JP4200329B2 - Heat exchange device and heat pump water heater using the same - Google Patents

Heat exchange device and heat pump water heater using the same Download PDF

Info

Publication number
JP4200329B2
JP4200329B2 JP2005165105A JP2005165105A JP4200329B2 JP 4200329 B2 JP4200329 B2 JP 4200329B2 JP 2005165105 A JP2005165105 A JP 2005165105A JP 2005165105 A JP2005165105 A JP 2005165105A JP 4200329 B2 JP4200329 B2 JP 4200329B2
Authority
JP
Japan
Prior art keywords
tube
heat
heat transfer
heat exchange
exchange device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005165105A
Other languages
Japanese (ja)
Other versions
JP2006336988A (en
Inventor
立群 毛
竹司 渡辺
昌宏 尾浜
誠一 安木
一彦 丸本
哲英 倉本
隆幸 高谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2005165105A priority Critical patent/JP4200329B2/en
Publication of JP2006336988A publication Critical patent/JP2006336988A/en
Application granted granted Critical
Publication of JP4200329B2 publication Critical patent/JP4200329B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Details Of Fluid Heaters (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、第一流体と第二流体とを熱交換させる熱交換装置(たとえばヒートポンプ式
給湯機の水/冷媒熱交換器)及びそれを用いたヒートポンプ給湯装置に関するものである。
The present invention relates to a heat exchange device that exchanges heat between a first fluid and a second fluid (for example, a water / refrigerant heat exchanger of a heat pump water heater) and a heat pump water heater using the heat exchanger.

従来の第一流体と第二流体とを熱交換させる熱交換装置として、例として、図5に示すように、外管1内に、螺旋状に撚り合わされた複数の内管2が装着されて、外管1内に複数の流路が形成されるとともに、外管と内管との間隙で形成される流路に螺旋状の捩りテープ3が装入されている。そして、この外管1の流路を流れる水と内管2を流れる冷媒とが熱交換するような熱交換装置と、この熱交換装置を水/冷媒熱交換器として用いたヒートポンプ給湯装置とが知られている(例えば、特許文献1参照)。
特開2003−343995号公報
As an example of a heat exchange device for exchanging heat between a conventional first fluid and a second fluid, as shown in FIG. 5, a plurality of inner tubes 2 spirally twisted are mounted in an outer tube 1. A plurality of flow paths are formed in the outer tube 1 and a spiral twisted tape 3 is inserted into a flow path formed by a gap between the outer tube and the inner tube. A heat exchange device that exchanges heat between the water flowing through the flow path of the outer tube 1 and the refrigerant flowing through the inner tube 2 and a heat pump hot water supply device that uses the heat exchange device as a water / refrigerant heat exchanger are provided. It is known (see, for example, Patent Document 1).
JP 2003-34395 A

しかしながら上記従来の熱交換装置では、ねじりテープ3の挿入で、外管1の流路を流れる水を乱流化することによって、伝熱促進効果を図れるが、ねじりテープ3は外管1、内管2とは別部品のため、それ自身の挿入及び外管1内においての位置決め手段などの作業と措置は必要となり、製造コストは高くなるという課題があった。また、ねじりテープ3によって、外管1の流路を流れる水の流動抵抗は大きくなり、圧力損失が増え、設置制限や水の元圧、駆動力への要求などが厳しくなる課題もあった。   However, in the above-described conventional heat exchange device, the insertion of the torsion tape 3 can turbulently flow the water flowing through the flow path of the outer tube 1. Since it is a separate part from the pipe 2, work and measures such as insertion of itself and positioning means in the outer pipe 1 are necessary, and there is a problem that the manufacturing cost increases. In addition, the torsion tape 3 increases the flow resistance of the water flowing through the flow path of the outer tube 1, increasing the pressure loss, and makes it difficult to limit the installation, the water pressure, and the driving force.

そこで本発明は、上記従来の課題を解決するもので、製造コストが安く、圧力損失を抑えた高性能の熱交換装置を提供する。   Accordingly, the present invention solves the above-described conventional problems, and provides a high-performance heat exchange device that is low in manufacturing cost and suppresses pressure loss.

請求項1記載の本発明の熱交換装置は、外管と、前記外管の管内に位置する内管と、前記外管と前記内管とが密着して構成される溝付二重管と、前記溝付二重管を複数本用いてお互いが密着しながら螺旋状に絡み合うように捻って構成されるねじり管と、前記ねじり管を内包する伝熱管とを備え、前記伝熱管を螺旋形状とし、前記伝熱管の螺旋形状における螺旋方向は、前記ねじり管の螺旋方向と同一方向であるとともに、前記伝熱管の螺旋形状における螺旋ピッチは、前記ねじり管の螺旋ピッチと略同一で、かつ、前記伝熱管の断面と前記ねじり管との断面とで、略均一の旋回流路を形成する構成としたことを特徴とする。 The heat exchange device according to the first aspect of the present invention includes an outer tube, an inner tube located in the tube of the outer tube, and a grooved double tube formed by closely contacting the outer tube and the inner tube. a torsion tube constructed by twisting the entangled helically with close contact to each other using a plurality of double pipe with the groove, e Bei a heat transfer tube which encloses the torsion tube, the pre Kiden heat pipe The helical direction of the helical shape of the heat transfer tube is the same direction as the helical direction of the torsion tube, and the helical pitch in the helical shape of the heat transfer tube is substantially the same as the helical pitch of the torsion tube, And it was set as the structure which forms a substantially uniform turning flow path with the cross section of the said heat exchanger tube, and the cross section of the said torsion pipe .

これによって、旋回流路を流れる流体とねじり管内を流れる流体との熱交換は効率的に行うことができ、高性能の熱交換装置が提供できる   As a result, heat exchange between the fluid flowing in the swirl flow path and the fluid flowing in the torsion pipe can be performed efficiently, and a high-performance heat exchange device can be provided.

本発明によれば、別部品などを用いずに伝熱促進を図ることができ、製造コストが安く、圧力損失を抑えた高性能の熱交換装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, heat transfer promotion can be aimed at without using another components etc., a manufacturing cost is low, and the high performance heat exchange apparatus which suppressed the pressure loss can be provided.

第1の発明は、外管と、前記外管の管内に位置する内管と、前記外管と前記内管とが密着して構成される溝付二重管と、前記溝付二重管を複数本用いてお互いが密着しながら螺旋状に絡み合うように捻って構成されるねじり管と、前記ねじり管を内包する伝熱管とを備え、前記伝熱管を螺旋形状とし、前記伝熱管の螺旋形状における螺旋方向は、前記ねじり管の螺旋方向と同一方向であるとともに、前記伝熱管の螺旋形状における螺旋ピッチは、前記ねじり管の螺旋ピッチと略同一で、かつ、前記伝熱管の断面と前記ねじり管との断面とで、略均一の旋回流路を形成する構成とするものである。 The first invention includes an outer tube, an inner tube located within the tube of the outer tube, a grooved double tube configured by closely contacting the outer tube and the inner tube, and the grooved double tube. was a plurality of torsion tube constructed by twisting the entangled helically with close contact to each other by using, e Bei a heat transfer tube which encloses the torsion tube, before the Kiden heat pipe spiral shape, the heat transfer tube The spiral direction in the spiral shape is the same direction as the spiral direction of the torsion tube, and the spiral pitch in the spiral shape of the heat transfer tube is substantially the same as the spiral pitch of the torsion tube, and the cross section of the heat transfer tube And a cross section of the torsion tube to form a substantially uniform swirl flow path .

これによれば、ねじり管の外周と伝熱管の内壁面との間に形成された螺旋状の旋回流路部分においては、ねじり管の外周に対して、旋回流路の流路高さは略同様となるため、この旋回流路を流れる流体とねじり管内を流れる流体との熱交換は効率的に行うことができ、高性能の熱交換装置が提供できる。また、別部品を用いずに、高効率な熱交換を図ることができるとともに、製造コストが安く、圧力損失を抑えた高性能の熱交換装置を提供することができる。   According to this, in the spiral swirl channel portion formed between the outer periphery of the torsion tube and the inner wall surface of the heat transfer tube, the flow channel height of the swirl channel is substantially the same as the outer periphery of the torsion tube. Therefore, heat exchange between the fluid flowing in the swirl flow path and the fluid flowing in the torsion pipe can be performed efficiently, and a high-performance heat exchange device can be provided. In addition, high-efficiency heat exchange can be achieved without using separate parts, and a high-performance heat exchange device with low manufacturing cost and reduced pressure loss can be provided.

また、これによれば、ねじり管の外周と伝熱管の内壁面によって構成される旋回流路の螺旋方向は、伝熱管の螺旋形状における螺旋方向と同一方向となるため、伝熱管内の流路全体において、旋回流路によって螺旋状に流れる流体は、流体の流れはスムーズとなり、少ない流路抵抗で高性能熱交換装置が提供できる。 Further , according to this, the spiral direction of the swirl flow path constituted by the outer periphery of the torsion tube and the inner wall surface of the heat transfer tube is the same direction as the spiral direction in the spiral shape of the heat transfer tube, so the flow path in the heat transfer tube As a whole, the fluid flowing spirally by the swirl flow path has a smooth fluid flow, and a high-performance heat exchange device can be provided with less flow path resistance.

また、これによれば、旋回流路を流れる流体の流れと溝付二重管内を流れる流体の流れとは同調し、両者間の熱交換は均一に行うことができるとともに、伝熱管内の流路全体において、流体の流れはスムーズとなり、少ない流路抵抗で高性能熱交換装置が提供できる。 In addition, according to this, the flow of the fluid flowing in the swirling flow path is synchronized with the flow of the fluid flowing in the grooved double pipe, heat exchange between them can be performed uniformly, and the flow in the heat transfer pipe can be performed. In the entire channel, the fluid flow becomes smooth, and a high-performance heat exchange device can be provided with a small channel resistance.

第2の発明は、特に、第1の発明の熱交換装置において、内管を流れる第二流体の流れ方向は、伝熱管を流れる第一流体の流れ方向と対向にしたものである。 In particular, according to a second aspect of the present invention, in the heat exchange device of the first aspect, the flow direction of the second fluid flowing through the inner tube is opposite to the flow direction of the first fluid flowing through the heat transfer tube.

これによれば、第一流体と第二流体の伝熱を均一化し、加熱流体によって非加熱流体の温度レベルを高く上げられるため、熱交換効率のよい熱交換装置を提供することができる。   According to this, heat transfer between the first fluid and the second fluid is made uniform, and the temperature level of the non-heated fluid can be increased by the heated fluid, so that a heat exchange device with good heat exchange efficiency can be provided.

第3の発明は、特に、第1または第2の発明の熱交換装置において、第一流体の上流側の伝熱管部分のみを螺旋形状とするものである。 In the third aspect of the invention, in particular, in the heat exchange device of the first or second aspect of the invention, only the heat transfer tube portion on the upstream side of the first fluid has a spiral shape.

これによれば、第一流体の流れをコントロールすることで、例えば、上流側の伝熱管部分に螺旋部を設け、熱交換を効率的に行う伝熱促進部分と、下流側の伝熱管部分を螺旋形状とせずに、流れを滑らかにし、スケール析出沈殿抑制を図るスケール抑制部分とを形成することができるため、熱交換性能がよくスケール成分の付着を抑制し、信頼性の高い熱交換装置を提供することができる。   According to this, by controlling the flow of the first fluid, for example, a spiral portion is provided in the heat transfer tube portion on the upstream side, and a heat transfer promotion portion for efficiently exchanging heat and a heat transfer tube portion on the downstream side are provided. Without a spiral shape, it is possible to form a scale-inhibiting part that smoothes the flow and suppresses the precipitation of scale deposits, so the heat exchange performance is good and the adhesion of scale components is suppressed, and a highly reliable heat exchange device Can be provided.

第4の発明は、特に、圧縮機、放熱器、減圧器、吸熱器等から構成されるヒートポンプサイクル装置を備え、放熱器として請求項1〜3のいずれか1項に記載の熱交換装置を用いるヒートポンプ給湯装置である。 4th invention is equipped with the heat pump cycle apparatus comprised especially from a compressor, a heat radiator, a pressure reduction device, a heat absorber, etc., and the heat exchange apparatus of any one of Claims 1-3 as a heat radiator. This is a heat pump water heater to be used.

これによれば、内管を流れる冷媒の放熱を用いて第一流体を加熱することによって、ねじり管によって冷媒と第一流体例えば水を共に乱流化させ、高効率の伝熱が実現できると共に、内管もしくは外管のどちらか一方が破損した場合でも、内管を流れる冷媒と伝熱管を流れる水とが混じりあうことがなく、圧縮機の潤滑油は使用者の口に入る可能性のある湯に入るのを防ぎ、早期故障診断と迅速な修理を実現でき、信頼性の高いヒートポンプ給湯装置を提供することができる。   According to this, by heating the first fluid using the heat radiation of the refrigerant flowing in the inner pipe, the refrigerant and the first fluid such as water are turbulent together by the torsion pipe, and highly efficient heat transfer can be realized. Even if either the inner pipe or the outer pipe is damaged, the refrigerant flowing through the inner pipe and the water flowing through the heat transfer pipe do not mix, and the compressor lubricant may enter the user's mouth. It is possible to provide a highly reliable heat pump hot water supply apparatus that can prevent entering a certain hot water, realize early failure diagnosis and quick repair.

第5の発明は、特に、第4の発明のヒートポンプ給湯装置において、冷媒は二酸化炭素で、圧力は臨界圧力以上とすることである。 In particular, the fifth invention is that in the heat pump hot water supply apparatus of the fourth invention , the refrigerant is carbon dioxide and the pressure is equal to or higher than the critical pressure.

これによれば、臨界圧力以上とすることによって、冷媒の二酸化炭素は水により熱を奪われて温度低下しても凝縮することなく、熱交換装置全域で冷媒と水とに温度差を形成しやすくなり、必要な高温度レベルまで水を効率的に加熱できる。このように、高効率の熱
交換装置をヒートポンプサイクルの放熱器として使用することによって、高効率のヒートポンプ給湯装置を提供することができる。
According to this, by setting the pressure above the critical pressure, the carbon dioxide of the refrigerant is deprived of heat by water and does not condense even if the temperature is lowered, forming a temperature difference between the refrigerant and water throughout the heat exchanger. It is easier to heat the water efficiently to the required high temperature level. Thus, a highly efficient heat pump hot-water supply apparatus can be provided by using a highly efficient heat exchange apparatus as a heat radiator of a heat pump cycle.

(実施の形態1)
図1は、本発明の第1の実施形態における熱交換装置を構成する伝熱管とねじり管を示す部品図、図中(a)は伝熱管の側面図、(b)はこの伝熱管に内包されるねじり管側面図である。図2は伝熱管とねじり管によって構成される熱交換装置の要部側面図、図3は図2に示す同熱交換装置のA−A断面、B−B断面、C−C断面を示す断面図、図4は同熱交換装置を用いたヒートポンプサイクルシステム構成図である。
(Embodiment 1)
FIG. 1 is a component diagram showing a heat transfer tube and a torsion tube constituting the heat exchange device according to the first embodiment of the present invention. In FIG. FIG. 2 is a side view of the main part of the heat exchange device constituted by heat transfer tubes and torsion tubes, and FIG. 3 is a cross section showing the AA, BB, and CC sections of the heat exchange device shown in FIG. FIG. 4 is a block diagram of a heat pump cycle system using the heat exchange device.

図3の中、(a)は図2に示すA-A切断面の断面図、(b)は図2に示すB-B切断面の断面図、(C)は図2に示すC-C切断面の断面図を示す。   3, (a) is a cross-sectional view taken along the line AA shown in FIG. 2, (b) is a cross-sectional view taken along the line BB shown in FIG. 2, and (C) is a cross-sectional view taken along the line CC shown in FIG. Sectional drawing of a cut surface is shown.

図1〜3において、10は第一流体例えば水が流れる伝熱管で、11と12は第二流体例えば二酸化炭素冷媒が流れる冷媒管の溝付二重管である。13はこの二本の溝付二重管11と12がお互いに密接しながら絡み合うように螺旋状にねじって形成したねじり管、11a、12aは内面壁に複数の溝14を有する外管、11b、12bはそれぞれこの内管11aと12aの管内に配置され、外管11aと12aと密着する内管である。そして、このように、それぞれ外管11aと内管11bによって溝付二重管11が構成され、外管12aと内管12bによって溝付二重管12が構成される。P1はねじり管13の螺旋ピッチを示す。   1-3, 10 is a heat transfer tube through which a first fluid such as water flows, and 11 and 12 are grooved double tubes of a refrigerant tube through which a second fluid such as carbon dioxide refrigerant flows. 13 is a torsion pipe formed by spirally twisting the two grooved double pipes 11 and 12 so that they are intertwined with each other, 11a and 12a are outer pipes having a plurality of grooves 14 on the inner wall, 11b , 12b are inner pipes arranged in the inner pipes 11a and 12a, and in close contact with the outer pipes 11a and 12a. Thus, the grooved double tube 11 is constituted by the outer tube 11a and the inner tube 11b, respectively, and the grooved double tube 12 is constituted by the outer tube 12a and the inner tube 12b. P1 indicates the helical pitch of the torsion tube 13.

15は伝熱管10に螺旋状の凹みを付けて設けた螺旋形状の螺旋部、P2はこの螺旋部15の螺旋ピッチを示し、この螺旋ピッチP2はねじり管の螺旋ピッチP1と略同一である。   Reference numeral 15 denotes a spiral portion provided with a spiral recess in the heat transfer tube 10, and P2 denotes a spiral pitch of the spiral portion 15. The spiral pitch P2 is substantially the same as the spiral pitch P1 of the torsion tube.

そして、このねじり管13を伝熱管10に挿入して熱交換装置を構成することによって、ねじり管13の外壁と伝熱管の内壁の間に、第一流体の水が流れる旋回流路16が形成される。   Then, by inserting this torsion tube 13 into the heat transfer tube 10 to constitute a heat exchange device, a swirl flow path 16 through which water of the first fluid flows is formed between the outer wall of the torsion tube 13 and the inner wall of the heat transfer tube. Is done.

図3において、15aは伝熱管10の螺旋部16の一部であり、螺旋方向及び構成特性を説明するために用いられる。また、16aはこの螺旋部15aに対応する旋回流路である。図3に示すように、A−A切断面において、15aと16aは左側に位置し、B−B切断面において、15aと16aは下方に位置し、C−C切断面において、15aと16aは右側に位置するようになっている。このように、A−A切断面の方向からみると、ねじり管13は螺旋方向Lに示すように、反時計方向に螺旋状になっている。それによって、旋回流路16も反時計方向に螺旋状になっている。15aをはじめとする螺旋部も同様に、螺旋方向Lに示すように、旋回流路16と同調して反時計方向に螺旋状になっている。このように、螺旋部15の螺旋方向Lは、ねじり管13の螺旋方向そして旋回流路16の螺旋方向とは同一方向となっている。   In FIG. 3, 15a is a part of the spiral portion 16 of the heat transfer tube 10, and is used to explain the spiral direction and the structural characteristics. Reference numeral 16a denotes a swirl passage corresponding to the spiral portion 15a. As shown in FIG. 3, 15a and 16a are located on the left side in the AA cut surface, 15a and 16a are located in the lower side in the BB cut surface, and 15a and 16a are located in the CC cut surface. It is located on the right side. Thus, when viewed from the direction of the AA cut surface, the torsion tube 13 is spiral in the counterclockwise direction as shown in the spiral direction L. As a result, the swirl passage 16 is also spiraled counterclockwise. Similarly, as shown in the spiral direction L, the spiral portion including 15a is also spiraled in the counterclockwise direction in synchronization with the swirl flow path 16. Thus, the spiral direction L of the spiral portion 15 is the same as the spiral direction of the torsion tube 13 and the spiral direction of the swirling channel 16.

図3に示す各断面図において、二本の溝付二重管11と12によって構成するねじり管13のめがね型断面に対して、螺旋部15の凹み構成によって、ねじり管13の外周を囲んで略均一に旋回流路16が配置される構成となる。   In each cross-sectional view shown in FIG. 3, the outer periphery of the torsion tube 13 is surrounded by the concave configuration of the spiral portion 15 with respect to the eyeglass-shaped cross section of the torsion tube 13 constituted by the two grooved double tubes 11 and 12. It becomes the structure by which the turning flow path 16 is arrange | positioned substantially uniformly.

図4において、圧縮機17、放熱器18、減圧手段19、吸熱器20が冷媒循環回路により閉回路に接続されている。冷媒循環回路は、例えば炭酸ガス(CO2)を冷媒として
使用し、高圧側の冷媒圧力が冷媒の臨界圧以上となる超臨界ヒートポンプサイクルを使用している。そして圧縮機17は、内蔵する電動モータ(図示せず)によって駆動され、吸引した冷媒を臨界圧力まで圧縮して吐出する。減圧手段19はステッピングモータ(図示
せず)により駆動する絞り弁で、冷媒流路抵抗を制御している。
In FIG. 4, the compressor 17, the heat radiator 18, the pressure reduction means 19, and the heat absorber 20 are connected to the closed circuit by the refrigerant circuit. The refrigerant circuit uses, for example, carbon dioxide (CO2) as a refrigerant, and uses a supercritical heat pump cycle in which the refrigerant pressure on the high pressure side is equal to or higher than the critical pressure of the refrigerant. The compressor 17 is driven by a built-in electric motor (not shown), and compresses and sucks the sucked refrigerant to a critical pressure. The decompression means 19 is a throttle valve that is driven by a stepping motor (not shown), and controls the refrigerant flow path resistance.

放熱器18は冷媒流路と、その冷媒流路と熱交換を行う水流路を備える。この放熱器18は前述の熱交換装置を用い、冷媒流路は溝付二重管11の内管11bと、溝付二重管12の内管12bとし、水流路は伝熱管10の内壁と溝付二重管11、12の外壁との間の流路としている。そして、この水流路はねじり管13の外周と伝熱管10の内周によって構成された旋回流路16となっている。このように、前述熱交換装置の内管11bと12bの入口は圧縮機17からの冷媒循環回路部分と連通し、出口は減圧器19への冷媒循環回路部分と連通するように接続されている。そして、この伝熱管の冷媒流路の流れ方向は水流路の流れ方向とを対向としている。   The radiator 18 includes a refrigerant channel and a water channel that performs heat exchange with the refrigerant channel. The radiator 18 uses the heat exchange device described above, the refrigerant flow path is the inner pipe 11b of the grooved double pipe 11 and the inner pipe 12b of the grooved double pipe 12, and the water flow path is the inner wall of the heat transfer pipe 10. It is set as the flow path between the outer walls of the grooved double tubes 11 and 12. This water flow path is a swirl flow path 16 constituted by the outer periphery of the torsion tube 13 and the inner periphery of the heat transfer tube 10. As described above, the inlets of the inner pipes 11b and 12b of the heat exchange device are connected to the refrigerant circulation circuit portion from the compressor 17, and the outlets are connected to the refrigerant circulation circuit portion to the decompressor 19. . And the flow direction of the refrigerant flow path of this heat exchanger tube is opposite to the flow direction of the water flow path.

また、この熱交換装置は、水の上流側の伝熱管部分のみに螺旋部を設けた構成にすることもできる。   Moreover, this heat exchange apparatus can also be set as the structure which provided the spiral part only in the heat exchanger tube part of the upstream of water.

この水流路に水または予温水を供給する給水管21と、水流路から出湯される湯を貯湯タンク22へ通水させるための給湯回路23が接続されている。そして、給水管21は前述の熱交換装置の入水口(図示せず)と接続し、前述の熱交換装置の出湯口(図示せず)は給湯回路23と連通している。24は給水管21に設けた水または予温水を輸送する積層ポンプである。このように、貯湯タンク22から水または予温水が積層ポンプ24によって輸送され、水流路で所定温度まで加熱された後、貯湯タンク22へ輸送され貯留されるようになっている。そして、25は貯湯タンク22と連通する出湯管である。   A water supply pipe 21 for supplying water or pre-warm water to the water flow path and a hot water supply circuit 23 for passing hot water discharged from the water flow path to the hot water storage tank 22 are connected. The water supply pipe 21 is connected to a water inlet (not shown) of the heat exchange device described above, and a hot water outlet (not shown) of the heat exchange device is communicated with the hot water supply circuit 23. A laminated pump 24 transports water or pre-warm water provided in the water supply pipe 21. In this way, water or pre-warm water is transported from the hot water storage tank 22 by the stacking pump 24, heated to a predetermined temperature in the water flow path, and then transported to the hot water storage tank 22 for storage. A hot water discharge pipe 25 communicates with the hot water storage tank 22.

以上のように構成された熱交換装置及び同熱交換装置を用いたヒートポンプ給湯装置について、以下その作用、動作を説明する。   About the heat exchange apparatus comprised as mentioned above and the heat pump hot-water supply apparatus using the same heat exchange apparatus, the effect | action and operation | movement are demonstrated below.

給水管21を通じて水または予温水が貯湯タンク22から供給されると、圧縮機17が起動し、冷媒を高温高圧の臨界状態まで圧縮し、ヒートポンプサイクルが作動する。   When water or preheated water is supplied from the hot water storage tank 22 through the water supply pipe 21, the compressor 17 is started, the refrigerant is compressed to a critical state of high temperature and pressure, and the heat pump cycle is activated.

そして、圧縮機17から吐出される高温高圧の冷媒ガスは放熱器18へ流入し、旋回流路16を含める水流路を流れる水を加熱する。そして、加熱された水は給湯回路23を経て貯湯タンク22へ流れ貯留される、いわゆる積層沸き上げを行う。一方、放熱器18で冷却された冷媒は減圧手段19で減圧されて吸熱器20に流入し、ここで大気熱、太陽熱、地中熱など自然エネルギーを吸熱して蒸発ガス化し、圧縮機17に戻る。   Then, the high-temperature and high-pressure refrigerant gas discharged from the compressor 17 flows into the radiator 18 and heats the water flowing through the water flow path including the swirl flow path 16. Then, the heated water flows through the hot water supply circuit 23 and flows into the hot water storage tank 22 and is stored, so-called stacked boiling. On the other hand, the refrigerant cooled by the radiator 18 is decompressed by the decompression means 19 and flows into the heat absorber 20, where it absorbs natural energy such as atmospheric heat, solar heat, and underground heat to evaporate and is converted into the compressor 17. Return.

そして、給湯需要のある時、給湯管25を通じて貯湯タンク22内に貯湯される湯がユーザーの使用する給湯蛇口(図示せず)などへ供給される。給湯需要の温度レベルに応じて、途中で水道水などとミキシングして所定の温度となり供給することもできる。   When there is a demand for hot water supply, hot water stored in the hot water storage tank 22 is supplied to the hot water supply faucet (not shown) used by the user through the hot water supply pipe 25. Depending on the temperature level of hot water supply demand, it can be mixed with tap water on the way and supplied at a predetermined temperature.

放熱器18において、放熱器18の冷媒流路11b、12bを流れる冷媒は、圧縮機17で臨界圧力以上に加圧されているので、放熱器18の水流路を流れる水により熱を奪われて温度低下しても凝縮することがない。したがって放熱器18全域で冷媒と水とに温度差を形成しやすくなり、高温の湯が得られ、かつ熱交換効率を高めることができ、高効率のヒートポンプサイクル式給湯装置を提供することができる。   In the radiator 18, the refrigerant flowing through the refrigerant channels 11 b and 12 b of the radiator 18 is pressurized to a critical pressure or higher by the compressor 17, so heat is taken away by the water flowing through the water channel of the radiator 18. It does not condense even when the temperature drops. Therefore, it becomes easy to form a temperature difference between the refrigerant and water in the entire radiator 18, high-temperature hot water can be obtained, and the heat exchange efficiency can be increased, thereby providing a highly efficient heat pump cycle type hot water supply device. .

図1〜図3に示すように、螺旋状にお互いに密着しながら絡み合うように捻れた二本の溝付二重管11、12によって構成されたねじり管13を伝熱管10内に配置することによって、伝熱管10の内壁とねじり管13の外壁の間に、自然に螺旋状の水の旋回流路16が形成されるとともに、冷媒も螺旋状に旋回されるため、水と冷媒ともに乱流化され、効率よく熱交換でき、熱交換性能のよい熱交換装置を得られ、高効率のヒートポンプサイクル給湯装置を得られる。   As shown in FIGS. 1 to 3, a torsion tube 13 constituted by two grooved double tubes 11 and 12 twisted so as to be intertwined with each other in a spiral manner is disposed in the heat transfer tube 10. As a result, a spiral water swirl passage 16 is formed between the inner wall of the heat transfer tube 10 and the outer wall of the torsion tube 13, and the coolant is also swirled spirally. Therefore, it is possible to obtain a heat exchange device that can efficiently exchange heat and has good heat exchange performance, and a highly efficient heat pump cycle hot water supply device.

特に、伝熱管10に螺旋部15を設けたことによって、ねじり管13の外周と伝熱管10の内壁面との間に形成された螺旋状の旋回流路部分16においては、加熱面であるねじり管13の外周に対して、ねじり管13の外周を囲んで略均一に旋回流路16を形成し、旋回流路16の流路高さも略同様となるため、この旋回流路16を流れる被加熱体である水とねじり管13内を流れる冷媒との熱交換は効率的に行うことができ、高性能の熱交換装置を提供することによって、高効率のヒートポンプ給湯装置が実現できる。   In particular, in the spiral swirl flow path portion 16 formed between the outer periphery of the torsion tube 13 and the inner wall surface of the heat transfer tube 10 by providing the spiral portion 15 in the heat transfer tube 10, the torsion which is a heating surface is provided. The swirl flow path 16 is formed substantially uniformly surrounding the outer periphery of the torsion pipe 13 with respect to the outer periphery of the pipe 13, and the swirl flow path 16 has substantially the same height. Heat exchange between water, which is a heating element, and the refrigerant flowing through the torsion pipe 13 can be performed efficiently, and a high-efficiency heat pump water heater can be realized by providing a high-performance heat exchange device.

また、伝熱管10に凹みの螺旋部15を設けることで、別部品を製造、管理、設置する手間もなく、製造コストを抑えることができる。   Further, by providing the concave spiral portion 15 in the heat transfer tube 10, there is no need to manufacture, manage, and install separate parts, and the manufacturing cost can be reduced.

このように、別部品を用いずに、高効率の熱交換を図りことができるとともに、製造コストも安い高性能の熱交換装置を提供することができる。   As described above, it is possible to provide a high-performance heat exchanging apparatus that can perform highly efficient heat exchange without using a separate part and is low in manufacturing cost.

また、螺旋部15の螺旋方向をねじり管13の螺旋方向と同一方向とし、ともに反時計方向(図示)で、螺旋方向Lとすることによって、ねじり管13の外周と伝熱管10の内壁面によって構成される旋回流路16の螺旋方向も螺旋部15の螺旋方向と同一方向となるため、伝熱管10内の流路全体において、流体の流れはスムーズとなり、少ない流路抵抗で高性能熱交換装置が実現できる。   Further, by setting the spiral direction of the spiral portion 15 to the same direction as the spiral direction of the twisted tube 13, both in the counterclockwise direction (shown) and the spiral direction L, the outer periphery of the twisted tube 13 and the inner wall surface of the heat transfer tube 10 Since the spiral direction of the swirling flow path 16 is the same as the spiral direction of the spiral portion 15, the flow of fluid is smooth throughout the heat transfer tube 10, and high-performance heat exchange with less flow resistance. A device can be realized.

また、螺旋部15の螺旋ピッチP2をねじり管13の螺旋ピッチP1と略同一としたことによって、ねじり管13の外周と伝熱管10の内壁面によって構成される旋回流路16に対応して、螺旋部15を設けることになるので、旋回流路16を流れる水の流れと溝付二重管内を流れる冷媒の流れとは同調し、両者間の熱交換は均一行うことができるとともに、伝熱管内の流路全体において、流体の流れはスムーズとなり、少ない流路抵抗で高性能熱交換装置が提供できる。   Further, by making the spiral pitch P2 of the spiral portion 15 substantially the same as the spiral pitch P1 of the torsion tube 13, corresponding to the swirl flow path 16 constituted by the outer periphery of the torsion tube 13 and the inner wall surface of the heat transfer tube 10, Since the spiral portion 15 is provided, the flow of water flowing in the swirl flow path 16 and the flow of refrigerant flowing in the grooved double pipe are synchronized, heat exchange between them can be performed uniformly, and heat transfer In the entire flow path in the pipe, the flow of fluid becomes smooth, and a high-performance heat exchange device can be provided with a small flow path resistance.

また、水の上流側の伝熱管部分のみに螺旋部15を設けることによって、水の流れをコントロールすることで、例えば、上流側の伝熱管部分に螺旋部15を設け、熱交換を効率的に行う伝熱促進部分と、下流側の伝熱管部分に螺旋部を設けなくて、流れを滑らかにし、スケール析出沈殿抑制を図るスケール抑制部分とを形成することができるため、熱交換性能がよくスケール成分の付着を抑制し、信頼性の高い熱交換装置を提供することができる。   Further, by providing the spiral portion 15 only in the upstream heat transfer tube portion, by controlling the flow of water, for example, the spiral portion 15 is provided in the upstream heat transfer tube portion so that heat exchange is efficiently performed. Since the heat transfer facilitating part and the downstream heat transfer pipe part are not provided with a spiral part, it is possible to form a scale restraining part that smoothes the flow and suppresses the precipitation of scale precipitates. Adhesion of components can be suppressed and a highly reliable heat exchange device can be provided.

このように、伝熱管10に螺旋部15を設けたことによって、製造コストが安く、圧力損失を抑えた高性能の熱交換装置とその熱交換装置を用いた高効率のヒートポンプ給湯装置を提供することができる。   As described above, by providing the heat transfer tube 10 with the spiral portion 15, a high-performance heat exchange device that is low in manufacturing cost and suppresses pressure loss and a high-efficiency heat pump water heater using the heat exchange device are provided. be able to.

なお、上記実施の形態1において、第一流体は二酸化炭素冷媒、第二流体は水としたが、その他の流体を用いても同様な効果が得られる。   In the first embodiment, the first fluid is carbon dioxide refrigerant and the second fluid is water. However, the same effect can be obtained by using other fluids.

なお、上記実施の形態1において、水流路で加熱された水は貯湯タンクへ輸送されるとしたが、水流路を流れる水を所定温度まで加熱した後、貯湯タンクへ流れなくて、直接ユーザーの使用する給湯蛇口などへ供給してもよい。   In the first embodiment, the water heated in the water flow path is transported to the hot water storage tank. However, after the water flowing through the water flow path is heated to a predetermined temperature, the water does not flow to the hot water storage tank, You may supply to the hot-water supply faucet etc. to be used.

以上のように、本発明にかかる熱交換装置及びそれを用いたヒートポンプサイクル給湯装置は、製造コストが安く、圧力損失を抑えた高性能の熱交換装置と、それを冷媒―水熱交換器として用いた高効率のヒートポンプ給湯装置を提供することができる。
その他、幅広く熱交換、熱搬送などの用途にも適用できる。
As described above, the heat exchange device according to the present invention and the heat pump cycle hot water supply device using the heat exchange device are low in production cost and have a high performance heat exchange device that suppresses pressure loss, and is used as a refrigerant-water heat exchanger. The high-efficiency heat pump hot water supply apparatus used can be provided.
In addition, it can be widely applied to applications such as heat exchange and heat transfer.

本発明の実施の形態1における熱交換装置の部品図Part diagram of heat exchange apparatus in Embodiment 1 of the present invention 本発明の実施の形態1における同熱交換装置の要部側面図The principal part side view of the heat exchanger apparatus in Embodiment 1 of this invention 本発明の実施の形態1における同熱交換装置の断面図Sectional drawing of the heat exchange apparatus in Embodiment 1 of this invention 本発明の実施の形態1における同熱交換装置を用いたヒートポンプ給湯装置構成図Heat pump hot water supply device configuration diagram using the same heat exchange device in Embodiment 1 of the present invention 従来の熱交換装置の構成図Configuration diagram of conventional heat exchanger

符号の説明Explanation of symbols

10 伝熱管
11、12 溝付二重管
11a、12a 外管
11b、12b 内管
13 ねじり管
15 螺旋部
17 圧縮機
18 放熱器
19 減圧器
20 吸熱器
P1 ねじり管のねじりピッチ
P2 螺旋部の螺旋ピッチ
DESCRIPTION OF SYMBOLS 10 Heat transfer tube 11, 12 Grooved double tube 11a, 12a Outer tube 11b, 12b Inner tube 13 Torsion tube 15 Spiral part 17 Compressor 18 Radiator 19 Decompressor 20 Heat absorber P1 Twist pitch of torsion pipe P2 Spiral spiral pitch

Claims (5)

外管と、前記外管の管内に位置する内管と、前記外管と前記内管とが密着して構成される溝付二重管と、前記溝付二重管を複数本用いてお互いが密着しながら螺旋状に絡み合うように捻って構成されるねじり管と、前記ねじり管を内包する伝熱管とを備え、前記伝熱管を螺旋形状とし、前記伝熱管の螺旋形状における螺旋方向は、前記ねじり管の螺旋方向と同一方向であるとともに、前記伝熱管の螺旋形状における螺旋ピッチは、前記ねじり管の螺旋ピッチと略同一で、かつ、前記伝熱管の断面と前記ねじり管との断面とで、略均一の旋回流路を形成する構成としたことを特徴とする熱交換装置。 An outer tube, an inner tube located within the outer tube, a grooved double tube formed by close contact between the outer tube and the inner tube, and a plurality of the grooved double tubes. and There coherent twisting tube constructed by twisting the entangled helically example Bei a heat transfer tube which encloses the torsion tube, prior to the Kiden heat pipe spiral shape, the spiral direction of the spiral shape of the heat transfer tube Is the same direction as the helical direction of the torsion tube, and the helical pitch in the helical shape of the heat transfer tube is substantially the same as the helical pitch of the torsion tube, and the cross section of the heat transfer tube and the torsion tube A heat exchange device characterized in that a substantially uniform swirl passage is formed in cross section . 内管を流れる第二流体と、伝熱管を流れる第一流体とを対向流とした請求項1に記載の熱交換装置。 The heat exchange device according to claim 1 , wherein the second fluid flowing through the inner tube and the first fluid flowing through the heat transfer tube are opposed to each other. 伝熱管を流れる第一流体の上流側に対応する伝熱管部分のみを螺旋形状とする請求項1または2記載の熱交換装置。 The heat exchange device according to claim 1 or 2, wherein only the heat transfer tube portion corresponding to the upstream side of the first fluid flowing through the heat transfer tube has a spiral shape. 圧縮機、放熱器、減圧器、吸熱器等から構成されるヒートポンプサイクル装置を備え、前記放熱器として請求項1〜3のいずれか1項に記載の熱交換装置を用いるヒートポンプ給湯装置。 The heat pump hot water supply apparatus provided with the heat pump cycle apparatus comprised from a compressor, a heat radiator, a pressure reduction device, a heat absorber, etc., and using the heat exchange apparatus of any one of Claims 1-3 as said heat radiator. 冷媒は二酸化炭素で、圧力は臨界圧力以上とする請求項4記載のヒートポンプ給湯装置。 The heat pump hot water supply apparatus according to claim 4 , wherein the refrigerant is carbon dioxide and the pressure is equal to or higher than a critical pressure.
JP2005165105A 2005-06-06 2005-06-06 Heat exchange device and heat pump water heater using the same Expired - Fee Related JP4200329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005165105A JP4200329B2 (en) 2005-06-06 2005-06-06 Heat exchange device and heat pump water heater using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005165105A JP4200329B2 (en) 2005-06-06 2005-06-06 Heat exchange device and heat pump water heater using the same

Publications (2)

Publication Number Publication Date
JP2006336988A JP2006336988A (en) 2006-12-14
JP4200329B2 true JP4200329B2 (en) 2008-12-24

Family

ID=37557689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005165105A Expired - Fee Related JP4200329B2 (en) 2005-06-06 2005-06-06 Heat exchange device and heat pump water heater using the same

Country Status (1)

Country Link
JP (1) JP4200329B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4882731B2 (en) * 2006-12-22 2012-02-22 パナソニック株式会社 Hot water storage water heater
JP2008196790A (en) * 2007-02-14 2008-08-28 Matsushita Electric Ind Co Ltd Heat exchanger, and heat pump hot water supply system using it
JP4957316B2 (en) * 2007-03-26 2012-06-20 株式会社富士通ゼネラル Double tube heat exchanger
JP2008267631A (en) * 2007-04-17 2008-11-06 Matsushita Electric Ind Co Ltd Heat exchanger
JP5420375B2 (en) * 2009-11-09 2014-02-19 株式会社松井製作所 Dehumidifier
JP6172950B2 (en) * 2012-02-01 2017-08-02 株式会社Uacj Double tube for heat exchanger
WO2014199479A1 (en) * 2013-06-13 2014-12-18 三菱電機株式会社 Heat pump device
CN107019372A (en) * 2017-05-27 2017-08-08 牟省先 Thermal pump intelligent health-care bed accessory
CN110777004A (en) * 2019-11-12 2020-02-11 安庆师范大学 Tea-seed oil is choice deep-processing special vacuum dehydration device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1038479A (en) * 1996-07-23 1998-02-13 Toyo Radiator Co Ltd Double tube type heat exchanger
JP2004093037A (en) * 2002-08-30 2004-03-25 Toyo Radiator Co Ltd Double-pipe heat exchanger
JP3918829B2 (en) * 2003-10-08 2007-05-23 松下電器産業株式会社 Manufacturing method of heat exchange device

Also Published As

Publication number Publication date
JP2006336988A (en) 2006-12-14

Similar Documents

Publication Publication Date Title
JP4200329B2 (en) Heat exchange device and heat pump water heater using the same
JP6687022B2 (en) Refrigeration cycle equipment
AU2006249166A1 (en) Heat exchanger
JP2006234254A (en) Heat exchanger and heat pump type hot water supply device using the same
JP2006336894A (en) Heat pump water heater
JP2007333304A (en) Heat exchanger
JP2008069993A (en) Heat exchanger and heat pump water heater using the same
JP2006317096A (en) Heat exchanger for electric water heater
JP5969270B2 (en) Heat pump equipment
JP4063237B2 (en) Heat exchange device and heat pump water heater using the same
JP2005133999A (en) Heat pump type hot-water supplier
JP2008057859A (en) Heat exchanger and heat pump hot water supply device using the same
JP5513738B2 (en) Heat exchanger and heat pump water heater
JP2006003028A (en) Heat exchanger and heat pump water heater using the same
JP2006336885A (en) Heat exchanger and its manufacturing method
JP5929012B2 (en) Heat exchanger and heat pump water heater
JP3945492B2 (en) Heat exchange device and heat pump water heater using the same
JP4922708B2 (en) Heat exchanger for heat pump water heater
JP3922190B2 (en) Heat exchange device and heat pump water heater using the same
JP4200323B2 (en) Heat exchange device and heat pump water heater using the same
JP3919699B2 (en) Heat exchange device and heat pump water heater
JP2008057860A (en) Heat exchanger
JP2005257189A (en) Heat exchange device, and heat pump hot-water supply device using the same
JP5857197B2 (en) Double-pipe heat exchanger and heat pump hot water generator equipped with the same
JP2007139284A (en) Heat exchanger and heat pump hot water supply device using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080922

R151 Written notification of patent or utility model registration

Ref document number: 4200329

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees