JP4197141B2 - Spherical alumina powder and use thereof - Google Patents

Spherical alumina powder and use thereof Download PDF

Info

Publication number
JP4197141B2
JP4197141B2 JP2003298141A JP2003298141A JP4197141B2 JP 4197141 B2 JP4197141 B2 JP 4197141B2 JP 2003298141 A JP2003298141 A JP 2003298141A JP 2003298141 A JP2003298141 A JP 2003298141A JP 4197141 B2 JP4197141 B2 JP 4197141B2
Authority
JP
Japan
Prior art keywords
spherical alumina
alumina powder
spherical
epoxy resin
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003298141A
Other languages
Japanese (ja)
Other versions
JP2005068258A (en
Inventor
修 國友
登志昭 石丸
和義 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2003298141A priority Critical patent/JP4197141B2/en
Publication of JP2005068258A publication Critical patent/JP2005068258A/en
Application granted granted Critical
Publication of JP4197141B2 publication Critical patent/JP4197141B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

本発明は、球状アルミナ粉末及びその用途に関する。詳しくは、アクリル系シランカップリング剤による表面処理の施された球状アルミナ粉末と、これを含む混合粉末と、それが充填されたエポキシ樹脂組成物に関する。 The present invention relates to a spherical alumina powder and its use. Specifically, the present invention relates to a spherical alumina powder which has been surface-treated with an acrylic silane coupling agent, a mixed powder containing the same, and an epoxy resin composition filled with the powder.

エポキシ樹脂の用途が半導体封止剤である場合、その絶縁性を確保する必要から、球状溶融シリカ、球状アルミナなどの無機質酸化粉末が充填材として用いられている。球状アルミナは、球状溶融シリカよりも熱伝導率が高いという利点がある。 When the epoxy resin is used as a semiconductor encapsulant, inorganic oxide powders such as spherical fused silica and spherical alumina are used as fillers because it is necessary to ensure insulation. Spherical alumina has the advantage of higher thermal conductivity than spherical fused silica.

球状アルミナは、アルミナ、水酸化アルミニウム等の原料粉末を高温火炎中に投入し溶融球状化することによって製造されるが、同じく高温火炎処理で製造される球状溶融シリカと異なり、表面OH基が減少するので、粉末同士の凝集が少ない。   Spherical alumina is manufactured by putting raw material powder such as alumina and aluminum hydroxide into a high temperature flame and spheroidizing it. Unlike spherical fused silica, which is also manufactured by high temperature flame treatment, surface OH groups are reduced. Therefore, there is little aggregation of powder.

半導体封止剤の重要特性の一つに耐湿信頼性があることに鑑み、球状アルミナ粉末原料を、アルコキシ基を有するシランカップリング剤で表面処理することが提案されている(特許文献1)。これによって、耐湿信頼性は向上したが、強度、弾性率が球状溶融シリカのレベルまでには改善されないことが課題であった。
特許第2947072号公報
In view of one of the important characteristics of a semiconductor encapsulant having moisture resistance reliability, it has been proposed to subject a spherical alumina powder raw material to a surface treatment with a silane coupling agent having an alkoxy group (Patent Document 1). This improved the moisture resistance reliability, but the problem was that the strength and elastic modulus were not improved to the level of spherical fused silica.
Japanese Patent No. 2947072

本発明の目的は、半導体封止剤として好都合なエポキシ樹脂組成物の強度、弾性率、耐湿信頼性を一挙に改善させるべく、高充填可能な球状アルミナ粉末とそれが充填されたエポキシ樹脂組成物を提供することである。本発明の目的は、球状アルミナ粉末原料、好適には2つ以上の極大ピークを有する球状アルミナ粉末原料を、アクリル系シランカップリング剤で表面処理をすること、更にはこの球状アルミナ粉末と、アクリル系シランカップリング剤による表面処理が施された溶融球状シリカ微粉末とを併用することによって達成することができる。   An object of the present invention is to provide a spherical alumina powder that can be highly filled and an epoxy resin composition filled therewith in order to improve the strength, elastic modulus, and moisture resistance reliability of an epoxy resin composition that is convenient as a semiconductor encapsulant. Is to provide. An object of the present invention is to surface-treat a spherical alumina powder raw material, preferably a spherical alumina powder raw material having two or more maximum peaks, with an acrylic silane coupling agent, and further, the spherical alumina powder and an acrylic This can be achieved by using in combination with fused spherical silica fine powder that has been surface-treated with a silane coupling agent.

すなわち、本発明は、平均粒径が100μm以下、平均球形度が0.80以上、表面OH基数が10個/nm以下の球状アルミナ粉末原料が、アクリル系シランカップリング剤による表面処理が施されてなることを特徴とする球状アルミナ粉末である。この場合において、アクリル系シランカップリング剤が、化学式(1)で表されるものであり、しかも球状アルミナ粉末原料の粒度分布が、極大ピークを2つ以上有し、その極大ピークの1つが3μm以下であることが好ましい。 That is, in the present invention, a spherical alumina powder raw material having an average particle size of 100 μm or less, an average sphericity of 0.80 or more, and a surface OH group number of 10 / nm 2 or less is subjected to a surface treatment with an acrylic silane coupling agent. It is a spherical alumina powder characterized by being made. In this case, the acrylic silane coupling agent is represented by the chemical formula (1), and the particle size distribution of the spherical alumina powder raw material has two or more maximum peaks, and one of the maximum peaks is 3 μm. The following is preferable.

(Cn3nO)−Si−Cm2m−0−COCH=CH ・・・化学式(1)
但し、式中、Rはメチル基又はエチル基、nは1以上の整数。mは0又は1以上の整数。
(C n H 3n O) 3 -Si-C m H 2m -0-COCH = CH 2 ··· formula (1)
In the formula, R is a methyl group or an ethyl group, and n is an integer of 1 or more. m is 0 or an integer of 1 or more.

また、本発明は、球状アルミナ粉末の20質量%以下(0を含まない)が、アクリル系シランカップリング剤による表面処理が施された球状溶融シリカ微粉末で混合置換されてなることを特徴とする球状アルミナ混合粉末である。この場合において、アクリル系シランカップリング剤による表面処理が施される球状溶融シリカ粉末原料の平均粒径は5μm以下であることが好ましい。更に、本発明は、上記球状アルミナ粉末又は球状アルミナ混合粉末を含有してなることを特徴とするエポキシ樹脂組成物である。 Further, the present invention is characterized in that 20% by mass or less (not including 0) of the spherical alumina powder is mixed and replaced with a spherical fused silica fine powder subjected to a surface treatment with an acrylic silane coupling agent. It is a spherical alumina mixed powder. In this case, it is preferable that the average particle diameter of the spherical fused silica powder raw material subjected to the surface treatment with the acrylic silane coupling agent is 5 μm or less. Furthermore, the present invention is an epoxy resin composition comprising the spherical alumina powder or the spherical alumina mixed powder.

本発明によれば、エポキシ樹脂への高充填が可能な球状アルミナ粉末又は球状アルミナ混合粉末が提供されるので、これの充填されたエポキシ樹脂組成物の強度、弾性率、耐湿信頼性は、溶融球状シリカ粉末の充填されたそれに匹敵したものとなり、しかも高熱伝導性となる。 According to the present invention, a spherical alumina powder or a spherical alumina mixed powder that can be highly filled into an epoxy resin is provided. Therefore, the strength, elastic modulus, and moisture resistance reliability of the filled epoxy resin composition are melted. It is comparable to that filled with spherical silica powder and has high thermal conductivity.

本発明で用いる球状アルミナ粉末原料は、平均粒径が100μm以下、平均球形度が0.80以上、表面OH基数が10個/nm以下である。平均粒径が100μmをこえるとエポキシ樹脂組成物の粘度が急激に高くなる。また、平均球形度が0.80未満であるか、又は表面OH基数が10個/nmをこえると、本発明による表面処理を施しても、エポキシ樹脂組成物の強度、弾性率を十分に改善することができない。 The spherical alumina powder raw material used in the present invention has an average particle size of 100 μm or less, an average sphericity of 0.80 or more, and a surface OH group number of 10 / nm 2 or less. When the average particle size exceeds 100 μm, the viscosity of the epoxy resin composition increases rapidly. In addition, when the average sphericity is less than 0.80 or the number of surface OH groups exceeds 10 / nm 2 , the strength and elastic modulus of the epoxy resin composition are sufficiently obtained even when the surface treatment according to the present invention is performed. It cannot be improved.

平均球形度は、走査型電子顕微鏡(日本電子社製「JXA−8600M型」)と画像解析装置(日本アビオニクス社製)を用いて測定することができる。すなわち、粉末のSEM写真から粒子の投影面積(A)と周囲長(PM)を測定する。周囲長(PM)に対応する真円の面積を(B)とすると、その粒子の真円度はA/Bとして表される。そこで、試料粒子の周囲長(PM)と同一の周囲長を持つ真円を想定すると、PM=2πr、B=πrであるから、B=π×(PM/2π)となり、この粒子の真円度は、真円度=A/B=A×4π/(PM)として算出することができる。そこで、本発明においては、任意100個の粒子について測定し、その平均値でもって平均球形度とする。 The average sphericity can be measured using a scanning electron microscope (“JXA-8600M type” manufactured by JEOL Ltd.) and an image analysis device (manufactured by Nippon Avionics Co., Ltd.). That is, the projected area (A) and the perimeter (PM) of the particles are measured from the SEM photograph of the powder. When the area of a perfect circle corresponding to the perimeter (PM) is (B), the roundness of the particle is expressed as A / B. Therefore, assuming a perfect circle having the same circumference as that of the sample particle (PM), PM = 2πr and B = πr 2 , so that B = π × (PM / 2π) 2 . The roundness can be calculated as roundness = A / B = A × 4π / (PM) 2 . Therefore, in the present invention, 100 arbitrary particles are measured, and the average value is used as the average sphericity.

本発明において、表面OH基数とは、シランカップリング剤と反応するか、又は反応する可能性のあるOH基である。これは、温度550〜900℃で発生した水分量X(ppm)をカールフィッシャー法により測定し、粉末の比表面積をYm/gから、式、表面OH基数Z(個/nm)=0.0668×X/Y、によって算出することができる。 In the present invention, the number of surface OH groups is an OH group that reacts with or possibly reacts with a silane coupling agent. This is because the moisture content X (ppm) generated at a temperature of 550 to 900 ° C. is measured by the Karl Fischer method, and the specific surface area of the powder is calculated from Ym 2 / g, the formula: surface OH group number Z (pieces / nm 2 ) = 0. .0668 × X / Y.

本発明で用いる球状アルミナ粉末原料は、既存の溶射技術(例えば「製綱窯炉に対する溶射補集技術について」製鉄研究1982第310号)を基本とし、水素、天然ガス、アセチレンガス、プロパンガス、ブタン等の燃料ガスと、酸素ガス、空気等の助燃ガスとで形成された高温火炎中に原料粉末を投入し、溶融球状化させることによって製造することができる。その原料として、アルミナ粉末、水酸化アルミニウム粉末、硫酸アルミニウム粉末等が使用されるが、球状化前後での粒径の変化が少ないアルミナ粉末が好ましい。また、金属アルミニウム粉末を高温火炎中で燃焼させる方法であってもよく、これによって平均粒径10μm以下の微細な球状アルミナ粉末が得られやすくなる。   The spherical alumina powder raw material used in the present invention is based on the existing thermal spraying technology (for example, “Technology for Thermal Spray Collection for Steelmaking Furnace Furnace”, Steel Research 1982 310), hydrogen, natural gas, acetylene gas, propane gas, It can be manufactured by putting raw material powder into a high-temperature flame formed of a fuel gas such as butane and an auxiliary combustion gas such as oxygen gas or air, and melt spheroidizing. As the raw material, alumina powder, aluminum hydroxide powder, aluminum sulfate powder or the like is used, and alumina powder with little change in particle size before and after spheroidization is preferable. Moreover, the method of burning a metal aluminum powder in a high temperature flame may be sufficient, and it becomes easy to obtain the fine spherical alumina powder with an average particle diameter of 10 micrometers or less by this.

上記球状アルミナ粉末原料の製造方法にあっては、球状アルミナ粉末原料の平均粒径は球状化前の原料の粒度調整等によって、平均球形度、表面OH基数は球状化時の燃料ガス量の調整、原料粉末の供給量等によって調整することができる。   In the method for producing the spherical alumina powder raw material, the average particle diameter of the spherical alumina powder raw material is adjusted by adjusting the particle size of the raw material before spheroidization, the average sphericity, and the surface OH group number is adjusted by the amount of fuel gas during spheroidization. It can be adjusted by the supply amount of the raw material powder.

本発明の球状アルミナ粉末は、上記球状アルミナ粉末原料を、好ましくは上記化学式(1)で示されるアクリル系シランカップリング剤によって表面処理されたものである。OH基数が調整された球状アルミナ粉末原料を、アクリル系シランカップリング剤で表面処理を行うと、エポキシ樹脂に良く分散し、高充填することが可能となり、エポキシ樹脂組成物の強度、弾性率が大幅に向上する。このような効果は、アルコキシ基を有するシランカップリング剤やアミノ基を有するシランカップリング剤では発現しない。特に好ましいアクリル系シランカップリング剤は、化学式(2)に示される3−アクリロキシプロピルトリメトキシシランである。   The spherical alumina powder of the present invention is obtained by surface-treating the above spherical alumina powder raw material, preferably with an acrylic silane coupling agent represented by the above chemical formula (1). When the surface treatment is performed with an acrylic silane coupling agent on a spherical alumina powder raw material with an adjusted number of OH groups, the epoxy resin composition can be well dispersed and highly filled, and the strength and elastic modulus of the epoxy resin composition can be reduced. Greatly improved. Such an effect is not exhibited by a silane coupling agent having an alkoxy group or a silane coupling agent having an amino group. A particularly preferred acrylic silane coupling agent is 3-acryloxypropyltrimethoxysilane represented by chemical formula (2).

(CHO)−Si−C36−0−COCH=CH ・・・化学式(2) (CH 3 O) 3 -Si- C 3 H 6 -0-COCH = CH 2 ··· formula (2)

アクリル系シランカップリング剤の使用量は、球状アルミナ粉末原料100質量部に対して0.2〜5質量部であることが好ましい。0.2質量部よりも少ないとその効果は小さく、5質量部%よりも多くしても、使用量に見合った効果は発現しない。 It is preferable that the usage-amount of an acryl-type silane coupling agent is 0.2-5 mass parts with respect to 100 mass parts of spherical alumina powder raw materials. If the amount is less than 0.2 parts by mass, the effect is small, and even if the amount is more than 5 parts by mass, an effect commensurate with the amount used is not exhibited.

表面処理方法としては、流体ノズルを用いた噴霧方式、せん断力のある攪拌方式、ボールミル、ミキサー等の乾式法、水系又は有機溶剤系等の湿式法を採用することができる。攪拌方式は、球状アルミナ粉末原料又は球状アルミナ粉末の破壊が起こらない程度にして行うことが肝要である。乾式法における系内温度又は処理後の乾燥温度は、表面処理剤の種類に応じ熱分解しない領域で適宜決定されるが、概ね80〜150℃である。   As the surface treatment method, a spray method using a fluid nozzle, a stirring method having shearing force, a dry method such as a ball mill or a mixer, or a wet method such as an aqueous or organic solvent method can be employed. It is important that the stirring method be performed to such an extent that the spherical alumina powder raw material or the spherical alumina powder does not break. The system temperature in the dry method or the drying temperature after the treatment is appropriately determined in a region where thermal decomposition does not occur depending on the type of the surface treatment agent, but is generally 80 to 150 ° C.

本発明の球状アルミナ粉末は、その球状アルミナ粉末原料の粒度を調整することによって、エポキシ樹脂と混合した際に一段と低粘度化することができる。すなわち、極大ピークを2つ以上有し、その極大ピークの1つは3μm以下にすることである。このような低粘度化の作用効果は、本発明の球状アルミナ粉末の20質量%(0を含まず)を、アクリル系シランカップリング剤で表面処理された球状溶融シリカ微粉末で混合置換することによって助長される。球状溶融シリカ微粉末の平均粒径は、アクリル系シランカップリング剤による表面処理の施される球状溶融シリカ粉末の平均粒径として、5μm以下であることが好ましい。   The spherical alumina powder of the present invention can be further reduced in viscosity when mixed with the epoxy resin by adjusting the particle size of the spherical alumina powder raw material. That is, it has two or more maximum peaks, and one of the maximum peaks is 3 μm or less. Such an effect of lowering viscosity is obtained by mixing and replacing 20% by mass (excluding 0) of the spherical alumina powder of the present invention with a spherical fused silica fine powder surface-treated with an acrylic silane coupling agent. Conduced by The average particle size of the spherical fused silica fine powder is preferably 5 μm or less as the average particle size of the spherical fused silica powder subjected to the surface treatment with the acrylic silane coupling agent.

本発明の球状アルミナ粉末又は球状アルミナ混合粉末は、種々の樹脂組成物を製造する充填材として用いることができるが、特にエポキシ樹脂組成物の製造に適合する。本発明のエポキシ樹脂組成物は、半導体封止剤としての用途がある。   The spherical alumina powder or spherical alumina mixed powder of the present invention can be used as a filler for producing various resin compositions, and is particularly suitable for the production of epoxy resin compositions. The epoxy resin composition of this invention has a use as a semiconductor sealing agent.

本発明で用いられるエポキシ樹脂は、一分子中にエポキシ基を二個以上有するものであり、それを例示すれば、ビスフェノールA型エポキシ樹脂、フェノールA型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフタレン環含有エポキシ樹脂、臭素化エポキシ樹脂等であり、これらの一種又は二種以上が使用される。とくに、低吸湿等の特性を付与したいときは、ビフェニル系エポキシ樹脂が好ましい。エポキシ樹脂組成物の用途がアンダーフィル材のように液状エポキシ樹脂組成物である場合には、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂、脂環式エポキシ樹脂などの常温で液状のエポキシ樹脂が用いられる。   The epoxy resin used in the present invention has two or more epoxy groups in one molecule. For example, bisphenol A type epoxy resin, phenol A type epoxy resin, phenol novolac type epoxy resin, biphenyl type are exemplified. An epoxy resin, a dicyclopentadiene type epoxy resin, a naphthalene ring-containing epoxy resin, a brominated epoxy resin, and the like, and one or more of these are used. In particular, when it is desired to impart characteristics such as low moisture absorption, a biphenyl type epoxy resin is preferable. When the application of the epoxy resin composition is a liquid epoxy resin composition such as an underfill material, the room temperature of a bisphenol type epoxy resin such as a bisphenol A type epoxy resin or a bisphenol F type epoxy resin, or an alicyclic epoxy resin A liquid epoxy resin is used.

エポキシ樹脂の硬化剤については、エポキシ樹脂と反応して硬化させるものであれば特に限定されず、例えば、フェノール、クレゾール、キシレノール、レゾルシノール、クロロフェノール、t−ブチルフェノール、ノニルフェノール、イソプロピルフェノール、オクチルフェノール等の群から選ばれた1種又は2種以上の混合物をホルムアルデヒド、パラホルムアルデヒド又はパラキシレンとともに酸化触媒下で反応させて得られるノボラック型樹脂、ポリパラヒドロキシスチレン樹脂、ビスフェノールAやビスフェノールS等のビスフェノール化合物、ピロガロールやフロログルシノール等の3官能フェノール類、無水マレイン酸、無水フタル酸や無水ピロメリット酸等の酸無水物、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン等の芳香族アミン等を挙げることができる。   The epoxy resin curing agent is not particularly limited as long as it is cured by reacting with the epoxy resin. For example, phenol, cresol, xylenol, resorcinol, chlorophenol, t-butylphenol, nonylphenol, isopropylphenol, octylphenol, etc. Bisphenol compounds such as novolak-type resin, polyparahydroxystyrene resin, bisphenol A and bisphenol S obtained by reacting a mixture of one or more selected from the group with formaldehyde, paraformaldehyde or paraxylene under an oxidation catalyst , Trifunctional phenols such as pyrogallol and phloroglucinol, acid anhydrides such as maleic anhydride, phthalic anhydride and pyromellitic anhydride, metaphenylenediamine, diaminodiphenylmethane Aromatic amines such as diaminodiphenyl sulfone, and the like.

本発明のエポキシ樹脂組成物には、エポキシ樹脂と硬化剤との反応を促進させるために硬化促進剤を配合することができる。その硬化促進剤としては、1,8−ジアザビシクロ(5,4,0)ウンデセン−7,トリフェニルホスフィン、ベンジルジメチルアミン、2−メチルイミダゾール等がある。   In the epoxy resin composition of the present invention, a curing accelerator can be blended in order to accelerate the reaction between the epoxy resin and the curing agent. Examples of the curing accelerator include 1,8-diazabicyclo (5,4,0) undecene-7, triphenylphosphine, benzyldimethylamine, 2-methylimidazole and the like.

更には、本発明のエポキシ樹脂組成物には、次の成分を必要に応じて配合することができる。すなわち、低応力化剤として、シリコーンゴム、ポリサルファイドゴム、アクリル系ゴム、ブタジエン系ゴム、スチレン系ブロックコポリマーや飽和型エラストマー等のゴム状物質、各種熱可塑性樹脂、シリコーン樹脂等の樹脂状物質、更にはエポキシ樹脂、フェノール樹脂の一部又は全部をアミノシリコーン、エポキシシリコーン、アルコキシシリコーンなどで変性した樹脂など、シランカップリング剤として、γ−グリシドキシプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン、アミノプロピルトリエトキシシラン、ウレイドプロピルトリエトキシシラン、N−フェニルアミノプロピルトリメトキシシラン等のアミノシラン、フェニルトリメトキシシラン、メチルトリメトキシシラン、オクタデシルトリメトキシシラン等の疎水性シラン化合物やメルカプトシランなど、難燃助剤として、Sb、Sb、Sbなど、難燃剤として、ハロゲン化エポキシ樹脂やリン化合物など、着色剤として、カーボンブラック、酸化鉄、染料、顔料などである。 Furthermore, the following component can be mix | blended with the epoxy resin composition of this invention as needed. That is, as a low stress agent, silicone rubber, polysulfide rubber, acrylic rubber, butadiene rubber, rubbery substances such as styrene block copolymers and saturated elastomers, various thermoplastic resins, resinous substances such as silicone resins, Is an epoxy resin, a resin obtained by modifying a part or all of a phenol resin with aminosilicone, epoxysilicone, alkoxysilicone, or the like. As a silane coupling agent, γ-glycidoxypropyltrimethoxysilane, β- (3,4- Epoxy cyclohexyl) Epoxy silanes such as ethyltrimethoxysilane, aminopropyltriethoxysilane, ureidopropyltriethoxysilane, aminosilanes such as N-phenylaminopropyltrimethoxysilane, phenyltrimethoxysilane, methyltri Hydrophobic silane compounds such as methoxysilane and octadecyltrimethoxysilane, mercaptosilane and the like, flame retardant aids such as Sb 2 O 3 , Sb 2 O 4 and Sb 2 O 5 , flame retardants such as halogenated epoxy resins and phosphorus Examples of colorants such as compounds include carbon black, iron oxide, dyes, and pigments.

本発明のエポキシ樹脂組成物は、上記各材料の所定量を撹拌、溶解、混合、分散させることにより製造することができる。これらの混合物の混合、撹拌、分散等の装置は特に限定されないが、撹拌、加熱装置を備えたライカイ機、3本ロール、ボールミル、プラネタリーミキサー等を用いることができる。またこれらの装置を適宜組み合わせて使用してもよい。   The epoxy resin composition of the present invention can be produced by stirring, dissolving, mixing, and dispersing predetermined amounts of each of the above materials. A device for mixing, stirring, and dispersing these mixtures is not particularly limited, and a lykai machine equipped with a stirring and heating device, a three-roll, a ball mill, a planetary mixer, and the like can be used. Moreover, you may use combining these apparatuses suitably.

実施例1〜5 比較例1〜6
LPGと酸素ガスによって形成された高温火炎中に、アルミナ粉末を供給し、球状化処理を行った。LPG量の調整によって、平均粒径と平均球形度と表面OH基数の異なる球状アルミナ粉末原料A〜Kを製造し、それをシランカップリング剤A〜Dにより表面処理を行った。表面処理は、ボール径20mm、ボール充填率50体積%の10リットル容器内に、球状アルミナ粉末原料1kgとシランカップリング剤の表1に示される添加量(外割%)とを投入し、常温、常圧の条件下、1回/秒の速度で1時間運転後、120℃にて1時間乾燥させて行った。シランカップリング剤は、一般式、X−Si−C2n−O−Y(但し、官能基X、Yと、n数は表2に記載。)、である。
Examples 1-5 Comparative Examples 1-6
Alumina powder was supplied into a high-temperature flame formed by LPG and oxygen gas, and spheroidizing treatment was performed. By adjusting the amount of LPG, spherical alumina powder raw materials AK having different average particle diameter, average sphericity, and surface OH group number were produced, and surface treatment was performed with silane coupling agents AD. In the surface treatment, 1 kg of spherical alumina powder raw material and the addition amount (outer percent%) shown in Table 1 of the silane coupling agent are put into a 10 liter container having a ball diameter of 20 mm and a ball filling rate of 50% by volume. Under normal pressure conditions, the operation was carried out at a rate of once per second for 1 hour and then dried at 120 ° C. for 1 hour. The silane coupling agent has a general formula, X 3 —Si—C n H 2n —O—Y (provided that functional groups X and Y and n number are described in Table 2).

得られた球状アルミナ粉末を用いてエポキシ樹脂組成物を製造し、(1)粘度、(2)強度、(3)弾性率、(4)耐湿信頼性を以下に従い測定した。比較例6は、球状アルミナ粉末のかわりに溶融球状シリカ粉末L(比較例6)を用いた。これらの結果を表5に示す。   An epoxy resin composition was produced using the obtained spherical alumina powder, and (1) viscosity, (2) strength, (3) elastic modulus, and (4) moisture resistance reliability were measured as follows. In Comparative Example 6, fused spherical silica powder L (Comparative Example 6) was used instead of the spherical alumina powder. These results are shown in Table 5.

(1)粘度
表3の割合で調合された樹脂分45質量部と、球状アルミナ粉末A〜K又は溶融球状シリカ粉末Lの55質量部とを混合し、E型粘度計型(東京計器社製「EHD粘度計」)により、温度40℃、5rpmの回転数による粘度を測定した。
(1) Viscosity 45 parts by mass of the resin component prepared at the ratio shown in Table 3 and 55 parts by mass of spherical alumina powders A to K or fused spherical silica powder L are mixed to obtain an E type viscometer type (manufactured by Tokyo Keiki Co., Ltd.). Using an “EHD viscometer”), the viscosity at a temperature of 40 ° C. and a rotation speed of 5 rpm was measured.

(2)強度、弾性率
表4の割合で調合された樹脂分40質量部と、球状アルミナ粉末A〜K又は溶融球状シリカ粉末Lの60質量部とを混合し、JIS K 6911に準じて、175℃、6.9MPa、成形時間2分の条件で10×4×100mmの抗折棒を成形し、室温強度、弾性率を測定した。
(2) Strength, elastic modulus 40 parts by mass of the resin component prepared in the ratio of Table 4 and 60 parts by mass of the spherical alumina powders A to K or the fused spherical silica powder L are mixed, according to JIS K 6911, A 10 × 4 × 100 mm anti-folding rod was molded under the conditions of 175 ° C., 6.9 MPa, and molding time of 2 minutes, and the room temperature strength and elastic modulus were measured.

(3)耐湿信頼性
アルミニウム配線を有する16ピンモニターICをトランスファー成形し、硬化後260℃のハンダ浴に10秒間浸漬した後、120℃、2気圧の水蒸気中で20V印加してアルミニウム配線のオープン不良率(断線率)とリーク不良率(アルミニウム線間の洩れ電流値が10nA以上になった率)との和が50%以上になるまでの時間を求めた。試料個数は20個である。
(3) Moisture resistance reliability 16-pin monitor IC with aluminum wiring is transfer molded, and after curing, immersed in a 260 ° C solder bath for 10 seconds, then 20V is applied in water vapor at 120 ° C and 2 atm to open the aluminum wiring. The time until the sum of the defect rate (disconnection rate) and the leak defect rate (the rate at which the leakage current value between the aluminum wires was 10 nA or more) reached 50% or more was determined. The number of samples is 20.

Figure 0004197141
Figure 0004197141

Figure 0004197141
Figure 0004197141

Figure 0004197141
Figure 0004197141

Figure 0004197141
Figure 0004197141

Figure 0004197141
Figure 0004197141

表1〜5から明らかなように、本発明の球状アルミナ粉末を用いたエポキシ樹脂組成物は、粘度、強度、弾性率、耐湿信頼性の全てにおいて、比較例よりも優れていた。   As is clear from Tables 1 to 5, the epoxy resin composition using the spherical alumina powder of the present invention was superior to the comparative example in all of viscosity, strength, elastic modulus, and moisture resistance reliability.

実施例6〜9
実施例6、7では、球状アルミナ粉末原料Bに球状溶融シリカ粉末Lを混合した。実施例8では、球状アルミナ粉末原料B、Hを用い、極大ピークを2つ有し、その1つが3μm以下である球状アルミナ粉末原料を調整した。実施例9では、実施例8において、更に球状溶融シリカ粉末Lの混合された球状アルミナ混合粉末原料を調整した。これらの原料を実施例1の球状アルミナ粉末原料のかわりに用いたこと以外は、実施例1と同様にして試験した。それらの結果を表7に示す。
Examples 6-9
In Examples 6 and 7, the spherical fused silica powder L was mixed with the spherical alumina powder raw material B. In Example 8, spherical alumina powder raw materials B and H were used, and a spherical alumina powder raw material having two maximum peaks, one of which was 3 μm or less was prepared. In Example 9, the spherical alumina mixed powder raw material in which the spherical fused silica powder L was further mixed in Example 8 was prepared. The test was conducted in the same manner as in Example 1 except that these raw materials were used in place of the spherical alumina powder raw material of Example 1. The results are shown in Table 7.

Figure 0004197141
Figure 0004197141

Figure 0004197141
Figure 0004197141

表6、7から、極大ピークを2つ以上有し、その1つが3μm以下である球状アルミナ粉末原料を用いることによって更に粘度が低減し、また本発明の球状アルミナ粉末とアクリル系シランカップリング剤で表面処理された球状溶融シリカ粉末とを併用することによって、一段と粘度が低減したことが分かる。   From Tables 6 and 7, the viscosity is further reduced by using a spherical alumina powder raw material having two or more maximum peaks, one of which is 3 μm or less, and the spherical alumina powder and acrylic silane coupling agent of the present invention. It can be seen that the viscosity was further reduced by using in combination with the spherical fused silica powder surface-treated with.

本発明によれば、エポキシ樹脂への高充填が可能な球状アルミナ粉末又は球状アルミナ混合粉末が提供されるので、これの充填されたエポキシ樹脂組成物の強度、弾性率、耐湿信頼性は、溶融球状シリカ粉末の充填されたそれに匹敵したものとなり、しかも高熱伝導性となる。本発明のエポキシ樹脂組成物は半導体封止剤として使用される。 According to the present invention, a spherical alumina powder or a spherical alumina mixed powder that can be highly filled into an epoxy resin is provided. Therefore, the strength, elastic modulus, and moisture resistance reliability of the filled epoxy resin composition are melted. It is comparable to that filled with spherical silica powder and has high thermal conductivity. The epoxy resin composition of the present invention is used as a semiconductor sealing agent.

Claims (4)

平均粒径が100μm以下、平均球形度が0.80以上、表面OH基数が10個/nm以下の球状アルミナ粉末原料が、アクリル系シランカップリング剤による表面処理が施されてなることを特徴とする球状アルミナ粉末。 A spherical alumina powder raw material having an average particle size of 100 μm or less, an average sphericity of 0.80 or more, and a surface OH group number of 10 / nm 2 or less is subjected to a surface treatment with an acrylic silane coupling agent. A spherical alumina powder. アクリル系シランカップリング剤が、化学式(1)で表されるものであり、しかも球状アルミナ粉末原料の粒度分布が、極大ピークを2つ以上有し、その極大ピークの1つが3μm以下であることを特徴とする請求項1記載の球状アルミナ粉末。
(Cn3nO)−Si−Cm2m−0−COCH=CH ・・・化学式(1)
但し、式中、Rはメチル基又はエチル基、nは1以上の整数。
mは0又は1以上の整数。
The acrylic silane coupling agent is represented by the chemical formula (1), and the particle size distribution of the spherical alumina powder raw material has two or more maximum peaks, and one of the maximum peaks is 3 μm or less. The spherical alumina powder according to claim 1.
(C n H 3n O) 3 -Si-C m H 2m -0-COCH = CH 2 ··· formula (1)
In the formula, R is a methyl group or an ethyl group, and n is an integer of 1 or more.
m is 0 or an integer of 1 or more.
球状アルミナ粉末の20質量%以下(0を含まない)が、アクリル系シランカップリング剤による表面処理が施された球状溶融シリカ微粉末で混合置換されてなることを特徴とする請求項1又は2記載の球状アルミナ混合粉末。 3 or less (not including 0) of the spherical alumina powder is mixed and replaced with a spherical fused silica fine powder that has been surface-treated with an acrylic silane coupling agent. The spherical alumina mixed powder described. 請求項1又は2記載の球状アルミナ粉末、又は請求項3記載の球状アルミナ混合粉末を含有してなることを特徴とするエポキシ樹脂組成物。 An epoxy resin composition comprising the spherical alumina powder according to claim 1 or 2, or the spherical alumina mixed powder according to claim 3.
JP2003298141A 2003-08-22 2003-08-22 Spherical alumina powder and use thereof Expired - Lifetime JP4197141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003298141A JP4197141B2 (en) 2003-08-22 2003-08-22 Spherical alumina powder and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003298141A JP4197141B2 (en) 2003-08-22 2003-08-22 Spherical alumina powder and use thereof

Publications (2)

Publication Number Publication Date
JP2005068258A JP2005068258A (en) 2005-03-17
JP4197141B2 true JP4197141B2 (en) 2008-12-17

Family

ID=34403720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003298141A Expired - Lifetime JP4197141B2 (en) 2003-08-22 2003-08-22 Spherical alumina powder and use thereof

Country Status (1)

Country Link
JP (1) JP4197141B2 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005320390A (en) * 2004-05-07 2005-11-17 Denki Kagaku Kogyo Kk Curable composition, molded product and heat-releasing member
KR100774798B1 (en) * 2004-05-13 2007-11-07 닛토덴코 가부시키가이샤 Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
DE102005039435A1 (en) * 2005-08-18 2007-03-01 Clariant International Limited Process for the preparation of silane-surface-modified nanocorundum
WO2007020064A1 (en) * 2005-08-18 2007-02-22 Clariant International Ltd Surface-modified nanoparticles from aluminum oxide and oxides of elements of the first and second main group of the periodic system and the production thereof
JP5058475B2 (en) * 2005-10-11 2012-10-24 電気化学工業株式会社 Alumina and production method thereof
JP4772527B2 (en) * 2006-02-13 2011-09-14 株式会社Lixil Method for manufacturing damping member
JP2009149770A (en) * 2007-12-20 2009-07-09 Sekisui Chem Co Ltd Insulating sheet and multilayer structure
JP2010126385A (en) * 2008-11-26 2010-06-10 Denki Kagaku Kogyo Kk Spherical alumina powder and method for producing the same
KR101105112B1 (en) 2009-04-10 2012-01-17 주식회사 포스코 Preparing Method for Metal Powder with High Dispersion Stability, Resin Composition comprising the Metal powder for Surface-treating Steel Sheet and Steel Sheet Prepared from the Resin Composition
JP5320263B2 (en) * 2009-11-04 2013-10-23 電気化学工業株式会社 Spherical alumina powder, production method and use thereof
JP5568399B2 (en) * 2010-07-14 2014-08-06 電気化学工業株式会社 Spherical alumina powder, production method and use thereof
WO2012043764A1 (en) * 2010-09-30 2012-04-05 日立化成工業株式会社 Adhesive composition, method for manufacturing semiconductor device, and semiconductor device
JP5755977B2 (en) * 2011-09-08 2015-07-29 電気化学工業株式会社 High thermal conductive resin composition
JP6373040B2 (en) * 2013-04-02 2018-08-15 富士電機株式会社 Resin film forming method
US10144816B2 (en) 2014-07-28 2018-12-04 Denka Company Limited Spherical alumina powder and resin composition using same
JP2017039804A (en) * 2015-08-17 2017-02-23 積水化学工業株式会社 Cured body and semiconductor device
JP6475593B2 (en) * 2015-08-17 2019-02-27 積水化学工業株式会社 Semiconductor element protecting material and semiconductor device
JP6536281B2 (en) * 2015-08-18 2019-07-03 日立化成株式会社 Adhesive for semiconductor, semiconductor device and method of manufacturing the same
WO2017122952A1 (en) 2016-01-13 2017-07-20 주식회사 엘지화학 Thermosetting resin composition for semiconductor package and prepreg using same
SG11201810208RA (en) 2016-05-16 2018-12-28 Martinswerk Gmbh Products and uses thereof
JP7351291B2 (en) * 2018-03-16 2023-09-27 株式会社レゾナック Epoxy resin composition and electronic component equipment
WO2021182378A1 (en) * 2020-03-10 2021-09-16 石原産業株式会社 Surface-coated inorganic particles, method for producing same, and organic-solvent dispersion of same
CN115572363A (en) * 2022-09-09 2023-01-06 天津澳普林特科技股份有限公司 High-thermal-conductivity polyurethane, preparation method and application thereof

Also Published As

Publication number Publication date
JP2005068258A (en) 2005-03-17

Similar Documents

Publication Publication Date Title
JP4197141B2 (en) Spherical alumina powder and use thereof
JP4306951B2 (en) Surface-treated fine spherical silica powder and resin composition
JP5294015B2 (en) Ceramic powder and its use
JP4112125B2 (en) Method for producing fine spherical silica powder
JP4004270B2 (en) High thermal conductive inorganic powder and resin composition
JP5380290B2 (en) Method for producing silica powder
JP4880268B2 (en) Inorganic powder and its use
WO2008053536A1 (en) Alumina powder, process for producing the same, and use thereof
JP4112540B2 (en) Manufacturing method of spherical inorganic hollow powder.
JP5553749B2 (en) Amorphous siliceous powder, production method and use thereof
JP2004244491A (en) Highly thermally conductive inorganic powder and resin composition compounded therewith
JP4244323B2 (en) Spherical inorganic hollow powder, method for producing the same, and resin composition
JP5259500B2 (en) Amorphous siliceous powder and its production method and application
JP4361997B2 (en) Spherical alumina powder and resin composition
JP3446951B2 (en) Inorganic powder and resin composition filled therewith
TWI402214B (en) An amorphous silica powder, a method for manufacturing the same, and a semiconductor sealing material
JP5526027B2 (en) Amorphous siliceous powder, method for producing the same, resin composition, and semiconductor sealing material
JP3694474B2 (en) Method for producing spherical silica powder
JP2001158614A (en) Spherical inorganic powder and use thereof
JP5767863B2 (en) Spherical alumina powder, method for producing the same, and composition using the same
JP6612919B2 (en) Amorphous silica powder, resin composition, and semiconductor encapsulant
JP3721285B2 (en) Spherical inorganic powder and its use
JP4131620B2 (en) Silica powder and its use
JP5345787B2 (en) Method for producing silica-alumina composite oxide ultrafine powder for semiconductor encapsulant
WO2009096343A1 (en) Siliceous powder, process for production of the same, and use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080924

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4197141

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term