JP4202853B2 - Laser welding method - Google Patents

Laser welding method Download PDF

Info

Publication number
JP4202853B2
JP4202853B2 JP2003271537A JP2003271537A JP4202853B2 JP 4202853 B2 JP4202853 B2 JP 4202853B2 JP 2003271537 A JP2003271537 A JP 2003271537A JP 2003271537 A JP2003271537 A JP 2003271537A JP 4202853 B2 JP4202853 B2 JP 4202853B2
Authority
JP
Japan
Prior art keywords
laser
irradiation
light
laser beam
irradiation unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003271537A
Other languages
Japanese (ja)
Other versions
JP2005028784A (en
Inventor
松本  聡
卓 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2003271537A priority Critical patent/JP4202853B2/en
Publication of JP2005028784A publication Critical patent/JP2005028784A/en
Application granted granted Critical
Publication of JP4202853B2 publication Critical patent/JP4202853B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • B29C65/1661Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined scanning repeatedly, e.g. quasi-simultaneous laser welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1664Laser beams characterised by the way of heating the interface making use of several radiators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/812General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • B29C66/8126General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps characterised by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • B29C66/81266Optical properties, e.g. transparency, reflectivity
    • B29C66/81267Transparent to electromagnetic radiation, e.g. to visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/84Specific machine types or machines suitable for specific applications
    • B29C66/863Robotised, e.g. mounted on a robot arm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9121Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
    • B29C66/91211Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature with special temperature measurement means or methods
    • B29C66/91212Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature with special temperature measurement means or methods involving measurement means being part of the welding jaws, e.g. integrated in the welding jaws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9121Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
    • B29C66/91221Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91411Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the parts to be joined, e.g. the joining process taking the temperature of the parts to be joined into account
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91441Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature the temperature being non-constant over time
    • B29C66/91443Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature the temperature being non-constant over time following a temperature-time profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9161Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
    • B29C66/91641Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux the heat or the thermal flux being non-constant over time
    • B29C66/91643Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux the heat or the thermal flux being non-constant over time following a heat-time profile
    • B29C66/91645Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux the heat or the thermal flux being non-constant over time following a heat-time profile by steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91951Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to time, e.g. temperature-time diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • B29C66/91931Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to the fusion temperature or melting point of the material of one of the parts to be joined
    • B29C66/91933Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to the fusion temperature or melting point of the material of one of the parts to be joined higher than said fusion temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • B29C66/91941Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to Tg, i.e. the glass transition temperature, of the material of one of the parts to be joined
    • B29C66/91943Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to Tg, i.e. the glass transition temperature, of the material of one of the parts to be joined higher than said glass transition temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/96Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process
    • B29C66/961Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process involving a feedback loop mechanism, e.g. comparison with a desired value

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Robotics (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser welding method which can firmly weld an object to be welded when a resin is welded by being irradiated with laser beams several times. <P>SOLUTION: A work 6, after being irradiated with the first laser beams L1 emitted from the first irradiation part 3A, is irradiated with the second laser beams L2 emitted from the second irradiation part 3B to be welded. The intensity of the second laser beams L2 is adjusted at laser beam intensity to be a temperature lower than a temperature which is given to the light absorbing resin layer 6B of the work 6 by the first laser beams L1. The work 6 melted by the first laser beams L1 is irradiated with the second laser beams L2 so that internal stress by distortion is relaxed to make firm welding. <P>COPYRIGHT: (C)2005,JPO&amp;NCIPI

Description

本発明は、重ね合わせた樹脂などの被溶接物に対して相対的にレーザ照射手段を移動させながら、レーザ照射手段から被溶接物にレーザ光を照射して被溶接物を溶接するレーザ溶接方法に関する。   The present invention relates to a laser welding method for welding a workpiece by irradiating the workpiece with laser light from the laser irradiation unit while moving the laser irradiation unit relative to the workpiece such as superimposed resin. About.

レーザ光を透過する光透過性樹脂と、レーザ光を吸収して溶融する光吸収性樹脂とを重ね合わせてなるワークに、レーザ溶接を施す方法として特公昭62−49850号公報(特許文献1)に開示された接合方法がある。この接合方法は、レーザ光に対して非吸収性の樹脂と吸収性の樹脂とを重ね合わせ、非吸収性の樹脂側からレーザ光を照射して両方の樹脂を接合するというものである。   Japanese Patent Publication No. 62-49850 (Patent Document 1) discloses a method of performing laser welding on a workpiece formed by superposing a light-transmitting resin that transmits laser light and a light-absorbing resin that absorbs and melts laser light. There is a bonding method disclosed in the above. In this bonding method, a non-absorbing resin and an absorptive resin are superposed on the laser beam, and both the resins are bonded by irradiating the laser beam from the non-absorbing resin side.

他方、特開平10−111471号公報(特許文献2)においては、2本のレーザビームを用いたワークの溶接方法が開示されている。この溶接方法は、ミラーによってレーザ光を2分割し、この分割された2本のレーザ光によって金属などの被溶接部材を溶接するというものである。
特公昭62−49850号公報 特開平10−111471号公報
On the other hand, Japanese Patent Laid-Open No. 10-111471 (Patent Document 2) discloses a workpiece welding method using two laser beams. In this welding method, a laser beam is divided into two by a mirror, and a member to be welded such as a metal is welded by the two divided laser beams.
Japanese Examined Patent Publication No. 62-49850 JP-A-10-111471

ところで、上記特許文献1に開示されたレーザ溶接方法などにおいては、両方の樹脂を強固に接合することが望まれる。このような強固な接合を行うために、上記特許文献2に開示されるように、2本のレーザ光を用いてレーザ溶接することが考えられる。   By the way, in the laser welding method etc. which were indicated by the above-mentioned patent documents 1, it is desirable to join both resin firmly. In order to perform such strong bonding, it is conceivable to perform laser welding using two laser beams as disclosed in Patent Document 2 above.

ところが、単に2本のレーザビームを用いて複数回のレーザ照射を行ったとしても、高い溶接強度を得ることができるとは限らない。このため、樹脂材料に対して2本のレーザビームを用いた際の有効な溶接条件等については、検討する余地があるものであった。   However, even if laser irradiation is performed a plurality of times using only two laser beams, high welding strength cannot always be obtained. For this reason, there is room for studying effective welding conditions and the like when two laser beams are used for the resin material.

そこで、本発明の課題は、複数回のレーザ照射を行うことにより、樹脂をレーザ溶接するにあたり、被溶接物を強固に溶接することができるレーザ溶接方法を提供することにある。   Then, the subject of this invention is providing the laser welding method which can weld a to-be-welded object firmly in performing laser welding of resin by performing laser irradiation several times.

上記課題を解決した本発明に係るレーザ溶接方法は、レーザ光を透過する光透過性樹脂とレーザ光を吸収して溶融する光吸収性樹脂とを重ね合わせてなる被溶接物に対して相対的に移動するレーザ照射手段から被溶接物にレーザ光を照射し、光吸収性樹脂を溶融させて、光透過性樹脂と光吸収性樹脂とを溶接するレーザ溶接方法であって、レーザ照射手段から出射されたレーザ光を光透過性樹脂側から光吸収性樹脂に対して照射する第1照射を行い、光透過性樹脂および光吸収性樹脂を溶融させた後、光透過性樹脂および光吸収性樹脂が冷えて固化し、溶着される前に、レーザ光によって光吸収性樹脂が与えられる温度よりも低温となるレーザ光強度のレーザ光を、レーザ照射手段から再度照射する第2照射を行うことを特徴とする。 The laser welding method according to the present invention that has solved the above-mentioned problems is relative to an object to be welded formed by superposing a light-transmitting resin that transmits laser light and a light-absorbing resin that absorbs and melts the laser light. A laser welding method of irradiating an object to be welded with laser light from a laser irradiation means moving to melt a light-absorbing resin and welding the light-transmitting resin and the light-absorbing resin, from the laser irradiation means First irradiation is performed to irradiate the light-absorbing resin with the emitted laser light from the light-transmitting resin side, and after melting the light-transmitting resin and the light-absorbing resin, the light-transmitting resin and the light-absorbing resin Before the resin cools and solidifies and is welded, a second irradiation is performed in which laser light having a laser beam intensity lower than the temperature at which the light-absorbing resin is applied by the laser beam is irradiated again from the laser irradiation unit. It is characterized by.

本発明に係るレーザ溶接方法においては、レーザ照射手段からレーザ光を照射して光吸収性樹脂および光透過性樹脂を溶融させた後、これらが冷えて固化し、溶着される前に再度レーザ光を照射している。このときのレーザ光のレーザ強度は、先のレーザ光によって光吸収性樹脂が与えられる温度よりも低温となるレーザ光強度とされている。このため、強固な溶接をするために作用時間(溶接時間)を長くしても、樹脂に過大な熱が加わることによって生じる樹脂の溶解による被溶接物の損傷や溶接後の美観を損なうなどの事態を防止することができる。さらに、焼鈍しと同様の作用により、光吸収性樹脂および光透過性樹脂の溶接時の熱的な、歪みよって生じる両者の内部応力を緩和し、溶着後の脆化を防止することができるので、両者を強固に溶接することができる。   In the laser welding method according to the present invention, after laser light is irradiated from the laser irradiation means to melt the light-absorbing resin and the light-transmitting resin, the laser light is again cooled before being cooled and solidified and welded. Is being irradiated. The laser intensity of the laser beam at this time is set to a laser beam intensity that is lower than the temperature at which the light-absorbing resin is given by the previous laser beam. For this reason, even if the working time (welding time) is lengthened for strong welding, damage to the work piece due to melting of the resin caused by excessive heat applied to the resin and damage to the aesthetics after welding, etc. The situation can be prevented. Furthermore, because of the same action as annealing, it is possible to relieve both internal stress caused by thermal distortion during welding of light absorbing resin and light transmitting resin, and prevent embrittlement after welding. Both can be welded firmly.

ここで、レーザ照射手段による第1照射が済んだ後、第1照射を開始した位置と同一の位置にレーザ照射手段を移動させ、第1照射を行った溶接位置に対して、レーザ照射手段による第2照射を行う態様とすることができる。Here, after the first irradiation by the laser irradiation unit is completed, the laser irradiation unit is moved to the same position as the position where the first irradiation is started, and the welding position where the first irradiation is performed is performed by the laser irradiation unit. It can be set as the aspect which performs 2nd irradiation.

このように、先のレーザ照射手段と独立に移動する次のレーザ照射手段によって次のレーザ光の出射を行うことにより、両レーザ照射手段によるレーザ照射の時間や照射間隔を容易に調整することができ、被溶接物の性状等に合わせた溶接を容易に行うことができる。特に、溶接する部位が円や直角などの場合であっても、容易にレーザ照射手段を移動させることができる。また、本発明にいう先のレーザ照射手段とは独立に移動する次のレーザ照射手段としては、先のレーザ照射手段とは別個となる次のレーザ照射手段を用いることもできるし、先のレーザ照射手段と同一であり、たとえば被溶接物の他の部位を移動した後のレーザ照射手段を次のレーザ照射手段とすることもできる。   Thus, by emitting the next laser beam by the next laser irradiation means that moves independently of the previous laser irradiation means, it is possible to easily adjust the time and interval of laser irradiation by both laser irradiation means. It is possible to easily perform welding in accordance with the properties of the workpiece. In particular, the laser irradiation means can be easily moved even when the part to be welded is a circle or a right angle. As the next laser irradiation means that moves independently of the previous laser irradiation means in the present invention, the next laser irradiation means that is separate from the previous laser irradiation means can be used, or the previous laser irradiation means can be used. The laser irradiation means is the same as the irradiation means. For example, the laser irradiation means after moving another part of the workpiece can be used as the next laser irradiation means.

このとき、レーザ照射手段として、レーザ照射部を1つ備えるシングルスポットレーザ照射手段を用いることができる。レーザ照射部を1つ備えるシングルスポットのレーザ照射手段により、簡素な構成によるレーザ照射手段とすることができる。   At this time, a single spot laser irradiation unit including one laser irradiation unit can be used as the laser irradiation unit. With a single spot laser irradiating means having one laser irradiating portion, a laser irradiating means having a simple configuration can be obtained.

また、レーザ照射手段は、第1レーザ照射手段と、第1レーザ照射手段とは独立して移動する第2レーザ照射手段と、を備えており、第1レーザ照射手段によって第1照射を行い、続いて第2レーザ照射手段よって第2照射を行う態様とすることができる。このとき、第1レーザ照射手段および第2レーザ照射手段として、レーザ照射部を1つ備えるシングルスポットレーザ照射手段をそれぞれ用いる態様とすることができる。
さらに、第2照射を行うレーザ照射手段の速度を調整することにより、レーザ照射手段が照射するレーザ光による光吸収性樹脂の温度を調整する態様とすることができる。
The laser irradiation unit includes a first laser irradiation unit and a second laser irradiation unit that moves independently of the first laser irradiation unit, and performs the first irradiation by the first laser irradiation unit, Then, it can be set as the aspect which performs 2nd irradiation by a 2nd laser irradiation means . At this time, as the first laser irradiation unit and the second laser irradiation unit, a single spot laser irradiation unit including one laser irradiation unit may be used.
Furthermore, by adjusting the speed of the laser irradiation means that performs the second irradiation, the temperature of the light-absorbing resin by the laser light emitted by the laser irradiation means can be adjusted.

このように、レーザ照射手段の溶接速度を調整することによって、レーザ光による光吸収性樹脂の温度を調整することもできる。   Thus, the temperature of the light-absorbing resin by the laser beam can be adjusted by adjusting the welding speed of the laser irradiation means.

また、レーザ照射手段が、第1レーザ照射部および第1レーザ照射部に従属して移動する第2レーザ照射部を備えており、第1レーザ照射部からのレーザ光の出射が行われた後、第2レーザ照射部からの再度のレーザ光の出射が行われる態様とすることもできる。 In addition, the laser irradiation means includes a first laser irradiation unit and a second laser irradiation unit that moves depending on the first laser irradiation unit , and after laser light is emitted from the first laser irradiation unit Further, it is possible to adopt a mode in which the laser beam is emitted again from the second laser irradiation unit .

このように、先のレーザ照射手段に従属して移動する次のレーザ照射手段を用いることにより、レーザ照射手段を移動手段によって移動させる際に、その移動手段の構成を簡素なものとすることができる。   In this way, by using the next laser irradiation means that moves in dependence on the previous laser irradiation means, the structure of the moving means can be simplified when the laser irradiation means is moved by the movement means. it can.

レーザ照射手段として第1レーザ照射部および第2レーザ照射部を備えるダブルスポットレーザ照射手段を用い、第1レーザ照射部によって第1照射を行い第2レーザ照射部によって第2照射を行う態様とすることができる。 A mode in which a double spot laser irradiation unit including a first laser irradiation unit and a second laser irradiation unit is used as the laser irradiation unit, the first irradiation is performed by the first laser irradiation unit, and the second irradiation is performed by the second laser irradiation unit. can do.

また、第2照射におけるレーザ光の照射形状を調整することにより、第2照射におけるレーザ光による光吸収性樹脂の温度を調整する態様とすることができる。 Further, by adjusting the irradiation shape of the laser beam at the second irradiation may be the manner of adjusting the temperature of the light-absorbing resin by the laser beam at the second irradiation.

さらに、第2照射におけるレーザ光の照射幅を調整することにより、第2照射におけるレーザ光による光吸収性樹脂の温度を調整する態様とすることもできる。 Further, by adjusting the irradiation width of the laser beam at the second irradiation may be a manner of adjusting the temperature of the light-absorbing resin by the laser beam at the second irradiation.

これらのように、レーザ照射手段から照射されるレーザ光の照射形状や照射幅を調整することによっても、レーザ光による光吸収性樹脂の温度を調整することもできる。   As described above, the temperature of the light-absorbing resin by the laser light can also be adjusted by adjusting the irradiation shape and irradiation width of the laser light irradiated from the laser irradiation means.

本発明によれば、複数回のレーザ照射を行うことにより、樹脂をレーザ溶接するにあたり、被溶接物を強固に溶接することができるレーザ溶接方法を提供することができる。   According to the present invention, it is possible to provide a laser welding method capable of firmly welding an object to be welded when performing laser welding of a resin by performing laser irradiation a plurality of times.

以下、図面を参照して、本発明の好適な実施形態について詳細に説明する。なお、各図面は説明の理解を容易にするため、誇張ないし省略している部分があり、その寸法比率は必ずしも実際のそれとは一致しない。また、同一の要素については同一の符号を付し、重複する説明は省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In addition, each drawing has a part exaggerated or omitted for easy understanding of the description, and the dimensional ratio does not necessarily match the actual one. Moreover, the same code | symbol is attached | subjected about the same element and the overlapping description is abbreviate | omitted.

図1は、本発明の第1の実施形態に係るレーザ溶接方法を行うレーザ溶接装置の側面図である。図1に示すように、本実施形態に係るレーザ溶接方法に用いるレーザ溶接装置1は、本発明の移動手段である多軸ロボット2を備えている。多軸ロボット2は、複数の軸を有しており、この軸回りにアームが回転することにより、先端の取付部2Aを多方向に移動させることができる。多軸ロボット2の取付部2Aには、本発明のレーザ照射手段であるツインスポット照射ヘッド(以下、本実施形態において「照射ヘッド」という)3が取り付けられている。この照射ヘッド3には、半導体レーザ発振器4が接続されており、半導体レーザ発振器4から照射ヘッド3に対してレーザ光が供給される。照射ヘッド3の下方位置には、載置台5が配置されている。載置台5の上には、被溶接物であるワーク6を載置するステージ7が設けられており、ステージ7の上にワーク6が載置されている。   FIG. 1 is a side view of a laser welding apparatus that performs a laser welding method according to a first embodiment of the present invention. As shown in FIG. 1, a laser welding apparatus 1 used in the laser welding method according to this embodiment includes a multi-axis robot 2 that is a moving means of the present invention. The multi-axis robot 2 has a plurality of axes, and when the arm rotates about this axis, the tip mounting portion 2A can be moved in multiple directions. A twin spot irradiation head (hereinafter referred to as “irradiation head” in the present embodiment) 3 which is a laser irradiation means of the present invention is attached to the mounting portion 2A of the multi-axis robot 2. A semiconductor laser oscillator 4 is connected to the irradiation head 3, and laser light is supplied from the semiconductor laser oscillator 4 to the irradiation head 3. A mounting table 5 is disposed below the irradiation head 3. On the mounting table 5, a stage 7 on which a work 6 that is a workpiece to be welded is placed is provided, and the work 6 is placed on the stage 7.

また、図2に示すように、照射ヘッド3には、第1照射部3Aと第2照射部3Bとを備えており、それぞれの照射部3A,3Bに対して、半導体レーザ発振器4から独立してレーザ光が供給される。第1照射部3Aは、第2照射部3Bよりも、図1に矢印Fで示す溶接方向前方位置に配置されている。以後、「前方」、「後方」の表現については、特に示さない限り、この溶接方向を基準とする。これらの照射部3A,3Bからは、それぞれ独立して第1レーザビームL1,L2が出射される。このため、第1レーザビームL1,L2は、それぞれ独立したレーザ光強度を調整することができる。   As shown in FIG. 2, the irradiation head 3 includes a first irradiation unit 3A and a second irradiation unit 3B. The irradiation units 3A and 3B are independent from the semiconductor laser oscillator 4. The laser beam is supplied. The 1st irradiation part 3A is arrange | positioned rather than the 2nd irradiation part 3B in the welding direction front position shown by the arrow F in FIG. Hereinafter, unless otherwise indicated, the expression “front” and “back” is based on this welding direction. The first laser beams L1 and L2 are emitted independently from the irradiation units 3A and 3B, respectively. For this reason, the first laser beams L1 and L2 can adjust the independent laser beam intensities.

ワーク6は、レーザ光を透光する光透過性樹脂(レーザ透過性樹脂)からなる光透過性樹脂層6Aと、レーザ光を吸収して溶融する光吸収性樹脂(レーザ吸収性樹脂)からなる光吸収性樹脂層6Bとを備えている。光透過性樹脂層6Aは,光吸収性樹脂層6Bの上層とされており、載置台5には、光吸収性樹脂層6Bが接しており、その上層に光透過性樹脂層6Aが配置されている。   The workpiece 6 is made of a light-transmitting resin layer 6A made of a light-transmitting resin (laser-transmitting resin) that transmits laser light, and a light-absorbing resin (laser-absorbing resin) that absorbs and melts the laser light. And a light-absorbing resin layer 6B. The light transmitting resin layer 6A is an upper layer of the light absorbing resin layer 6B, the light absorbing resin layer 6B is in contact with the mounting table 5, and the light transmitting resin layer 6A is disposed thereon. ing.

さらに、載置台5には、圧力掛け治具8が設けられている。圧力掛け治具8は、ワーク6の前後位置に配置され、上下方向に延在するシリンダ9を4本備えている。シリンダ9は、載置台5に固定されたシリンダ筒9Aと、シリンダ筒9Aに出入りすることによって、シリンダ筒9Aとその先端との距離を伸縮させるシリンダロッド9Bとを備えている。シリンダロッド9Bがシリンダ筒9Aに出入りすることにより、シリンダロッド9Bの先端部が上下動する。シリンダロッド9Bの先端部には、押圧板10が取り付けられており、シリンダロッド9Bの先端部を上下動させることにより、押圧板10はシリンダ9の伸縮方向(上下方向)に移動させられる。また、押圧板10は、アルミニウムによって形成されており、ワーク6におけるレーザビームが照射される溶接部分を除いたほぼ全面に当接している。そして、シリンダ9を収縮させ、シリンダロッド9Bとともに押圧板10を下降させることにより、押圧板10の下面をワーク6に当接させ、光透過性樹脂層6Aと光吸収性樹脂層6Bとの溶接面同士を向かい合わせた状態で、両樹脂層6A,6Bを押圧する。このとき、押圧板10を用いていることにより、ワーク6に均等にステージ7に押圧してワーク6における両樹脂層6A,6B同士を確実に当接させることができる。なお、押圧板10としては、剛性を有するものが好適に用いられる。   Further, the mounting table 5 is provided with a pressure applying jig 8. The pressure application jig 8 includes four cylinders 9 that are arranged at the front and rear positions of the workpiece 6 and extend in the vertical direction. The cylinder 9 includes a cylinder cylinder 9A fixed to the mounting table 5, and a cylinder rod 9B that expands and contracts the distance between the cylinder cylinder 9A and its tip by entering and exiting the cylinder cylinder 9A. As the cylinder rod 9B enters and exits the cylinder cylinder 9A, the tip of the cylinder rod 9B moves up and down. A pressing plate 10 is attached to the tip of the cylinder rod 9B, and the pressing plate 10 is moved in the expansion / contraction direction (vertical direction) of the cylinder 9 by moving the tip of the cylinder rod 9B up and down. The pressing plate 10 is made of aluminum, and is in contact with almost the entire surface of the workpiece 6 except for the welded portion irradiated with the laser beam. Then, the cylinder 9 is contracted and the pressing plate 10 is moved down together with the cylinder rod 9B, whereby the lower surface of the pressing plate 10 is brought into contact with the work 6, and the light-transmitting resin layer 6A and the light-absorbing resin layer 6B are welded. The two resin layers 6A and 6B are pressed with the surfaces facing each other. At this time, by using the pressing plate 10, both the resin layers 6 </ b> A and 6 </ b> B in the work 6 can be reliably brought into contact with each other by pressing the work 7 evenly against the stage 7. In addition, as the press board 10, what has rigidity is used suitably.

さらに、圧力掛け治具8には、圧力印加装置11が接続されている。この圧力印加装置11を作動させることにより圧力掛け治具8のシリンダ9が作動し、ワーク6を押圧し、またはワーク6を押圧状態から解放する。他方、載置台5には、ワーク6におけるレーザビームの照射部の温度を計測する図示しない温度センサが設けられており、この温度センサによってワーク6におけるレーザビームが照射された部位の温度を監視している。また、半導体レーザ発振器4には、レーザコントローラ12が接続されている。レーザコントローラ12は、半導体レーザ発振器4から出力されるレーザ光のレーザ光強度を調整している。   Further, a pressure application device 11 is connected to the pressure application jig 8. By operating this pressure application device 11, the cylinder 9 of the pressure applying jig 8 is operated to press the workpiece 6 or release the workpiece 6 from the pressed state. On the other hand, the mounting table 5 is provided with a temperature sensor (not shown) for measuring the temperature of the laser beam irradiation portion of the workpiece 6, and the temperature of the portion irradiated with the laser beam on the workpiece 6 is monitored by this temperature sensor. ing. A laser controller 12 is connected to the semiconductor laser oscillator 4. The laser controller 12 adjusts the laser beam intensity of the laser beam output from the semiconductor laser oscillator 4.

以上の構成を有する本実施形態に係るレーザ溶接装置1によるレーザ溶接方法について説明する。レーザ溶接を行う際には、レーザ溶接装置1における載置台5の上にワーク6を載置する。ワーク6を載置したら、圧力掛け治具8によってワーク6を押圧する。このとき、ワーク6には、圧力掛け治具8によって圧力が均等に加えられる。圧力掛け治具8でワーク6を押圧したら、多軸ロボット2を駆動させて、照射ヘッド3を矢印Fで示す方向へ移動させる。そして、照射ヘッド3の第1照射部3Aから出射される第1レーザビームL1によってワーク6を照射する。第1照射部3Aから出射される第1レーザビームL1は、光吸収性樹脂層6Bの溶融温度以上になるレーザ光強度に調節されている。このように、第1レーザビームL1を出射すると、第1レーザビームL1が照射された部分では、上層の光透過性樹脂層6Aを透過し、光吸収性樹脂層6Bに到達し、第1レーザビームL1によって光吸収性樹脂層6Bが照射される。   The laser welding method by the laser welding apparatus 1 according to the present embodiment having the above configuration will be described. When performing laser welding, the workpiece 6 is mounted on the mounting table 5 in the laser welding apparatus 1. When the workpiece 6 is placed, the workpiece 6 is pressed by the pressure applying jig 8. At this time, pressure is evenly applied to the work 6 by the pressure applying jig 8. When the workpiece 6 is pressed by the pressure applying jig 8, the multi-axis robot 2 is driven to move the irradiation head 3 in the direction indicated by the arrow F. Then, the workpiece 6 is irradiated with the first laser beam L1 emitted from the first irradiation unit 3A of the irradiation head 3. The first laser beam L1 emitted from the first irradiation unit 3A is adjusted to a laser beam intensity that is equal to or higher than the melting temperature of the light absorbing resin layer 6B. As described above, when the first laser beam L1 is emitted, the portion irradiated with the first laser beam L1 passes through the upper light-transmitting resin layer 6A and reaches the light-absorbing resin layer 6B. The light absorbing resin layer 6B is irradiated with the beam L1.

光吸収性樹脂層6Bにおける第1レーザビームL1が照射された部位は、第1レーザビームL1によって溶融温度、たとえば融点以上にまで加熱されて溶融する。また、第1レーザビームL1によって光吸収性樹脂層6Bが加熱されることにより、光吸収性樹脂層6Bに生じた熱が光透過性樹脂層6Aに伝えられて、光透過性樹脂層6Aが溶融する。こうして、光吸収性樹脂層6Bおよび光透過性樹脂層6Aが溶融したとき、両樹脂層6A,6Bは圧力掛け治具8によって当接させられている。   The part irradiated with the first laser beam L1 in the light-absorbing resin layer 6B is heated and melted to a melting temperature, for example, a melting point or higher by the first laser beam L1. Further, when the light absorbing resin layer 6B is heated by the first laser beam L1, heat generated in the light absorbing resin layer 6B is transmitted to the light transmitting resin layer 6A, and the light transmitting resin layer 6A is Melt. Thus, when the light-absorbing resin layer 6B and the light-transmitting resin layer 6A are melted, the resin layers 6A and 6B are brought into contact with each other by the pressure applying jig 8.

続いて、多軸ロボット2によって、照射ヘッド3を溶接方向に移動させると、第1レーザビームL1が照射された位置に、第2照射部3Bから出射される第2レーザビームL2が照射される。第2照射部3Bから出射される第2レーザビームL2にレーザ光強度は、光吸収性樹脂層6Bの温度が、第1照射部3Aから第1レーザビームL1が照射されたときの温度よりも低くなるように調節される。具体的には、ワーク6の溶接部分が、図3に示すような温度変化をなすように、第1レーザビームL1,L2の強度を調整する。図3に示す温度変化では、初期の段階では時間経過とともに温度が上昇し、最初のピークである第1ピークP1が現れる。それから、一旦温度が低下した後、最下点M1で折り返して再び上昇を開始し、2つ目のである第2ピークP2が現れ、その後は徐々に温度が低下する。第1ピークP1は、溶着最適温度とするのが好適である。   Subsequently, when the irradiation head 3 is moved in the welding direction by the multi-axis robot 2, the second laser beam L2 emitted from the second irradiation unit 3B is irradiated to the position irradiated with the first laser beam L1. . The laser beam intensity of the second laser beam L2 emitted from the second irradiation unit 3B is such that the temperature of the light-absorbing resin layer 6B is higher than the temperature when the first laser beam L1 is irradiated from the first irradiation unit 3A. Adjusted to lower. Specifically, the intensities of the first laser beams L1 and L2 are adjusted so that the welded portion of the workpiece 6 changes in temperature as shown in FIG. In the temperature change shown in FIG. 3, in the initial stage, the temperature rises with time, and the first peak P1, which is the first peak, appears. Then, after the temperature is once lowered, it turns back at the lowest point M1 and starts to rise again, the second peak P2 as the second appears, and then the temperature gradually decreases. The first peak P1 is preferably set to the optimum welding temperature.

また、最下点M1と第2ピークP2との間に光吸収性樹脂層6Bの融点温度が存在する。第1ピークP1は、前方の第1レーザビームL1が照射されているときに現れるものであり、第2ピークP2は、後方の第2レーザビームL2が照射されているときに現れるものである。そして、第1ピークP1を中心とする山型をなす部分が前方の第1レーザビームL1が照射されている時間T1であり、第2ピークP2を中心とする山型をなす部分が後方の第2レーザビームL2が照射されている時間T2である。時間T1では、主に光吸収性樹脂層6Bが溶融して光透過性樹脂層6Aとの溶着が行われ、時間T2では、一旦溶着させたワーク6を再加熱する。   Further, the melting point temperature of the light absorbing resin layer 6B exists between the lowest point M1 and the second peak P2. The first peak P1 appears when the front first laser beam L1 is irradiated, and the second peak P2 appears when the rear second laser beam L2 is irradiated. And the part which makes the mountain shape centering on the 1st peak P1 is time T1 in which the front 1st laser beam L1 is irradiated, and the part which makes the mountain shape centering on the 2nd peak P2 is back 1st. This is the time T2 during which the two laser beams L2 are irradiated. At time T1, the light-absorbing resin layer 6B is mainly melted and welded to the light-transmitting resin layer 6A. At time T2, the once welded work 6 is reheated.

このように、第1レーザビームL1が照射されているときのワーク6の温度よりも、第2レーザビームL2が照射されているときのワーク6の温度を低くすることにより、溶接強度を高めることができる。この点について説明すると、従来のように、1つのレーザビームのみで加工を行う場合、十分な熱量を与えるためのレーザ光強度を上げるか、熱量を稼ぐためにレーザ光のスキャン速度を遅くすることが考えられる。しかし、単にレーザ光強度を上げるのみでは、樹脂に過大な熱が加わってしまい、樹脂が溶けすぎて被溶接物を損傷したり、溶接後の美観を損ねたりすることが懸念される。また、熱量を稼ぐためにレーザ光のスキャン速度を遅くすると、作業時間が長くなり効率的ではない。   Thus, the welding strength is increased by lowering the temperature of the workpiece 6 when the second laser beam L2 is irradiated than the temperature of the workpiece 6 when the first laser beam L1 is irradiated. Can do. To explain this point, when processing with only one laser beam as in the prior art, increase the laser beam intensity to give a sufficient amount of heat, or slow down the laser beam scanning speed to increase the amount of heat. Can be considered. However, simply increasing the laser beam intensity may cause excessive heat to be applied to the resin, causing the resin to melt excessively and damaging the work piece to be welded or deteriorating the appearance after welding. In addition, if the scanning speed of the laser beam is slowed down in order to increase the amount of heat, the work time becomes long and it is not efficient.

さらには、次のような問題も生じる。ワーク6における溶着界面ではレーザビームによる急加熱のための急激な体積膨張が起こる。この体積膨張が起こる際に、固体と液体の界面には大きな圧力が掛かり、その結果として歪みが生じる。1つのレーザビームでの溶接を行っている際に、その加工速度が速いと、熱源となるレーザビームはその場所からすぐに去ってしまうので、体積膨張を起こした部分に急冷却が起こる。このような急冷却が起こると、ワーク6が溶融したときに発生した歪みが緩和されることなく固化してしまう。そのため、固化した後においても歪みが残存してしまうことから、溶接強度が低いものとなってしまう。   Furthermore, the following problems also occur. At the welding interface in the workpiece 6, rapid volume expansion occurs due to rapid heating by the laser beam. When this volume expansion occurs, a large pressure is applied to the interface between the solid and the liquid, resulting in distortion. When welding with one laser beam is performed, if the processing speed is high, the laser beam as a heat source immediately leaves from the place, so that rapid cooling occurs in a portion where volume expansion has occurred. When such rapid cooling occurs, the distortion generated when the workpiece 6 is melted is solidified without being relaxed. For this reason, strain remains even after solidification, resulting in low welding strength.

これに対して、本実施形態に係るレーザ溶接装置1においては、2つの照射部3A,3Bを備える照射ヘッド3を有しており、これらの照射部3A,3Bからそれぞれレーザビームを出射している。このうち、前方の照射部3Aからは溶融最適温度となるレーザ光強度でワーク6を照射して、一旦ワーク6の溶着を行う。次に、後方の第2照射部3Bから、ガラス転移点温度以上の温度となるレーザ光強度の第2レーザビームL2が出射される。この後方の第2レーザビームL2をワーク6に照射してワーク6を再加熱することにより、適切な熱量で溶接時間(作用時間)を長くすることができる。それとともに、ワーク6に残った歪みによる内部応力を緩和することができるので、溶着後の脆化を防止することができる。   On the other hand, the laser welding apparatus 1 according to this embodiment has an irradiation head 3 including two irradiation units 3A and 3B, and emits laser beams from these irradiation units 3A and 3B, respectively. Yes. Among these, the workpiece 6 is irradiated from the front irradiation unit 3A with the laser beam intensity at the optimum melting temperature, and the workpiece 6 is once welded. Next, a second laser beam L2 having a laser beam intensity at a temperature equal to or higher than the glass transition temperature is emitted from the rear second irradiation unit 3B. By irradiating the workpiece 6 with the second laser beam L2 behind this and reheating the workpiece 6, the welding time (operation time) can be extended with an appropriate amount of heat. At the same time, internal stress due to strain remaining on the workpiece 6 can be relaxed, and thus embrittlement after welding can be prevented.

しかも、後方の第2レーザビームL2を照射していることから、溶融したワーク6の部分が固化されるまでに時間がかかることになる。したがって、ワーク6の溶融部分が、ワーク6における界面にある隙間に流動する時間があるため、界面における隙間が埋められるので、その分ワーク6を強固に溶接することができるといった効果も期待できる。   In addition, since the rear second laser beam L2 is irradiated, it takes time until the melted part of the work 6 is solidified. Therefore, since the melted portion of the workpiece 6 has time to flow in the gap at the interface of the workpiece 6, the gap at the interface is filled, so that the effect that the workpiece 6 can be strongly welded correspondingly can be expected.

このように、ワーク6の溶融温度以上の温度、たとえば溶着最適温度となるように先の第1レーザビームL1を照射部3Aに照射して、後の第2レーザビームL2では、ワークがガラス転移点以上の温度となる第2レーザビームL2を出射している。後の第2レーザビームL2でレーザ光強度が強すぎると、後の第2レーザビームL2が照射された後、過大な熱による被溶接物の損傷や美観を損ねることが懸念されるが、そのような事態は防止される。また、第2レーザビームL2の照射が終了した後、急激な冷却によって歪みが残ることも懸念されるが、体積膨張を最小限に抑えることによりワーク6の歪みを緩和することができる。このようにして、ワーク6における適切な熱量での溶接時間を長くして、しかも体積膨張に起因する歪みを緩和することができるので、被溶接物であるワーク6を強固に溶接することができる。   As described above, the irradiation portion 3A is irradiated with the first laser beam L1 so that the temperature is equal to or higher than the melting temperature of the workpiece 6, for example, the optimum welding temperature. The second laser beam L2 having a temperature higher than the point is emitted. If the laser beam intensity is too strong with the second laser beam L2 later, there is a concern that after the second laser beam L2 is irradiated, damage or aesthetics of the work piece due to excessive heat is impaired. Such a situation is prevented. Further, although there is a concern that distortion may remain due to rapid cooling after the irradiation with the second laser beam L2, the distortion of the workpiece 6 can be reduced by minimizing the volume expansion. In this way, the welding time with an appropriate amount of heat in the workpiece 6 can be lengthened, and the distortion caused by volume expansion can be relieved, so that the workpiece 6 that is the workpiece can be firmly welded. .

第1レーザビームL1が照射されているときのワーク6の温度よりも、第2レーザビームL2が照射されているときのワーク6の温度を低くするために、レーザ光強度を直接調整することができるが、その他の手段によることもできる。たとえば、第1レーザビームL1の照射形状と、第2レーザビームL2の照射形状とを適宜設定することができる。具体的には、図4(a)〜(f)に示す形状とすることができる。図4(a)に示す形状では、第1レーザビームL1の照射形状および第2レーザビームL2の照射形状がともに矩形であり、両者は重なり合っている。また、図4(b)に示す例では、第1レーザビームL1の照射形状および第2レーザビームL2の照射形状がともに矩形であり、両者は離間している。図4(c)に示す例では、第1レーザビームL1の照射形状は矩形、第2レーザビームL2の照射形状はだ円形であり、両者は重なり合っている。図4(d)に示す例では、第1レーザビームL1の照射形状は矩形、第2レーザビームL2の照射形状はだ円形であり、両者は離間している。図4(e)に示す例では、第1レーザビームL1の照射形状および第2レーザビームL2の照射形状がともにだ円形であり、両者は重なり合っている。図4(f)に示す例では、第1レーザビームL1の照射形状および第2レーザビームL2の照射形状がともに矩形であり、両者は離間している。また、図示はしないが、第1レーザビームL1の照射形状がだ円形であり、第2レーザビームL2の照射形状が矩形であり、両者は重なり合っており、または離間している態様とすることもできる。さらには、上記各例のだ円形に代えて、円形とするなどの態様とすることもできる。また、照射形状の大きさは、デフォーカスを行うことなどによって、容易に調整することができる。   In order to make the temperature of the workpiece 6 when the second laser beam L2 is irradiated lower than the temperature of the workpiece 6 when the first laser beam L1 is irradiated, the laser beam intensity can be directly adjusted. Yes, but by other means. For example, the irradiation shape of the first laser beam L1 and the irradiation shape of the second laser beam L2 can be set as appropriate. Specifically, the shapes shown in FIGS. 4A to 4F can be obtained. In the shape shown in FIG. 4A, the irradiation shape of the first laser beam L1 and the irradiation shape of the second laser beam L2 are both rectangular, and they overlap each other. In the example shown in FIG. 4B, the irradiation shape of the first laser beam L1 and the irradiation shape of the second laser beam L2 are both rectangular, and they are separated from each other. In the example shown in FIG. 4C, the irradiation shape of the first laser beam L1 is a rectangle, the irradiation shape of the second laser beam L2 is an oval shape, and they overlap each other. In the example shown in FIG. 4D, the irradiation shape of the first laser beam L1 is a rectangle, the irradiation shape of the second laser beam L2 is an ellipse, and they are separated from each other. In the example shown in FIG. 4E, the irradiation shape of the first laser beam L1 and the irradiation shape of the second laser beam L2 are both elliptical, and they overlap each other. In the example shown in FIG. 4F, the irradiation shape of the first laser beam L1 and the irradiation shape of the second laser beam L2 are both rectangular, and they are separated from each other. Although not shown, the irradiation shape of the first laser beam L1 is an elliptical shape, the irradiation shape of the second laser beam L2 is a rectangular shape, and both may overlap or be separated from each other. it can. Furthermore, instead of the elliptical shape in each of the above examples, it is possible to adopt a mode such as a circular shape. Further, the size of the irradiation shape can be easily adjusted by performing defocusing or the like.

これらの照射形状となる第1レーザビームL1および第2レーザビームL2によってワーク6を溶接する際に、ワーク6に与えられるレーザ光強度と距離との関係について説明する。図5には、第1レーザビームL1の照射部分および第2レーザビームL2の照射部分が重なり合っている場合の関係を示している。ここでいう距離とは、照射ヘッド3に対してワーク6が相対的に移動した距離を表している。図5に示す例のうち、図5(a)では、第1レーザビームL1の照射部分および第2レーザビームL2の照射部分のいずれもがだ円形の例を示し、そのときのグラフはガウシアン型となっている。図5(b)では、第1レーザビームL1の照射部分および第2レーザビームL2の照射部分のいずれもが矩形の例を示しており、そのグラフはトップハット型となっている。また、図5(c)では、第1レーザビームL1の照射部がだ円形、第2レーザビームL2の照射部分が矩形の例を示し、図5(d)では、第1レーザビームL1の照射部分が矩形、第2レーザビームL2の照射部分のいずれもがだ円形の例を示している。   The relationship between the laser beam intensity applied to the workpiece 6 and the distance when the workpiece 6 is welded by the first laser beam L1 and the second laser beam L2 having these irradiation shapes will be described. FIG. 5 shows the relationship when the irradiated portion of the first laser beam L1 and the irradiated portion of the second laser beam L2 overlap. The distance here represents the distance that the workpiece 6 has moved relative to the irradiation head 3. Among the examples shown in FIG. 5, FIG. 5A shows an example in which both the irradiated portion of the first laser beam L1 and the irradiated portion of the second laser beam L2 are elliptical, and the graph at that time is a Gaussian type. It has become. FIG. 5B shows an example in which both the irradiated portion of the first laser beam L1 and the irradiated portion of the second laser beam L2 are rectangular, and the graph is a top hat type. FIG. 5C shows an example in which the irradiation portion of the first laser beam L1 is an ellipse and the irradiation portion of the second laser beam L2 is a rectangle, and FIG. 5D shows the irradiation of the first laser beam L1. An example in which the portion is rectangular and the irradiated portion of the second laser beam L2 is an elliptical shape is shown.

また、図6においても同様に、第1レーザビームL1の照射部分と第2レーザビームL2の照射部分とが重なり合う例を示しているが、図6では、第1レーザビームL1の照射部分が、第2レーザビームL2の照射部分に完全に包含されている場合を示している。図6(a)では、第1レーザビームL1の照射部分および第2レーザビームL2の照射部分がともにだ円形の例を示し、図6(b)では、第1レーザビームL1の照射部分および第2レーザビームL2の照射部分のいずれもが矩形の例を示している。また、図6(c)では、第1レーザビームL1の照射部分がだ円形であり、第2レーザビームL2の照射部分が矩形の例を示し、図6(d)では、第1レーザビームL1の照射部分が矩形第2レーザビームL2の照射部分がだ円形の例を示している。   Similarly, FIG. 6 shows an example in which the irradiated portion of the first laser beam L1 and the irradiated portion of the second laser beam L2 overlap, but in FIG. 6, the irradiated portion of the first laser beam L1 is The case where it is completely included in the irradiation portion of the second laser beam L2 is shown. FIG. 6A shows an example in which the irradiated portion of the first laser beam L1 and the irradiated portion of the second laser beam L2 are both elliptical, and FIG. 6B shows the irradiated portion of the first laser beam L1 and the second irradiated portion. All of the irradiated portions of the two laser beams L2 are rectangular examples. FIG. 6C shows an example in which the irradiated portion of the first laser beam L1 is an oval and the irradiated portion of the second laser beam L2 is a rectangle. In FIG. 6D, the first laser beam L1 is shown. In this example, the irradiated portion of the rectangular second laser beam L2 is an oval shape.

さらに、図7においては、第1レーザビームL1の照射部分と第2レーザビームL2とが離間している場合の例を示している。図7(a)では、第1レーザビームL1の照射部分および第2レーザビームL2の照射部分のいずれもがだ円形の例を示し、図7(b)では、第1レーザビームL1の照射部分および第2レーザビームL2の照射部分のいずれもが矩形の例を示している。また、図7(c)では、第1レーザビームL1の照射部分がだ円形、第2レーザビームL2の照射部分が矩形の例を示し、図7(d)では、第1レーザビームL1の照射部分が矩形、第2レーザビームL2の照射部分がだ円形の例を示している。   Further, FIG. 7 shows an example in which the irradiated portion of the first laser beam L1 and the second laser beam L2 are separated from each other. FIG. 7A shows an example in which both the irradiation portion of the first laser beam L1 and the irradiation portion of the second laser beam L2 are elliptical, and FIG. 7B shows the irradiation portion of the first laser beam L1. Both of the irradiated portions of the second laser beam L2 are rectangular. FIG. 7C shows an example in which the irradiated portion of the first laser beam L1 is an ellipse and the irradiated portion of the second laser beam L2 is a rectangle. In FIG. 7D, the irradiated portion of the first laser beam L1 is shown. In this example, the portion is rectangular and the irradiated portion of the second laser beam L2 is oval.

また、図8においては、第1レーザビームL1の照射部分と第2レーザビームL2の照射部分を同一のレーザ光強度とするとともに、両者の形状を同一とし、さらに第1レーザビームL1の中に他のレーザビームを照射してビーム光強度を高めた例を示している。図8(a)では、第1レーザビームL1の照射部分および第2レーザビームL2の照射形状がだ円形であり、第1レーザビームL1の中に照射されるレーザビームの照射形状がだ円形の例を示す。また、図8(b)では、第1レーザビームL1の照射部分および第2レーザビームL2の照射形状が矩形であり、第1レーザビームL1の中に照射されるレーザビームの照射形状が矩形の例を示す。さらに、図8(c)では、第1レーザビームL1の照射部分および第2レーザビームL2の照射形状がだ円形であり、第1レーザビームL1の中に照射されるレーザビームの照射形状が矩形の例を示す。そして、図8(d)では、第1レーザビームL1の照射部分および第2レーザビームL2の照射形状が矩形であり、第1レーザビームL1の中に照射されるレーザビームの照射形状がだ円形の例を示す。   Further, in FIG. 8, the irradiated portion of the first laser beam L1 and the irradiated portion of the second laser beam L2 have the same laser light intensity, the shape of both is the same, and the first laser beam L1 includes An example in which the intensity of beam light is increased by irradiating with another laser beam is shown. In FIG. 8A, the irradiation portion of the first laser beam L1 and the irradiation shape of the second laser beam L2 are elliptical, and the irradiation shape of the laser beam irradiated into the first laser beam L1 is elliptical. An example is shown. In FIG. 8B, the irradiation portion of the first laser beam L1 and the irradiation shape of the second laser beam L2 are rectangular, and the irradiation shape of the laser beam irradiated into the first laser beam L1 is rectangular. An example is shown. Further, in FIG. 8C, the irradiation portion of the first laser beam L1 and the irradiation shape of the second laser beam L2 are elliptical, and the irradiation shape of the laser beam irradiated into the first laser beam L1 is rectangular. An example of In FIG. 8D, the irradiation portion of the first laser beam L1 and the irradiation shape of the second laser beam L2 are rectangular, and the irradiation shape of the laser beam irradiated into the first laser beam L1 is elliptical. An example of

このように、第1レーザビームL1の照射部分および第2レーザビームL2の照射部分の形状を変えることにより、ワーク6に照射されるレーザ光強度を調整することができる。   As described above, the intensity of the laser beam irradiated onto the workpiece 6 can be adjusted by changing the shapes of the irradiated portion of the first laser beam L1 and the irradiated portion of the second laser beam L2.

また、上記の例では、図3に示すように、2つの山が形成されるような温度変化をなすようにしたが、図9に示すように、1つの山が形成された後は、ある程度の時間、一定の温度を保ち、その後に温度を下降させる温度変化とすることもできる。このような一定の温度を保つ時間を持たせるためには、ワーク6を構成する材料の温度低下から逆算されたレーザビームのレーザ光強度分布を連続的に生成すればよい。具体的には、図10に示すように、ある程度光強度を上昇させた後、徐々に低下させていくようにする態様とすることができる。   Further, in the above example, as shown in FIG. 3, the temperature change is made so that two peaks are formed. However, after one peak is formed as shown in FIG. It is also possible to make a temperature change that keeps a constant temperature for a period of time and then lowers the temperature. In order to have a time for maintaining such a constant temperature, the laser beam intensity distribution of the laser beam calculated backward from the temperature decrease of the material constituting the workpiece 6 may be generated continuously. Specifically, as shown in FIG. 10, the light intensity can be increased to some extent and then gradually decreased.

このように、レーザビームの照射形状を調整することにより、第1レーザビームL1が照射されているときのワーク6の温度よりも、第2レーザビームL2が照射されているときのワーク6の温度を低くすることができる。また、照射形状を変えることなく、溶接方向に対する照射幅を調整したり、ワーク6に対する照射ヘッド3の相対的な速度を調整したりすることにより、温度調整を行うこともできる。   In this way, by adjusting the irradiation shape of the laser beam, the temperature of the workpiece 6 when the second laser beam L2 is irradiated is higher than the temperature of the workpiece 6 when the first laser beam L1 is irradiated. Can be lowered. Moreover, temperature adjustment can also be performed by adjusting the irradiation width with respect to the welding direction or adjusting the relative speed of the irradiation head 3 with respect to the workpiece 6 without changing the irradiation shape.

次に、本発明の第2の実施形態について説明する。図11は、本実施形態に係るレーザ溶接方法を行うレーザ溶接装置の側面図である。本実施形態に係るレーザ溶接装置15は、図1に示す上記第1の実施形態に係るレーザ溶接装置1ではツインスポットの照射ヘッドを有しているのに対して、本実施形態では、照射部が1つのみからなるシングルスポットの照射ヘッド16を有している。その他の構成については、上記第1の実施形態に係るレーザ溶接装置1とほぼ同一である。   Next, a second embodiment of the present invention will be described. FIG. 11 is a side view of a laser welding apparatus that performs the laser welding method according to the present embodiment. The laser welding apparatus 15 according to the present embodiment has a twin spot irradiation head in the laser welding apparatus 1 according to the first embodiment shown in FIG. Has a single spot irradiation head 16 consisting of only one. About another structure, it is substantially the same as the laser welding apparatus 1 which concerns on the said 1st Embodiment.

次に、本実施形態に係るレーザ溶接装置によるレーザ溶接方法を説明する。本実施形態に係るレーザ溶接装置15においては、多軸ロボット2を作動させることにより、多軸ロボット2の取付部2Aに取り付けられた照射ヘッド16をワーク6の溶接部に沿って移動させる。このとき、照射ヘッド16には、半導体レーザ発振器4からレーザ光が供給され照射ヘッド16からワーク6に対してレーザビームが照射される。このレーザビームによって、ワーク6における光吸収性樹脂層6Bが溶融しワーク6の溶着が開始される。それから、多軸ロボット2を駆動することにより、ワーク6の溶融部分が固化して溶着される前に、照射ヘッド16を再度同一の溶接部分に移動させ、その溶接部分にレーザ光を再度照射する。このレーザ光の再度の照射の際には、先のレーザ光によって光吸収性樹脂層6Bが与えられる温度よりも低温となるレーザ光強度のレーザ光を、照射ヘッド16から照射する。このような温度となるレーザ光強度のレーザ光を照射することにより、強固な溶接をするために作用時間(溶接時間)を長くしても、樹脂に過大な熱が加わることによって生じる樹脂の溶解による被溶接物の損傷や溶接後の美観を損なうなどの事態を防止することができる。さらに、光吸収性樹脂層6Bおよび光透過性樹脂層6Aの溶接時の熱的な歪みにより生じる両者の内部応力を緩和することができる。したがって、溶着後の脆化を防止することができるので、強固な溶接を実現することができる。   Next, a laser welding method using the laser welding apparatus according to this embodiment will be described. In the laser welding apparatus 15 according to the present embodiment, the irradiation head 16 attached to the attachment portion 2A of the multi-axis robot 2 is moved along the weld portion of the workpiece 6 by operating the multi-axis robot 2. At this time, a laser beam is supplied from the semiconductor laser oscillator 4 to the irradiation head 16, and the workpiece 6 is irradiated with a laser beam from the irradiation head 16. By this laser beam, the light-absorbing resin layer 6B in the workpiece 6 is melted and welding of the workpiece 6 is started. Then, by driving the multi-axis robot 2, before the melted portion of the workpiece 6 is solidified and welded, the irradiation head 16 is moved again to the same welded portion, and the welded portion is irradiated again with laser light. . When the laser beam is irradiated again, the irradiation head 16 irradiates a laser beam having a laser beam intensity that is lower than the temperature at which the light-absorbing resin layer 6B is given by the previous laser beam. Even if the working time (welding time) is increased to irradiate the laser beam with such a laser beam intensity at such a temperature, the resin melts due to excessive heat applied to the resin. It is possible to prevent a situation such as damage to an object to be welded due to or damage to the beauty after welding. Furthermore, both internal stresses caused by thermal distortion during welding of the light-absorbing resin layer 6B and the light-transmitting resin layer 6A can be reduced. Therefore, embrittlement after welding can be prevented, so that strong welding can be realized.

このようなシングルスポットの照射ヘッド16を用いて再度の照射を行う際には、レーザ光の照射形状はたとえば正方形や円形とすることができるが、その他の形状とすることができる。たとえば、図12(a)に示すように、照射形状L3を長方形状とし、その長辺を溶接方向に配置した態様とすることができる。また、図12(b)に示すように、照射形状L3をだ円形とし、その長辺を溶接方向に配置した態様とすることもできる。このように、レーザ光の照射形状を溶接方向に長くすることにより、光吸収性樹脂層6Bに対する入熱時間を長くすることができる。   When irradiation is performed again using such a single spot irradiation head 16, the irradiation shape of the laser light can be, for example, a square or a circle, but other shapes can also be used. For example, as shown to Fig.12 (a), it can be set as the aspect which made the irradiation shape L3 rectangular shape, and has arrange | positioned the long side in the welding direction. Moreover, as shown in FIG.12 (b), it can also be set as the aspect which made the irradiation shape L3 elliptical and arrange | positioned the long side in the welding direction. Thus, the heat input time with respect to the light-absorbing resin layer 6B can be lengthened by lengthening the irradiation shape of the laser light in the welding direction.

また、シングルスポットの照射ヘッド16を用いた場合であっても、照射形状を大きくし、その照射形状の一部を削除したり、その照射形状を分割したりした態様とすることができる。たとえば、図12(c)に示すように、長方形の照射形状を前後2つの照射形状L31,L32としたり、図12(d)に示すように、だ円形の照射形状を前後2つの照射形状L31,L32としたりすることができる。このとき、前方の照射形状L31を後方の照射形状L32よりも大きくすることにより、前方の照射形状L31のレーザ光によって光吸収性樹脂層6Bが与えられる温度よりも低温となるレーザ光強度のレーザ光を後方の照射形状L32のレーザ光によって与えることができる。したがって、上記第1の実施形態で示したような、ダブルスポットの照射ヘッドを用いた場合と同様に、1回の照射のみによって、強固にワーク6を溶接するレーザ溶接を行うことができる。   Even when the single-spot irradiation head 16 is used, the irradiation shape can be enlarged, and a part of the irradiation shape can be deleted or the irradiation shape can be divided. For example, as shown in FIG. 12C, the rectangular irradiation shape is changed into two irradiation shapes L31 and L32, and as shown in FIG. 12D, the elliptical irradiation shape is changed into two irradiation shapes L31. , L32. At this time, by making the front irradiation shape L31 larger than the rear irradiation shape L32, a laser having a laser beam intensity that is lower than the temperature at which the light-absorbing resin layer 6B is provided by the laser light of the front irradiation shape L31. Light can be provided by the laser beam of the rear irradiation shape L32. Therefore, similarly to the case of using the double spot irradiation head as shown in the first embodiment, laser welding for firmly welding the workpiece 6 can be performed by only one irradiation.

を図13に示す。図13(a)には、だ円形の照射形状の一部をだ円形に削除した場合の例を示し、図13(b)には、矩形の照射形状の一部を矩形に削除した場合の例を示す。また、図13(c)には、図12(d)に示すように、だ円形の照射形状を分割した場合の例を示し、図13(d)には、図12(c)に示すように、長方形の照射形状を分割した場合の例を示す。このように、照射形状の一部を削除し、または照射形状を分割することにより、前方の照射形状のレーザ光によって光吸収性樹脂層6Bが与えられる温度よりも低温となるレーザ光強度のレーザ光を後方の照射形状のレーザ光によって与えることができる。   Is shown in FIG. FIG. 13A shows an example in which a part of the oval irradiation shape is deleted in an oval shape, and FIG. 13B shows a case in which a part of the rectangular irradiation shape is deleted in a rectangle. An example is shown. FIG. 13C shows an example in which the oval irradiation shape is divided as shown in FIG. 12D, and FIG. 13D shows the example shown in FIG. Shows an example in which a rectangular irradiation shape is divided. In this way, by removing a part of the irradiation shape or dividing the irradiation shape, the laser beam intensity laser becomes lower than the temperature at which the light-absorbing resin layer 6B is given by the laser beam of the front irradiation shape. The light can be provided by a laser beam having a rear irradiation shape.

ところで、ワーク6における光透過性樹脂層6Aと光吸収性樹脂層6Bとの間の平面で、溶接方向をx方向、溶接方向に直交する方向をy方向とする。この場合の熱分布としては、y方向には均一であることが望ましい。また、x方向には、後方の方が低温となるレーザ光強度とする必要がある。これらの点を加味すると、x−y平面におけるレーザ光の強度分布は、図14に示すように、レーザ光強度の分布Dのようにすることが望ましい。   By the way, in the plane between the light-transmitting resin layer 6A and the light-absorbing resin layer 6B in the work 6, the welding direction is the x direction and the direction orthogonal to the welding direction is the y direction. The heat distribution in this case is desirably uniform in the y direction. Further, in the x direction, it is necessary to set the laser beam intensity at a lower temperature in the rear. Taking these points into consideration, it is desirable that the intensity distribution of the laser beam in the xy plane be a laser beam intensity distribution D as shown in FIG.

次に、本実施形態に係るレーザ溶接方法の効果について説明する。   Next, the effect of the laser welding method according to the present embodiment will be described.

本発明者らは、従来のレーザ溶接方法によるワークの溶接強度と本発明に係るレーザ溶接方法によるワークの溶接強度を比較する実験を行った。従来のレーザ溶接方法として、いわゆるシングルスポットによる1回の溶接により、ワークを溶接した。また、本実施形態に係るレーザ溶接方法として、上記第1の実施形態で説明したダブルスポットのレーザ溶接方法によるレーザ溶接により、ワークを溶接した。そのときのレーザ光強度と引っ張り強さとの関係を測定した。なお、溶接速度は、従来のレーザ溶接では、30mm/sと50mm/s、本発明のレーザ溶接では50mm/sとした。その結果を図15に示す。   The inventors of the present invention conducted an experiment to compare the welding strength of a workpiece by the conventional laser welding method and the welding strength of the workpiece by the laser welding method according to the present invention. As a conventional laser welding method, workpieces were welded by one-time welding using a so-called single spot. Further, as a laser welding method according to the present embodiment, the workpieces were welded by laser welding by the double spot laser welding method described in the first embodiment. The relationship between the laser beam intensity and the tensile strength at that time was measured. The welding speed was 30 mm / s and 50 mm / s in the conventional laser welding, and 50 mm / s in the laser welding of the present invention. The result is shown in FIG.

図15に示すように、本実施形態に係るレーザ溶接方法では、溶接速度を遅くした従来と比較した場合には、その引っ張り強度の向上は見られないものの、溶接速度が同一である場合には、ほとんどの温度で高い引っ張り強度を示した。この結果から判るように、本実施形態に係るレーザ溶接によれば、加工速度を上げても強固な溶着を行うことができる。   As shown in FIG. 15, in the laser welding method according to the present embodiment, when compared with the conventional method in which the welding speed is slow, the tensile strength is not improved, but the welding speed is the same. It showed high tensile strength at most temperatures. As can be seen from this result, according to the laser welding according to the present embodiment, strong welding can be performed even if the processing speed is increased.

他方、上記第1の実施形態では、照射ヘッド3に設けられた2つの照射部3A,3Bにそれぞれ独立にレーザ光を供給する態様としているが、照射ヘッドに対して供給されたレーザ光を分割する態様とすることもできる。図16は、供給されたレーザ光を分割して2つのレーザビームを出射する照射ヘッドの側断面図である。図16に示すように、この照射ヘッド20は、供給されたレーザ光をコリメートするコリメートレンズ21を備えており、また、コリメートされたレーザ光を集光する第1集光レンズ22および第2集光レンズ23を備えている。コリメートレンズ21と、各集光レンズ22,23の間には、レーザ光を分岐させる分岐ミラー24が配設されており、第2集光レンズ23の先には、全反射ミラー25が配設されている。   On the other hand, in the first embodiment, the laser light is independently supplied to the two irradiation units 3A and 3B provided in the irradiation head 3, but the laser light supplied to the irradiation head is divided. It can also be set as the aspect to do. FIG. 16 is a side sectional view of an irradiation head that divides the supplied laser beam and emits two laser beams. As shown in FIG. 16, the irradiation head 20 includes a collimating lens 21 that collimates the supplied laser light, and also includes a first condensing lens 22 and a second condensing lens that condense the collimated laser light. An optical lens 23 is provided. A branching mirror 24 for branching the laser light is disposed between the collimating lens 21 and each of the condensing lenses 22 and 23, and a total reflection mirror 25 is disposed at the tip of the second condensing lens 23. Has been.

かかる照射ヘッド20において、半導体レーザ発振器4から供給されたレーザ光は、コリメートレンズ21によってコリメートされる。コリメートされたレーザ光は、分岐ミラー24によって鉛直方向と水平方向の2つの方向分岐させられ、それぞれ第1集光レンズ22および第2集光レンズ23へと向かう。第1集光レンズ22では、コリメートされ鉛直方向下方に進むレーザ光を集光し、この第1集光レンズ22が設けられた位置に相当する第1出射部から出射する。一方、第2集光レンズ23では、コリメートされ水平方向に進むレーザ光を集光し、その側方に位置する全反射ミラー25へと誘導する。全反射ミラー25では、集光されたレーザ光の進行方向を90度変換させ、その鉛直方向下方に位置する第2出射部からレーザ光を出射する。このようにして、1つのレーザ光を分割して、2つのレーザ光を出射する照射ヘッドを用いることもできる。このとき、全反射ミラー25を水平軸回りに揺動可能としておくことにより、第2出射部から出射されるレーザビームの位置を調整することができる。また、分岐ミラー24を、分岐比率の異なる他の分岐ミラーに交換することにより、分岐ミラーによって分岐比率を容易に調整することができる。   In the irradiation head 20, the laser light supplied from the semiconductor laser oscillator 4 is collimated by the collimating lens 21. The collimated laser light is branched in two directions, the vertical direction and the horizontal direction, by the branching mirror 24 and directed to the first condenser lens 22 and the second condenser lens 23, respectively. The first condenser lens 22 condenses the collimated laser beam that travels downward in the vertical direction, and emits the laser light from a first emission unit corresponding to the position where the first condenser lens 22 is provided. On the other hand, the second condenser lens 23 condenses the collimated laser beam that travels in the horizontal direction and guides it to the total reflection mirror 25 located on the side thereof. The total reflection mirror 25 changes the traveling direction of the condensed laser light by 90 degrees, and emits the laser light from the second emitting portion located below the vertical direction. In this way, it is possible to use an irradiation head that divides one laser beam and emits two laser beams. At this time, by making the total reflection mirror 25 swingable around the horizontal axis, the position of the laser beam emitted from the second emission part can be adjusted. Further, the branch ratio can be easily adjusted by the branch mirror by replacing the branch mirror 24 with another branch mirror having a different branch ratio.

さらに、上記第1の実施形態における照射ヘッド3の照射部3A,3B間の距離を調整する距離調整機構を設けることにより、両者の距離を調整できる態様とすることもできる。   Furthermore, by providing a distance adjusting mechanism that adjusts the distance between the irradiation units 3A and 3B of the irradiation head 3 in the first embodiment, it is possible to adopt an aspect in which the distance between the two can be adjusted.

第1の実施形態に係るレーザ溶接方法を行うレーザ溶接装置の側面図である。It is a side view of the laser welding apparatus which performs the laser welding method concerning a 1st embodiment. 照射装置の側断面である。It is a side cross section of an irradiation apparatus. ワーク温度調整を行う際の時間−温度曲線の一例を示すグラフである。It is a graph which shows an example of the time-temperature curve at the time of performing workpiece | work temperature adjustment. (a)〜(f)は、レーザビームの照射形状の例を示す図である。(A)-(f) is a figure which shows the example of the irradiation shape of a laser beam. (a)〜(d)は、第1レーザビームの照射部分および第2レーザビームの照射部分が重なり合っている場合のレーザ光強度と距離との関係の例を示すグラフである。(A)-(d) is a graph which shows the example of the relationship between a laser beam intensity | strength and distance in case the irradiation part of a 1st laser beam and the irradiation part of a 2nd laser beam overlap. (a)〜(d)は、第1レーザビームL1の照射部分が、第2レーザビームL2の照射部分に完全に包含されている場合のレーザ光強度と距離との関係の例を示すグラフである。(A)-(d) is a graph which shows the example of the relationship between a laser beam intensity | strength and distance when the irradiation part of the 1st laser beam L1 is completely included in the irradiation part of the 2nd laser beam L2. is there. (a)〜(d)は、第1レーザビームの照射部分と第2レーザビームとが離間している場合のレーザ光強度と距離との関係の例を示すグラフである。(A)-(d) is a graph which shows the example of the relationship between the laser beam intensity | strength and distance when the irradiation part of a 1st laser beam and the 2nd laser beam are spaced apart. (a)〜(d)は、第1レーザビームの照射部分と第2レーザビームの照射部分を同一のレーザ光強度とするとともに、両者の形状を同一とし、さらに第1レーザビームの中に他のレーザビームを照射してビーム光強度を高めた場合のレーザ光強度と距離との関係の例を示すグラフである。In (a) to (d), the irradiated portion of the first laser beam and the irradiated portion of the second laser beam have the same laser light intensity, the shapes of both are the same, and other portions in the first laser beam are included. It is a graph which shows the example of the relationship between the laser beam intensity | strength at the time of irradiating the laser beam of this, and raising beam beam intensity. ワーク温度調整を行う際の時間−温度曲線の他の一例を示すグラフである。It is a graph which shows another example of the time-temperature curve at the time of performing workpiece | work temperature adjustment. ワーク温度調整を行う際のレーザ光強度と距離との関係を示すグラフである。It is a graph which shows the relationship between the laser beam intensity at the time of performing workpiece | work temperature adjustment, and distance. 第2の実施形態に係るレーザ溶接方法を行うレーザ溶接装置の側面図である。It is a side view of the laser welding apparatus which performs the laser welding method which concerns on 2nd Embodiment. (a)〜(d)は、レーザ光の照射形状の例を示す図である。(A)-(d) is a figure which shows the example of the irradiation shape of a laser beam. 照射形状の一部を削除し、または照射形状を分割した場合のレーザ光強度と距離の関係を示すグラフである。It is a graph which shows the relationship between the laser beam intensity | strength and distance at the time of deleting a part of irradiation shape or dividing an irradiation shape. レーザ溶接を行う際のワークにおける光透過性樹脂層と光吸収性樹脂層との間の平面におけるx方向およびy方向の好適な温度分布の例を示す図である。It is a figure which shows the example of the suitable temperature distribution of the x direction in the plane between the light transmissive resin layer and the light absorptive resin layer in the workpiece | work at the time of performing laser welding, and ay direction. 従来のレーザ溶接と本発明に係るレーザ溶接について行ったレーザ光強度と引っ張り強さとを計測する実験の結果を示すグラフである。It is a graph which shows the result of the experiment which measures the laser beam intensity | strength and tensile strength which were performed about the conventional laser welding and the laser welding which concerns on this invention. 照射ヘッドの他の例を示す側断面図である。It is a sectional side view which shows the other example of an irradiation head.

符号の説明Explanation of symbols

1,15…レーザ溶接装置、2…多軸ロボット、2A…取付部、3,16,20…照射ヘッド、3A…第1照射部、3B…第2照射部、4…半導体レーザ発振器、5…載置台、6…ワーク、6A…光透過性樹脂層、6B…光吸収性樹脂層、7…ステージ、8…圧力掛け治具、9…シリンダ、9A…シリンダ筒、9B…シリンダロッド、10…押圧板、11…圧力印加装置、12…レーザコントローラ、21…コリメートレンズ、22…第1集光レンズ、23…第2集光レンズ、24…分岐ミラー、25…全反射ミラー、L1,L2…レーザビーム、L3,L31,L32…(レーザビームの)照射形状。   DESCRIPTION OF SYMBOLS 1,15 ... Laser welding apparatus, 2 ... Multi-axis robot, 2A ... Mounting part, 3, 16, 20 ... Irradiation head, 3A ... 1st irradiation part, 3B ... 2nd irradiation part, 4 ... Semiconductor laser oscillator, 5 ... Mounting table, 6 ... work, 6A ... light-transmitting resin layer, 6B ... light-absorbing resin layer, 7 ... stage, 8 ... pressure applying jig, 9 ... cylinder, 9A ... cylinder cylinder, 9B ... cylinder rod, 10 ... Pressure plate, 11 ... Pressure application device, 12 ... Laser controller, 21 ... Collimator lens, 22 ... First condenser lens, 23 ... Second condenser lens, 24 ... Branch mirror, 25 ... Total reflection mirror, L1, L2 ... Laser beam, L3, L31, L32 (irradiation shape of laser beam).

Claims (10)

レーザ光を透過する光透過性樹脂とレーザ光を吸収して溶融する光吸収性樹脂とを重ね合わせてなる被溶接物に対して相対的に移動するレーザ照射手段から前記被溶接物にレーザ光を照射し、前記光吸収性樹脂を溶融させて、前記光透過性樹脂と前記光吸収性樹脂とを溶接するレーザ溶接方法であって、
前記レーザ照射手段から出射されたレーザ光を前記光透過性樹脂側から前記光吸収性樹脂に対して照射する第1照射を行い、前記光透過性樹脂および前記光吸収性樹脂を溶融させた後、
前記光透過性樹脂および前記光吸収性樹脂が冷えて固化し、溶着される前に、前記レーザ光によって前記光吸収性樹脂が与えられる温度よりも低温となるレーザ光強度のレーザ光を、前記レーザ照射手段から再度照射する第2照射を行うことを特徴とするレーザ溶接方法。
Laser light is applied to the workpiece from a laser irradiation means that moves relative to the workpiece that is formed by superimposing a light-transmitting resin that transmits laser light and a light-absorbing resin that absorbs and melts laser light. A laser welding method in which the light absorbing resin is melted and the light transmitting resin and the light absorbing resin are welded.
After performing the first irradiation that irradiates the light-absorbing resin with the laser light emitted from the laser irradiation means from the light-transmitting resin side , the light-transmitting resin and the light-absorbing resin are melted ,
Before the light-transmitting resin and the light-absorbing resin are cooled and solidified and welded, a laser beam having a laser beam intensity that is lower than the temperature at which the light-absorbing resin is given by the laser beam, A laser welding method, wherein a second irradiation is performed again from the laser irradiation means.
前記レーザ照射手段による前記第1照射が済んだ後、After the first irradiation by the laser irradiation means is completed,
前記第1照射を開始した位置と同一の位置に前記レーザ照射手段を移動させ、前記第1照射を行った溶接位置に対して、前記レーザ照射手段による前記第2照射を行う請求項1に記載のレーザ溶接方法。The laser irradiation unit is moved to the same position as the position where the first irradiation is started, and the second irradiation by the laser irradiation unit is performed on the welding position where the first irradiation is performed. Laser welding method.
前記レーザ照射手段として、レーザ照射部を1つ備えるシングルスポットレーザ照射手段を用いる請求項2に記載のレーザ溶接方法。   The laser welding method according to claim 2, wherein a single spot laser irradiation unit including one laser irradiation unit is used as the laser irradiation unit. 前記レーザ照射手段は、第1レーザ照射手段と、前記第1レーザ照射手段とは独立して移動する第2レーザ照射手段と、を備えており、The laser irradiation means includes a first laser irradiation means and a second laser irradiation means that moves independently of the first laser irradiation means,
前記第1レーザ照射手段によって前記第1照射を行い、Performing the first irradiation by the first laser irradiation means;
続いて前記第2レーザ照射手段よって前記第2照射を行う請求項1に記載のレーザ溶接方法。The laser welding method according to claim 1, wherein the second irradiation is performed by the second laser irradiation unit.
前記第1レーザ照射手段および前記第2レーザ照射手段として、レーザ照射部を1つ備えるシングルスポットレーザ照射手段をそれぞれ用いる請求項4に記載のレーザ溶接方法。The laser welding method according to claim 4, wherein a single spot laser irradiation unit including one laser irradiation unit is used as each of the first laser irradiation unit and the second laser irradiation unit. 前記第2照射を行う前記レーザ照射手段の速度を調整することにより、前記レーザ照射手段が照射するレーザ光による前記光吸収性樹脂の温度を調整する請求項2〜請求項5のうちのいずれか1項に記載のレーザ溶接方法。 The temperature of the said light absorptive resin by the laser beam which the said laser irradiation means irradiates is adjusted by adjusting the speed | rate of the said laser irradiation means which performs said 2nd irradiation, The claim 2 2. The laser welding method according to item 1 . 前記レーザ照射手段が、第1レーザ照射部および前記第1レーザ照射部に従属して移動する第2レーザ照射部を備えており、The laser irradiation means includes a first laser irradiation unit and a second laser irradiation unit that moves depending on the first laser irradiation unit,
前記第1レーザ照射部からのレーザ光の出射が行われた後、前記第2レーザ照射部からの再度のレーザ光の出射が行われる請求項1に記載のレーザ溶接方法。The laser welding method according to claim 1, wherein after the laser beam is emitted from the first laser irradiation unit, the laser beam is emitted again from the second laser irradiation unit.
前記レーザ照射手段として第1レーザ照射部および第2レーザ照射部を備えるダブルスポットレーザ照射手段を用い、前記第1レーザ照射部によって前記第1照射を行い、前記第2レーザ照射部によって前記第2照射を行う請求項7に記載のレーザ溶接方法。 A double spot laser irradiation unit including a first laser irradiation unit and a second laser irradiation unit is used as the laser irradiation unit, the first irradiation is performed by the first laser irradiation unit, and the second laser irradiation unit performs the second irradiation. The laser welding method according to claim 7 , wherein irradiation is performed . 前記第2照射におけるレーザ光の照射形状を調整することにより、前記第2照射におけるレーザ光による前記光吸収性樹脂の温度を調整する請求項2〜請求項8のうちのいずれか1項に記載のレーザ溶接方法。 By adjusting the irradiation shape of the laser light in the second irradiation, according to any one of claims 2 to 8 for adjusting the temperature of the light-absorbing resin by the laser beam at the second irradiation Laser welding method. 前記第2照射におけるレーザ光の照射幅を調整することにより、前記第2照射におけるレーザ光による前記光吸収性樹脂の温度を調整する請求項2〜請求項8のうちのいずれか1項に記載のレーザ溶接方法。 By adjusting the irradiation width of the laser beam in the second radiation, according to any one of claims 2 to 8 for adjusting the temperature of the light-absorbing resin by the laser beam at the second irradiation Laser welding method.
JP2003271537A 2003-07-07 2003-07-07 Laser welding method Expired - Lifetime JP4202853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003271537A JP4202853B2 (en) 2003-07-07 2003-07-07 Laser welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003271537A JP4202853B2 (en) 2003-07-07 2003-07-07 Laser welding method

Publications (2)

Publication Number Publication Date
JP2005028784A JP2005028784A (en) 2005-02-03
JP4202853B2 true JP4202853B2 (en) 2008-12-24

Family

ID=34209375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003271537A Expired - Lifetime JP4202853B2 (en) 2003-07-07 2003-07-07 Laser welding method

Country Status (1)

Country Link
JP (1) JP4202853B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007111931A (en) * 2005-10-19 2007-05-10 Toyota Motor Corp Laser welding method of thermoplastic resin members and laser welding apparatus
JP2008055620A (en) * 2006-08-29 2008-03-13 Keihin Corp Manufacturing method of laser welded structure
JP4869150B2 (en) * 2007-05-17 2012-02-08 浜松ホトニクス株式会社 Resin / glass welding method and resin / glass welding apparatus
KR100936091B1 (en) 2007-12-06 2010-01-12 주식회사 엘티에스 Device joining light module for vehicle
WO2011155016A1 (en) * 2010-06-07 2011-12-15 浜松ホトニクス株式会社 Resin welding method
CN102909474B (en) * 2012-10-24 2015-05-13 天津大学 Method for welding transparent material
KR102208154B1 (en) 2013-06-07 2021-01-27 엔테그리스, 아이엔씨. Sensor with protective layer
FR3123248B1 (en) 2021-05-25 2023-12-22 Inst De Rech Tech Jules Verne Dynamic welding effector for composite material parts

Also Published As

Publication number Publication date
JP2005028784A (en) 2005-02-03

Similar Documents

Publication Publication Date Title
JP3303259B2 (en) Method and apparatus for bonding resin by laser
CA3026330C (en) Laser processing apparatus and method
JP5551792B2 (en) Welding method of two metal constituent members and joint structure having two metal constituent members
JP6367978B2 (en) Laser welding method and apparatus along a welding seam of two joining members made of thermoplastic synthetic material
JP4202836B2 (en) Laser welding method and laser welding apparatus
JP2009226643A (en) Bonding method and bonded body
JP5364039B2 (en) Manufacturing method of resin molded products
ATE383937T1 (en) METHOD FOR LASER BEAM WELDING OF PLASTIC PARTS
JP2006512221A (en) Method and apparatus for welding thermoplastic moldings, in particular contour welding of three-dimensional moldings
JP4202853B2 (en) Laser welding method
JP3515003B2 (en) Laser fusion method
JP3866732B2 (en) Laser bonding method for resin structures
JP2011088210A (en) Method for joining member to be joined and joining apparatus used therefor
JP5436937B2 (en) Manufacturing method of resin molded products
KR20160003270A (en) Method for soldering a sandwich metal sheet to a solid metal sheet using a laser beam
JP2004066739A (en) Method and device for laser welding
US6369351B1 (en) Method for processing and for joining, especially, for soldering a component or a component arrangement using electromagnetic radiation
JP5669910B2 (en) Laser welding equipment for resin molded products
JP6416801B2 (en) Laser processing machine with processing head approach function
JP3430834B2 (en) Welding method and welding apparatus using the same
JP5617416B2 (en) Laser welding method and laser welding apparatus
JP7386118B2 (en) Welding method and welding equipment
CN114589401A (en) Infrared laser welding method and device
JP4185405B2 (en) Bonding method between resin materials
JP4584683B2 (en) Condensing head for laser welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20080708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081009

R150 Certificate of patent or registration of utility model

Ref document number: 4202853

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

EXPY Cancellation because of completion of term