JP4185405B2 - Bonding method between resin materials - Google Patents

Bonding method between resin materials Download PDF

Info

Publication number
JP4185405B2
JP4185405B2 JP2003155148A JP2003155148A JP4185405B2 JP 4185405 B2 JP4185405 B2 JP 4185405B2 JP 2003155148 A JP2003155148 A JP 2003155148A JP 2003155148 A JP2003155148 A JP 2003155148A JP 4185405 B2 JP4185405 B2 JP 4185405B2
Authority
JP
Japan
Prior art keywords
laser
resin material
transmitting
transmitting resin
transmissive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003155148A
Other languages
Japanese (ja)
Other versions
JP2004351873A (en
Inventor
京司 国府田
秀生 中村
精次郎 副田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003155148A priority Critical patent/JP4185405B2/en
Publication of JP2004351873A publication Critical patent/JP2004351873A/en
Application granted granted Critical
Publication of JP4185405B2 publication Critical patent/JP4185405B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • B29C65/168Laser beams making use of an absorber or impact modifier placed at the interface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • B29C65/1661Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined scanning repeatedly, e.g. quasi-simultaneous laser welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1616Near infrared radiation [NIR], e.g. by YAG lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1687Laser beams making use of light guides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/301Three-dimensional joints, i.e. the joined area being substantially non-flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、少なくとも一方がレーザ透過性を備えた樹脂材間の接合方法に係り、特に、レーザ透過性樹脂材の表面からレーザビームを照射することによって樹脂材の対向面を加熱し、溶融した樹脂材を他方の樹脂材に接合させる方法に関する。
【0002】
【従来の技術】
図4に示すように、レーザ吸収性を備えた樹脂材60とレーザ透過性を備えた樹脂材62とを積層配置させた状態で、レーザ透過性樹脂材62の表面にレーザビームLを照射すると、レーザビームLはレーザ透過性樹脂材62を透過してレーザ吸収性樹脂材60に到達する。
この結果、まずレーザ吸収性樹脂材60の表面が発熱・溶融し、その伝導熱によってレーザ透過性樹脂材62の背面が溶融することとなり、図5に示すように、溶融部64を介して樹脂材60,62の対向面同士が融着する。
【0003】
また、図6に示すように、第1のレーザ透過性樹脂材70、レーザ吸収体72、及び第2のレーザ透過性樹脂材74を積層配置させ状態で、レーザ吸収体72に向けて第2のレーザ透過性樹脂材74の表面側からレーザビームLを照射すると、レーザビームLは第2のレーザ透過性樹脂材74を透過してレーザ吸収体72に到達する。
そして、各レーザ吸収体72が発熱し、その伝導熱を受けて第1のレーザ透過性樹脂材70の表面及び第2のレーザ透過性樹脂材74の背面が溶融する。
この結果、図7に示すように、両樹脂材70,74間はレーザ吸収体72の配置箇所毎に生じた溶融部76を介して融着・接合されることとなる。
【0004】
このように、少なくとも一方がレーザ透過性を備えた樹脂材同士をレーザビームを照射することによって溶着する場合、従来は図8に示すレーザ加工装置80が用いられていた。
この従来のレーザ加工装置80は、半導体レーザ発振器82と、コリメータレンズ84と、反射ミラー86と、X軸ガルバノミラー88及びY軸ガルバノミラー90と、結像用のfθレンズ92と、加工ステージ94とを備えている。
レーザ発振器82から出力されたレーザビームLは、コリメータレンズ84によって平行度が高められた後、X軸ガルバノミラー88及びY軸ガルバノミラー90によって必要な方向に偏向され、fθレンズ92を経由して加工ステージ94上の樹脂材96に入射する。
【0005】
【発明が解決しようとする課題】
しかしながら、従来の加工方法の場合、以下の問題点があった。
まず、レーザ光源として半導体レーザ発振器82を用いているため出射ビームの広がり角が大きく、コリメータレンズ84を通して平行度を高めたとしても、ガルバノミラー88,90から出力されたレーザビームをfθレンズ92を用いて集光することが不可欠であった。
このため、加工時にはZ軸方向でのフォーカシングが不可欠であり、図9に示すように、加工対象物(レーザ吸収性樹脂材30及びレーザ透過性樹脂材32)表面の段差や凹凸によって照射位置αが上下する場合には、加工ステージ94側の高さを変更する等して焦点位置を調整する必要があった。
【0006】
この発明は、従来の樹脂材間の接合方法が抱えていた上記問題点を解決するために案出されたものであり、加工対象物である樹脂材の表面形状によってレーザビームの照射位置が複雑に上下する場合であっても、一々焦点を合わせることなく樹脂材間を溶着することができる技術の実現を目的としている。
【0007】
【課題を解決するための手段】
上記の目的を達成するため、請求項に記載した樹脂材間の接合方法は、筒形状を備えた第1のレーザ透過性樹脂材の内部に、これに対応した形状を備えた第2のレーザ透過性樹脂材を、間にレーザ吸収体を介装させた状態で挿入させる工程と、第1のレーザ透過性樹脂材の表面側からファイバーレーザを照射して上記レーザ吸収体を加熱し、第1のレーザ透過性樹脂材及び第2のレーザ透過性樹脂材の少なくとも一方の対向面を溶融させる工程と、溶融した樹脂材を他方の樹脂材に融着させる工程と、第2のレーザ透過性樹脂材を透過したファイバーレーザによって、反対側に位置するレーザ吸収体を再度加熱し、第1のレーザ透過性樹脂材及び第2のレーザ透過性樹脂材の少なくとも一方の対向面を溶融させる工程と、溶融した樹脂材を他方の樹脂材に融着させる工程とを備えたことを特徴としている。
【0008】
例えば、円筒形状の第1のレーザ透過性樹脂材の内面にレーザ吸収体を塗布し、そこに円筒形状あるいは円柱形状の第2のレーザ透過性樹脂材を嵌合する場合が当てはまる。
この場合、最初の接合箇所と次の接合箇所とではZ軸方向に位置が上下しており、半導体レーザを用いた従来の加工方法では焦点がずれるため同時に接合することは不可能であった。
これに対し、極めて平行度の高いファイバーレーザであれば上下2箇所の接合を同時に実現することが可能となり、レーザを用いた樹脂溶着の適用範囲を拡大できる。
【0009】
請求項に記載した樹脂材間の接合方法は、請求項の接合方法において、ビームエキスパンダによって広径化させたファイバーレーザを、上記第1のレーザ透過性樹脂材の表面側から照射することを特徴としている。
【0010】
【発明の実施の形態】
図1は、この発明に係るレーザ加工装置10の構成を示す模式図であり、ファイバーレーザ発振器12と、ビームエキスパンダ14と、反射ミラー16と、X軸ガルバノミラー18と、Y軸ガルバノミラー20と、加工ステージ22とを備えている。
【0011】
ファイバーレーザ発振器12は、本体内部に複数のファイバー付き半導体レーザ素子とダブルクラッドファイバーとを備えており、励起光源である半導体レーザ素子から出力されたレーザビーム(波長:920nm)をレーザ媒質であるダブルクラッドファイバーに集め、ダブルクラッドファイバー内で共振されたレーザビームLを外部に出射する機能を備えている。
【0012】
このファイバーレーザ発振器12の特性として、従来の半導体レーザ発振器に比べ、極めて集光性及び直進性の高いレーザビームが得られることが挙げられる。
具体的には、半導体レーザ発振器の場合には出射ビームの広がり角が100mrad程度であるのに対し、ファイバーレーザ発振器12の場合には広がり角がわずか0.2mradと格段に小さくなる。
【0013】
ファイバーレーザ発振器12から出射されたレーザビームLのコア径は0.1mmであり、そのままでは樹脂溶着の目的には径が小さすぎるため、ビームエキスパンダ14のレンズ群によって0.6mm程度までコア径が拡張される。
また、ビームエキスパンダ14によって広径化される過程で、レーザビームLの広がり角が0.03radまで抑制され、一段と平行度が高められる。
ビームエキスパンダ14を通過したレーザビームLは、反射ミラー16を経由してガルバノミラー18,20に到達し、そこで必要な方向に偏向された後、加工対象物であるレーザ透過性樹脂材24の表面に直接入射する。
上記のように、ファイバーレーザ発振器12から出射され、ビームエキスパンダ14を通過したレーザビームLは極めて高い平行度を備えているため、半導体レーザ発振器を用いた従来のレーザ加工装置のようにfθレンズで集光する必要がなく、そのまま積層された樹脂材の表面に導かれる。
【0014】
図2は、このレーザ加工装置10を用いて樹脂材間を溶着する様子を示すものであり、積層配置されたレーザ吸収性樹脂材30及びレーザ透過性樹脂材32に対し、レーザ透過性樹脂材32側からレーザビームLを照射すると、透過レーザビームによってレーザ吸収性樹脂材30の表面が発熱・溶融し、その伝導熱によってレーザ透過性樹脂材32の背面が溶融する結果、溶融部34を介して樹脂材30,32の対向面同士が融着する。
しかも、レーザビームLの平行度が極めて高いため、図示の通り凹凸のあるレーザ吸収性樹脂材30及びレーザ透過性樹脂材32間を溶着する場合であっても照射位置の高さに応じてレーザビームLの焦点を調整する必要がなくなり、接合パターンに沿ってレーザビームをそのまま走査させれば済む。
【0015】
図3は他の接合例を示すものであり、円筒状の第2のレーザ透過性樹脂材40の表面にレーザ吸収体42を塗布した上で、円筒状の第1のレーザ透過性樹脂材44内に挿通した連結体46に対し、第1のレーザ透過性樹脂材44の表面からレーザビームLを照射している。
この場合、レーザビームLは第1のレーザ透過性樹脂材44を透過してレーザ吸収体42に到達し、これを加熱する。つぎに、この伝導熱を受けて第2のレーザ透過性樹脂材40の表面及び第1のレーザ透過性樹脂材44の内面が溶融する結果、両樹脂材40,44間は溶融部48aを介して接合される。
同時に、第2のレーザ透過性樹脂材40を透過したレーザビームLが第2のレーザ透過性樹脂材40の内面に再入射し、溶融部48aの反対側に位置するレーザ吸収体42を加熱する。この結果、両樹脂材40,44間は、溶融部48bを介しても接合される。
【0016】
従来のレーザ加工装置の場合には、上記のように照射位置が上下する場合には一々焦点を合わせ直す必要があったため、このようにレーザビームのワンショットで上下2ヶ所を同時に接合させることは不可能であった。
この接合技術を応用することにより、例えば医療用の透明樹脂チューブ同士を接着剤を用いることなくレーザビームの走査によって迅速に接合することが可能となる。
【0017】
【発明の効果】
この発明に係る樹脂材間の接合方法にあっては、レーザビームとして極めて高い平行度を備えたファイバーレーザを用いているため、樹脂材の表面に凹凸や段差が存在し、接合箇所がZ軸方向に上下するような場合であっても、その都度焦点を合わせる必要がなく、そのまま加工を続けることが可能となり、接合作業の効率化及び加工装置の簡素化を実現できる。
【図面の簡単な説明】
【図1】 この発明に係るレーザ加工装置の構成を示す模式図である。
【図2】 上記レーザ加工装置を用いて凹凸を備えた樹脂材間を溶着する様子を示す断面図である。
【図3】 上記レーザ加工装置を用いて円筒形状の樹脂材間を溶着する様子を示す断面図である。
【図4】 レーザビームを用いてレーザ吸収性樹脂材及びレーザ透過性樹脂材の積層体を接合する様子を示す断面図である。
【図5】 レーザビームを用いてレーザ吸収性樹脂材及びレーザ透過性樹脂材の積層体を接合する様子を示す断面図である。
【図6】 レーザビームを用いてレーザ透過性樹脂材の積層体を接合する様子を示す断面図である。
【図7】 レーザビームを用いてレーザ透過性樹脂材の積層体を接合する様子を示す断面図である。
【図8】 従来のレーザ加工装置の構成を示す模式図である。
【図9】 従来のレーザ加工装置を用いて凹凸を備えた樹脂材間を溶着する様子を示す断面図である。
【符号の説明】
10 レーザ加工装置
12 ファイバーレーザ発振器
14 ビームエキスパンダ
18 X軸ガルバノミラー
20 Y軸ガルバノミラー
22 加工ステージ
24 レーザ透過性樹脂材
30 レーザ吸収性樹脂材
32 レーザ透過性樹脂材32
34 溶融部
40 第2のレーザ透過性樹脂材
42 レーザ吸収体
44 第1のレーザ透過性樹脂材
48a 溶融部
48b 溶融部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a bonding method between resin materials, at least one of which is laser transmissive, and in particular, the opposite surface of the resin material is heated and melted by irradiating a laser beam from the surface of the laser transmissive resin material. The present invention relates to a method of joining a resin material to the other resin material.
[0002]
[Prior art]
As shown in FIG. 4, when the surface of the laser transmissive resin material 62 is irradiated with the laser beam L in a state in which the resin material 60 having the laser absorption property and the resin material 62 having the laser transmission property are stacked and arranged, The laser beam L passes through the laser transmitting resin material 62 and reaches the laser absorbing resin material 60.
As a result, first, the surface of the laser-absorbing resin material 60 is heated and melted, and the back heat of the laser-transmitting resin material 62 is melted by the conduction heat. As shown in FIG. The opposing surfaces of the materials 60 and 62 are fused together.
[0003]
In addition, as shown in FIG. 6, the second laser-transmitting resin material 70, the laser absorber 72, and the second laser-transmitting resin material 74 are stacked and arranged in the second direction toward the laser absorber 72. When the laser beam L is irradiated from the surface side of the laser transmissive resin material 74, the laser beam L passes through the second laser transmissive resin material 74 and reaches the laser absorber 72.
Each laser absorber 72 generates heat and receives the heat of conduction, so that the surface of the first laser transmitting resin material 70 and the back surface of the second laser transmitting resin material 74 are melted.
As a result, as shown in FIG. 7, the two resin materials 70 and 74 are fused and joined via the melted portion 76 generated at each location where the laser absorber 72 is disposed.
[0004]
As described above, in the case where the resin materials having at least one of the laser transmission properties are welded together by irradiating the laser beam, a laser processing apparatus 80 shown in FIG. 8 has been conventionally used.
This conventional laser processing apparatus 80 includes a semiconductor laser oscillator 82, a collimator lens 84, a reflection mirror 86, an X-axis galvano mirror 88 and a Y-axis galvano mirror 90, an imaging fθ lens 92, and a processing stage 94. And.
The laser beam L output from the laser oscillator 82 is increased in parallelism by the collimator lens 84, then deflected in a necessary direction by the X-axis galvanometer mirror 88 and the Y-axis galvanometer mirror 90, and passes through the fθ lens 92. The light enters the resin material 96 on the processing stage 94.
[0005]
[Problems to be solved by the invention]
However, the conventional processing method has the following problems.
First, since the semiconductor laser oscillator 82 is used as the laser light source, the divergence angle of the outgoing beam is large, and even if the parallelism is increased through the collimator lens 84, the laser beam output from the galvanometer mirrors 88 and 90 is changed to the fθ lens 92 It was essential to use and collect light.
For this reason, focusing in the Z-axis direction is indispensable at the time of processing, and as shown in FIG. 9, the irradiation position α is caused by steps or irregularities on the surface of the processing object (laser absorbing resin material 30 and laser transmitting resin material 32). When the angle moves up and down, it is necessary to adjust the focal position by changing the height on the processing stage 94 side.
[0006]
The present invention has been devised to solve the above-described problems associated with conventional methods for joining resin materials, and the laser beam irradiation position is complicated by the surface shape of the resin material that is the object to be processed. Even if it goes up and down, it aims at realization of the technique which can weld between resin materials, without focusing one by one.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a method for joining resin materials according to claim 1 is the second laser-transparent resin material having a cylindrical shape and a second shape having a shape corresponding thereto. A step of inserting a laser transmissive resin material with a laser absorber interposed therebetween, and heating the laser absorber by irradiating a fiber laser from the surface side of the first laser transmissive resin material; A step of melting at least one facing surface of the first laser transmitting resin material and the second laser transmitting resin material, a step of fusing the molten resin material to the other resin material, and a second laser transmission. A step of melting the opposing surface of at least one of the first laser-transmitting resin material and the second laser-transmitting resin material by reheating the laser absorber located on the opposite side with a fiber laser that has passed through the transmitting resin material And melted resin material It is characterized by comprising the step of fusing in a square resin material.
[0008]
For example, a case where a laser absorber is applied to the inner surface of a cylindrical first laser-transmitting resin material, and a cylindrical or columnar second laser-transmitting resin material is fitted thereto is applicable.
In this case, the positions of the first and subsequent joints move up and down in the Z-axis direction, and the conventional processing method using a semiconductor laser is out of focus and cannot be joined simultaneously.
On the other hand, if the fiber laser has a very high parallelism, it is possible to simultaneously realize the joining of two places on the upper and lower sides, and the application range of resin welding using a laser can be expanded.
[0009]
The bonding method between the resin materials described in claim 2 is the bonding method according to claim 1 , wherein the fiber laser whose diameter is enlarged by the beam expander is irradiated from the surface side of the first laser-transmissive resin material. It is characterized by that.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a schematic diagram showing a configuration of a laser processing apparatus 10 according to the present invention. A fiber laser oscillator 12, a beam expander 14, a reflection mirror 16, an X-axis galvano mirror 18, and a Y-axis galvano mirror 20 are shown. And a processing stage 22.
[0011]
The fiber laser oscillator 12 includes a plurality of semiconductor laser elements with fibers and a double clad fiber inside a main body, and a laser beam (wavelength: 920 nm) output from a semiconductor laser element as a pumping light source is a double as a laser medium. The laser beam L collected in the clad fiber and resonated in the double clad fiber is emitted to the outside.
[0012]
As a characteristic of the fiber laser oscillator 12, it is possible to obtain a laser beam having extremely high condensing property and straightness as compared with a conventional semiconductor laser oscillator.
Specifically, in the case of the semiconductor laser oscillator, the divergence angle of the outgoing beam is about 100 mrad, whereas in the case of the fiber laser oscillator 12, the divergence angle is only 0.2 mrad.
[0013]
The core diameter of the laser beam L emitted from the fiber laser oscillator 12 is 0.1 mm, which is too small for the purpose of resin welding as it is, so the core diameter is expanded to about 0.6 mm by the lens group of the beam expander 14. Is done.
Further, in the process of increasing the diameter by the beam expander 14, the spread angle of the laser beam L is suppressed to 0.03 rad, and the parallelism is further increased.
The laser beam L that has passed through the beam expander 14 reaches the galvanometer mirrors 18 and 20 via the reflection mirror 16, and is deflected there in the necessary direction. Directly incident on the surface.
As described above, since the laser beam L emitted from the fiber laser oscillator 12 and passed through the beam expander 14 has an extremely high parallelism, the fθ lens is used as in a conventional laser processing apparatus using a semiconductor laser oscillator. It is not necessary to collect the light and is guided to the surface of the laminated resin material as it is.
[0014]
FIG. 2 shows a state in which resin materials are welded by using this laser processing apparatus 10, and the laser-transmitting resin material 30 and the laser-transmitting resin material 32 are arranged in a laminated manner. When the laser beam L is irradiated from the 32 side, the surface of the laser-absorbing resin material 30 is heated and melted by the transmitted laser beam, and the back surface of the laser-transmitting resin material 32 is melted by the conduction heat. Thus, the opposing surfaces of the resin materials 30 and 32 are fused.
In addition, since the parallelism of the laser beam L is extremely high, even when welding between the laser-absorbing resin material 30 and the laser-transmitting resin material 32 having projections and depressions as shown in the drawing, the laser beam L depends on the height of the irradiation position. It is not necessary to adjust the focus of the beam L, and the laser beam can be scanned as it is along the bonding pattern.
[0015]
FIG. 3 shows another example of joining. After the laser absorber 42 is applied to the surface of the cylindrical second laser-transmitting resin material 40, the cylindrical first laser-transmitting resin material 44 is shown. A laser beam L is radiated from the surface of the first laser transmitting resin material 44 to the connecting body 46 inserted therein.
In this case, the laser beam L passes through the first laser transmissive resin material 44 and reaches the laser absorber 42 to heat it. Next, the surface of the second laser-transmitting resin material 40 and the inner surface of the first laser-transmitting resin material 44 are melted by receiving this conduction heat, and as a result, the resin material 40, 44 is interposed between the two resin materials 40, 44. Are joined.
At the same time, the laser beam L that has passed through the second laser-transmissive resin material 40 is incident again on the inner surface of the second laser-transmissive resin material 40, and heats the laser absorber 42 located on the opposite side of the melting portion 48a. . As a result, the resin materials 40 and 44 are also joined via the melting part 48b.
[0016]
In the case of a conventional laser processing apparatus, when the irradiation position moves up and down as described above, it is necessary to refocus one by one. Thus, it is possible to simultaneously join the two upper and lower portions with one shot of the laser beam. It was impossible.
By applying this joining technique, for example, medical transparent resin tubes can be rapidly joined by scanning with a laser beam without using an adhesive.
[0017]
【The invention's effect】
In the bonding method between resin materials according to the present invention, since a fiber laser having extremely high parallelism is used as a laser beam, there are irregularities and steps on the surface of the resin material, and the bonding location is the Z axis. Even in the case of moving up and down in the direction, it is not necessary to focus each time, it is possible to continue the processing as it is, and it is possible to realize the efficiency of the joining operation and the simplification of the processing apparatus.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a configuration of a laser processing apparatus according to the present invention.
FIG. 2 is a cross-sectional view showing a state in which resin materials having irregularities are welded using the laser processing apparatus.
FIG. 3 is a cross-sectional view showing a state of welding between cylindrical resin materials using the laser processing apparatus.
FIG. 4 is a cross-sectional view showing a state in which a laminated body of a laser-absorbing resin material and a laser-transmitting resin material is bonded using a laser beam.
FIG. 5 is a cross-sectional view showing a state in which a laminated body of a laser-absorbing resin material and a laser-transmitting resin material is bonded using a laser beam.
FIG. 6 is a cross-sectional view showing a state in which a laminated body of laser transmissive resin materials is bonded using a laser beam.
FIG. 7 is a cross-sectional view showing a state in which a laminated body of laser transmissive resin materials is bonded using a laser beam.
FIG. 8 is a schematic diagram showing a configuration of a conventional laser processing apparatus.
FIG. 9 is a cross-sectional view showing a state in which resin materials having irregularities are welded using a conventional laser processing apparatus.
[Explanation of symbols]
10 Laser processing equipment
12 Fiber laser oscillator
14 Beam expander
18 X-axis galvanometer mirror
20 Y-axis galvanometer mirror
22 Processing stage
24 Laser transparent resin material
30 Laser-absorbing resin material
32 Laser transmissive resin material 32
34 Melting zone
40 Second laser transmitting resin material
42 Laser absorber
44 First laser transmitting resin material
48a Melting zone
48b Melting zone

Claims (2)

筒形状を備えた第1のレーザ透過性樹脂材の内部に、これに対応した形状を備えた第2のレーザ透過性樹脂材を、間にレーザ吸収体を介装させた状態で挿入させる工程と、
第1のレーザ透過性樹脂材の表面側からファイバーレーザを照射して上記レーザ吸収体を加熱し、第1のレーザ透過性樹脂材及び第2のレーザ透過性樹脂材の少なくとも一方の対向面を溶融させる工程と、
溶融した樹脂材を他方の樹脂材に融着させる工程と、
第2のレーザ透過性樹脂材を透過したファイバーレーザによって、反対側に位置するレーザ吸収体を加熱し、第1のレーザ透過性樹脂材及び第2のレーザ透過性樹脂材の少なくとも一方の対向面を溶融させる工程と、
溶融した樹脂材を他方の樹脂材に融着させる工程とを備えたことを特徴とする樹脂材間の接合方法。
A step of inserting a second laser transmitting resin material having a shape corresponding to the inside of the first laser transmitting resin material having a cylindrical shape with a laser absorber interposed therebetween. When,
The laser absorber is heated by irradiating a fiber laser from the surface side of the first laser transmissive resin material, and at least one opposing surface of the first laser transmissive resin material and the second laser transmissive resin material is formed. Melting, and
Fusing the molten resin material to the other resin material;
The fiber laser that has passed through the second laser-transmitting resin material heats the laser absorber located on the opposite side, and at least one opposing surface of the first laser-transmitting resin material and the second laser-transmitting resin material Melting the
And a step of fusing the molten resin material to the other resin material.
ビームエキスパンダによって広径化させたファイバーレーザを、上記第1のレーザ透過性樹脂材の表面側から照射することを特徴とする請求項に記載の樹脂材間の接合方法。2. The method for joining resin materials according to claim 1 , wherein a fiber laser having a diameter increased by a beam expander is irradiated from the surface side of the first laser-transmissive resin material.
JP2003155148A 2003-05-30 2003-05-30 Bonding method between resin materials Expired - Fee Related JP4185405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003155148A JP4185405B2 (en) 2003-05-30 2003-05-30 Bonding method between resin materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003155148A JP4185405B2 (en) 2003-05-30 2003-05-30 Bonding method between resin materials

Publications (2)

Publication Number Publication Date
JP2004351873A JP2004351873A (en) 2004-12-16
JP4185405B2 true JP4185405B2 (en) 2008-11-26

Family

ID=34049605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003155148A Expired - Fee Related JP4185405B2 (en) 2003-05-30 2003-05-30 Bonding method between resin materials

Country Status (1)

Country Link
JP (1) JP4185405B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005104132A (en) * 2003-09-10 2005-04-21 Fine Device:Kk Method for joining fluorine resin material
JP5193996B2 (en) * 2006-04-06 2013-05-08 フレゼニウス メディカル ケアー ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Laser transmission welding method for joining molded plastic bodies
JP2009125963A (en) * 2007-11-20 2009-06-11 Campus Create Co Ltd Melt-sticking method of thermoplastic resin member
JP2010234554A (en) * 2009-03-30 2010-10-21 Fujifilm Corp Method for manufacturing printing plate
JP5610138B2 (en) * 2010-06-08 2014-10-22 スタンレー電気株式会社 Laser welding equipment

Also Published As

Publication number Publication date
JP2004351873A (en) 2004-12-16

Similar Documents

Publication Publication Date Title
JP3303259B2 (en) Method and apparatus for bonding resin by laser
KR101906030B1 (en) Method and device for welding two thermoplastic parts to be joined along a weld seam by means of a laser
KR100783676B1 (en) Method and apparatus for laser welding thermoplastic resin members
DK2747984T3 (en) A method and apparatus for laser welding two plastic parts to be joined
JP5364039B2 (en) Manufacturing method of resin molded products
CN100467253C (en) Resin mold and method for manufacturing the same
JP2009226643A (en) Bonding method and bonded body
US8728268B2 (en) Method for manufacturing resin molding and laser beam irradiation apparatus
US7285744B2 (en) Method and apparatus for simultaneously heating materials
JP2006512221A (en) Method and apparatus for welding thermoplastic moldings, in particular contour welding of three-dimensional moldings
JP3515003B2 (en) Laser fusion method
JP3866732B2 (en) Laser bonding method for resin structures
JP5436937B2 (en) Manufacturing method of resin molded products
JP4185405B2 (en) Bonding method between resin materials
JP4230826B2 (en) Laser processing method
JP6141715B2 (en) Method of fusing glass substrate with laser beam
JP5669910B2 (en) Laser welding equipment for resin molded products
JP4439892B2 (en) Laser welding method
JP2005262311A (en) Laser beam machining device and laser beam machining method
JP2001247321A (en) Method and apparatus for junction of glass by laser beam
JP5603664B2 (en) Manufacturing method of resin molded products
JP2005104132A (en) Method for joining fluorine resin material
JP2004026585A (en) Method for joining sheet glass and method for manufacturing rectangular glass frame
JP2003311452A (en) Laser brazing method and device
JP7474285B2 (en) Method for connecting using a laser transmission joining technique, device for joining, and part made of a laser transmission joined first plastic part and a second plastic part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060526

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060815

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080905

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4185405

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees