JP4199394B2 - Control method of absorbent concentration in thiosulfate denitration method - Google Patents

Control method of absorbent concentration in thiosulfate denitration method Download PDF

Info

Publication number
JP4199394B2
JP4199394B2 JP31756199A JP31756199A JP4199394B2 JP 4199394 B2 JP4199394 B2 JP 4199394B2 JP 31756199 A JP31756199 A JP 31756199A JP 31756199 A JP31756199 A JP 31756199A JP 4199394 B2 JP4199394 B2 JP 4199394B2
Authority
JP
Japan
Prior art keywords
absorption
thiosulfate
stage
liquid
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31756199A
Other languages
Japanese (ja)
Other versions
JP2001129355A (en
Inventor
彰 小渕
康信 南野
友英 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kakoki Kaisha Ltd
Original Assignee
Mitsubishi Kakoki Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kakoki Kaisha Ltd filed Critical Mitsubishi Kakoki Kaisha Ltd
Priority to JP31756199A priority Critical patent/JP4199394B2/en
Publication of JP2001129355A publication Critical patent/JP2001129355A/en
Application granted granted Critical
Publication of JP4199394B2 publication Critical patent/JP4199394B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、窒素酸化物を含有する排ガス中の窒素酸化物をチオ硫酸塩溶液で吸収除去するチオ硫酸塩脱硝法における吸収液濃度の制御方法に関する。
【0002】
【従来の技術】
半導体製造工場、石油化学工場、製鉄所などからは、比較的高濃度の窒素酸化物含有ガスが排出されるが、その窒素酸化物を脱硝処理する方法として、吸収液で窒素酸化物を吸収除去する湿式脱硝方法や触媒を用いて窒素酸化物を分解除去する乾式脱硝方法が用いられている。
【0003】
前記湿式脱硝方法においては、水酸化アルカリやアンモニア等のアルカリ成分のみのアルカリ水溶液を吸収液として用いたアルカリ吸収法、過マンガン酸塩や亜塩素酸塩等の酸化剤を溶解したアルカリ水溶液を吸収液として用いた酸化吸収法、チオ硫酸塩や硫化物等の還元剤を溶解したアルカリ水溶液を吸収液として用いた還元吸収法などが知られている。
【0004】
なお、一般的な排ガス中に含有されている窒素酸化物としては、NO、NO2及びNOとNO2が反応して生成するN2O3などであるが、アルカリとの反応においては、NO<NO2<N2O3の順で反応速度が速くなり、従って、前記の順序で吸収除去しやすくなる。
【0005】
前記のアルカリ吸収法は、NO2とアルカリとの直接的な反応と、排ガス中のNOとNO2が反応して生成するN2O3とアルカリとの反応などで窒素酸化物を吸収除去する方法であり、N2O3の生成は、NO2とNOとの比が略1に近くなるほど生成量が多くなるが、NO2を多く含有する排ガスでは、NO2がアルカリと反応する割合が多くなるため、NOとNO2の反応が起こりにくくなり、全体としての脱硝効率が低い問題がある。
【0006】
また、酸化吸収法では、NOを酸化剤で酸化してNO2とし、生成したNO2とアルカリを反応させて窒素酸化物を吸収除去する方法あるが、反応しにくいNOを酸化して反応しやすいNO2としているため、アルカリ吸収法よりも脱硝効率は高いが、NO2は前記した通り、N2O3よりも反応速度が遅いため、薬品費の高い酸化剤を用いる割には、脱硝効率の向上が不十分である問題がある。
【0007】
更に、還元吸収法では、排ガス中のNO2の一部を還元剤で還元してNOとし、排ガス中のNO2とNOとの比を調整してN2O3を生成し、生成したN2O3とアルカリとの反応で窒素酸化物を吸収除去する方法であり、他の方法と比較して脱硝効率が高いが、安定した運転を維持するためには、NO2とNOとの比の制御操作が煩雑となる問題があった。また、一定期間の運転で吸収液は徐々に還元能力が低下するため、一定間隔又は連続で吸収液を排出する必要があるが、従来の装置においては、吸収部が1段であるため、排出液中の還元剤濃度が高く、排出液の処理に化学的処理を行う場合には、薬品費が嵩む問題が生じ、また生物学的処理を行う場合には、生物に対する負荷が大きくなる問題があった。
【0008】
前記従来の夫々の問題に鑑みて、本願出願人は、特願平9−124671号で、吸収液としてチオ硫酸塩溶液を用いた還元吸収法において、吸収部を直列2段に構成し、2段目の吸収部にチオ硫酸塩溶液を供給して2段目の吸収液中のチオ硫酸塩濃度を高濃度とし、2段目の高濃度のチオ硫酸塩を含有する吸収液を1段目に循環して1段目の吸収液中のチオ硫酸塩濃度を低濃度で運転し、NOとNO2との比を調整してN2O3を効率的に生成させ、窒素酸化物の脱硝効率を向上させると共に、最終的に排出される1段目の吸収液のチオ硫酸塩濃度を低濃度とすることができることにより、前記従来の還元吸収法の問題を解決した方法を提案した。
【0009】
前記特願平9−124671号で提案した発明においては、以前の還元吸収法の問題点であった、安定した運転維持のための煩雑な操作や、還元能力が低下した吸収液の処理における、化学的処理での薬品費が嵩む問題や、また、生物学的処理を行う場合における生物に対する負荷が大きくなる問題などは解決されたが、2段目にチオ硫酸塩溶液を一定量づつ連続的に供給して運転されるため、1段目及び2段目の吸収液のチオ硫酸塩濃度は成り行きの濃度となっていた。
【0010】
また、チオ硫酸塩濃度を測定する方法としては、イオンクロマト法やヨウ素滴定法などが一般的に知られており、それらの方法でチオ硫酸塩濃度を測定していたため、サンプリングや分析に要する時間が非常に掛かり、分析された値に基づいてチオ硫酸塩溶液の供給を制御すると濃度の変動に追従できない問題があった。従って、2段目の吸収部のチオ硫酸塩濃度を一定の濃度に保持するために、チオ硫酸塩溶液を過剰に供給していた結果、薬品使用量が多くなり、薬品費が嵩む問題があった。更に、1段目の吸収部のチオ硫酸塩濃度が不明又はリアルタイムで判らないため、最終的に排出される排出液中のチオ硫酸塩濃度が一定せず、排出液の処理における化学的処理又は生物学的処理での装置の運転が煩雑となる問題があった。
【0011】
従って本願出願人は、前記特願平9−124671号で提案した発明の問題点を解決することを課題として、特願平11−110448号において、1段目及び/又は2段目の吸収部におけるチオ硫酸塩濃度を適正に制御でき、適正量の薬品使用量で、薬品費を低減することができる方法として、吸収部を直列2段に設け、2段目の吸収液の一部を1段目の吸収液として供給し、1段目の吸収部に酸化還元電位計を設け、酸化還元電位計で測定した電位値に基づいて2段目に供給するチオ硫酸塩溶液の供給量を制御することを特徴とするチオ硫酸塩脱硝法における吸収液濃度の制御方法を提案した。
【0012】
【発明が解決しようとする課題】
前記特願平11−110448号で提案した発明では、1段目及び/又は2段目の吸収部における吸収液のアルカリ濃度を制御してないため、pH値が変動し、それに伴って窒素酸化物の脱硝効率も変動する問題があった。特に、1段目の吸収部におけるpH値の変動により、酸化還元電位計での電位値が不正確となり、従って、電位値に基づいて制御する2段目に供給されるチオ硫酸塩溶液の供給量や1段目に供給される2段目の吸収液の供給量が不安定となり、脱硝効率に及ぼす影響が極めて大きいことが判明した。
【0013】
従って、本発明は、前記特願平11−110448号で提案した発明の問題点を解決するために改良されたものであり、1段目及び2段目の吸収部における吸収液のpH値を測定して、その値に基づいて1段目及び2段目にアルカリ溶液を供給し、夫々のpH値を安定させることにより、1段目及び2段目の吸収部における吸収液のチオ硫酸塩濃度をより正確に所定濃度に維持し、脱硝効率をより高い効率で安定させることができ、また、適正量の薬品使用量で、薬品費を低減することができる方法を提供する目的で成されたものである。
【0014】
【課題を解決するための手段】
前記目的を達成するための本発明の要旨は、請求項1に記載した発明においては、吸収液としてアルカリ性のチオ硫酸塩溶液を使用し、吸収部を直列2段に設け、2段目の吸収部にチオ硫酸塩溶液を供給し、2段目の吸収液の一部を1段目の吸収液として供給して窒素酸化物を含有する排ガス中の窒素酸化物を吸収除去するチオ硫酸塩脱硝法において、1段目の吸収部に酸化還元電位計及びpH計、2段目の吸収部にpH計を夫々設け、1段目の吸収部の酸化還元電位計で測定した電位値に基づいて1段目に供給する2段目の吸収液の供給量を制御し、1段目の吸収部のpH計で測定したpH値に基づいて1段目に供給するアルカリ溶液の供給量を制御し、2段目の吸収部のpH計で測定したpH値に基づいて2段目に供給するアルカリ溶液の供給量及びチオ硫酸塩溶液の供給量を制御することを特徴とするチオ硫酸塩脱硝法における吸収液濃度の制御方法である。
【0015】
酸化還元電位計で1段目の吸収部の電位値を測定することにより、1段目吸収部のチオ硫酸塩濃度の変動がリアルタイムで測定でき、2段目の吸収部から1段目の吸収部に供給される吸収液の供給量が適正に制御され、また、2段目に供給するチオ硫酸塩溶液の供給量を制御することにより、2段目の吸収部のチオ硫酸塩濃度を適正な濃度に維持することが可能となった。更に、1段目の吸収部から最終的に排出される排出液中のチオ硫酸塩濃度がリアルタイムで測定できるため、排出液中のチオ硫酸塩濃度を一定の低い値に制御することができ、排水処理における化学的処理又は生物学的処理での装置の運転が容易となった。
【0016】
また、1段目及び2段目の吸収部にpH計を夫々設けて、夫々の吸収部におけるpH値を測定し、pH値に基づいて1段目及び2段目に供給するアルカリ溶液の供給量を制御するため、夫々のpH値を安定させることができ、従って、1段目及び2段目の吸収部における吸収液のチオ硫酸塩濃度をより正確に測定することができるため、チオ硫酸塩濃度を所定濃度に維持し、脱硝効率をより高い効率で安定させることができる。
【0017】
なお、1段目の吸収液のpH値は7〜9、好ましくは8前後であり、チオ硫酸塩濃度は0.01〜10mg/L、好ましくは0.1〜5mg/Lの低い値に制御され、2段目の吸収液のpH値は9〜13、好ましくは12前後であり、チオ硫酸塩濃度は0.1〜2.0wt%の濃度の高い値に制御される。このような条件で運転することにより、NO2/NO比を適正な値に制御することができ、従ってN2O3を効率よく生成させ、脱硝効率を高く維持することができる。
【0018】
【発明の実施の形態】
以下に本発明の実施の形態について図面に基づいて説明する。図1は本発明の一実施の形態の系統図である。
【0019】
1は排ガス中の窒素酸化物を吸収除去する1段目の吸収部である第1吸収塔であり、内部に充填材が充填された充填層1Aが設けられ、充填層1Aよりも下部には、排ガスの導入管aが接続されており、また、底部には吸収液の一定量が滞留される液溜まり部1Bが形成され、液溜まり部1Bと連通し、吸収液を抜き出して吸収液循環ポンプ8を介して充填層1Aへ循環する吸収液循環管d及び吸収液を抜き出して図示しない排水処理装置などに排出する吸収液抜き出し管eが接続されている。更に、頂部には1次処理された処理ガスを2段目の吸収部である第2吸収塔2へ導入する1次処理ガス排出管bが接続している。また、第1吸収塔1の液溜まり部1Bには、酸化還元電位値を測定する酸化還元電位計6及びpH計5が液溜まり部1B内の吸収液に電極を浸漬して配置されている。
【0020】
2は排ガス中の窒素酸化物を除去する2段目の吸収部である第2吸収塔であり、第1吸収塔1の構造と略同一構造である。充填材が充填された充填層2Aが設けられ、充填層2Aよりも下部には、第1吸収塔1で1次処理された処理ガスを導入する1次処理ガス排出管bが接続され、頂部には2次処理された処理ガスを大気中に排出する処理ガスの排出管cが接続されており、また、底部には、吸収液の一定量が滞留される液溜まり部2Bが形成され、液溜まり部2Bと連通し、吸収液を抜き出して吸収液循環ポンプ9を介して充填層2Aへ循環する吸収液循環管gが接続されている。更に、吸収液循環管gは、2段目の吸収液の一部を1段目の吸収液として供給する分岐管fが途中から分岐して設けられ、第1吸収塔1の液溜まり部1Bに接続している。また、分岐管fには、1段目の吸収部の酸化還元電位計6で測定した電位値に基づいて1段目に供給する2段目の吸収液の供給量を制御する制御弁13が設けられている。また、第2吸収塔2の液溜まり部2Bには、pH計7が液溜まり部2B内の吸収液に電極を浸漬して配置されている。
【0021】
また、第2吸収塔2の液溜まり部2Bに新規なチオ硫酸塩溶液を供給するために、途中にチオ硫酸塩溶液供給ポンプ12を配置した吸収液供給管kを介してチオ硫酸塩溶液槽4が接続され、また、第1吸収塔1及び第2吸収塔2の夫々の液溜まり部1B、2Bに新規なアルカリ溶液を供給するために、途中にアルカリ溶液供給ポンプ10、11を夫々配置したアルカリ供給管h、jを介してアルカリ溶液槽3が接続されている。
【0022】
なお、チオ硫酸塩としては、チオ硫酸ナトリウム、チオ硫酸アンモニウムなどを用いることができるが、反応性や薬品費などからチオ硫酸ナトリウムを用いるのが好ましく、また、アルカリとしては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウムなどを用いることができるが、反応性や薬品費などから水酸化ナトリウムを用いるのが好ましい。更に、1段目の吸収液中のチオ硫酸塩濃度は0.01〜10mg/Lの低い値に制御され、2段目の吸収液中のチオ硫酸塩濃度は0.1〜2.0wt%の濃度の高い値に制御される。
【0023】
前記1段目及び2段目の吸収部の吸収塔1、2は、充填塔構造であり、充填層を形成する充填材としては、合成樹脂、セラミック等で製造された円筒状、円柱状、鞍状等が用いられるが、脱硝効率やハンドリングの容易性等から合成樹脂製の円筒状充填材を用いるのが好ましく、また、前記の充填塔構造ではなく、棚段塔やスプレ−塔などの構造としてもよく、更に、吸収塔1、2の夫々に隣接して液溜まり槽を配置して、液溜まり部1B、2Bと連通した構造でもよく、本発明に用いられる吸収塔の構造は、それらの構造には限定されない。
【0024】
以下、前記構成の脱硝装置により窒素酸化物を含有した排ガスから窒素酸化物を吸収除去する脱硝方法について述べる。
【0025】
第1吸収塔1では、排ガスの導入管aから排ガスが導入され、充填層1Aを上向流で流通し、また、吸収液が吸収液循環ポンプ8を介して吸収液循環管dから充填層1Aの上部に供給され、充填層1Aを下向流で流通することにより、排ガスと吸収液が向流接触して排ガス中の窒素酸化物が吸収除去されると共に、チオ硫酸塩の還元作用でNOとNO2との比が調整され、N2O3が効率的に生成される。
【0026】
吸収液は、第1吸収塔1の底部に設けられた液溜まり部1Bに滞留されたのち、吸収液循環ポンプ8で吸引されて抜き出され、吸収液循環管dから充填層1Aの上部に循環供給される。また、吸収液の一部は、吸収液抜き出し管eで第1吸収塔1外に抜き出され、図示しない排水処理装置で処理されたのち、河川等に放流されるが、吸収液の抜き出し量は、吸収液の組成により制御される。また、窒素酸化物が除去された処理ガスは、1次処理ガス排出管bから第2吸収塔2へ導入される。
【0027】
第2吸収塔2では、1次処理ガス排出管bから1次処理された排ガスが導入され、充填層2Aを上向流で流通し、また、吸収液が吸収液循環ポンプ9を介して吸収液循環管gから充填層2Aの上部に供給され、充填層2Aを下向流で流通することにより、排ガスと吸収液が向流接触して排ガス中の残存窒素酸化物が吸収除去される。なお、第1吸収塔1で排ガス中のNOとNO2との比がチオ硫酸塩の還元作用で調整されており、また、第2吸収塔2でもチオ硫酸塩の還元作用で調整されて、N2O3が効率的に生成されているため、脱硝効率を高く維持することができる。窒素酸化物が除去された処理ガスは、処理ガス排出管cから大気中に排出される。
【0028】
吸収液は、第2吸収塔2の底部に設けられた液溜まり部2Bに滞留されたのち、循環ポンプ9で吸引されて抜き出され、吸収液循環管gから充填層2Aの上部に循環供給される。また、吸収液の一部は、分岐管fから1段目の吸収液として第1吸収塔1の液溜まり部1Bに供給される。
【0029】
また、第1吸収塔1及び第2吸収塔2の夫々の吸収液のチオ硫酸塩濃度及びpH値を調整するために、第2吸収塔2の液溜まり部2Bに、チオ硫酸塩溶液供給管kを介してチオ硫酸塩溶液槽4からチオ硫酸塩溶液供給ポンプ12により新規なチオ硫酸塩溶液が供給され、また、第1吸収塔1及び第2吸収塔2の夫々の液溜まり部1B、2Bに、アルカリ供給管h、jを介してアルカリ溶液槽3からアルカリ溶液供給ポンプ10、11により新規なアルカリ溶液が供給される。
【0030】
前記における夫々の溶液の供給量制御は、酸化還元電位計6で第1吸収塔1における吸収液の電位値を測定し、図示しない制御装置を介してチオ硫酸塩濃度を算出して制御弁13を制御することにより、第2吸収塔2から第1吸収塔1の液溜まり部1Bに供給される吸収液の供給量を適正に制御することができ、また、第2吸収塔2におけるpH値をpH計7で測定し、第2吸収塔2に供給するチオ硫酸塩溶液の供給量をチオ硫酸塩溶液供給ポンプ12を制御することにより、第2吸収塔2の吸収液のチオ硫酸塩濃度を適正な濃度に維持することが可能となった。更に、第1吸収塔1から最終的に排出される排出液中のチオ硫酸塩濃度がリアルタイムで測定できるため、排出液中のチオ硫酸塩濃度を一定の低い値に制御することができ、排水処理における化学的処理又は生物学的処理での装置の運転が容易となった。
【0031】
更に、第1吸収塔1及び第2吸収塔2の夫々の液溜まり部1B、2Bに配置されたpH計5,7で、夫々の吸収液のpH値を測定し、pH値に基づいてアルカリ溶液供給ポンプ10,11を制御してアルカリ溶液の供給量を制御するため、夫々のpH値を安定させることができ、従って、第1吸収塔1の吸収液のチオ硫酸塩濃度をより正確に測定することができるため、チオ硫酸塩濃度を所定濃度に維持し、脱硝効率をより高い効率で安定させることができる。
【0032】
なお、第1吸収塔1の吸収液中のチオ硫酸塩濃度は0.01〜10mg/Lの低い値に制御され、第2吸収塔2の吸収液中のチオ硫酸塩濃度は0.1〜2.0wt%の濃度の高い値に制御される。更に、排ガス中の窒素酸化物のNO2/NO比に基づいて、第2吸収塔2の吸収液中のチオ硫酸塩とアルカリの濃度を制御することにより、NO2/NO比を適正な値に制御することができ、従ってN2O3を効率よく生成させ、脱硝効率を高く維持することができる。また、第1吸収塔1及び第2吸収塔2の吸収液のpH値をpH計5,7で夫々測定し、pH値に基づいて夫々に供給するアルカリ溶液の供給量を制御することにより、吸収液のpH値を安定させることができ、従って、第1吸収塔1及び第2吸収塔2の吸収液のチオ硫酸塩濃度をより正確に測定することができるため、チオ硫酸塩濃度を所定濃度に維持し、脱硝効率をより高い効率で安定させることができる。
【0033】
【実施例】
(実施例1)
前記脱硝方法により、半導体製造工程から排出される窒素酸化物を含有する排ガス中の窒素酸化物を除去処理する例について以下に詳述する。
第1吸収塔に供給するアルカリ溶液の供給量を第1吸収塔に設けたpH計で制御し、また、第2吸収塔からの吸収液の供給を酸化還元電位計で制御して、第1吸収塔の吸収液のpH値を8.0、電位値を140mvに制御し、また、第2吸収塔に供給するアルカリ溶液の供給量及びチオ硫酸塩溶液の供給量を第2吸収塔に設けたpH計で制御して、第2吸収塔の吸収液のpH値を12.0に制御し、窒素酸化物含有排ガスを処理した。
なお、排ガス中の窒素酸化物は、NO:305〜142ppm、NO:955〜661ppm、NO/NO2:3.13〜4.65であった。
その結果、処理ガス中の窒素酸化物はNO:37〜32ppm、NO2:63〜53ppm、平均の脱硝率:91.0%であり、また、チオ硫酸塩溶液の消費量は25L/H、アルカリ溶液の消費量は50L/Hであった。
【0034】
(比較例1)
第1吸収塔に設けた酸化還元電位計により、第2吸収塔に供給するチオ硫酸塩溶液の供給量を制御し、初期の第1吸収塔の吸収液のpH値を8.0、電位値を140mvに設定し、また、第2吸収塔に設けたpH計で第2吸収塔に供給するアルカリ溶液の供給量を制御して、第2吸収塔の吸収液のpH値を12.0に制御して排ガスを処理した。
なお、排ガス中の窒素酸化物は、NO:250〜110ppm、NO2:880〜670ppm、NO/NO2:3.52〜6.09であった。
その結果、第1吸収塔の吸収部のpH値は7.0〜9.0の間で変動し、処理ガス中の窒素酸化物は、NO:36〜26ppm、NO2:64〜54ppm、平均の脱硝率:90.6%であり、また、チオ硫酸塩溶液の消費量は28L/H、アルカリ溶液の消費量は65L/Hであった。
【0035】
前記のとおり、本発明の吸収液濃度の制御方法では、脱硝効率をより高い効率で安定させることができ、また、チオ硫酸塩溶液及びアルカリ溶液の消費量を低減することができた。
【0036】
【発明の効果】
本発明は、1段目及び2段目の吸収部における吸収液のチオ硫酸塩濃度をより正確に測定できるため、チオ硫酸塩濃度を所定濃度に維持し、脱硝効率をより高い効率で安定させることができ、また、チオ硫酸塩溶液及びアルカリ溶液の消費量を低減することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態の系統図
【符号の説明】
1:第1吸収塔
2:第2吸収塔
3:アルカリ溶液槽
4:チオ硫酸塩溶液槽
5、7:pH計
6:酸化還元電位計
8、9:吸収液循環ポンプ
10、11:アルカリ溶液供給ポンプ
12:チオ硫酸塩溶液供給ポンプ
13:制御弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for controlling the concentration of an absorbing solution in a thiosulfate denitration method in which nitrogen oxides in exhaust gas containing nitrogen oxides are absorbed and removed with a thiosulfate solution.
[0002]
[Prior art]
A relatively high concentration of nitrogen oxide-containing gas is discharged from semiconductor manufacturing plants, petrochemical plants, steelworks, etc., but as a method of denitrating the nitrogen oxides, nitrogen oxides are absorbed and removed with an absorbing solution. There are used wet denitration methods and dry denitration methods that decompose and remove nitrogen oxides using a catalyst.
[0003]
In the wet denitration method, an alkali absorption method using an alkaline aqueous solution containing only an alkali component such as alkali hydroxide or ammonia as an absorbing solution, or an alkaline aqueous solution in which an oxidizing agent such as permanganate or chlorite is dissolved is absorbed. There are known an oxidation absorption method used as a liquid, a reduction absorption method using an alkaline aqueous solution in which a reducing agent such as thiosulfate or sulfide is dissolved as an absorption liquid.
[0004]
Nitrogen oxides contained in general exhaust gas include NO, NO2, and N2O3 produced by the reaction of NO and NO2. However, in the reaction with alkali, NO <NO2 <N2O3. In this order, the reaction rate is increased, and therefore, absorption and removal are facilitated in the order.
[0005]
The alkali absorption method is a method of absorbing and removing nitrogen oxides by direct reaction of NO2 and alkali, reaction of N2O3 produced by reaction of NO and NO2 in exhaust gas and alkali, etc. N2O3 The amount of NO2 generated increases as the ratio of NO2 and NO approaches 1; however, in exhaust gas containing a large amount of NO2, the ratio of NO2 reacting with alkali increases, so the reaction between NO and NO2 occurs. There is a problem that the denitration efficiency as a whole becomes low.
[0006]
In the oxidation absorption method, there is a method in which NO is oxidized with an oxidant to form NO2, and the produced NO2 is reacted with an alkali to absorb and remove nitrogen oxides. However, NO2 which is difficult to react is oxidized and reacted easily. Therefore, the NOx removal efficiency is higher than that of the alkali absorption method, but NO2 has a slower reaction rate than N2O3 as described above. There is a problem.
[0007]
Furthermore, in the reduction absorption method, a part of NO2 in the exhaust gas is reduced with a reducing agent to NO, N2O3 is generated by adjusting the ratio of NO2 and NO in the exhaust gas, and the reaction between the generated N2O3 and alkali In this method, nitrogen oxides are absorbed and removed, and the denitration efficiency is higher than other methods. However, in order to maintain a stable operation, there is a problem that the control operation of the ratio of NO2 and NO becomes complicated. there were. In addition, since the reducing capacity of the absorbing solution gradually decreases during a certain period of operation, it is necessary to discharge the absorbing solution at regular intervals or continuously. When the concentration of the reducing agent in the liquid is high and chemical treatment is performed for the treatment of the effluent, there is a problem that chemical costs increase, and when biological treatment is performed, there is a problem that the burden on living organisms becomes large. there were.
[0008]
In view of the conventional problems, the applicant of the present application disclosed in Japanese Patent Application No. Hei 9-124671, in the reduction absorption method using a thiosulfate solution as an absorption liquid, the absorption part is configured in two stages in series. The thiosulfate solution is supplied to the absorption section of the second stage to increase the concentration of thiosulfate in the second stage absorption liquid, and the first stage of the absorption liquid containing the high concentration of thiosulfate in the second stage. The thiosulfate concentration in the first-stage absorbent is circulated to a low concentration, and the ratio of NO and NO2 is adjusted to produce N2O3 efficiently, improving the NOx removal efficiency of nitrogen oxides. At the same time, a method has been proposed in which the concentration of the thiosulfate in the first-stage absorption liquid finally discharged can be reduced, thereby solving the problems of the conventional reduction absorption method.
[0009]
In the invention proposed in the aforementioned Japanese Patent Application No. 9-124671, in the complicated operation for stable operation maintenance, which was a problem of the previous reducing absorption method, and in the treatment of the absorbing solution having reduced reducing ability, The problem of increasing chemical costs in chemical processing and the problem of increasing the burden on living organisms when performing biological processing has been solved. However, a constant amount of thiosulfate solution is continuously added in the second stage. Therefore, the thiosulfate concentration in the first-stage and second-stage absorbents was the desired concentration.
[0010]
As methods for measuring the thiosulfate concentration, ion chromatography, iodine titration, etc. are generally known, and since the thiosulfate concentration was measured by these methods, the time required for sampling and analysis However, when the supply of the thiosulfate solution is controlled based on the analyzed value, there is a problem that the fluctuation of the concentration cannot be followed. Therefore, in order to maintain the thiosulfate concentration in the second-stage absorption section at a constant concentration, as a result of excessive supply of the thiosulfate solution, there is a problem that the amount of chemical used increases and the chemical cost increases. It was. Furthermore, since the thiosulfate concentration in the first-stage absorption part is unknown or not known in real time, the thiosulfate concentration in the finally discharged effluent is not constant, and chemical treatment in the treatment of the effluent or There is a problem that the operation of the apparatus in biological treatment becomes complicated.
[0011]
Accordingly, the applicant of the present application aims to solve the problems of the invention proposed in Japanese Patent Application No. 9-124671, and in Japanese Patent Application No. 11-110448, the first stage and / or the second stage absorption section. As a method that can appropriately control the thiosulfate concentration in the water and reduce the chemical cost with an appropriate amount of chemical used, an absorption part is provided in two stages in series, and a part of the second stage absorbent is 1 Provided as a first-stage absorption liquid, provided with a redox potentiometer in the first-stage absorption section, and controlled the supply amount of the thiosulfate solution supplied in the second stage based on the potential value measured with the redox potentiometer A method for controlling the concentration of the absorbent in thiosulfate denitration was proposed.
[0012]
[Problems to be solved by the invention]
In the invention proposed in the Japanese Patent Application No. 11-110448, the alkali concentration of the absorbing solution in the first and / or second-stage absorption part is not controlled, so that the pH value fluctuates, and nitrogen oxidation occurs accordingly. There was a problem that the denitration efficiency of the objects also fluctuated. In particular, the fluctuation of the pH value in the first-stage absorption part makes the potential value in the oxidation-reduction potentiometer inaccurate, and therefore the supply of the thiosulfate solution supplied in the second stage that is controlled based on the potential value. It was found that the amount and the supply amount of the second-stage absorption liquid supplied to the first stage became unstable, and the influence on the denitration efficiency was extremely large.
[0013]
Therefore, the present invention has been improved in order to solve the problems of the invention proposed in Japanese Patent Application No. 11-110448, and the pH value of the absorbing solution in the first and second absorption parts is set. Based on the measured value, an alkaline solution is supplied to the first stage and the second stage, and the respective pH values are stabilized to stabilize the thiosulfate of the absorbing solution in the first and second stage absorption parts. It was made for the purpose of providing a method that can maintain the concentration more accurately at a predetermined concentration, stabilize the denitration efficiency at a higher efficiency, and reduce the chemical cost with an appropriate amount of chemical used. It is a thing.
[0014]
[Means for Solving the Problems]
The gist of the present invention for achieving the above object is that, in the invention described in claim 1, an alkaline thiosulfate solution is used as the absorbing solution, and the absorption section is provided in two stages in series. Thiosulfate denitration that supplies thiosulfate solution to the part and supplies part of the second-stage absorption liquid as the first-stage absorption liquid to absorb and remove nitrogen oxides in exhaust gas containing nitrogen oxides In the method, an oxidation-reduction potentiometer and a pH meter are provided in the first-stage absorption part, and a pH meter is provided in the second-stage absorption part, respectively, based on the potential value measured by the oxidation-reduction potentiometer of the first-stage absorption part. The supply amount of the second-stage absorption liquid supplied to the first stage is controlled, and the supply amount of the alkaline solution supplied to the first stage is controlled based on the pH value measured by the pH meter of the absorption section of the first stage. Alkaline solution supplied to the second stage based on the pH value measured by the pH meter of the second stage absorption section A method of controlling the absorption fluid concentrations of thiosulfate denitration method characterized by controlling the supply amount of the supply amount and thiosulfate solution.
[0015]
By measuring the potential value of the first-stage absorption section with an oxidation-reduction potentiometer, fluctuations in the thiosulfate concentration in the first-stage absorption section can be measured in real time, and the first-stage absorption section is absorbed from the second-stage absorption section. The supply amount of the absorbent supplied to the section is appropriately controlled, and the thiosulfate concentration in the second stage absorption section is controlled appropriately by controlling the supply amount of the thiosulfate solution supplied to the second stage. It became possible to maintain a high concentration. Furthermore, since the thiosulfate concentration in the effluent finally discharged from the first stage absorption part can be measured in real time, the thiosulfate concentration in the effluent can be controlled to a certain low value, Operation of the apparatus in chemical treatment or biological treatment in wastewater treatment became easy.
[0016]
In addition, a pH meter is provided in each of the first and second stage absorption units, the pH values in the respective absorption units are measured, and supply of an alkaline solution to be supplied to the first and second stages based on the pH value In order to control the amount, each pH value can be stabilized, and therefore the concentration of thiosulfate in the absorbing solution in the first and second stage absorption sections can be measured more accurately. The salt concentration can be maintained at a predetermined concentration, and the denitration efficiency can be stabilized with higher efficiency.
[0017]
The pH value of the first stage absorbent is 7-9, preferably around 8, and the thiosulfate concentration is controlled to a low value of 0.01-10 mg / L, preferably 0.1-5 mg / L. The pH value of the second stage absorbent is 9 to 13, preferably around 12, and the thiosulfate concentration is controlled to a high value of 0.1 to 2.0 wt%. By operating under such conditions, the NO 2 / NO ratio can be controlled to an appropriate value, so that N 2 O 3 can be efficiently generated and the denitration efficiency can be kept high.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a system diagram of an embodiment of the present invention.
[0019]
Reference numeral 1 denotes a first absorption tower which is a first-stage absorption section that absorbs and removes nitrogen oxides in exhaust gas. A packed bed 1A filled with a filler is provided inside, and below the packed bed 1A, An exhaust gas introduction pipe a is connected to the bottom, and a liquid reservoir 1B in which a certain amount of absorption liquid is retained is formed at the bottom, communicated with the liquid reservoir 1B, and the absorption liquid is extracted to circulate the absorption liquid. An absorption liquid circulation pipe d that circulates to the packed bed 1A via the pump 8 and an absorption liquid extraction pipe e that extracts the absorption liquid and discharges it to a wastewater treatment apparatus (not shown) are connected. Further, a primary processing gas discharge pipe b for introducing the processing gas subjected to the primary processing into the second absorption tower 2 as the second stage absorption section is connected to the top. Further, in the liquid reservoir 1B of the first absorption tower 1, an oxidation-reduction potentiometer 6 and a pH meter 5 for measuring the oxidation-reduction potential value are arranged with electrodes immersed in the absorption liquid in the liquid reservoir 1B. .
[0020]
Reference numeral 2 denotes a second absorption tower which is a second stage absorption section for removing nitrogen oxides in the exhaust gas, and has substantially the same structure as that of the first absorption tower 1. A packed bed 2A filled with a filler is provided, and a lower part of the packed bed 2A is connected to a primary processing gas discharge pipe b for introducing a processing gas primary-treated in the first absorption tower 1, Is connected to a processing gas discharge pipe c for discharging the processing gas subjected to the secondary processing to the atmosphere, and a liquid reservoir 2B in which a certain amount of the absorbing liquid is retained is formed at the bottom, An absorbing liquid circulation pipe g that communicates with the liquid reservoir 2B and extracts the absorbing liquid and circulates it to the packed bed 2A via the absorbing liquid circulation pump 9 is connected. Further, the absorption liquid circulation pipe g is provided with a branch pipe f for supplying a part of the second-stage absorption liquid as the first-stage absorption liquid, which is branched from the middle, and the liquid reservoir 1B of the first absorption tower 1 is provided. Connected to. The branch pipe f has a control valve 13 for controlling the supply amount of the second-stage absorption liquid supplied to the first stage based on the potential value measured by the oxidation-reduction potentiometer 6 of the first-stage absorption section. Is provided. Further, in the liquid reservoir 2B of the second absorption tower 2, a pH meter 7 is disposed by immersing an electrode in the absorption liquid in the liquid reservoir 2B.
[0021]
Moreover, in order to supply a novel thiosulfate solution to the liquid reservoir 2B of the second absorption tower 2, a thiosulfate solution tank is provided via an absorption liquid supply pipe k in which a thiosulfate solution supply pump 12 is disposed in the middle. 4 are connected, and alkali solution supply pumps 10 and 11 are arranged in the middle to supply new alkaline solutions to the liquid reservoirs 1B and 2B of the first absorption tower 1 and the second absorption tower 2, respectively. The alkaline solution tank 3 is connected through the alkali supply pipes h and j.
[0022]
As the thiosulfate, sodium thiosulfate, ammonium thiosulfate and the like can be used, but sodium thiosulfate is preferably used from the viewpoint of reactivity and chemical cost, and the alkali includes sodium hydroxide, hydroxide. Although potassium, sodium carbonate, potassium carbonate, etc. can be used, it is preferable to use sodium hydroxide from the viewpoint of reactivity and chemical cost. Further, the thiosulfate concentration in the first-stage absorption liquid is controlled to a low value of 0.01 to 10 mg / L, and the thiosulfate concentration in the second-stage absorption liquid is 0.1 to 2.0 wt%. The concentration is controlled to a high value.
[0023]
The absorption towers 1 and 2 of the first-stage and second-stage absorption sections have a packed tower structure, and as a filler forming the packed bed, a cylindrical shape, a columnar shape made of synthetic resin, ceramic, or the like, Although a bowl-like shape is used, it is preferable to use a cylindrical packing material made of a synthetic resin from the viewpoint of denitration efficiency, ease of handling, etc., and not a packed tower structure as described above, but a plate tower, a spray tower, etc. The structure may be a structure, and a liquid storage tank may be disposed adjacent to each of the absorption towers 1 and 2 to communicate with the liquid storage parts 1B and 2B. The structure of the absorption tower used in the present invention is as follows: It is not limited to those structures.
[0024]
Hereinafter, a denitration method for absorbing and removing nitrogen oxides from exhaust gas containing nitrogen oxides by the denitration apparatus having the above configuration will be described.
[0025]
In the first absorption tower 1, the exhaust gas is introduced from the exhaust gas introduction pipe a and flows upward through the packed bed 1 </ b> A, and the absorbing liquid is passed from the absorbing liquid circulation pipe d through the absorbing liquid circulation pump 8 to the packed bed. By being supplied to the upper part of 1A and flowing through the packed bed 1A in a downward flow, the exhaust gas and the absorption liquid come into countercurrent contact, and nitrogen oxides in the exhaust gas are absorbed and removed, and thiosulfate is reduced. The ratio between NO and NO2 is adjusted, and N2O3 is efficiently generated.
[0026]
The absorption liquid is retained in a liquid reservoir 1B provided at the bottom of the first absorption tower 1 and then sucked and extracted by the absorption liquid circulation pump 8 from the absorption liquid circulation pipe d to the upper part of the packed bed 1A. Circulated. Further, a part of the absorption liquid is extracted out of the first absorption tower 1 by the absorption liquid extraction pipe e, processed by a wastewater treatment device (not shown), and then discharged into a river or the like. Is controlled by the composition of the absorbent. The processing gas from which nitrogen oxides have been removed is introduced into the second absorption tower 2 from the primary processing gas discharge pipe b.
[0027]
In the second absorption tower 2, the exhaust gas subjected to the primary treatment is introduced from the primary treatment gas discharge pipe b, flows in the packed bed 2 </ b> A in an upward flow, and the absorption liquid is absorbed through the absorption liquid circulation pump 9. By being supplied from the liquid circulation pipe g to the upper part of the packed bed 2A and flowing through the packed bed 2A in a downward flow, the exhaust gas and the absorption liquid come into countercurrent contact, and the residual nitrogen oxides in the exhaust gas are absorbed and removed. In the first absorption tower 1, the ratio of NO to NO2 in the exhaust gas is adjusted by the reduction action of thiosulfate, and also in the second absorption tower 2 is adjusted by the reduction action of thiosulfate, and N2O3. Is efficiently generated, so that the denitration efficiency can be maintained high. The processing gas from which nitrogen oxides have been removed is discharged into the atmosphere from the processing gas discharge pipe c.
[0028]
The absorption liquid is retained in the liquid reservoir 2B provided at the bottom of the second absorption tower 2, and then sucked and extracted by the circulation pump 9, and circulated and supplied from the absorption liquid circulation pipe g to the upper part of the packed bed 2A. Is done. Further, a part of the absorption liquid is supplied from the branch pipe f to the liquid reservoir 1B of the first absorption tower 1 as the first-stage absorption liquid.
[0029]
Further, in order to adjust the thiosulfate concentration and pH value of the respective absorption liquids of the first absorption tower 1 and the second absorption tower 2, a thiosulfate solution supply pipe is provided in the liquid reservoir 2B of the second absorption tower 2. a new thiosulfate solution is supplied from the thiosulfate solution tank 4 by the thiosulfate solution supply pump 12 via k, and the liquid reservoirs 1B of the first absorption tower 1 and the second absorption tower 2, respectively. A novel alkaline solution is supplied to 2B from the alkaline solution tank 3 by the alkaline solution supply pumps 10 and 11 through the alkaline supply pipes h and j.
[0030]
The control of the supply amount of each solution described above is performed by measuring the potential value of the absorbing solution in the first absorption tower 1 with the oxidation-reduction potentiometer 6 and calculating the thiosulfate concentration via a control device (not shown). The amount of absorption liquid supplied from the second absorption tower 2 to the liquid reservoir 1B of the first absorption tower 1 can be controlled appropriately, and the pH value in the second absorption tower 2 can be controlled. Is measured with a pH meter 7, and the thiosulfate solution supply pump 12 controls the supply amount of the thiosulfate solution supplied to the second absorption tower 2, whereby the thiosulfate concentration in the absorption liquid of the second absorption tower 2 Can be maintained at an appropriate concentration. Furthermore, since the thiosulfate concentration in the effluent finally discharged from the first absorption tower 1 can be measured in real time, the thiosulfate concentration in the effluent can be controlled to a constant low value, Operation of the apparatus for chemical or biological treatment in the treatment is facilitated.
[0031]
Furthermore, the pH value of each absorption liquid is measured with the pH meters 5 and 7 arranged in the liquid reservoirs 1B and 2B of the first absorption tower 1 and the second absorption tower 2, respectively. Since the supply amount of the alkaline solution is controlled by controlling the solution supply pumps 10 and 11, each pH value can be stabilized. Therefore, the thiosulfate concentration of the absorption liquid in the first absorption tower 1 can be more accurately determined. Since it can be measured, the thiosulfate concentration can be maintained at a predetermined concentration, and the denitration efficiency can be stabilized with higher efficiency.
[0032]
The thiosulfate concentration in the absorption liquid of the first absorption tower 1 is controlled to a low value of 0.01 to 10 mg / L, and the thiosulfate concentration in the absorption liquid of the second absorption tower 2 is 0.1 to 10 mg / L. The concentration is controlled to a high value of 2.0 wt%. Furthermore, the NO2 / NO ratio is controlled to an appropriate value by controlling the concentration of thiosulfate and alkali in the absorption liquid of the second absorption tower 2 based on the NO2 / NO ratio of nitrogen oxides in the exhaust gas. Therefore, N2O3 can be efficiently generated, and the denitration efficiency can be kept high. Moreover, by measuring the pH value of the absorption liquid of the 1st absorption tower 1 and the 2nd absorption tower 2 with the pH meters 5 and 7, respectively, and controlling the supply amount of the alkaline solution supplied to each based on the pH value, The pH value of the absorption liquid can be stabilized, and therefore the thiosulfate concentration of the absorption liquid in the first absorption tower 1 and the second absorption tower 2 can be measured more accurately. The concentration can be maintained, and the denitration efficiency can be stabilized at a higher efficiency.
[0033]
【Example】
(Example 1)
An example in which nitrogen oxides in exhaust gas containing nitrogen oxides discharged from the semiconductor manufacturing process are removed by the denitration method will be described in detail below.
The supply amount of the alkaline solution supplied to the first absorption tower is controlled by a pH meter provided in the first absorption tower, and the supply of the absorption liquid from the second absorption tower is controlled by an oxidation-reduction potentiometer. The pH value of the absorption liquid in the absorption tower is controlled to 8.0, the potential value is controlled to 140 mV, and the supply amount of the alkaline solution and the supply amount of the thiosulfate solution supplied to the second absorption tower are provided in the second absorption tower. The pH value of the absorption liquid in the second absorption tower was controlled to 12.0, and the nitrogen oxide-containing exhaust gas was treated.
The nitrogen oxides in the exhaust gas were NO: 305 to 142 ppm, NO: 955 to 661 ppm, and NO / NO2: 3.13 to 4.65.
As a result, the nitrogen oxides in the treatment gas were NO: 37-32 ppm, NO2: 63-53 ppm, the average denitration rate: 91.0%, and the consumption of the thiosulfate solution was 25 L / H, alkaline The consumption of the solution was 50 L / H.
[0034]
(Comparative Example 1)
The supply amount of the thiosulfate solution supplied to the second absorption tower is controlled by the oxidation-reduction potentiometer provided in the first absorption tower, the pH value of the absorption liquid in the initial first absorption tower is 8.0, and the potential value Is set to 140 mV, and the pH value of the absorbing solution in the second absorption tower is set to 12.0 by controlling the supply amount of the alkaline solution supplied to the second absorption tower with a pH meter provided in the second absorption tower. The exhaust gas was treated in a controlled manner.
The nitrogen oxides in the exhaust gas were NO: 250 to 110 ppm, NO2: 880 to 670 ppm, NO / NO2: 3.52 to 6.09.
As a result, the pH value of the absorption part of the first absorption tower fluctuates between 7.0 and 9.0, and the nitrogen oxides in the process gas are NO: 36-26 ppm, NO2: 64-54 ppm, average Denitration rate: 90.6%, consumption of thiosulfate solution was 28 L / H, and consumption of alkaline solution was 65 L / H.
[0035]
As described above, in the method for controlling the concentration of the absorbing solution of the present invention, the denitration efficiency can be stabilized with higher efficiency, and the consumption of the thiosulfate solution and the alkaline solution can be reduced.
[0036]
【The invention's effect】
In the present invention, since the thiosulfate concentration of the absorbing solution in the first and second absorption sections can be measured more accurately, the thiosulfate concentration is maintained at a predetermined concentration, and the denitration efficiency is stabilized at a higher efficiency. And the consumption of thiosulfate solution and alkaline solution can be reduced.
[Brief description of the drawings]
FIG. 1 is a system diagram of an embodiment of the present invention.
1: first absorption tower 2: second absorption tower 3: alkaline solution tank 4: thiosulfate solution tank 5, 7: pH meter 6: oxidation-reduction potentiometer 8, 9: absorption liquid circulation pump 10, 11: alkaline solution Supply pump 12: Thiosulfate solution supply pump 13: Control valve

Claims (1)

吸収液としてアルカリ性のチオ硫酸塩溶液を使用し、吸収部を直列2段に設け、2段目の吸収部にチオ硫酸塩溶液を供給し、2段目の吸収液の一部を1段目の吸収液として供給して窒素酸化物を含有する排ガス中の窒素酸化物を吸収除去するチオ硫酸塩脱硝法において、1段目の吸収部に酸化還元電位計及びpH計、2段目の吸収部にpH計を夫々設け、1段目の吸収部の酸化還元電位計で測定した電位値に基づいて1段目に供給する2段目の吸収液の供給量を制御し、1段目の吸収部のpH計で測定したpH値に基づいて1段目に供給するアルカリ溶液の供給量を制御し、2段目の吸収部のpH計で測定したpH値に基づいて2段目に供給するアルカリ溶液の供給量及びチオ硫酸塩溶液の供給量を制御することを特徴とするチオ硫酸塩脱硝法における吸収液濃度の制御方法。An alkaline thiosulfate solution is used as the absorption liquid, the absorption section is provided in two stages in series, the thiosulfate solution is supplied to the second absorption section, and a part of the second absorption liquid is used in the first stage. In the thiosulfate denitration method in which nitrogen oxides in exhaust gas containing nitrogen oxides are supplied and absorbed as an absorption liquid, redox potentiometer and pH meter in the first stage absorption part, second stage absorption A pH meter is provided in each section, and the supply amount of the second-stage absorbent supplied to the first stage is controlled based on the potential value measured by the oxidation-reduction potentiometer in the first-stage absorption section. The supply amount of the alkaline solution supplied to the first stage is controlled based on the pH value measured by the pH meter of the absorption part, and the second stage is supplied based on the pH value measured by the pH meter of the second stage absorption part. Thiosulfate denitration characterized by controlling the supply amount of alkaline solution and the supply amount of thiosulfate solution The method of absorbing fluid concentrations of.
JP31756199A 1999-11-09 1999-11-09 Control method of absorbent concentration in thiosulfate denitration method Expired - Fee Related JP4199394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31756199A JP4199394B2 (en) 1999-11-09 1999-11-09 Control method of absorbent concentration in thiosulfate denitration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31756199A JP4199394B2 (en) 1999-11-09 1999-11-09 Control method of absorbent concentration in thiosulfate denitration method

Publications (2)

Publication Number Publication Date
JP2001129355A JP2001129355A (en) 2001-05-15
JP4199394B2 true JP4199394B2 (en) 2008-12-17

Family

ID=18089643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31756199A Expired - Fee Related JP4199394B2 (en) 1999-11-09 1999-11-09 Control method of absorbent concentration in thiosulfate denitration method

Country Status (1)

Country Link
JP (1) JP4199394B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101110667B1 (en) 2007-02-21 2012-02-17 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 Method and apparatus for processing exhaust gas
US8414852B1 (en) * 2011-11-21 2013-04-09 Fluor Technologies Corporation Prevention of nitro-amine formation in carbon dioxide absorption processes
FR2990630B1 (en) * 2012-05-15 2014-12-26 Lab Sa METHOD AND APPARATUS FOR CAPTURING HIGHLY OXIDIZING POLLUTANTS IN A WET GASEOUS FLOW
JP6107444B2 (en) * 2013-06-10 2017-04-05 株式会社Ihi Impurity removal system for moisture-containing gas
KR102484219B1 (en) * 2021-01-07 2023-01-05 주식회사 태산이엠이 Flue Gas Denitrification System and Desulfurization System In Wet Oxidation Technology

Also Published As

Publication number Publication date
JP2001129355A (en) 2001-05-15

Similar Documents

Publication Publication Date Title
KR101307089B1 (en) Method of treating emission gas
CN105050687B (en) For the method for removing pollutant from waste gas
JP4199394B2 (en) Control method of absorbent concentration in thiosulfate denitration method
KR102143514B1 (en) Equipment for simultaneous removal of nitrogen oxide and sulfur oxide
WO2014002926A1 (en) Device and method for biological desulfurization of biogas
JPH1094714A (en) Flue gas treatment
JP3337380B2 (en) Exhaust gas treatment method
JPS5913889B2 (en) cleaning equipment
JP2000300948A (en) Method for controlling absorption liquid concentration in sodium thiosulfate denitration method
JP2000202236A (en) METHOD FOR DENITRATING WASTE GAS WITH NOx CONCENTRATION VARIABLE
US20080307969A1 (en) Method for Cleaning Exhaust Gases Containing Nitrous Gases
JP2731125B2 (en) Ozone removal method
JPH0356123A (en) Removal of mercury and nox in gas
KR102526870B1 (en) Apparatus for simultaneously processing desulfurization and denitrification and composition for simultaneously processing desulfurization and denitrification
JPH10113678A (en) Method for making nitrate ion-containing waste liquid harmless and device therefor
JP2000140575A (en) Wet denitration
JP3522082B2 (en) Wet denitration method
KR100471977B1 (en) Chemical oxygen demand control method of the scrubbing water
JP7277042B1 (en) Exhaust gas treatment system and exhaust gas treatment method
JPH11114372A (en) Wet denitrification method
US20240149210A1 (en) Combination carbon monoxide and nitrogen dioxide scrubber treatment and process
JPS62501619A (en) Exhaust gas purification law
JP3178770B2 (en) Ammonia nitrogen-containing wastewater treatment equipment
JP3773640B2 (en) Removal method of hydrogen sulfide
JPS62176592A (en) Apparatus for treating waste liquid containing sodium hypochlorite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081003

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4199394

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees