JP4198419B2 - Carbon-based sintered sliding plate material with wear resistance - Google Patents

Carbon-based sintered sliding plate material with wear resistance Download PDF

Info

Publication number
JP4198419B2
JP4198419B2 JP2002237895A JP2002237895A JP4198419B2 JP 4198419 B2 JP4198419 B2 JP 4198419B2 JP 2002237895 A JP2002237895 A JP 2002237895A JP 2002237895 A JP2002237895 A JP 2002237895A JP 4198419 B2 JP4198419 B2 JP 4198419B2
Authority
JP
Japan
Prior art keywords
carbon
wear
powder
based sintered
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002237895A
Other languages
Japanese (ja)
Other versions
JP2004076098A (en
Inventor
俊一 久保
広志 土屋
実治 池内
和行 半田
秀彦 野崎
利雄 寺岡
吉久 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Railway Technical Research Institute
Original Assignee
Toyo Tanso Co Ltd
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd, Railway Technical Research Institute filed Critical Toyo Tanso Co Ltd
Priority to JP2002237895A priority Critical patent/JP4198419B2/en
Publication of JP2004076098A publication Critical patent/JP2004076098A/en
Application granted granted Critical
Publication of JP4198419B2 publication Critical patent/JP4198419B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電気車のパンタグラフに取り付けられる耐摩耗性を有する集電用炭素系焼結すり板材料に関する。
【0002】
【従来の技術】
電気車のパンタグラフに用いられるすり板は金属系材料が使用されていたが、架線の摩耗が著しいことなどにより、より摺動性に優れた炭素系材料に移行しつつある。
【0003】
これらの炭素系材料は、主に銅などの金属と複合化させることにより、架線の摩耗を低減することの他、すり板自身も摩耗量の少ないものが望まれている。
【0004】
焼結タイプのすり板は、銅を溶融、黒鉛内に含浸させるいわゆる含浸タイプのすり板に比べ、摩耗量が多くなるといわれており、焼結タイプでのすり板の使用は一部の電車路線に限定されるものであった。
【0005】
これらを改善するために、例えば、特開平5−287318号公報には、金属粉末、窒化ホウ素粉末、炭素粉末らを混合、成形、焼成してなる炭素系集電摺動材で、窒化ホウ素を0.2〜8%混合することにより耐摩耗性が向上するものが開示されている。しかしながら、窒化ホウ素は絶縁材料であり、添加率増加とともに、電気比抵抗値が増加する傾向が見られ、集電性能の低下につながるという問題がある。
【0006】
【発明が解決しようとする課題】
本発明は、低摩耗で低抵抗の耐摩耗性を有する炭素系焼結すり板材料を提供することを目的とする。
【0007】
【課題を解決するための手段】
前記課題を解決するために、本発明者らは鋭意研究の結果、炭素比が増加すると、摩耗量が低下すること、この炭素粉末の黒鉛化度が摩耗量に影響を及ぼすことを見出し、本発明を完成した。
【0008】
すなわち、本発明の耐摩耗性を有する炭素系焼結すり板材料は、炭素粉末35〜50重量部と、銅粉末65〜50重量部とを混合、成形後、前記成形したものを1000℃で焼成することにより得られた炭素−銅複合材料によって形成され、前記炭素−銅複合材料は、X線回折法による炭素のd(002)面間隔が0.35〜0.345nmのものであり、嵩密度が2.7〜3.5g/cmで、曲げ強さが100MPa以上で、電気比抵抗が1.5μΩ・m以下である。また、前記銅粉末が平均粒径1〜25μmであるものである。
【0009】
炭素粉末の黒鉛化度を調整し、X線回折法による炭素のd(002)面間隔が0.35〜0.345nmの炭素骨格とすることによって、従来の炭素系焼結すり板材料の摩耗量に比べ、同等以下とできる。また、平均粒径が1〜25μmの銅粉末を使用することにより、曲げ強さ100MPa以上、電気比抵抗を1.5μΩ・m以下とできる。すなわち、炭素粉末の黒鉛化度の最適化と銅粉末の粒径を細かくすることで、低摩耗、低抵抗の炭素系焼結すり板材料とすることができる。
【0010】
本発明に使用される炭素原料としては、コークス、ピッチ、メソカーボンマイクロビーズ等が用いられ、特にコークスが好ましい。
【0011】
また、銅粉末には、電解銅粉末、アトマイズド銅粉末のいずれをも使用することができるが、電解銅粉末はすり板の強度を向上させることができるので好ましい。アトマイズド銅粉末が球状であるのに対し、電解銅粉は樹枝状であるため、同一配合比の場合、炭素粉末とのからみが良く、かつ銅粉末同士の平均距離も近いので、機械的強さの向上、電気比抵抗の低減に効果的であるからである。
【0012】
また、炭素粉末と銅粉末の比率は、焼成後の嵩密度が2.7〜3.5g/cm3の範囲になるように混合される。また、銅粉末以外にも、チタン、鉄、ニッケル、スズ、モリブデン、コバルト、クロム、タングステン、銀等2%未満の金属元素の他、TiC、TiN、SnO等の化合物、カーボンナノチューブ、天然黒鉛、人造黒鉛等を添加することもできる。
【0013】
また、炭素のX線回折法による炭素のd(002)面間隔が0.35nmより大きい場合は、自己潤滑性に乏しく、摩耗量が増加する。また、X線回折法による炭素のd(002)面間隔が0.345nmよりも小さい場合は、黒鉛化構造が発達し始めて柔らかくなり、摩耗量が増加する。
【0014】
ここで、炭素のX線回折法による炭素のd(002)面間隔を0.35〜0.345nmに調整するためには、炭素粉末を600〜1400℃で焼成することにより達成できる。
【0015】
また、曲げ強さが100MPa未満の場合は摩耗量が増加する。これは、耐摩耗性に寄与する炭素部分の脱落が起こりやすいためであると考えられる。
【0016】
【実施例】
以下、実施例により本発明を具体的に説明する。
【0017】
(実施例1)
X線回折法による炭素のd(002)面間隔が0.348nmの炭素粉末とバインダの計50重量部と平均粒径3μmの電解銅粉末50重量部をハイスピードミキサーで混合し、金型にて3500kg/cm2の圧力で140×200×30mmに成形後、非酸化性雰囲気下、1000℃にて焼成した。得られた試料のかさ密度は2.8g/cm3、電気比抵抗1.5μΩ・m、曲げ強さ115MPaであった。なお、電気比抵抗はJIS R 7202により測定した。また、曲げ強さは3点曲げ試験により測定した。この試料を室温にて20A直流条件下、400〜800rpmの回転速度で回転するφ310mmの銅円板に接触させて30分間摺動試験を行い、重量変化から摩耗量を測定した。この際、回転体と試料との間で電流の流れない非接触時間を離線率とし、離線率5%及び10%の時の摩耗量を測定した。各摩耗量は、それぞれ2.9cm3/kgf/万km、9.5cm3/kgf/万kmであった。
【0018】
(実施例2)
X線回折法による炭素のd(002)面間隔が0.348nmの炭素粉末とバインダの計40重量部と平均粒径3μmの電解銅粉末60重量部をハイスピードミキサーで混合し、金型にて3500kg/cm2の圧力で140×200×30mmに成形後、非酸化性雰囲気下、1000℃にて焼成した。得られた試料のかさ密度は3.3g/cm3、電気比抵抗0.8μΩ・m、曲げ強さ111MPaであった。この試料を実施例1と同様に、室温にて20A直流条件下、400〜800rpmの回転速度で回転するφ310mmの銅円板に接触させて30分間摺動試験を行い、重量変化から摩耗量を測定した。この際、回転体と試料との間で電流の流れない非接触時間を離線率とし、離線率5%及び10%の時の摩耗量を測定した。各摩耗量は、それぞれ5.1cm3/kgf/万km、12.0cm3/kgf/万kmであった。
【0019】
(実施例3)
X線回折法による炭素のd(002)面間隔が0.347nmの炭素粉末とバインダの計42重量部と平均粒径15μmの電解銅粉末58重量部をハイスピードミキサーで混合し、金型にて3500kg/cm2の圧力で140×200×30mmに成形後、非酸化性雰囲気下、1000℃にて焼成した。得られた試料のかさ密度は3.0g/cm3、電気比抵抗1.3μΩ・m、曲げ強さ105MPaであった。この試料を実施例1と同様に、室温にて20A直流条件下、400〜800rpmの回転速度で回転するφ310mmの銅円板に接触させて30分間摺動試験を行い、重量変化から摩耗量を測定した。この際、回転体と試料との間で電流の流れない非接触時間を離線率とし、離線率5%及び10%の時の摩耗量を測定した。各摩耗量は、それぞれ5.0cm3/kgf/万km、9.1cm3/kgf/万kmであった。
【0020】
(実施例4)
X線回折法による炭素のd(002)面間隔が0.348nmの炭素粉末とバインダの計35重量部と平均粒径15μmの電解銅粉末65重量部をハイスピードミキサーで混合し、金型にて3500kg/cm2の圧力で140×200×30mmに成形後、非酸化性雰囲気下、1000℃にて焼成した。得られた試料のかさ密度は3.5g/cm3、電気比抵抗0.6μΩ・m、曲げ強さ100MPaで、であった。この試料を実施例1と同様に、室温にて20A直流条件下、400〜800rpmの回転速度で回転するφ310mmの銅円板に接触させて30分間摺動試験を行い、重量変化から摩耗量を測定した。この際、回転体と試料との間で電流の流れない非接触時間を離線率とし、離線率5%及び10%の時の摩耗量を測定した。各摩耗量は、それぞれ6.1cm3/kgf/万km、12.0cm3/kgf/万kmであった。
【0021】
(比較例1)
X線回折法による炭素のd(002)面間隔が0.339nmの炭素粉末とバインダの計50重量部と平均粒径30μmの電解銅粉末50重量部をハイスピードミキサーで混合し、金型にて3500kg/cm2の圧力で140×200×30mmに成形後、非酸化性雰囲気下、1000℃にて焼成した。得られた試料のかさ密度は2.7g/cm3、電気比抵抗3.7μΩ・m、曲げ強さ83MPaであった。この試料を実施例1と同様に、室温にて20A直流条件下、400〜800rpmの回転速度で回転するφ310mmの銅円板に接触させて30分間摺動試験を行い、重量変化から摩耗量を測定した。この際、回転体と試料との間で電流の流れない非接触時間を離線率とし、離線率5%及び10%の時の摩耗量を測定した。各摩耗量は、それぞれ12.0cm3/kgf/万km、20.1cm3/kgf/万kmであった。
【0022】
(比較例2)
X線回折法による炭素のd(002)面間隔が0.347nmの炭素粉末とバインダの計28重量部と平均粒径3μmの電解銅粉末72重量部をハイスピードミキサーで混合し、金型にて3500kg/cm2の圧力で140×200×30mmに成形後、非酸化性雰囲気下、1000℃にて焼成した。得られた試料のかさ密度は3.8g/cm3、電気比抵抗0.4μΩ・m、曲げ強さ95MPaで、であった。この試料を実施例1と同様に、室温にて20A直流条件下、400〜800rpmの回転速度で回転するφ310mmの銅円板に接触させて30分間摺動試験を行い、重量変化から摩耗量を測定した。この際、回転体と試料との間で電流の流れない非接触時間を離線率とし、離線率5%及び10%の時の摩耗量を測定した。各摩耗量は、それぞれ10.4cm3/kgf/万km、22.0cm3/kgf/万kmであった。
【0023】
(比較例3)
X線回折法による炭素のd(002)面間隔が0.353nmの炭素粉末とバインダの計40重量部と平均粒径3μmの電解銅粉末60重量部をハイスピードミキサーで混合し、金型にて3500kg/cm2の圧力で140×200×30mmに成形後、非酸化性雰囲気下、1000℃にて焼成した。得られた試料のかさ密度は3.4g/cm3、電気比抵抗0.8μΩ・m、曲げ強さ90MPaであった。この試料を実施例1と同様に、室温にて20A直流条件下、400〜800rpmの回転速度で回転するφ310mmの銅円板に接触させて30分間摺動試験を行い、重量変化から摩耗量を測定した。この際、回転体と試料との間で電流の流れない非接触時間を離線率とし、離線率5%及び10%の時の摩耗量を測定した。各摩耗量は、それぞれ10.7cm3/kgf/万km、25.0cm3/kgf/万kmであった。
【0024】
以上の結果を表1にまとめて示す。
【0025】
【表1】

Figure 0004198419
【0026】
表1よりわかるように、X線回折法による炭素のd(002)面間隔が0.35〜0.345nmの範囲にある実施例1〜4の試料は、比較例1〜3の試料よりも離線率が5%及び10%のいずれの場合も摩耗量が低減していることがわかる。
【0027】
【発明の効果】
本発明の耐摩耗性を有する炭素系焼結すり板材料は、以上のように構成されており、X線回折法による炭素のd(002)面間隔が0.35〜0.345nmの範囲となるように調整することによって、集電容量を低下させることなく、低摩耗、高強度、低抵抗の耐摩耗性を有する炭素系焼結すり板とすることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a current-collecting carbon-based sintered sliding plate material having wear resistance and attached to a pantograph of an electric vehicle.
[0002]
[Prior art]
Although the metal plate is used for the sliding plate used for the pantograph of an electric vehicle, it is shifting to the carbon-type material with more excellent slidability due to remarkable wear of the overhead wire.
[0003]
It is desired that these carbon-based materials are mainly combined with a metal such as copper to reduce the wear of the overhead wire and that the sliding plate itself has a small amount of wear.
[0004]
Sintered type sliding plates are said to wear more than so-called impregnated type sliding plates that melt copper and impregnate graphite. The use of sintered type sliding plates is part of the train route. It was limited to.
[0005]
In order to improve these, for example, Japanese Patent Laid-Open No. 5-287318 discloses a carbon-based current collector sliding material obtained by mixing, forming, and firing metal powder, boron nitride powder, and carbon powder. What improves abrasion resistance by mixing 0.2 to 8% is disclosed. However, boron nitride is an insulating material, and there is a problem that the electrical resistivity value tends to increase with an increase in the addition rate, leading to a decrease in current collecting performance.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a carbon-based sintered sliding plate material having low wear and low resistance wear resistance.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the present inventors have intensively researched and found that when the carbon ratio increases, the wear amount decreases, and the graphitization degree of the carbon powder affects the wear amount. Completed the invention.
[0008]
That is, the wear-resistant carbon-based sintered ground plate material of the present invention is obtained by mixing and molding 35 to 50 parts by weight of carbon powder and 65 to 50 parts by weight of copper powder, and then molding the molded article at 1000 ° C. Formed of a carbon-copper composite material obtained by firing, wherein the carbon-copper composite material has a d (002) plane spacing of carbon of 0.35 to 0.345 nm by an X-ray diffraction method, The bulk density is 2.7 to 3.5 g / cm 3 , the bending strength is 100 MPa or more, and the electrical resistivity is 1.5 μΩ · m or less. Moreover, the said copper powder is an average particle diameter of 1-25 micrometers.
[0009]
By adjusting the degree of graphitization of the carbon powder and forming a carbon skeleton having a d (002) plane spacing of 0.35 to 0.345 nm by X-ray diffraction, the wear of the conventional carbon-based sintered strip material Compared to the amount, it can be equal or less. Further, by using copper powder having an average particle diameter of 1 to 25 μm, the bending strength can be 100 MPa or more and the electric specific resistance can be 1.5 μΩ · m or less. That is, by optimizing the graphitization degree of the carbon powder and reducing the particle size of the copper powder, a carbon-based sintered ground plate material with low wear and low resistance can be obtained.
[0010]
As the carbon raw material used in the present invention, coke, pitch, mesocarbon microbeads and the like are used, and coke is particularly preferable.
[0011]
Moreover, although either an electrolytic copper powder or an atomized copper powder can be used for the copper powder, the electrolytic copper powder is preferable because the strength of the sliding plate can be improved. Since the atomized copper powder is spherical, the electrolytic copper powder is dendritic, so in the case of the same blending ratio, the tangling with the carbon powder is good and the average distance between the copper powders is close, so the mechanical strength This is because it is effective in improving the resistance and reducing the electrical resistivity.
[0012]
Moreover, the ratio of carbon powder and copper powder is mixed so that the bulk density after baking may be in the range of 2.7 to 3.5 g / cm 3 . In addition to copper powder, titanium, iron, nickel, tin, molybdenum, cobalt, chromium, tungsten, silver and other metal elements of less than 2%, compounds such as TiC, TiN, SnO, carbon nanotubes, natural graphite, Artificial graphite or the like can also be added.
[0013]
Moreover, when the d (002) plane spacing of carbon by the X-ray diffraction method of carbon is larger than 0.35 nm, the self-lubricating property is poor and the amount of wear increases. Further, when the d (002) plane spacing of carbon by X-ray diffraction is smaller than 0.345 nm, the graphitized structure starts to develop and becomes soft, and the amount of wear increases.
[0014]
Here, in order to adjust the d (002) plane distance of carbon by 0.35 to 0.345 nm by the X-ray diffraction method of carbon, it can be achieved by firing carbon powder at 600 to 1400 ° C.
[0015]
Further, when the bending strength is less than 100 MPa, the wear amount increases. This is presumably because the carbon portion that contributes to wear resistance tends to fall off.
[0016]
【Example】
Hereinafter, the present invention will be described specifically by way of examples.
[0017]
(Example 1)
Carbon powder with an interval of d (002) plane of carbon of 0.348 nm by X-ray diffractometry and 50 parts by weight of binder and 50 parts by weight of electrolytic copper powder with an average particle diameter of 3 μm are mixed with a high-speed mixer and put into a mold. After being molded to 140 × 200 × 30 mm at a pressure of 3500 kg / cm 2 , it was fired at 1000 ° C. in a non-oxidizing atmosphere. The obtained sample had a bulk density of 2.8 g / cm 3 , an electrical resistivity of 1.5 μΩ · m, and a bending strength of 115 MPa. The electrical resistivity was measured according to JIS R 7202. The bending strength was measured by a three-point bending test. This sample was brought into contact with a φ310 mm copper disk rotating at a rotational speed of 400 to 800 rpm under a 20 A direct current condition at room temperature, and a sliding test was conducted for 30 minutes, and the amount of wear was measured from the change in weight. At this time, the non-contact time during which no current flows between the rotating body and the sample was defined as the separation rate, and the amount of wear when the separation rate was 5% and 10% was measured. Each wear amount, respectively 2.9 cm 3 / kgf / ten thousand km, was 9.5cm 3 / kgf / ten thousand km.
[0018]
(Example 2)
Carbon powder with a d (002) plane spacing of 0.348 nm by X-ray diffraction method and 40 parts by weight of a binder and 60 parts by weight of electrolytic copper powder with an average particle size of 3 μm are mixed with a high speed mixer and put into a mold. After being molded to 140 × 200 × 30 mm at a pressure of 3500 kg / cm 2 , it was fired at 1000 ° C. in a non-oxidizing atmosphere. The obtained sample had a bulk density of 3.3 g / cm 3 , an electrical resistivity of 0.8 μΩ · m, and a bending strength of 111 MPa. As in Example 1, this sample was brought into contact with a φ310 mm copper disk rotating at a rotational speed of 400 to 800 rpm under a 20 A direct current condition at room temperature, and a sliding test was performed for 30 minutes. It was measured. At this time, the non-contact time during which no current flows between the rotating body and the sample was defined as the separation rate, and the amount of wear when the separation rate was 5% and 10% was measured. The respective wear amounts were 5.1 cm 3 / kgf / 10,000 km and 12.0 cm 3 / kgf / 10,000 km, respectively.
[0019]
(Example 3)
Carbon powder with a d (002) plane spacing of 0.347 nm by X-ray diffractometry, 42 parts by weight of binder and 58 parts by weight of electrolytic copper powder with an average particle size of 15 μm were mixed with a high speed mixer, and the resulting mixture was put into a mold. After being molded to 140 × 200 × 30 mm at a pressure of 3500 kg / cm 2 , it was fired at 1000 ° C. in a non-oxidizing atmosphere. The obtained sample had a bulk density of 3.0 g / cm 3 , an electrical resistivity of 1.3 μΩ · m, and a bending strength of 105 MPa. As in Example 1, this sample was brought into contact with a φ310 mm copper disk rotating at a rotational speed of 400 to 800 rpm under a 20 A direct current condition at room temperature, and a sliding test was performed for 30 minutes. It was measured. At this time, the non-contact time during which no current flows between the rotating body and the sample was defined as the separation rate, and the amount of wear when the separation rate was 5% and 10% was measured. Each wear amount was 5.0 cm 3 / kgf / 10,000 km and 9.1 cm 3 / kgf / 10,000 km, respectively.
[0020]
Example 4
Carbon powder with an interval of d (002) plane of carbon of 0.348 nm by X-ray diffractometry and 35 parts by weight of binder and 65 parts by weight of electrolytic copper powder with an average particle size of 15 μm are mixed with a high-speed mixer and put into a mold. After being molded to 140 × 200 × 30 mm at a pressure of 3500 kg / cm 2 , it was fired at 1000 ° C. in a non-oxidizing atmosphere. The obtained sample had a bulk density of 3.5 g / cm 3 , an electrical resistivity of 0.6 μΩ · m, and a bending strength of 100 MPa. As in Example 1, this sample was brought into contact with a φ310 mm copper disk rotating at a rotational speed of 400 to 800 rpm under a 20 A direct current condition at room temperature, and a sliding test was performed for 30 minutes. It was measured. At this time, the non-contact time during which no current flows between the rotating body and the sample was defined as the separation rate, and the amount of wear when the separation rate was 5% and 10% was measured. Each wear amount was 6.1 cm 3 / kgf / 10,000 km and 12.0 cm 3 / kgf / 10,000 km, respectively.
[0021]
(Comparative Example 1)
Carbon powder having a d (002) plane spacing of 0.339 nm by X-ray diffractometry and 50 parts by weight of a binder and 50 parts by weight of electrolytic copper powder with an average particle size of 30 μm are mixed with a high-speed mixer to form a mold. After being molded to 140 × 200 × 30 mm at a pressure of 3500 kg / cm 2 , it was fired at 1000 ° C. in a non-oxidizing atmosphere. The obtained sample had a bulk density of 2.7 g / cm 3 , an electrical resistivity of 3.7 μΩ · m, and a bending strength of 83 MPa. As in Example 1, this sample was brought into contact with a φ310 mm copper disk rotating at a rotational speed of 400 to 800 rpm under a 20 A direct current condition at room temperature, and a sliding test was performed for 30 minutes. It was measured. At this time, the non-contact time during which no current flows between the rotating body and the sample was defined as the separation rate, and the amount of wear when the separation rate was 5% and 10% was measured. Each wear amount, respectively 12.0 cm 3 / kgf / ten thousand km, was 20.1cm 3 / kgf / ten thousand km.
[0022]
(Comparative Example 2)
Carbon powder by X-ray diffraction method with a d (002) plane spacing of 0.347 nm, a total of 28 parts by weight of binder and 72 parts by weight of electrolytic copper powder with an average particle size of 3 μm were mixed with a high speed mixer, After being molded to 140 × 200 × 30 mm at a pressure of 3500 kg / cm 2 , it was fired at 1000 ° C. in a non-oxidizing atmosphere. The bulk density of the obtained sample was 3.8 g / cm 3 , electrical specific resistance 0.4 μΩ · m, and bending strength 95 MPa. As in Example 1, this sample was brought into contact with a φ310 mm copper disk rotating at a rotational speed of 400 to 800 rpm under a 20 A direct current condition at room temperature, and a sliding test was performed for 30 minutes. It was measured. At this time, the non-contact time during which no current flows between the rotating body and the sample was defined as the separation rate, and the amount of wear when the separation rate was 5% and 10% was measured. The respective wear amounts were 10.4 cm 3 / kgf / 10,000 km and 22.0 cm 3 / kgf / 10,000 km, respectively.
[0023]
(Comparative Example 3)
Carbon powder with a d (002) plane spacing of 0.353 nm by X-ray diffractometry and 40 parts by weight of a binder and 60 parts by weight of electrolytic copper powder with an average particle size of 3 μm were mixed with a high speed mixer, and the resulting mixture was put into a mold. After being molded to 140 × 200 × 30 mm at a pressure of 3500 kg / cm 2 , it was fired at 1000 ° C. in a non-oxidizing atmosphere. The obtained sample had a bulk density of 3.4 g / cm 3 , an electrical resistivity of 0.8 μΩ · m, and a bending strength of 90 MPa. As in Example 1, this sample was brought into contact with a φ310 mm copper disk rotating at a rotational speed of 400 to 800 rpm under a 20 A direct current condition at room temperature, and a sliding test was performed for 30 minutes. It was measured. At this time, the non-contact time during which no current flows between the rotating body and the sample was defined as the separation rate, and the amount of wear when the separation rate was 5% and 10% was measured. The respective wear amounts were 10.7 cm 3 / kgf / 10,000 km and 25.0 cm 3 / kgf / 10,000 km, respectively.
[0024]
The above results are summarized in Table 1.
[0025]
[Table 1]
Figure 0004198419
[0026]
As can be seen from Table 1, the samples of Examples 1 to 4 where the d (002) plane spacing of carbon by the X-ray diffraction method is in the range of 0.35 to 0.345 nm are more than the samples of Comparative Examples 1 to 3. It can be seen that the amount of wear is reduced when the separation rate is 5% and 10%.
[0027]
【The invention's effect】
The wear-resistant carbon-based sintered sliding plate material of the present invention is configured as described above, and the d (002) plane spacing of carbon by the X-ray diffraction method is in the range of 0.35 to 0.345 nm. By adjusting in such a manner, it is possible to obtain a carbon-based sintered sliding plate having low wear, high strength, and low resistance wear resistance without reducing the current collecting capacity.

Claims (2)

炭素粉末35〜50重量部と、銅粉末65〜50重量部とを混合、成形後、前記成形したものを1000℃で焼成することにより得られた炭素−銅複合材料によって形成され、
前記炭素−銅複合材料は、X線回折法による炭素のd(002)面間隔が0.35〜0.345nmのものであり、
嵩密度が2.7〜3.5g/cmで、曲げ強さが100MPa以上で、電気比抵抗が1.5μΩ・m以下である耐摩耗性を有する炭素系焼結すり板材料。
It is formed of a carbon-copper composite material obtained by mixing and molding 35 to 50 parts by weight of carbon powder and 65 to 50 parts by weight of copper powder, and then firing the molded article at 1000 ° C.,
The carbon-copper composite material has a carbon d (002) plane spacing of 0.35 to 0.345 nm by X-ray diffraction.
A carbon-based sintered ground plate material having wear resistance having a bulk density of 2.7 to 3.5 g / cm 3 , a bending strength of 100 MPa or more, and an electric specific resistance of 1.5 μΩ · m or less.
前記銅粉末が平均粒径1〜25μmである請求項1に記載の耐摩耗性を有する炭素系焼結すり板材料。  The carbon-based sintered ground plate material having wear resistance according to claim 1, wherein the copper powder has an average particle diameter of 1 to 25 μm.
JP2002237895A 2002-08-19 2002-08-19 Carbon-based sintered sliding plate material with wear resistance Expired - Fee Related JP4198419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002237895A JP4198419B2 (en) 2002-08-19 2002-08-19 Carbon-based sintered sliding plate material with wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002237895A JP4198419B2 (en) 2002-08-19 2002-08-19 Carbon-based sintered sliding plate material with wear resistance

Publications (2)

Publication Number Publication Date
JP2004076098A JP2004076098A (en) 2004-03-11
JP4198419B2 true JP4198419B2 (en) 2008-12-17

Family

ID=32021468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002237895A Expired - Fee Related JP4198419B2 (en) 2002-08-19 2002-08-19 Carbon-based sintered sliding plate material with wear resistance

Country Status (1)

Country Link
JP (1) JP4198419B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008144189A (en) * 2006-12-06 2008-06-26 Railway Technical Res Inst Carbon-based contacting plate
JP5246569B2 (en) * 2007-09-05 2013-07-24 東日本旅客鉄道株式会社 Current collector

Also Published As

Publication number Publication date
JP2004076098A (en) 2004-03-11

Similar Documents

Publication Publication Date Title
CN106785769B (en) A kind of conduction antifriction metal (AFM) electrographite brush and preparation method thereof
JP4198419B2 (en) Carbon-based sintered sliding plate material with wear resistance
JP4133105B2 (en) Carbon-based sintered sliding plate material with crack resistance
KR930009894B1 (en) Carbon/metal composite
CN107161976B (en) A kind of pantograph pan copper/based composite material of carbon preparation method
CN112981171B (en) Copper-based powder metallurgy friction material containing mixed graphite and preparation method
JP4479014B2 (en) A current collector strip made of fired copper-impregnated carbon that exhibits excellent wear resistance at high speeds
JPH09149503A (en) Current collecting sliding member
RU2088682C1 (en) Caked composite copper-graphite material and method of preparation thereof
CN115894032B (en) Ti (titanium) 3 AlC 2 Preparation method of enhanced carbon-based pantograph slide plate
JPS61245957A (en) Production of current collecting material
JPH04207904A (en) Production of carbon material for sliding current collection
JP2697581B2 (en) Current collector slides made of sintered copper impregnated carbon material with high toughness and high conductivity
JP2567960B2 (en) Manufacturing method of ferrous wear-resistant sintered alloy for current collecting sliding
JPH0676259B2 (en) Method for producing carbon material for sliding current collection
JPS62130250A (en) Sliding material for collecting current
KR20000031027A (en) Composition for a friction plate of pantograph and preparation of the plate using the same
JPH0833109A (en) Current collecting pantograph slider material of copper-infiltrated fe-bas sintered alloy with high wear resistance and electric conductivity
JPH039182B2 (en)
JPH03164471A (en) Carbon/metal composite and production thereof
CN1184794A (en) Carbon-carbon composition material for electric collection
JPH08104956A (en) Contact strip material of pantagraph for current collecting made of lead-impregnated iron-base sintered alloy excellent in electrical conductivity and wear resistance
JPS6217090A (en) Manufacture of current collecting material
JPH0833107A (en) Current collecting pantograph slider mateiral of copper-infiltrated fe-base sintered alloy with high wear resistance and electric conductivity
JPH08100246A (en) Current collecting pantograph shoe material made of iron-base sintered alloy impregnated with lead, excellent in electric conductivity and wear resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4198419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees