60 (t, 2H, J=7.7Hz, ArCH2), 5.10 (s, 1H, OH), 5.14 (s, 1H, OH), 6.72 (s, 3H, ArH) ; EIMS m/z 208 (MH+).
【0048】
(試験例)
実施例で得られた化合物[7a]、化合物[7b]、化合物[7c]、化合物[7d]、化合物[7e]を試料として、以下の手順で逆転写酵素阻害活性試験を行った。
種々の濃度の試料溶液30μlに反応用混合液10μl《50mMトリス−塩酸緩衝液(pH8.0)、10mM DTT、100mM 塩化カリウム、6mM塩化マグネシウム、2μg/ml Poly(A)p(dT)15、0.37μM3H−dTTP、10μMdTTP、グリセロール:水=25:16》、酵素溶液10μl《50mMトリス−塩酸緩衝液(pH8.0)、10mM DTT、200mM塩化カリウム、50v/v%グリセロール、0.001U/ml HIV−1逆転写酵素》を添加して全量を50μlとした。軽く撹拌し、数秒間遠心した後、37℃で30分間インキュベートした。氷中に移し、EDTA 20μlを添加して撹拌し、反応を停止した。反応液50μlをイオン交換セルロースフィルターにスポットし、乾燥後に5%リン酸二ナトリウム(8回)、水(2回)、エタノール(2回)、ジエチルエーテル(2回)で洗浄した。イオン交換セルロースフィルターにシンチレーションカクテルを加えて、液体シンチレーションカウンターにて取り込まれた放射能活性を測定した。
【0049】
反応液における試料濃度を0.1〜500μg/mlの範囲で変化させて、阻害率50%のときの濃度をIC50とした。各試料のIC50は以下の表に示すとおりであった。
【0050】
【表1】
Figure 0004204794
【0051】
【発明の効果】
一般式(1)で表される化合物は低毒性で優れた逆転写酵素阻害活性を示す。このため、一般式(1)で表される化合物を含有する本発明の逆転写酵素阻害剤は、AIDSなどのレトロウィルスが関与する疾患の予防および治療に有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a reverse transcriptase inhibitor containing 3-alkylcatechol.
[0002]
[Prior art]
In recent years, acquired immunodeficiency syndrome (AIDS) and human adult T cell leukemia (HALT) have spread worldwide, and the establishment of these preventive and therapeutic methods is urgently required.
[0003]
Acquired immunodeficiency syndrome is known to be caused by human immunodeficiency virus (HIV), and human adult T cell leukemia is known to be caused by human T cell leukemia virus (Human T cell leukemia virus). These viruses are retroviruses characterized by having a reverse transcriptase that converts RNA into DNA.
[0004]
For this reason, various studies have been made to prevent the onset of AIDS and the like caused by viruses by inhibiting the activity of reverse transcriptase present in these retroviruses. As a result, various substances having reverse transcriptase inhibitory activity have been developed to date. For example, azidothymidine, dideoxycytidine, dideoxynocin are approved as AIDS therapeutic agents having reverse transcriptase inhibitory activity. However, these therapeutic agents have a problem of high production costs and strong side effects.
[0005]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a novel reverse transcriptase inhibitor by finding a reverse transcriptase inhibitory active compound having low toxicity and strong action.
[0006]
[Means for Solving the Problems]
As a result of intensive studies, the present inventors have found that if a specific compound is used, it is possible to provide a reverse transcriptase inhibitor having low toxicity and strong action, and the present invention has been achieved.
That is, the present invention provides a reverse transcriptase inhibitor containing a compound represented by the following general formula (1).
[Chemical formula 2]
Figure 0004204794
In the above formula, R is an alkyl group, preferably a linear alkyl group. The alkyl group represented by R preferably has 1 to 30 carbon atoms, more preferably 4 to 20 carbon atoms, and still more preferably 10 to 20 carbon atoms.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the reverse transcriptase inhibitor of the present invention will be described in detail. In the present specification, “to” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
[0008]
The reverse transcriptase inhibitor of the present invention contains a compound represented by the above general formula (1).
In the general formula (1), R represents an alkyl group. Alkyl group may be straight chain, be branched, may be a combination of these. Preferred is linear or branched, and most preferred is linear.
[0009]
As the linear alkyl group, a linear alkyl group having 1 to 50 carbon atoms is preferable, a linear alkyl group having 1 to 30 carbon atoms is more preferable, and a linear alkyl group having 1 to 20 carbon atoms is still more preferable. A linear alkyl group having 4 to 20 carbon atoms is more preferable, a linear alkyl group having 7 to 20 carbon atoms is still more preferable, a linear alkyl group having 10 to 20 carbon atoms is still more preferable, and a linear alkyl group having 10 to 20 carbon atoms is more preferable. Even more preferred are 16 straight chain alkyl groups .
[0010]
Preferred examples of the branched alkyl group include a group in which one or more hydrogen atoms of a linear alkyl group are substituted with a methyl group or an ethyl group. Specifically, isopropyl group, isobutyl group, isopentyl group, isohexyl group, isoheptyl group, isooctyl group, isononyl group, isodecyl group, isoundecyl group, isododecyl group, isotridecyl group, isotetradecyl group, isopentadecyl group, isohexadecyl group Preferred examples include a decyl group, an isopeptadecyl group, an isooctadecyl group, and an isononadecyl group. A secondary alkyl group can also be used as the branched alkyl group .
[0012]
The reverse transcriptase inhibitor of the present invention may contain one type of the compound of the general formula (1), or may contain two or more types in combination. Moreover, you may contain in combination with the compound which shows other reverse transcriptase inhibitory activity.
[0013]
The method for producing the compound represented by the general formula (1) is not particularly limited. Therefore, it may be obtained from natural products by means such as extraction, or may be synthesized by combining synthesis methods known to those skilled in the art. Moreover, you may obtain the compound represented by General formula (1) by converting the component extracted from the natural product by a well-known synthesis method. A compound obtained by any method is included in the scope of the present invention as long as it has a structure represented by the general formula (1).
[0014]
When the compound represented by the general formula (1) is obtained from a natural product, it is effective to use an extract of urushi. It is known that urushi contains 3-alkenyl catechols and 3-alkyl catechols called urushiol. Therefore, the desired 3-alkylcatechol can be purified from the extract of Urushi and used in the present invention as the compound of the general formula (1). The desired 3-alkylcatechol can also be obtained by purifying the urushi extract after hydrogenation or alkylation.
[0015]
When the compound represented by the general formula (1) is obtained by synthesis, it can be synthesized, for example, according to the synthesis route shown in the following Examples. Further, methods described in T. miyakoshi, Y. Saito, Y. Du, Yukagaku, 39, 660 (1990) and JP-A 63-68533 can also be referred to.
[0016]
The reverse transcriptase inhibitor of the present invention can be effectively used for the treatment or prevention of diseases involving retroviruses such as HIV. The reverse transcriptase inhibitor of the present invention can also be used as a medicament for suppressing or delaying the onset of disease after retrovirus infection. Furthermore, the reverse transcriptase inhibitor of the present invention can also be used as a functional food intended for these actions.
[0017]
The form of the reverse transcriptase inhibitor of the present invention is not particularly limited, and when used as a pharmaceutical, it can be administered orally or parenterally. For example, rectal administration, intranasal administration, buccal administration, sublingual administration, intravaginal administration, intramuscular administration, subcutaneous administration, and intravenous administration can be performed. Among them, the reverse transcriptase inhibitor of the present invention is preferably administered orally, subcutaneously or transdermally.
[0018]
As preparations suitable for oral administration, tablets, capsules, powders, fine granules, granules, solutions, syrups and the like can be mentioned. As preparations suitable for parenteral administration, injections, drops, suppositories , Inhalants, transdermal absorbents, transmucosal absorbents, patches and the like. The injection may be used for any of intravenous injection, intramuscular injection, subcutaneous injection, infusion and the like. The reverse transcriptase inhibitor of the present invention is particularly preferably any of oral preparations, injections and patches.
[0019]
If necessary, pharmacologically and pharmaceutically acceptable additives can be added to the reverse transcriptase inhibitor of the present invention. For example, excipients such as lactose, D-mannitol, corn starch and crystalline cellulose; disintegrating agents or disintegrating aids such as carboxymethylcellulose and carboxymethylcellulose calcium; binders such as polyvinylpyrrolidone, hydroxypropylcellulose and hydroxypropylmethylcellulose; talc Lubricants such as magnesium stearate; Bases such as polyethylene glycol; Coating agents such as sucrose, titanium oxide and hydroxypropylmethylcellulose; Isotonic agents such as salt, glucose and glycerin; Dye; Diluent; A solubilizing agent, a pH adjuster, a stabilizer, a propellant, an adhesive, a wetting agent, and the like can be used.
[0020]
By using these additives in appropriate combinations, the reverse transcriptase inhibitor of the present invention can have various additional functions. For example, the active ingredient can be designed so as to be released as required. It can also be designed so that the active ingredient is released intensively at the required location in the body. Such sustained-release preparations and drug delivery systems can be designed and manufactured according to well-known methods.
[0021]
The dosage of the reverse transcriptase inhibitor of the present invention is appropriately determined according to various conditions such as the purpose of treatment or prevention, the sex, weight, age, type and degree of disease, dosage form, administration route, number of administrations, etc. of the patient. decide. For example, in the case of oral administration, the active ingredient can be administered at a dose of 0.01 to 1,000 mg / kg body weight / day, once a day or several times a day, but is limited to this range. is not.
[0022]
The compound of the general formula (1) can be included in various foods to make a functional food. For example, a functional food having reverse transcriptase inhibitory activity by containing an active ingredient in the range of about 0.1 to 99% by weight in tea, soft drinks, juice, candy, starchy food, various processed foods, etc. can do.
[0023]
【Example】
The features of the present invention will be described more specifically with reference to the following examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the specific examples shown below.
[0024]
(Example)
In this example, five types of compounds [7a, 7b, 7c, 7d, 7e] were synthesized according to the following synthesis route.
[0025]
[Chemical 3]
Figure 0004204794
[0026]
In the above formula, Me represents a methyl group, Et represents an ethyl group, Tol represents a p-tolyl group, and DMF represents N, N-dimethylformamide.
[0027]
(1) Synthesis of 2,3-dimethoxybenzyl alcohol [2] 20.00 g (180.50 mmol) of 2,3-dimethoxybenzaldehyde was dissolved in 200 ml of ethanol, and 3.80 g (90.30 mmol) of sodium borohydride was added. Stir at room temperature for 1 hour. After completion of the reaction, the solvent was distilled off under reduced pressure, the concentrated solution was poured into 200 ml of pure water, and the product was extracted with 300 ml of diethyl ether. The diethyl ether layer was washed once with 200 ml of saturated brine, dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. The residue was recrystallized from ethyl acetate and hexane to obtain 29.80 g (yield = 98.2%) of acicular crystalline 2,3-dimethoxybenzyl alcohol [2].
[0028]
(2) Synthesis of 2,3-dimethoxybenzyl bromide [3] Under a nitrogen atmosphere, 2,3-dihydroxybenzyl alcohol [2] (18.00 g, 107.00 mmol) was dissolved in diethyl ether, and 5 mL of pyridine was added and stirred. did. Thereafter, 4.20 ml (40.00 mmol) of phosphorus tribromide was slowly added dropwise at −10 ° C. and stirred at −10 ° C. for 5 minutes. After completion of the reaction, the reaction solution was poured into 200 ml of ice water, and the product was extracted with 300 ml of diethyl ether. The diethyl ether layer was washed successively with saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The concentrated solution was purified by silica gel column chromatography (developing solvent: hexane / ethyl acetate = 3/1) to obtain 19.60 g (yield = 90.0%) of 2,3-dimethoxybenzyl bromide [3]. .
[0029]
(3) Synthesis of 2,3-dimethoxybenzyl p-tolylsulfone [4] Under a nitrogen atmosphere, 2,3-dimethoxybenzyl bromide [3] (10.00 g, 43.50 mmol) was dissolved in 100 ml of methanol to prepare hydrogen carbonate. Sodium 15.0 g and sodium p-toluenesulfinate (8.50 g, 47.80 mmol) were added and stirred for 5 hours. After completion of the reaction, 200 ml of pure water was poured and the product was extracted with 300 ml of diethyl ether. The diethyl ether layer was washed with 200 ml of saturated brine, dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography (developing solvent: hexane / ethyl acetate = 3/1) to obtain 14.40 g (yield = 98.9%) of 2,3-dimethoxybenzyl p-tolylsulfone [4]. It was.
[0030]
(4) Synthesis of compound [5] by alkylation of 2,3-dimethoxybenzyl p-tolylsulfone [4] Under a nitrogen atmosphere, 50 ml of dry DMF was mixed with sodium hydride (15.48 mmol, 60% oil dispersion type reagent). -After washing three times with hexane, the solvent was distilled off under reduced pressure), and suspended in ice, 10 ml of DMF solution of 2,3-dimethoxybenzyl p-tolylsulfone [4] (10.32 mmol) Was added dropwise and stirred at 0 ° C. for 1 hour. To this, 10 ml of 1-bromoalkane (11.35 mmol) in DMF was slowly added dropwise and stirred at room temperature overnight. After completion of the reaction, the reaction solution was poured into 100 ml of water, and the product was extracted with 150 ml of ethyl acetate. Thereafter, the extract was washed with 100 ml of saturated brine, dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography (developing solvent: hexane / ethyl acetate = 3/1) to obtain Compound [5].
[0031]
Using 1-bromopropane as the above 1-bromoalkane, compound [5a] with n = 2 was obtained in a yield = 23.6%.
5a (n = 2): 1 H NMR (δ, CDCl 3 ): δ 0.84 (t, 3H, J = 7.3Hz, CH 2 C H 3 ), 1.14 (tq, 2H, C H 2 CH 3 ), 2.05 (dt, 2H, CHC H 2 ), 2.38 (s, 3H, ArCH 3 ), 3.55 (s, 3H, OCH 3 ), 3.80 (s, 3H, OCH 3 ), 4.82 (dd, 1H, J = 3.5 , 11.9Hz, ArCHSO 2 Tol), 6.84-7.50 (m, 3H, ArH); EIMS m / z 348 (MH + ).
[0032]
Using 1-bromohexane as the above 1-bromoalkane, compound [5b] with n = 5 was obtained with a yield = 86.7%.
5b (n = 5): 1 H NMR (δ, CDCl 3 ): δ 0.81 (t, 3H, J = 7.0Hz, CH 2 C H 3 ), 1.16-1.31 (m, 10H, (CH 2 ) 5 ), 2.38 (s, 3H, ArCH 3 ), 3.56 (s, 3H, OCH 3 ), 3.80 (s, 3H, OCH 3 ), 4.82 (dd, 1H, J = 3.5, 11.9Hz, ArCHSO 2 Tol), 6.84-7.27 (m, 3H, ArH); EIMS m / z 390 (MH + ).
[0033]
Using 1-bromooctane as the above 1-bromoalkane, compound [5c] with n = 7 was obtained in a yield = 67.1%.
5c (n = 7): 1 H NMR (δ, CDCl 3 ): δ 0.84 (t, 3H, J = 7.3Hz, CH 2 C H 3 ), 1.16-1.26 (m, 14H, (CH 2 ) 7 ), 2.38 (s, 3H, ArCH 3 ), 3.56 (s, 3H, OCH 3 ), 3.80 (s, 3H, OCH 3 ), 4.82 (dd, 1H, J = 3.6, 11.5Hz, ArCHSO 2 Tol), 6.84-7.27 (m, 3H, ArH); EIMS m / z 418 (MH + ).
[0034]
Using 1-bromodecane as the 1-bromoalkane, compound [5d] with n = 9 was obtained in a yield = 59.7%.
5d (n = 9): 1 H NMR (δ, CDCl 3 ): δ 0.87 (t, 3H, J = 6.5Hz, CH 2 C H 3 ), 1.16-1.20 (m, 18H, (CH 2 ) 9 ), 2.38 (s, 3H, ArCH 3 ), 3.56 (s, 3H, OCH 3 ), 3.80 (s, 3H, OCH 3 ), 4.80 (dd, 1H, J = 3.5, 11.9Hz, ArCHSO 2 Tol), 6.84-7.27 (m, 3H, ArH); EIMS m / z 446 (MH + ).
[0035]
Using 1-bromododecane as the above 1-bromoalkane, compound [5e] with n = 11 was obtained in a yield = 99.0%.
5e (n = 11): 1 H NMR (δ, CDCl 3 ): δ 0.88 (t, 3H, J = 7.3Hz, CH 2 C H 3 ), 1.16-1.28 (m, 22H, (CH 2 ) 11 ), 2.38 (s, 3H, ArCH 3 ), 3.56 (s, 3H, OCH 3 ), 3.80 (s, 3H, OCH 3 ), 4.82 (dd, 1H, J = 3.5, 11.9Hz, ArCHSO 2 Tol), 6.84-7.27 (m, 3H, ArH); EIMS m / z 474 (MH + ).
[0036]
(5) Synthesis of Compound [6] by Desulfonation Reaction Compound [5] (4.40 mmol) was dissolved in 50 ml of methanol, 15 g of 6% sodium amalgam was added, and the mixture was stirred at room temperature for 3 hours. After completion of the reaction, mercury was removed by celite filtration, and methanol was distilled off under reduced pressure. The residue was neutralized with 150 ml of 1N hydrochloric acid and the product was extracted with 200 ml of ethyl acetate. Thereafter, the extract was washed with 150 ml of saturated brine, dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography (developing solvent: hexane / ethyl acetate = 2/1) to obtain Compound [6].
[0037]
The above reaction was carried out using compound [5a] to obtain compound [6a] with n = 2 in yield = 90.0%.
6a (n = 2): 1 H NMR (δ, CDCl 3 ): δ 0.93 (t, 3H, J = 7.3Hz, CH 2 C H 3 ), 1.38 (tq, 2H, C H 2 CH 3 ), 1.57 (tt, 2H, CH 2 C H 2 CH 2 ), 2.62 (t, 2H, J = 7.7Hz, ArCH 2 ), 3.81 (s, 3H, OCH 3 ), 3.85 (s, 3H, OCH 3 ), 6.74-7.00 (m, 3H, ArH); EIMS m / z 194 (MH + ).
[0038]
The above reaction was carried out using compound [5b] to obtain compound [6b] with n = 5 in a yield = 99.1%.
6b (n = 5): 1 H NMR (δ, CDCl 3 ): δ 0.88 (t, 3H, J = 6.4Hz, CH 2 C H 3 ), 1.28-1.58 (m, 10H, (CH 2 ) 5 ), 2.61 (t, 2H, J = 7.7Hz, ArCH 2 ), 3.81 (s, 3H, OCH 3 ), 3.85 (s, 3H, OCH 3 ), 6.75-7.00 (m, 3H, ArH); EIMS m / z 236 (MH + ).
[0039]
The above reaction was carried out using compound [5c] to obtain compound [6c] with n = 7 in a yield = 83.6%.
6c (n = 7): 1 H NMR (δ, CDCl 3 ): δ 0.88 (t, 3H, J = 6.4Hz, CH 2 C H 3 ), 1.27-1.58 (m, 14H, (CH 2 ) 7 ), 2.62 (t, 2H, J = 8.0Hz, ArCH 2 ), 3.81 (s, 3H, OCH 3 ), 3.85 (s, 3H, OCH 3 ), 6.75-7.00 (m, 3H, ArH); EIMS m / z 264 (MH + ).
[0040]
The above reaction was carried out using compound [5d] to obtain compound [6d] with n = 9 in yield = 87.1%.
6d (n = 9): 1 H NMR (δ, CDCl 3 ): δ 0.88 (t, 3H, J = 6.4Hz, CH 2 C H 3 ), 1.26-1.60 (m, 18H, (CH 2 ) 9 ), 2.61 (t, 2H, J = 7.7Hz, ArCH 2 ), 3.81 (s, 3H, OCH 3 ), 3.85 (s, 3H, OCH 3 ), 6.75-7.00 (m, 3H, ArH); EIMS m / z 292 (MH + ).
[0041]
The above reaction was carried out using compound [5e] to obtain compound [6e] with n = 11 in yield = 78.4%.
6e (n = 11): 1 H NMR (δ, CDCl 3 ): δ 0.88 (t, 3H, J = 6.6Hz, CH 2 C H 3 ), 1.26-1.62 (m, 22H, (CH 2 ) 11 ), 2.61 (t, 2H, J = 7.7Hz, ArCH 2 ), 3.81 (s, 3H, OCH 3 ), 3.84 (s, 3H, OCH 3 ), 6.74-7.00 (m, 3H, ArH); EIMS m / z 320 (MH + ).
[0042]
(6) Synthesis of Compound [7] by Demethylation Reaction Under a nitrogen atmosphere, at −78 ° C., 5 ml of a dichloromethane solution of boron tribromide (11.00 mmol) was mixed with 30 ml of a dichloromethane solution of compound [6] (3.33 mmol). And stirred at room temperature for 1 hour. After completion of the reaction, the reaction solution was poured into 140 ml of ice water, the product was extracted with 140 ml of dichloromethane, the extract was washed with 140 ml of saturated aqueous sodium hydrogen carbonate solution, then with 100 ml of saturated brine, dried over anhydrous sodium sulfate, and the solvent was removed. Distilled off under reduced pressure. The residue was purified by silica gel column chromatography (developing solvent: hexane / ethyl acetate = 1/1) to obtain 1,2-dihydroxyphenyl-3-alkane [7].
[0043]
The above reaction was carried out using compound [6a] to obtain 1,2-dihydroxyphenyl-3-butane [7a] in a yield = 90.6%.
7a (n = 2): 1 H NMR (δ, CDCl 3 ): δ 0.94 (t, 3H, J = 7.3Hz, CH 2 C H 3 ), 1.39 (qt, 2H, C H 2 CH 3 ), 1.6 (tt, 2H, ArCH 2 C H 2 ), 2.61 (t, 2H, J = 7.6Hz, ArCH 2 ), 5.16 (2s, 2H, OH), 6.71 (s, 3H, ArH); EIMS m / z 166 (MH + ).
[0044]
The above reaction was carried out using compound [6b], and 1,2-dihydroxyphenyl-3-heptane [7b] was obtained in a yield = 86.1%.
7b (n = 5): 1 H NMR (δ, CDCl 3 ): δ 0.88 (t, 3H, J = 7.3Hz, CH 2 C H 3 ), 1.28-1.60 (m, 10H, (CH 2 ) 5 ), 2.60 (t, 2H, J = 7.7Hz, ArCH 2 ), 5.11 (s, 1H, OH), 5.13 (s, 1H, OH), 6.71 (s, 3H, ArH); EIMS m / z 208 ( MH + ).
[0045]
The above reaction was carried out using compound [6c], and 1,2-dihydroxyphenyl-3-nonane [7c] was obtained with a yield = 92.4%.
7c (n = 7): 1 H NMR (δ, CDCl 3 ): δ 0.88 (t, 3H, J = 6.8Hz, CH 2 C H 3 ), 1.27-1.60 (m, 14H, (CH 2 ) 7 ), 2.60 (t, 2H, J = 7.7Hz, ArCH 2 ), 5.12 (s, 2H, OH), 6.71 (s, 3H, ArH); EIMS m / z 208 (MH + ).
[0046]
The above reaction was carried out using compound [6d], and 1,2-dihydroxyphenyl-3-dodecane [7d] was obtained in a yield = 78.9%.
7d (n = 9): 1 H NMR (δ, CDCl 3 ): δ 0.89 (t, 3H, J = 6.8Hz, CH 2 C H 3 ), 1.26-1.61 (m, 18H, (CH 2 ) 9 ), 2.60 (t, 2H, J = 7.6Hz, ArCH 2 ), 5.20 (s, 1H, OH), 5.28 (s, 1H, OH), 6.71 (s, 3H, ArH); EIMS m / z 208 ( MH + ).
[0047]
The above reaction was carried out using compound [6e], and 1,2-dihydroxyphenyl-3-tridecane [7e] was obtained in a yield = 91.0%.
7e (n = 11): 1 H NMR (δ, CDCl 3 ): δ 0.88 (t, 3H, J = 6.5Hz, CH 2 C H 3 ), 1.25-1.67 (m, 22H, (CH 2 ) 11 ), 2.60 (t, 2H, J = 7.7Hz, ArCH 2 ), 5.10 (s, 1H, OH), 5.14 (s, 1H, OH), 6.72 (s, 3H, ArH); EIMS m / z 208 ( MH + ).
[0048]
(Test example)
Using the compound [7a], compound [7b], compound [7c], compound [7d], and compound [7e] obtained in the examples as samples, a reverse transcriptase inhibitory activity test was performed according to the following procedure.
30 μl of sample solution of various concentrations, 10 μl of reaction mixture << 50 mM Tris-HCl buffer (pH 8.0), 10 mM DTT, 100 mM potassium chloride, 6 mM magnesium chloride, 2 μg / ml Poly (A) p (dT) 15 , 0.37 μM 3 H-dTTP, 10 μM dTTP, glycerol: water = 25: 16, enzyme solution 10 μl << 50 mM Tris-HCl buffer (pH 8.0), 10 mM DTT, 200 mM potassium chloride, 50 v / v% glycerol, 0. 001 U / ml HIV-1 reverse transcriptase was added to make a total volume of 50 μl. The mixture was gently stirred, centrifuged for several seconds, and then incubated at 37 ° C. for 30 minutes. The reaction was stopped by transferring to ice and adding 20 μl of EDTA and stirring. 50 μl of the reaction solution was spotted on an ion exchange cellulose filter, and after drying, washed with 5% disodium phosphate (8 times), water (2 times), ethanol (2 times), and diethyl ether (2 times). A scintillation cocktail was added to the ion exchange cellulose filter, and the radioactivity incorporated by a liquid scintillation counter was measured.
[0049]
The sample concentration in the reaction solution was changed in the range of 0.1 to 500 μg / ml, and the concentration when the inhibition rate was 50% was defined as IC 50 . The IC 50 of each sample was as shown in the table below.
[0050]
[Table 1]
Figure 0004204794
[0051]
【The invention's effect】
The compound represented by the general formula (1) has low toxicity and excellent reverse transcriptase inhibitory activity. Therefore, the reverse transcriptase inhibitor of the present invention containing the compound represented by the general formula (1) is useful for the prevention and treatment of diseases involving retroviruses such as AIDS.

Claims (5)

下記一般式(1)で表わされる化合物を含有する逆転写酵素阻害剤。
Figure 0004204794
(上式において、Rはアルキル基である。)
A reverse transcriptase inhibitor containing a compound represented by the following general formula (1).
Figure 0004204794
(In the above formula, R is an alkyl group.)
Rが直鎖アルキル基である請求項1に記載の逆転写酵素阻害剤。  The reverse transcriptase inhibitor according to claim 1, wherein R is a linear alkyl group. Rが炭素数1〜30のアルキル基である請求項1または2に記載の逆転写酵素阻害剤。  The reverse transcriptase inhibitor according to claim 1 or 2, wherein R is an alkyl group having 1 to 30 carbon atoms. Rが炭素数4〜20のアルキル基である請求項1または2に記載の逆転写酵素阻害剤。  The reverse transcriptase inhibitor according to claim 1 or 2, wherein R is an alkyl group having 4 to 20 carbon atoms. Rが炭素数10〜20のアルキル基である請求項1または2に記載の逆転写酵素阻害剤。  The reverse transcriptase inhibitor according to claim 1 or 2, wherein R is an alkyl group having 10 to 20 carbon atoms.
JP2002045552A 2002-02-22 2002-02-22 Reverse transcriptase inhibitor Expired - Fee Related JP4204794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002045552A JP4204794B2 (en) 2002-02-22 2002-02-22 Reverse transcriptase inhibitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002045552A JP4204794B2 (en) 2002-02-22 2002-02-22 Reverse transcriptase inhibitor

Publications (2)

Publication Number Publication Date
JP2003238395A JP2003238395A (en) 2003-08-27
JP4204794B2 true JP4204794B2 (en) 2009-01-07

Family

ID=27784356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002045552A Expired - Fee Related JP4204794B2 (en) 2002-02-22 2002-02-22 Reverse transcriptase inhibitor

Country Status (1)

Country Link
JP (1) JP4204794B2 (en)

Also Published As

Publication number Publication date
JP2003238395A (en) 2003-08-27

Similar Documents

Publication Publication Date Title
CN1138983A (en) Preparation of drug composition
US20140073594A1 (en) Glycomimetic compounds and methods to inhibit infection by hiv
WO1997009977A1 (en) Specific cyclooxygenase 2 inhibitor and anti-inflammatory agent
US20060094755A1 (en) Novel quinoline-based metal chelators as antiviral agents
EP4159211A1 (en) Compound exhibiting physiological activity such as antiviral activity
JPH04300834A (en) Synergistic action of hiv reverse transcriptase inhibitor
EP1355887B1 (en) Pyrimidine acyclonucleoside derivatives, preparation method and use thereof
EP0087378B1 (en) Oxime-ethers of alkylamino alcohols as medicaments, compounds and process for their preparation
US4916151A (en) Method of treating parkinson&#39;s syndrome
EP1066235A1 (en) Synthetic endogenous cannabinoid analogues and uses thereof
CA1265818A (en) Nonaromatic fluoroallylamine mao inhibitors
IE66980B1 (en) Novel neplanocin derivatives
JP4204794B2 (en) Reverse transcriptase inhibitor
JPH02218654A (en) Benzoic acid derivative, production thereof and drug containing the same
LU86770A1 (en) NOVEL PURINE DERIVATIVES, THEIR PREPARATION AND THEIR USE AS MEDICAMENTS
JP4018343B2 (en) Compound having reverse transcriptase inhibitory activity and reverse transcriptase inhibitor
JP7084591B2 (en) A nucleoside derivative or a salt thereof, and a pharmaceutical composition containing the same.
RU2647576C1 (en) Cyclobutyl (s)-2-[[[r)-2-(6-aminopurin-9-yl)-1-methyl-etoxy]methyl-phenoxy-phosphoryl]amino]-propanoates, method of their production and application
EP0005091B1 (en) Monosubstituted piperazines, processes for their preparation and pharmaceutical compositions containing them
JP3723023B2 (en) Compound having reverse transcriptase inhibitory activity and reverse transcriptase inhibitor
WO1992019638A1 (en) 1-β-D-ARABINOFURANOSYL-(E)-5-(2-HALOGENOVINYL)-URACIL DERIVATIVE
FR2470110A1 (en) DECRAPENYLAMINE DERIVATIVES, THEIR ACID ADDITION SALTS AND PHARMACEUTICAL COMPOSITION COMPRISING THESE PRODUCTS
EP0072761B1 (en) Decarboxylase-inhibiting fluorinated alkane diamine derivatives
CS208752B2 (en) Method of making the r-n-(2-fenyl-2-hydroxyethyl)-3-fenyl propylamines
WO2004080453A1 (en) Antihepatitis c virus agent and anti-hiv agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4204794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees