JP2005257189A - Heat exchange device, and heat pump hot-water supply device using the same - Google Patents

Heat exchange device, and heat pump hot-water supply device using the same Download PDF

Info

Publication number
JP2005257189A
JP2005257189A JP2004070408A JP2004070408A JP2005257189A JP 2005257189 A JP2005257189 A JP 2005257189A JP 2004070408 A JP2004070408 A JP 2004070408A JP 2004070408 A JP2004070408 A JP 2004070408A JP 2005257189 A JP2005257189 A JP 2005257189A
Authority
JP
Japan
Prior art keywords
heat transfer
tube
heat
fluid
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004070408A
Other languages
Japanese (ja)
Inventor
Tatsumura Mo
立群 毛
Masahiro Ohama
昌宏 尾浜
Takeji Watanabe
竹司 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004070408A priority Critical patent/JP2005257189A/en
Publication of JP2005257189A publication Critical patent/JP2005257189A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Details Of Fluid Heaters (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive and compact heat exchange device with favorable heat exchange performance and a low pressure loss, and a heat pump hot-water supply device using it. <P>SOLUTION: The heat exchange device is provided with first heat exchanger tubes 20a and 20b carrying a first fluid, and second heat exchanger tubes 22a and 22b arranged in the first heat exchanger tubes 20a and 20b, and composed by spirally twisting a plurality of heat exchanger tubes carrying a second fluid. The first heat exchanger tube is provided with a planar volute inner winding part carrying the first fluid from an outer circumference to a center, and a planar volute outer winding part carrying the first fluid from a center to an outer circumference. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、第一流体と第二流体とを熱交換させる熱交換装置(たとえばヒートポンプ式給湯機の水/冷媒熱交換器)に関するものである。   The present invention relates to a heat exchange device that exchanges heat between a first fluid and a second fluid (for example, a water / refrigerant heat exchanger of a heat pump water heater).

従来の第一流体と第二流体とを熱交換させる熱交換装置として、例として、図8に示すように、水通路Wを構成する芯管1と、該芯管1の外周に螺旋状に巻き付けられて冷媒通路Rを構成する巻管2とからなり、水通路Wを流れる水は冷媒通路を流れる冷媒により加熱する熱交換装置において、芯管1は渦巻き形状に巻かれ、上下二段に(即ち、二本)重ね合わせて接続するようになっている。このように、上段の芯管1と下段の芯管1とは渦巻きの中心側において接続部3を介して接続され、上段の芯管1の外周に巻き付けられている巻管2と下段の芯管1の外周に巻き付けられている巻管2とは渦巻きの中心側において接続部4を介して接続される構成のものが知られている(例えば特許文献1参照)。
特開2003−97898号公報(第1―9頁、図11、図13)
As a heat exchange device for exchanging heat between the conventional first fluid and the second fluid, for example, as shown in FIG. 8, the core tube 1 constituting the water passage W and the outer periphery of the core tube 1 are spirally formed. In a heat exchange device that is wound and constitutes a winding tube 2 constituting a refrigerant passage R, and the water flowing through the water passage W is heated by the refrigerant flowing through the refrigerant passage, the core tube 1 is wound in a spiral shape, and is divided into two upper and lower stages. (Ie, two) are overlapped and connected. In this way, the upper core tube 1 and the lower core tube 1 are connected via the connecting portion 3 at the center of the spiral, and the wound tube 2 wound around the outer periphery of the upper core tube 1 and the lower core The thing of the structure connected with the winding tube 2 wound around the outer periphery of the pipe | tube 1 through the connection part 4 in the center side of a spiral is known (for example, refer patent document 1).
Japanese Patent Laying-Open No. 2003-97898 (page 1-9, FIGS. 11 and 13)

しかしながら上記従来の熱交換装置では、渦巻き形状の芯管を二段重ねるという手法で、コンパクトで熱交換器の性能を大幅に向上させることができるが、芯管を流れる水と巻管を流れる冷媒との熱交換を効率的に行わせるには、巻管と芯管とを熱的に接触させる手段例えばロウ付け加工の必要がある。ロウ付け加工すれば、巻管と芯管とが一体となるため、芯管を渦巻く時、芯管の伸び縮みなどが制限され加工性が低下し、芯管の渦巻き形状、曲げ半径などが制限される問題がある。また、芯管の外周に巻管が巻き付けられていることによって、芯管の外周は連続平滑曲面でないため、専用の曲げ冶具が必要となり、加工コストが上昇するという問題があった。   However, in the above-described conventional heat exchange device, the method of stacking spiral core tubes in two stages is compact and can greatly improve the performance of the heat exchanger, but water flowing through the core tube and refrigerant flowing through the coil tube In order to efficiently perform heat exchange with the tube, it is necessary to perform means for bringing the winding tube and the core tube into thermal contact, for example, brazing. If the brazing process is performed, the winding tube and the core tube are integrated, so when the core tube is swirled, the expansion and contraction of the core tube is restricted and workability is reduced, and the spiral shape and bending radius of the core tube are restricted. There is a problem. In addition, since the winding tube is wound around the outer periphery of the core tube, the outer periphery of the core tube is not a continuous smooth curved surface, so that there is a problem that a dedicated bending jig is required and the processing cost increases.

また、冷媒が流れる巻管は芯管の外周に螺旋状に巻き付けられているため、巻管と芯管との接触面積を増加させようとすると、密に芯管まわりに巻管を巻いておく必要がある、そのため、巻管が長尺となるとともに、密なピッチで芯管外周に沿って螺旋状となるので、冷媒の圧力損失が大きくなる。さらに、上下二段重ねて接続することによって、水通路Wを流れる水は接続部3にて、冷媒通路を流れる冷媒は接続部4にて、それぞれ流れ方向は反転されるため、水も冷媒も流れ抵抗が大きくなり、不必要に流れ圧力損失が増加し、熱交換効率が低下する課題もあった。   Further, since the winding tube through which the refrigerant flows is spirally wound around the outer periphery of the core tube, if the contact area between the winding tube and the core tube is to be increased, the winding tube is tightly wound around the core tube. Therefore, the winding tube becomes long and spirals along the outer periphery of the core tube at a dense pitch, which increases the pressure loss of the refrigerant. Further, by connecting the two upper and lower layers, the flow direction of water flowing through the water passage W is reversed at the connection portion 3 and the refrigerant flowing through the refrigerant passage is reversed at the connection portion 4. There is also a problem that the flow resistance increases, the flow pressure loss increases unnecessarily, and the heat exchange efficiency decreases.

そこで本発明は、上記従来の課題を解決するもので、複数本の伝熱管を螺旋状にねじって構成した第二伝熱管を内包する第一伝熱管は外周から中心に向かって流れる平面渦巻き状の内巻部と中心から外周に向かって流れる平面渦巻き状の外巻部とを備えて、熱交換性能のよいコンパクトな低コストなおかつ圧力損失の少ない熱交換装置を提供することを目的とする。   Therefore, the present invention solves the above-described conventional problems, and the first heat transfer tube including the second heat transfer tube formed by spirally twisting a plurality of heat transfer tubes is a planar spiral shape that flows from the outer periphery toward the center. It is an object of the present invention to provide a compact and low-cost heat exchange device with good heat exchange performance and a small pressure loss, including an inner winding portion and a planar spiral outer winding portion that flows from the center toward the outer periphery.

上記目的を達成するために本発明の熱交換装置は、第一流体が流れる第一伝熱管と、前記第一伝熱管内に配置され、第二流体が流れる複数の伝熱管を螺旋状にねじって構成した第二伝熱管とを有し、前記第一伝熱管と第二伝熱管からなる伝熱管は、伝熱管の内部を外周から中心に向かって第1流体が渦巻き状に流れる平面渦巻き状の内巻部と、伝熱管の内部を中心から外周に向かって第1流体が渦巻き状に流れる平面渦巻き状の外巻部とを有することを特徴とする。   In order to achieve the above object, a heat exchange device of the present invention includes a first heat transfer tube through which a first fluid flows and a plurality of heat transfer tubes that are arranged in the first heat transfer tube and through which a second fluid flows. A heat transfer tube comprising the first heat transfer tube and the second heat transfer tube, the first heat transfer tube having a planar spiral shape in which the first fluid flows spirally from the outer periphery toward the center. And a flat spiral outer winding portion in which the first fluid flows spirally from the center toward the outer periphery inside the heat transfer tube.

この構成により、複数本の伝熱管を螺旋状にねじって構成した第二伝熱管を内包する第一伝熱管は内巻部と外巻部とを交互して積層することによって、熱交換性能のよいコンパクトな低コスト低圧力損失の熱交換装置を提供することができる。   With this configuration, the first heat transfer tube including the second heat transfer tube formed by twisting a plurality of heat transfer tubes in a spiral shape is alternately laminated with the inner winding portion and the outer winding portion, thereby improving the heat exchange performance. A good, compact, low-cost, low-pressure-loss heat exchange device can be provided.

本発明によれば、複数本の伝熱管を螺旋状にねじって構成した第二伝熱管を内包する第一伝熱管は内巻部と外巻部とを交互して積層することによって、熱交換性能のよいコンパクトな低コスト低圧力損失の熱交換装置を提供することができる。   According to the present invention, the first heat transfer tube including the second heat transfer tube formed by spirally twisting a plurality of heat transfer tubes is configured to heat exchange by alternately laminating the inner winding portion and the outer winding portion. A compact, low-cost, low-pressure-loss heat exchange device with good performance can be provided.

第1の発明は、第一流体が流れる第一伝熱管と、前記第一伝熱管内に配置され、第二流体が流れる複数の伝熱管を螺旋状にねじって構成した第二伝熱管とを有し、前記第一伝熱管と第二伝熱管からなる伝熱管は、伝熱管の内部を外周から中心に向かって第1流体が渦巻き状に流れる平面渦巻き状の内巻部と、伝熱管の内部を中心から外周に向かって第1流体が渦巻き状に流れる平面渦巻き状の外巻部とを有することを特徴とするものである。   A first invention includes a first heat transfer tube through which a first fluid flows, and a second heat transfer tube that is arranged in the first heat transfer tube and is configured by spirally twisting a plurality of heat transfer tubes through which a second fluid flows. A heat transfer tube comprising the first heat transfer tube and the second heat transfer tube, wherein the first fluid flows spirally from the outer periphery toward the center inside the heat transfer tube, and the heat transfer tube A flat spiral outer winding portion in which the first fluid spirally flows from the center toward the outer periphery.

本実施の形態によれば、螺旋状に捻れた複数本の第二伝熱管を第一伝熱管内に配置することによって、第一伝熱管の内壁と複数本の第二伝熱管の外壁との間に、自然に螺旋状の第一流体の流路が形成されるとともに、第二流体も螺旋状に旋回されるため、第一流体と第二流体ともに乱流化され、第一伝熱管を流れる第一流体と第二伝熱管を流れる第二流体とは効率よく熱交換でき、熱交換性能のよい熱交換装置を得られる。   According to this embodiment, by arranging a plurality of second heat transfer tubes twisted in a spiral in the first heat transfer tube, the inner wall of the first heat transfer tube and the outer wall of the plurality of second heat transfer tubes In the meantime, the flow path of the spiral first fluid is naturally formed, and the second fluid is also swirled spirally, so that both the first fluid and the second fluid are turbulent, and the first heat transfer tube is The first fluid flowing and the second fluid flowing through the second heat transfer tube can exchange heat efficiently, and a heat exchange device with good heat exchange performance can be obtained.

また、第二伝熱管を螺旋状に捻ることによって、ロウ付けなどを施する必要がなく、第二伝熱管の全表面を伝熱面積として寄与させるとともに、第二流体と第一流体を旋回流とし、乱流撹乱の効果で熱伝達率の向上を図れ、低コストの熱交換装置を得られる。   In addition, by twisting the second heat transfer tube spirally, it is not necessary to braze, etc., and the entire surface of the second heat transfer tube contributes as the heat transfer area, and the second fluid and the first fluid are swirled. Thus, the heat transfer coefficient can be improved by the effect of turbulent flow disturbance, and a low-cost heat exchange device can be obtained.

また、第二伝熱管は螺旋状に捻って、第一伝熱管内に配置されるため、第二伝熱管を流れる第二流体の圧力損失を抑えながら、伝熱面積の有効活用と伝熱促進を実現することができる。   In addition, since the second heat transfer tube is twisted spirally and placed in the first heat transfer tube, effective use of the heat transfer area and heat transfer promotion are achieved while suppressing the pressure loss of the second fluid flowing through the second heat transfer tube. Can be realized.

このように、螺旋状に捻った第二伝熱管を内包した第一伝熱管を第一流体が外周から中心に向かって流れる平面渦巻き状の内巻部と、第一流体が中心から外周に向かって流れる平面渦巻き状の外巻部とを備えることによって、高密度に第一伝熱管を収納することができ、熱交換性能のよいコンパクトな低コスト低圧力損失の熱交換装置を提供することができる。   Thus, the first heat transfer tube including the second heat transfer tube twisted in a spiral shape has a planar spiral inner winding portion in which the first fluid flows from the outer periphery toward the center, and the first fluid moves from the center toward the outer periphery. And providing a compact, low-cost, low-pressure-loss heat exchange device that can accommodate the first heat transfer tube with high density and has a high heat exchange performance. it can.

第2の発明は、特に、第1の発明の熱交換装置において、内巻部と外巻部とを交互して積層したものである。本実施の形態によれば、内巻部と外巻部とを交互して積層することによって、高密度なレイアウトで、連通した第一伝熱管及び第二伝熱管の通路を形成することができるため、コンパクト性のよい熱交換装置を提供することができる。   In particular, according to the second aspect of the present invention, in the heat exchange device of the first aspect, the inner winding portion and the outer winding portion are alternately laminated. According to the present embodiment, by alternately laminating the inner winding portion and the outer winding portion, it is possible to form the passages of the first heat transfer tube and the second heat transfer tube that communicate with each other with a high-density layout. Therefore, a heat exchange device with good compactness can be provided.

第3の発明は、特に、第1または第2の発明の熱交換装置において、外巻部での第一流体の渦巻き流れ方向は、内巻部での第一流体の渦巻き方向と同一方向であること。本実施の形態によれば、外巻部での第一流体の渦巻き流れ方向は、内巻部での第一流体の渦巻き方向と同一方向であるため、熱交換装置内において、第一流体の渦巻き流れ方向は一つしかないため、急な屈曲部などがなくて、第一流体の流れ圧力損失を最小限に抑えることができる。同様に、第二流体の渦巻き流れ方向も一つしかなく、急な曲がり箇所などがなくて、第二流体の圧力損失も最小限に抑えることができる。   In a third aspect of the invention, in particular, in the heat exchange device of the first or second aspect of the invention, the spiral flow direction of the first fluid in the outer winding portion is the same direction as the spiral direction of the first fluid in the inner winding portion. There is. According to the present embodiment, the spiral flow direction of the first fluid in the outer winding portion is the same direction as the spiral direction of the first fluid in the inner winding portion. Since there is only one spiral flow direction, there is no sharp bend and the like, and the flow pressure loss of the first fluid can be minimized. Similarly, there is only one swirl flow direction of the second fluid, there is no sharp bend, and the pressure loss of the second fluid can be minimized.

第4の発明は、特に、第1〜3のいずれか一つの発明の熱交換装置において、第一伝熱管が異なる管径の大管径管段と小管径管段とを備え、大管径管段は外巻部に配置したことである。本実施の形態によれば、管径の大きい大管径管段の第一伝熱管を備えることで、大管径管段の第一伝熱管部分において、第一流体の流れる断面積を大きくすることができるため、第一流体のスケール析出による流路閉塞を考慮した安全性、耐久性のよい熱交換装置を提供することができる。また、第一伝熱管の大管径管段を外巻部に位置させることによって、渦巻きの中心から外周に向かって流れる第一流体は次第に大管径管段を流れるとともに、第一伝熱管のストレート部の長さも増えてくるので、よりスケール耐久性のよい熱交換装置を提供することができる。   In particular, the fourth invention is the heat exchange device according to any one of the first to third inventions, wherein the first heat transfer tube includes a large pipe stage and a small pipe stage having different pipe diameters, and a large pipe stage. Is arranged in the outer winding part. According to the present embodiment, by providing the first heat transfer tube of a large tube stage having a large tube diameter, the cross-sectional area through which the first fluid flows can be increased in the first heat transfer tube portion of the large tube stage. Therefore, it is possible to provide a heat exchange device with good safety and durability in consideration of blockage of the flow path due to scale deposition of the first fluid. In addition, by positioning the large tube stage of the first heat transfer tube in the outer winding portion, the first fluid flowing from the center of the spiral toward the outer periphery gradually flows through the large tube step and the straight portion of the first heat transfer tube Therefore, the heat exchange device with better scale durability can be provided.

第5の発明は、特に、第4の発明の熱交換装置において、第一伝熱管の大管径管段と小管径管段とは異径連通部によって連通され、この異径連通部に対応する第二伝熱管部分においては、繋ぎ目のないことである。本実施の形態によれば、第一伝熱管内に内包され、第一流体の旋回流路中に配置される第二伝熱管は、継目がないため、第一流体と触れるのは第二伝熱管の管表面だけで、第一流体に対する耐食性と熱交換装置全体の信頼性を向上させることができる。   According to a fifth aspect of the present invention, in particular, in the heat exchange device of the fourth aspect of the invention, the large-diameter pipe stage and the small-diameter pipe stage of the first heat transfer pipe communicate with each other through a different-diameter communication part, and correspond to the different-diameter communication part. In the second heat transfer tube portion, there is no joint. According to the present embodiment, since the second heat transfer tube contained in the first heat transfer tube and disposed in the swirl flow path of the first fluid is seamless, the second heat transfer is in contact with the first fluid. The corrosion resistance to the first fluid and the reliability of the entire heat exchange device can be improved only by the surface of the heat pipe.

また、異径連通部に対応する第二伝熱管部分において、繋ぎ目がなく、一本ものであることによって、第一伝熱管の異径連通部においての接続作業は第一伝熱管のみでよいので、作業利便性が向上するとともに、繋ぎなどによる圧力損失の増加などをなくすことができる。   Moreover, in the 2nd heat exchanger tube part corresponding to a different diameter communication part, since there is no joint and it is a single thing, the connection work in the different diameter communication part of a 1st heat transfer tube may be only a 1st heat transfer tube. Therefore, work convenience is improved, and an increase in pressure loss due to splicing or the like can be eliminated.

また、第二伝熱管は継目がなく、一本ものであるため、螺旋状に捻る作業などの効率がよくなり、繋ぎ作業などは要らなくなり、作業性をアップさせることができる。   In addition, since the second heat transfer tube is seamless and is a single tube, the efficiency of the operation of twisting in a spiral shape is improved, and the connection operation is not required, so that the workability can be improved.

第6の発明は、特に、第1〜5のいずれか一つの発明の熱交換装置において、第二伝熱管を内管と外管とよって構成される二重管とすることである。本実施の形態によれば、第二伝熱管を二重管とすることによって、内管もしくは外管のどちらか一方が破損した場合でも、内管を流れる第二流体と第一伝熱管を流れる第一流体との間に、漏洩用溝を設けたため、第一流体と第二流体が混じりあうのを防止できるとともに、早期故障診断と迅速な修理を実現でき、信頼性の高い熱交換装置を提供することができる。また、この二重構成の第二伝熱管は捻られているので、内管と外管とはより密着するようになり、内管と外管の間の熱抵抗が小さくなり、熱交換装置の熱交換性能を確保することができる。   6th invention is making the 2nd heat exchanger tube into the double tube comprised by the inner tube and the outer tube especially in the heat exchange apparatus of any one of 1st-5th invention. According to the present embodiment, by making the second heat transfer tube a double tube, even if either the inner tube or the outer tube is damaged, the second fluid flows through the inner tube and the first heat transfer tube. Since a leakage groove is provided between the first fluid and the first fluid, the second fluid can be prevented from mixing together, early failure diagnosis and quick repair can be realized, and a highly reliable heat exchange device can be realized. Can be provided. In addition, since the second heat transfer tube having the double structure is twisted, the inner tube and the outer tube are brought into close contact with each other, the thermal resistance between the inner tube and the outer tube is reduced, and the heat exchange device Heat exchange performance can be ensured.

第7の発明は、特に、圧縮機と放熱器と減圧器と吸熱器などから構成する冷媒圧力が臨界圧力以上となるヒートポンプサイクル装置を備え、放熱器として第1〜6のいずれか一つの発明の熱交換装置を用い、第二流体の冷媒が第一流体を加熱するものである。本実施の形態によれば、第二伝熱管を流れる第二流体を臨界圧力以上のヒートポンプサイクルの冷媒とし、その冷媒の放熱を用いて第一流体を加熱することによって、冷媒の圧力損失を抑え、高いサイクル成績効率を実現することができる。また、臨界圧力以上とすることによって、必要な高温度レベルまで第一流体を効率的に加熱できる。このように、コンパクトな高効率の熱交換装置をヒートポンプサイクルの放熱器として使用することによって、高効率なサイクル装置を実現することができる。   In particular, the seventh invention includes a heat pump cycle device in which the refrigerant pressure composed of a compressor, a radiator, a decompressor, a heat absorber and the like is equal to or higher than a critical pressure, and any one of the first to sixth inventions as a radiator. The second fluid refrigerant heats the first fluid using the heat exchange device. According to the present embodiment, the second fluid flowing through the second heat transfer tube is used as a refrigerant in a heat pump cycle at a critical pressure or higher, and the first fluid is heated using the heat release from the refrigerant, thereby suppressing the pressure loss of the refrigerant. High cycle performance can be realized. Moreover, the first fluid can be efficiently heated to a required high temperature level by setting the pressure to a critical pressure or higher. Thus, a highly efficient cycle apparatus is realizable by using a compact highly efficient heat exchange apparatus as a heat pump cycle radiator.

第8の発明は、特に、第7の発明のヒートポンプサイクル装置おいて、第二伝熱管を流れる第二流体は二酸化炭素冷媒としたものである。本実施の形態によれば、管径の小さい第二伝熱管内に超臨界圧力の二酸化炭素冷媒を流すことによって、第一伝熱管の管壁は比較的薄い肉厚で設計できるとともに、二酸化炭素冷媒の管内熱伝達特性を損なうことなく、低重量、コンパクト、高性能な熱交換装置を提供することができる。また、例えば第一流体を水とすることによって、第二伝熱管外周の全周が有効伝熱面積として寄与し二酸化炭素冷媒の熱をもって、水を加熱することができ、高効率な給湯装置を提供することができる。   In the eighth invention, in particular, in the heat pump cycle device of the seventh invention, the second fluid flowing through the second heat transfer tube is a carbon dioxide refrigerant. According to the present embodiment, by flowing a carbon dioxide refrigerant having a supercritical pressure in the second heat transfer tube having a small diameter, the tube wall of the first heat transfer tube can be designed with a relatively thin wall thickness, and carbon dioxide. A low-weight, compact, and high-performance heat exchange device can be provided without impairing the heat transfer characteristics of the refrigerant in the tube. In addition, for example, by using water as the first fluid, the entire circumference of the outer periphery of the second heat transfer tube contributes as an effective heat transfer area, and the water can be heated with the heat of the carbon dioxide refrigerant. Can be provided.

(実施の形態1)
図1は、本発明の第1の実施形態における熱交換装置の収納状態を示す熱交換装置構成図である。図1の(a)は同熱交換装置の平面図で、図1の(b)は同熱交換装置の側面図である。図2は図1に示すA−A平面における同熱交換装置部分の構成図、図3は図1に示すB−B平面における同熱交換装置部分の構成図で、図4は図1に示すC−C平面における同熱交換装置部分の構成図で、図5は同熱交換装置の要部拡大図、図6は第二伝熱管の断面図、図7は同熱交換装置を用いたヒートポンプサイクル装置構成図である。
(Embodiment 1)
FIG. 1 is a configuration diagram of a heat exchange device showing a storage state of the heat exchange device according to the first embodiment of the present invention. FIG. 1A is a plan view of the heat exchange device, and FIG. 1B is a side view of the heat exchange device. 2 is a configuration diagram of the heat exchange device portion in the AA plane shown in FIG. 1, FIG. 3 is a configuration diagram of the heat exchange device portion in the BB plane shown in FIG. 1, and FIG. FIG. 5 is an enlarged view of the main part of the heat exchanger, FIG. 6 is a sectional view of the second heat transfer tube, and FIG. 7 is a heat pump using the heat exchanger. It is a cycle apparatus block diagram.

図1において、20a、20bは例えば第一流体の水が流れる管径の異なる第一伝熱管で、その中、20aは管径が20bより小さくて小管径管段で、20bは管径が20aより大きくて大管径管段である。21はこの第一伝熱管20aと20bとを連通させる異径連通部で、この異径連通部21によって、小管径管段の第一伝熱管20aと大管径管段の第一伝熱管20bとは連通されている。22a、22bはこの第一伝熱管20a、20b内に内包され例えば第二流体の二酸化炭素冷媒が流れる第二伝熱管(詳細後述)、A−Aは第一伝熱管20aの部分が平面渦巻き状に巻かれ収納する第一平面、B―Bは同じく第一伝熱管20aの部分が平面渦巻き状に巻かれ収納する第二平面である。C−Cは第一伝熱管20bの部分が平面渦巻き状に巻かれ収納する第三平面である。23は第二伝熱管22a、22bと連通し第二流体が流入する入口ヘッダー、24は第二伝熱管22a、22bと連通し第二流体が流出する出口ヘッダーで、第二伝熱管22aと22bはそれぞれ、入口ヘッダー23と出口ヘッダー24の間にある部分においては、継目がなく一本構成となっている。25は入口ヘッダー23に対応する第一流体が流出する出湯部、26は出口ヘッダー24に対応する第一流体が流入する入水部である。   In FIG. 1, 20a and 20b are, for example, first heat transfer tubes having different tube diameters through which water of the first fluid flows. Among them, 20a is a tube diameter smaller than 20b and a small tube diameter stage, and 20b has a tube diameter of 20a. Larger and larger diameter tube stage. Reference numeral 21 denotes a different diameter communicating portion that communicates the first heat transfer tubes 20a and 20b. By the different diameter communicating portion 21, a first heat transfer tube 20a having a small tube diameter stage and a first heat transfer tube 20b having a large diameter tube stage are provided. Are in communication. 22a and 22b are included in the first heat transfer tubes 20a and 20b, for example, a second heat transfer tube (details will be described later) through which a second fluid carbon dioxide refrigerant flows, and AA is a flat spiral shape of the first heat transfer tube 20a. A first plane BB is wound and stored, and BB is a second plane in which the portion of the first heat transfer tube 20a is wound and stored in a plane spiral shape. CC is the 3rd plane which the part of the 1st heat exchanger tube 20b winds and accommodates in a plane spiral shape. 23 is an inlet header that communicates with the second heat transfer tubes 22a and 22b and into which the second fluid flows, and 24 is an outlet header that communicates with the second heat transfer tubes 22a and 22b and through which the second fluid flows out, and the second heat transfer tubes 22a and 22b. In each of the portions between the inlet header 23 and the outlet header 24, there is no seam and the structure is one. Reference numeral 25 denotes a hot water outlet portion from which the first fluid corresponding to the inlet header 23 flows out, and reference numeral 26 denotes a water inlet portion into which the first fluid corresponding to the outlet header 24 flows.

図2〜図4において、Wは第一伝熱管20aと20bを流れる第一流体の流れ方向を示すものである。図1〜図4に示すように、第二伝熱管22aと22bを内包した第一伝熱管の一部はA−A断面にて平面渦巻きされ、外巻部Mを形成した後、B−B断面でさらに平面渦巻きされ、内巻部Nを形成し、そしてさらにC−C断面で平面渦巻きされ外巻部Fを形成した構成になっている。そして、A−A断面の外巻部MとB−B断面の内巻部NとC−C断面の外巻部Fにおける第一伝熱管部分の第一流体の渦巻き流れ方向Wは同様である。   2-4, W shows the flow direction of the 1st fluid which flows through the 1st heat exchanger tubes 20a and 20b. As shown in FIGS. 1 to 4, a part of the first heat transfer tube including the second heat transfer tubes 22 a and 22 b is spirally swirled in the AA cross section to form the outer winding portion M, and then BB Further, a plane spiral is further formed in the cross section to form an inner winding portion N, and a further outer spiral portion F is formed in a plane spiral in the CC cross section. And the spiral flow direction W of the 1st fluid of the 1st heat exchanger tube part in the outer winding part M of an AA cross section, the inner winding part N of a BB cross section, and the outer winding part F of a CC cross section is the same. .

図5において、第一伝熱管20a内に、二本の第二伝熱管22aと22bはお互いに密接しながら、所定のピッチで螺旋状に捻られている。27はこの第二伝熱管22a、22bの外壁と第一伝熱管20aの内壁の間に、第二伝熱管22aと22bのねじりによって、自然に形成される螺旋状の第一流体例えば水の流路である。   In FIG. 5, in the first heat transfer tube 20a, two second heat transfer tubes 22a and 22b are twisted spirally at a predetermined pitch while being in close contact with each other. 27 is a flow of a spiral first fluid such as water formed naturally between the outer walls of the second heat transfer tubes 22a and 22b and the inner wall of the first heat transfer tube 20a by the twist of the second heat transfer tubes 22a and 22b. Road.

図6において、28は第二伝熱管22a、または22bを構成する外管、29は第二伝熱管22a、または22bを構成する内管で、この外管28の内壁と内管29の外壁とを密着させることによって、第二伝熱管22a、22bは二重管構造となっている。30は外管28の内壁側にある漏洩用溝で、外管28の内壁と内管29の外壁の間に漏洩した流体を第二伝熱管の端部へ導く構成となっている。   In FIG. 6, 28 is an outer tube constituting the second heat transfer tube 22a or 22b, 29 is an inner tube constituting the second heat transfer tube 22a or 22b, and the inner wall of the outer tube 28 and the outer wall of the inner tube 29 are The second heat transfer tubes 22a and 22b have a double tube structure. Reference numeral 30 denotes a leakage groove on the inner wall side of the outer tube 28, which is configured to guide the fluid leaked between the inner wall of the outer tube 28 and the outer wall of the inner tube 29 to the end of the second heat transfer tube.

図7において、圧縮機31、放熱器32、減圧手段33、吸熱器34が冷媒循環回路により閉回路に接続されている。冷媒循環回路は、例えば炭酸ガス(CO)を冷媒として使用し、高圧側の冷媒圧力が冷媒の臨界圧以上となる超臨界ヒートポンプサイクルを使用している。そして圧縮機31は、内蔵する電動モータ(図示せず)によって駆動され、吸引した冷媒を臨界圧力まで圧縮して吐出する。減圧手段33はステッピングモータ(図示せず)により駆動する絞り弁で、冷媒流路抵抗を制御している。 In FIG. 7, the compressor 31, the heat radiator 32, the pressure reduction means 33, and the heat absorber 34 are connected to the closed circuit by the refrigerant circuit. The refrigerant circuit uses, for example, carbon dioxide (CO 2 ) as a refrigerant and uses a supercritical heat pump cycle in which the refrigerant pressure on the high pressure side is equal to or higher than the critical pressure of the refrigerant. The compressor 31 is driven by a built-in electric motor (not shown), and compresses and sucks the sucked refrigerant to a critical pressure. The decompression means 33 is a throttle valve that is driven by a stepping motor (not shown) and controls the refrigerant flow path resistance.

放熱器32は冷媒流路と、その冷媒流路と熱交換を行う水流路を備える。そして、この放熱器32は前述の熱交換装置を用い、冷媒流路は第二伝熱管22a、22bとし、水流路は第一伝熱管20a、20bの内壁と第二伝熱管22a、22bの外壁との間の流路27としている。このように、前述熱交換装置の第二伝熱管の入口ヘッダー23は圧縮機31からの冷媒循環回路部分と接続し、出口ヘッダー24は減圧器33への冷媒循環回路部分と連通するように接続されている。そして、この第二伝熱管の冷媒流路の流れ方向は水流路の流れ方向とを対向としている。   The radiator 32 includes a refrigerant channel and a water channel that performs heat exchange with the refrigerant channel. The radiator 32 uses the heat exchange device described above, the refrigerant flow path is the second heat transfer pipes 22a and 22b, and the water flow path is the inner wall of the first heat transfer pipes 20a and 20b and the outer wall of the second heat transfer pipes 22a and 22b. It is set as the flow path 27 between. In this way, the inlet header 23 of the second heat transfer tube of the heat exchange device is connected to the refrigerant circulation circuit portion from the compressor 31, and the outlet header 24 is connected to communicate with the refrigerant circulation circuit portion to the decompressor 33. Has been. The flow direction of the refrigerant flow path of the second heat transfer tube is opposite to the flow direction of the water flow path.

この水流路27に水または予温水を供給する給水管35と、水流路27から出湯される湯を貯湯タンク36へ通水させるための給湯回路37が接続されている。そして、給水管35は前述の熱交換装置の入水部26と接続し、前述の熱交換装置の出湯部25は給湯回路37と連通している。38は給水管35に設けた水または予温水を輸送する積層ポンプである。このように、貯湯タンク36から水または予温水が積層ポンプ38に輸送され、水流路27で所定温度まで加熱された後、貯湯タンク36へ輸送され貯留されるようになっている。そして、39は貯湯タンク36と連通する出湯管である。   A water supply pipe 35 for supplying water or pre-warm water to the water flow path 27 and a hot water supply circuit 37 for passing hot water discharged from the water flow path 27 to the hot water storage tank 36 are connected. The water supply pipe 35 is connected to the water inlet 26 of the heat exchanger described above, and the hot water outlet 25 of the heat exchanger is connected to the hot water supply circuit 37. A laminated pump 38 transports water or pre-warm water provided in the water supply pipe 35. In this way, water or pre-warm water is transported from the hot water storage tank 36 to the stacking pump 38, heated to a predetermined temperature in the water flow path 27, and then transported and stored in the hot water storage tank 36. Reference numeral 39 denotes a hot water discharge pipe communicating with the hot water storage tank 36.

次に動作、作用を説明すると、給水管35を通じて水または予温水が貯湯タンク36から供給されると、圧縮機31が起動し、冷媒を高温高圧の臨界状態まで圧縮し、ヒートポンプサイクルが作動する。   Next, the operation and action will be described. When water or pre-warm water is supplied from the hot water storage tank 36 through the water supply pipe 35, the compressor 31 is started, the refrigerant is compressed to a high temperature / high pressure critical state, and the heat pump cycle is activated. .

そして、圧縮機31から吐出される高温高圧の冷媒ガスは放熱器32へ流入し、水流路27を流れる水を加熱する。そして、加熱された水は給湯回路37を経て貯湯タンク36へ流れ貯留される、いわゆる積層沸き上げを行う。一方、放熱器32で冷却された冷媒は減圧手段33で減圧されて吸熱器34に流入し、ここで大気熱、太陽熱、地中熱など自然エネルギーを吸熱して蒸発ガス化し、圧縮機31に戻る。   The high-temperature and high-pressure refrigerant gas discharged from the compressor 31 flows into the radiator 32 and heats the water flowing through the water flow path 27. Then, the heated water flows through the hot water supply circuit 37 and flows into the hot water storage tank 36, where it is stored and heated. On the other hand, the refrigerant cooled by the radiator 32 is depressurized by the decompression means 33 and flows into the heat absorber 34, where it absorbs natural energy such as atmospheric heat, solar heat, and underground heat to evaporate and is converted into the compressor 31. Return.

そして、給湯需要のある時、給湯管39を通じて貯湯タンク36内に貯湯される湯がユーザーの使用する給湯蛇口(図示せず)などへ供給される。給湯需要の温度レベルに応じて、途中で水道水などとミキシングして所定の温度となり供給することもできる。   When there is a demand for hot water supply, hot water stored in the hot water storage tank 36 is supplied to the hot water supply faucet (not shown) used by the user through the hot water supply pipe 39. Depending on the temperature level of hot water supply demand, it can be mixed with tap water or the like and supplied at a predetermined temperature.

放熱器32において、放熱器32の冷媒流路第二伝熱管22a、22bを流れる冷媒は、圧縮機31で臨界圧力以上に加圧されているので、放熱器32の水流路27を流れる水により熱を奪われて温度低下しても凝縮することがない。したがって放熱器32全域で冷媒と水とに温度差を形成しやすくなり、高温の湯が得られ、かつ熱交換効率を高めることができ、高効率なヒートポンプサイクル式給湯装置を提供することができる。   In the radiator 32, the refrigerant flowing through the refrigerant flow path second heat transfer tubes 22 a and 22 b of the radiator 32 is pressurized to a critical pressure or higher by the compressor 31, so that the water flowing through the water flow path 27 of the radiator 32 Condensation does not occur even if the temperature drops due to heat deprivation. Therefore, it becomes easy to form a temperature difference between the refrigerant and the water in the entire radiator 32, high-temperature hot water can be obtained, and the heat exchange efficiency can be increased, so that a highly efficient heat pump cycle type hot water supply device can be provided. .

そして、螺旋状に捻れた複数本の第二伝熱管22aと22bを第一伝熱管20aと20b内に配置することによって、第一伝熱管の内壁と複数本の第二伝熱管22aと22bの外壁との間に、自然に螺旋状の第一流体の流路27が形成されるとともに、第二流体も螺旋状に旋回されるため、第一流体と第二流体ともに乱流化され、第一伝熱管20aと20bを流れる第一流体と第二伝熱管22aと22bを流れる第二流体とは効率よく熱交換でき、熱交換性能のよい熱交換装置を得られる。   And by arrange | positioning the 2nd heat exchanger tubes 22a and 22b twisted helically in the 1st heat exchanger tubes 20a and 20b, the inner wall of the 1st heat exchanger tube and the multiple second heat exchanger tubes 22a and 22b are arranged. A naturally spiral first fluid flow path 27 is formed between the outer wall and the second fluid, and the second fluid is also spirally swirled. The first fluid flowing through the heat transfer tubes 20a and 20b and the second fluid flowing through the second heat transfer tubes 22a and 22b can exchange heat efficiently, and a heat exchange device with good heat exchange performance can be obtained.

そして、このようなの熱交換性能のよい熱交換装置を放熱器32として用いることによって、ヒートポンプ給湯装置の圧縮機31の吐出冷媒圧力上昇を抑えることができ、ヒートポンプ給湯装置のサイクル成績係数を高めることができる。また、第二伝熱管22a、22bを流れる冷媒の圧力損失を小さく抑えることができるため、例えば同一外気温、同一能力、同一給水温度など同条件の下で、圧縮機31から吐出した冷媒の圧力を抑えることができ、圧縮機31の圧縮比を小さくて済み、より高効率のヒートポンプサイクルの成績係数が得られる。   And by using such a heat exchange device with good heat exchange performance as the radiator 32, it is possible to suppress the discharge refrigerant pressure rise of the compressor 31 of the heat pump hot water supply device, and to increase the cycle performance coefficient of the heat pump hot water supply device. Can do. Further, since the pressure loss of the refrigerant flowing through the second heat transfer tubes 22a and 22b can be reduced, for example, the pressure of the refrigerant discharged from the compressor 31 under the same conditions such as the same outside air temperature, the same capacity, and the same water supply temperature. The compression ratio of the compressor 31 can be reduced, and a coefficient of performance of a heat pump cycle with higher efficiency can be obtained.

そして、外巻部Mと内巻部Nと外巻部Fとを交互して積層することによって、高密度なレイアウトで、連通した第一伝熱管及び第二伝熱管の通路を形成することができるため、コンパクト性のよい熱交換装置が提供できるとともに、ヒートポンプ給湯装置全体のコンパクトが図れる。   Then, by alternately laminating the outer winding portion M, the inner winding portion N, and the outer winding portion F, it is possible to form a passage for the first heat transfer tube and the second heat transfer tube that communicate with each other with a high-density layout. Therefore, a heat exchange device with good compactness can be provided, and the entire heat pump hot water supply device can be made compact.

そして、外巻部M、Fの第一流体の渦巻き流れ方向Wは、内巻部Nでの第一流体の渦巻き方向Wと同一方向であることによって、熱交換装置内において、第一流体の渦巻き流れ方向は一つしかないため、急な屈曲部などがなくて、第一流体の流れ圧力損失を最小限に抑えることができる。よって、第一流体の水を駆動する積層ポンプ38の出力を抑えることができ、必要消費電力低減によってヒートポンプサイクル給湯装置全体の効率をアップさせることができる。また、同様に、第二流体の渦巻き流れ方向も一つしかなく、急な曲がり箇所などがなくて、第二流体の圧力損失も最小限に抑えることができる。よって、第二流体の冷媒の圧力損失を抑えることによって、圧縮機の吐出圧力を低くすることができ、ヒートサイクルの成績係数を高めることができる。   Then, the spiral flow direction W of the first fluid in the outer winding portions M and F is the same direction as the spiral direction W of the first fluid in the inner winding portion N, so that the first fluid Since there is only one spiral flow direction, there is no sharp bend and the like, and the flow pressure loss of the first fluid can be minimized. Therefore, the output of the laminated pump 38 that drives the water of the first fluid can be suppressed, and the efficiency of the entire heat pump cycle hot water supply apparatus can be increased by reducing the required power consumption. Similarly, there is only one swirl flow direction of the second fluid, there is no steep bend, and the pressure loss of the second fluid can be minimized. Therefore, by suppressing the pressure loss of the refrigerant of the second fluid, the discharge pressure of the compressor can be lowered and the coefficient of performance of the heat cycle can be increased.

そして、第一伝熱管が異なる管径の大管径管段20bと小管径管段20aとを備え、大管径管段20bは外巻部Fに配置することによって、大管径管段20bの第一伝熱管部分において、第一流体の流れる断面積を大きくすることができるため、第一流体のスケール析出による流路閉塞を考慮した安全性、耐久性のよい熱交換装置を提供することができる。また、第一伝熱管の大管径管段20bを外巻部Fに位置させることによって、渦巻きの中心から外周に向かって流れる第一流体は次第に大管径の管段を流れるとともに、第一伝熱管のストレート部の長さも増えてくるので、よりスケール耐久性のよい熱交換装置を提供することができる。   The first heat transfer pipe includes a large pipe stage 20b and a small pipe stage 20a with different pipe diameters, and the large pipe stage 20b is arranged in the outer winding portion F, whereby the first pipe of the large pipe stage 20b. Since the cross-sectional area through which the first fluid flows can be increased in the heat transfer tube portion, it is possible to provide a heat exchange device with good safety and durability in consideration of blockage due to scale deposition of the first fluid. In addition, by positioning the large-diameter tube step 20b of the first heat transfer tube in the outer winding portion F, the first fluid flowing from the center of the spiral toward the outer periphery gradually flows through the large-diameter tube step, and the first heat transfer tube Since the length of the straight portion increases, it is possible to provide a heat exchange device with better scale durability.

そして、第一伝熱管20aと20b内に内包され、第一流体の旋回流路中に配置される第二伝熱管22aと22bは、継目がないため、第一流体と触れるのは第二伝熱管22aまたは22bの管表面だけで、第一流体に対する耐食性と熱交換装置全体の信頼性を向上させることができる。また、異径連通部21に対応する第二伝熱管部分において、繋ぎ目がなく、一本ものであることによって、第一伝熱管の異径連通部21においての接続作業は第一伝熱管のみでよいので、作業利便性が向上するとともに、繋ぎなどによる圧力損失の増加などをなくすことができる。   Since the second heat transfer tubes 22a and 22b contained in the first heat transfer tubes 20a and 20b and disposed in the swirling flow path of the first fluid are seamless, the second fluid transfer is in contact with the first fluid. The corrosion resistance to the first fluid and the reliability of the entire heat exchange device can be improved only by the tube surface of the heat tube 22a or 22b. Moreover, in the 2nd heat exchanger tube part corresponding to the different diameter communication part 21, since there is no joint and it is a single thing, the connection work in the different diameter communication part 21 of a 1st heat transfer tube is only a 1st heat transfer tube. Therefore, work convenience is improved and an increase in pressure loss due to splicing or the like can be eliminated.

そして、第二伝熱管22aと22bを二重管とすることによって、二重管の内管29もしくは外管28のどちらか一方が破損した場合でも、内管29を流れる第二流体の冷媒と第一伝熱管を流れる第一流体の水との間に、漏洩用溝30を設けたため、第一流体と第二流体が混じりあうのを防止できるとともに、早期故障診断と迅速な修理を実現でき、信頼性の高い熱交換装置を提供することができる。また、この二重構成の第二伝熱管22aと22bはお互いに密着するように捻られているので、内管29と外管28とより密着するようになり、内管と外管の間の熱抵抗が小さくなり、熱交換装置の熱交換性能を確保することができる。   Further, by making the second heat transfer tubes 22a and 22b a double tube, even if either the inner tube 29 or the outer tube 28 of the double tube is damaged, the second fluid refrigerant flowing through the inner tube 29 Since the leakage groove 30 is provided between the first fluid flowing through the first heat transfer tube, it is possible to prevent the first fluid and the second fluid from mixing together, and to realize early failure diagnosis and quick repair. A highly reliable heat exchange device can be provided. Further, since the second heat transfer tubes 22a and 22b having the double structure are twisted so as to be in close contact with each other, the inner tube 29 and the outer tube 28 are more closely in contact with each other. The heat resistance is reduced, and the heat exchange performance of the heat exchange device can be ensured.

また、第二伝熱管22aと22bを螺旋状に捻ることによって、ロウ付けなどを施する必要がなく、第二伝熱管22aと22bの全表面を伝熱面積として寄与させるとともに、第二流体と第一流体を旋回流とし、乱流撹乱の効果で熱伝達率の向上を図れ、低コストの熱交換装置を得られる。この低コストの熱交換装置を用いることで、ヒートポンプ給湯装置全体のコストダウンの効果も得られる。   Further, by twisting the second heat transfer tubes 22a and 22b in a spiral manner, there is no need to braze, and the entire surface of the second heat transfer tubes 22a and 22b is contributed as a heat transfer area, and the second fluid and Using the swirl flow as the first fluid, the heat transfer rate can be improved by the effect of turbulent flow disturbance, and a low-cost heat exchange device can be obtained. By using this low-cost heat exchange device, the effect of cost reduction of the entire heat pump hot water supply device can also be obtained.

また、第二伝熱管22a、22bは第一伝熱管20aと20b内に配置されていることによって、第一伝熱管20aと20bの表面は連続平滑曲面なので、曲げる時、特別な冶具と設備などを要らず、通常のパイプベンダーなどで作業できるので、加工コストと設備投資を抑えることができる。   Further, since the second heat transfer tubes 22a and 22b are arranged in the first heat transfer tubes 20a and 20b, the surfaces of the first heat transfer tubes 20a and 20b are continuous smooth curved surfaces. It is possible to work with ordinary pipe benders, etc., and processing costs and capital investment can be reduced.

また、第二伝熱管22a、22bは管同士が密着しながら螺旋状に捻られて第一伝熱管20aと20b内に配置されることによって、第一伝熱管20aまたは20bを曲げる際に、捻った第二伝熱管22aと22bは管内芯がねの作用を働き、より小さな曲げ半径で第一伝熱管20aまたは20bを曲げることができるので、コンパクト性の高い熱交換装置を提供することができる。   Further, the second heat transfer tubes 22a and 22b are twisted in a spiral shape while being in close contact with each other, and are disposed in the first heat transfer tubes 20a and 20b, so that the second heat transfer tubes 22a and 22b are twisted when the first heat transfer tubes 20a or 20b are bent. Further, the second heat transfer tubes 22a and 22b act as an inner core, and the first heat transfer tube 20a or 20b can be bent with a smaller bending radius, so that a highly compact heat exchange device can be provided. .

このように、螺旋状に捻った第二伝熱管22aと22bを内包した第一伝熱管はA−A平面にて平面渦巻きされ、外巻部Mを形成した後、さらにB−B平面にて平面渦巻きされ、内巻部Nを形成し、さらにC−C平面にて平面渦巻きされて熱交換装置を構成することによって、高密度に第一伝熱管を収納することができ、熱交換性能のよいコンパクトな低コスト低圧力損失の熱交換装置とそれを用いたヒートポンプ給湯装置を提供することができる。   As described above, the first heat transfer tube including the second heat transfer tubes 22a and 22b twisted in a spiral shape is spirally wound in the AA plane to form the outer winding portion M, and further in the BB plane. The first heat transfer tube can be accommodated at a high density by forming a heat exchange device by forming the inner winding portion N on the plane spiral, and further by plane spiral on the CC plane. A good compact low-cost low-pressure-loss heat exchanger and a heat pump water heater using the heat exchanger can be provided.

なお、上記実施1の形態において、管径の異なる第一伝熱管20a、20bを用いたが、同一管径の第一伝熱管20aのみを用いて、例えばスケールが析出しない環境で使用しても同様な効果が得られる。   In the first embodiment, the first heat transfer tubes 20a and 20b having different tube diameters are used. However, the first heat transfer tubes 20a having the same tube diameter may be used, for example, in an environment where no scale is deposited. Similar effects can be obtained.

また、上記実施1の形態において、第二伝熱管を2本としたが、2本以上例えば3本を捻った場合でも同様な効果が得られる。   In the first embodiment, the number of the second heat transfer tubes is two, but the same effect can be obtained even when two or more, for example, three are twisted.

また、上記実施1の形態において、第二流体は自然冷媒炭酸ガスとしたが、その他の冷媒、例えばR410、HC(ハイドロカーボン)冷媒などを用いても同様な効果が得られる。   In the first embodiment, the second fluid is natural refrigerant carbon dioxide, but the same effect can be obtained by using other refrigerants such as R410 and HC (hydrocarbon) refrigerant.

また、上記実施1の形態において、ヒートポンプサイクル式給湯装置で用いた熱交換装置としたが、その他の用途で熱交換装置として用いても、同様な効果が得られる。   Moreover, in the said Embodiment 1, although it was set as the heat exchange apparatus used with the heat pump cycle type hot-water supply apparatus, even if it uses as a heat exchange apparatus in another use, the same effect is acquired.

さらに、上記実施1の形態において、水流路で加熱された湯は貯湯タンクに貯留するとしたが、直接ユーザーが使用する給湯端末例えばシャワー蛇口などへ流れても同様な効果が得られる。   Furthermore, although the hot water heated in the water flow path is stored in the hot water storage tank in the first embodiment, the same effect can be obtained even if it flows directly to a hot water supply terminal used by the user, such as a shower faucet.

以上のように、本発明にかかる熱交換装置及びそれを用いたヒートポンプサイクル装置は、熱交換性能のよい低コストなおかつ低圧力損失、コンパクトな熱交換装置を提供することができ、それをヒートポンプサイクル給湯装置で用いると、高効率なヒートポンプ給湯装置が得られる。その他、幅広く熱交換、熱搬送などの用途にも適用できる。   As described above, the heat exchanging device according to the present invention and the heat pump cycle device using the heat exchanging device can provide a low-cost and low-pressure-loss, compact heat exchanging device with good heat exchanging performance. When used in a hot water supply device, a highly efficient heat pump hot water supply device is obtained. In addition, it can be widely applied to applications such as heat exchange and heat transfer.

(a)本発明の実施の形態1における熱交換装置の収納状態を示す熱交換装置の平面図(b)同熱交換装置の側面図(A) Plan view of the heat exchange device showing the storage state of the heat exchange device in Embodiment 1 of the present invention (b) Side view of the heat exchange device (a)図1のA−A平面(外巻部)の平面図(b)図1のA−A平面(外巻部)の側面図(A) Plan view of the AA plane (outer winding portion) in FIG. 1 (b) Side view of the AA plane (outer winding portion) in FIG. (a)図1のB−B平面(内巻部)の平面図(b)図1のB−B平面(内巻部)の側面図(A) Plan view of BB plane (inner winding part) in FIG. 1 (b) Side view of BB plane (inner winding part) in FIG. (a)図1のC−C平面(外巻部)の平面図(b)図1のA−A平面(外巻部)の側面図(A) Plan view of CC plane (outer winding portion) in FIG. 1 (b) Side view of AA plane (outer winding portion) in FIG. 本発明の実施の形態1における熱交換装置の要部拡大横断面図The principal part expanded cross-sectional view of the heat exchange apparatus in Embodiment 1 of this invention 本発明の実施の形態1における熱交換装置の第二伝熱管の縦断面図The longitudinal cross-sectional view of the 2nd heat exchanger tube of the heat exchange apparatus in Embodiment 1 of this invention 本発明の実施の形態1における熱交換装置を用いたヒートポンプ給湯装置構成図Heat pump hot water supply apparatus configuration diagram using the heat exchange apparatus in Embodiment 1 of the present invention 従来の熱交換装置の構成図Configuration diagram of conventional heat exchanger

符号の説明Explanation of symbols

20a 第一伝熱管(小管径管段)
20b 第一伝熱管(大管径管段)
22a、22b 第二伝熱管
28 外管
29 内管
30 漏洩用溝
31 圧縮機
32 放熱器
33 減圧器
34 吸熱器
M、F 外巻部
N 内巻部
20a First heat transfer tube (small tube diameter tube stage)
20b 1st heat transfer tube (large diameter tube stage)
22a, 22b Second heat transfer tube 28 Outer tube 29 Inner tube 30 Leakage groove 31 Compressor 32 Radiator 33 Decompressor 34 Heat absorber M, F Outer winding portion N Inner winding portion

Claims (8)

第一流体が流れる第一伝熱管と、前記第一伝熱管内に配置され、第二流体が流れる複数の伝熱管を螺旋状にねじって構成した第二伝熱管とを有し、前記第一伝熱管と第二伝熱管からなる伝熱管は、伝熱管の内部を外周から中心に向かって第1流体が渦巻き状に流れる平面渦巻き状の内巻部と、伝熱管の内部を中心から外周に向かって第1流体が渦巻き状に流れる平面渦巻き状の外巻部とを有する熱交換装置。 A first heat transfer tube through which the first fluid flows; and a second heat transfer tube disposed in the first heat transfer tube and configured by helically twisting a plurality of heat transfer tubes through which the second fluid flows. A heat transfer tube composed of a heat transfer tube and a second heat transfer tube has a flat spiral inner winding portion in which the first fluid flows spirally from the outer periphery toward the center, and the heat transfer tube from the center to the outer periphery. A heat exchange device having a planar spiral outer winding portion in which the first fluid flows spirally toward the first fluid. 内巻部と外巻部とは交互に複数積層されることを特徴とする請求項1記載の熱交換装置。 The heat exchange device according to claim 1, wherein a plurality of inner winding portions and outer winding portions are alternately stacked. 第一流体の外巻部での渦巻き流れ方向は、第一流体の内巻部での渦巻き流れ方向と方向が同一であることを特徴とする請求項1または2記載の熱交換装置。 The heat exchange device according to claim 1 or 2, wherein the direction of the spiral flow in the outer winding portion of the first fluid is the same as the direction of the spiral flow in the inner winding portion of the first fluid. 第一伝熱管が異なる管径の大管径管段と小管径管段とを備え、大管径管段は外巻部に配置したことを特徴とする請求項1〜3いずれか1項記載の熱交換装置。 The heat according to any one of claims 1 to 3, wherein the first heat transfer tube includes a large tube step and a small tube step having different tube diameters, and the large tube step is disposed in the outer winding portion. Exchange equipment. 第一伝熱管の大管径管段と小管径管段とは異径連通部によって連通され、この異径連通部に対応する第二伝熱管部分においては、繋ぎ目のないことを特徴とする請求項4記載の熱交換装置。 The large-diameter pipe stage and the small-diameter pipe stage of the first heat transfer pipe are communicated with each other through a different diameter communicating portion, and the second heat transfer tube portion corresponding to the different diameter communicating portion has no joint. Item 5. The heat exchange device according to Item 4. 第二伝熱管は内管と外管によって構成される二重管で、内管と外管の間に、漏洩用溝を設けたことを特徴とする請求項1〜5のいずれか1項記載の熱交換装置。 The second heat transfer tube is a double tube composed of an inner tube and an outer tube, and a leakage groove is provided between the inner tube and the outer tube. Heat exchange equipment. 圧縮機、放熱器、減圧器、吸熱器とを有するヒートポンプサイクル装置を備え、請求項1〜6のいずれか1項に記載の熱交換装置を用いて第二流体の冷媒が第一流体を加熱することを特徴とするヒートポンプ給湯装置。 A heat pump cycle device having a compressor, a radiator, a decompressor, and a heat absorber is provided, and the second fluid refrigerant heats the first fluid using the heat exchange device according to any one of claims 1 to 6. A heat pump hot water supply device characterized by that. 第二流体の冷媒は二酸化炭素を用い、前記冷媒は超臨界圧以上になるようにした請求項7記載のヒートポンプ給湯装置。 The heat pump hot water supply apparatus according to claim 7, wherein carbon dioxide is used as a refrigerant of the second fluid, and the refrigerant is set to a supercritical pressure or more.
JP2004070408A 2004-03-12 2004-03-12 Heat exchange device, and heat pump hot-water supply device using the same Pending JP2005257189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004070408A JP2005257189A (en) 2004-03-12 2004-03-12 Heat exchange device, and heat pump hot-water supply device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004070408A JP2005257189A (en) 2004-03-12 2004-03-12 Heat exchange device, and heat pump hot-water supply device using the same

Publications (1)

Publication Number Publication Date
JP2005257189A true JP2005257189A (en) 2005-09-22

Family

ID=35083083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004070408A Pending JP2005257189A (en) 2004-03-12 2004-03-12 Heat exchange device, and heat pump hot-water supply device using the same

Country Status (1)

Country Link
JP (1) JP2005257189A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010139101A (en) * 2008-12-09 2010-06-24 Sanden Corp Heat exchanger and hot water supply device using the same
JP2013011404A (en) * 2011-06-29 2013-01-17 Noritz Corp Heat exchanger and method of manufacturing the same
CN106996661A (en) * 2017-03-27 2017-08-01 美的集团股份有限公司 The control method of condenser assembly, wall-hanging air conditioner all-in-one and condenser assembly
CN112212521A (en) * 2019-07-11 2021-01-12 青岛佰腾科技有限公司 Solar heat collection device capable of heating and descaling in sections
WO2024127571A1 (en) * 2022-12-15 2024-06-20 三菱電機株式会社 Refrigeration cycle device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010139101A (en) * 2008-12-09 2010-06-24 Sanden Corp Heat exchanger and hot water supply device using the same
JP2013011404A (en) * 2011-06-29 2013-01-17 Noritz Corp Heat exchanger and method of manufacturing the same
CN106996661A (en) * 2017-03-27 2017-08-01 美的集团股份有限公司 The control method of condenser assembly, wall-hanging air conditioner all-in-one and condenser assembly
CN106996661B (en) * 2017-03-27 2019-09-13 美的集团股份有限公司 The control method of condenser assembly, wall-hanging air conditioner all-in-one machine and condenser assembly
CN112212521A (en) * 2019-07-11 2021-01-12 青岛佰腾科技有限公司 Solar heat collection device capable of heating and descaling in sections
CN112212521B (en) * 2019-07-11 2022-08-12 青岛佰腾科技有限公司 Solar heat collection device capable of heating and descaling in sections
WO2024127571A1 (en) * 2022-12-15 2024-06-20 三菱電機株式会社 Refrigeration cycle device

Similar Documents

Publication Publication Date Title
JP4200329B2 (en) Heat exchange device and heat pump water heater using the same
JP4211041B2 (en) Heat pump water heater
JP2001201275A (en) Double tube heat exchanger
CN209910459U (en) Heat exchange double-layer sleeve
AU2006249166A1 (en) Heat exchanger
JP2006234254A (en) Heat exchanger and heat pump type hot water supply device using the same
JP2002228370A (en) Heat exchanger
JP2008069993A (en) Heat exchanger and heat pump water heater using the same
JP4063237B2 (en) Heat exchange device and heat pump water heater using the same
JP2005133999A (en) Heat pump type hot-water supplier
JP2008057859A (en) Heat exchanger and heat pump hot water supply device using the same
JP2005257189A (en) Heat exchange device, and heat pump hot-water supply device using the same
JP4224793B2 (en) Heat exchanger and manufacturing method thereof
JP3945492B2 (en) Heat exchange device and heat pump water heater using the same
JP5785883B2 (en) Heat exchanger and heat pump type water heater using the same
JP5929012B2 (en) Heat exchanger and heat pump water heater
JP2005221087A (en) Heat exchanger
JP2005201625A (en) Heat exchanger and its manufacturing method
JP4922708B2 (en) Heat exchanger for heat pump water heater
JP2006003028A (en) Heat exchanger and heat pump water heater using the same
JP2008057860A (en) Heat exchanger
JP5513738B2 (en) Heat exchanger and heat pump water heater
JP3922190B2 (en) Heat exchange device and heat pump water heater using the same
JP3922214B2 (en) Heat exchanger and heat pump water heater using the same
JP2007139284A (en) Heat exchanger and heat pump hot water supply device using the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070524

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070828