JP4196063B2 - Manufacturing method of semiconductor light emitting device wafer - Google Patents

Manufacturing method of semiconductor light emitting device wafer Download PDF

Info

Publication number
JP4196063B2
JP4196063B2 JP2002309326A JP2002309326A JP4196063B2 JP 4196063 B2 JP4196063 B2 JP 4196063B2 JP 2002309326 A JP2002309326 A JP 2002309326A JP 2002309326 A JP2002309326 A JP 2002309326A JP 4196063 B2 JP4196063 B2 JP 4196063B2
Authority
JP
Japan
Prior art keywords
layer
light emitting
refractive index
semiconductor light
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002309326A
Other languages
Japanese (ja)
Other versions
JP2004146561A (en
Inventor
保成 奥
祐二 小林
康彦 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002309326A priority Critical patent/JP4196063B2/en
Publication of JP2004146561A publication Critical patent/JP2004146561A/en
Application granted granted Critical
Publication of JP4196063B2 publication Critical patent/JP4196063B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は発光ダイオードやレーザダイオード等の半導体発光素子用ウエハの製造方法に係り、特に発光層からの光を反射させるための反射層を備える半導体発光素子用ウエハの製造方法に関する。
【0002】
【従来の技術】
発光ダイオードやレーザダイオード等の発光デバイスの作製に、GaAs、AlGaAs、AlGaInP、GaInAsP等の3−5族化合物半導体が広く用いられている。これらのデバイスに用いる化合物半導体は、液相エピタキシャル法や有機金属気相成長法(以下、MOCVD法と記す)、気相エピタキシー法等を用いて成長される。最近では特にMOCVD法が広く用いられている。
【0003】
MOCVD法は、原料として有機金属ガスと水素化物ガスとをリアクタに供給し、リアクタの内部に置かれた支持体を加熱しながら、この支持体の上に載置された基板結晶上に化合物半導体を成長させる方法である。原料ガスの流量により成長速度を変えることができるため膜厚の制御性が比較的良く、多層構造の成長に適している。そこで、このような特性を活かし、屈折率の異なる層厚の薄い層を交互に積層させた多層構造からなる反射層を有する発光ダイオードやレーザダイオードが作製されている。
【0004】
この反射層は、屈折率の異なる高屈折率層と低屈折率層を発光波長の1/4程度の厚みとし交互に積層させたものであり、所定の帯域の波長を選択的に反射させることができるものであり、ブラッグ型反射鏡とも呼ばれる。反射する波長は高屈折率層と低屈折率層の屈折率と層厚によって変化する。反射率は高屈折率層と低屈折率層の屈折率差が大きいほど高くすることができる。例えば、AlGaAs系の発光ダイオードにおいては、高屈折率層にGaAs、低屈折率層にAlAsが選択されることがあり、高屈折率層と低屈折率層の層厚を60nm程度、対数を30程度とすることにより、約650nmの反射ピーク波長と約99%のピーク反射率を有する反射層が作製されている。
【0005】
AlGaInP系の発光ダイオードの反射層においては、高屈折率層にAlGaAsやAlGaInP、低屈折率層にAlInPやAlGaAs等が用いられる。例えば、高屈折率層にGaAs、低屈折率層にAlGaInPを用いた反射層がある(例えば、特許文献1参照)。また、高屈折率層にGaAs、低屈折率層にAlInPを用いた第一の反射層と、高屈折率層にAlGaInP、低屈折率層にAlInPを用いた第二の反射層を組み合わせたハイブリッド型反射層がある(例えば、特許文献2参照)。このように、AlGaInP系の発光ダイオードにおいては、発光層からの光に対する吸収と屈折率を考慮し、発光層と同じ系の材料であるAlGaInPを用いた反射層が用いられることが多い。
【0006】
【特許文献1】
特開平4−100277号公報(第6頁、第21図)
【特許文献2】
特開平7−86638号公報(第3頁、第1図)
【0007】
【発明が解決しようとする課題】
MOCVD法を用いた半導体発光素子用ウエハの製造は、リアクタ内部のサセプタの上に基板を載置し、この基板上に半導体層を成長させることによって行われるが、基板以外のサセプタの上にも半導体が堆積されるため、厳密にはリアクタの内部の状態は成長のたびに変化することとなる。すなわち、MOCVD法を用いて成長する場合、リアクタの内部の状態により同じ成長条件で成長させた反射層の特性が変化することとなり、反射層の反射ピーク波長が当初の値からずれることがある。反射ピーク波長が所定値からずれると、発光層からの光を十分に反射させることができなくなり発光効率の低下を引き起こすことがある。このため、製造歩留まりが安定せず、製造コストが高くなってしまうという問題がある。
【0008】
したがって、本発明はこのような問題を解決するためになされたものであって、反射層の反射ピーク波長の所定値からのずれを抑えて安定に成長できる半導体発光素子用ウエハの製造方法を提供するものである。
【0009】
【課題を解決するための手段】
本発明は、基板上に発光層を有し、前記基板と前記発光層との間に、前記発光層からの光を反射させるための反射層を備える半導体発光素子用ウエハの製造方法であって、該半導体発光素子用ウエハの製造工程の前に、基板上に反射層を成長させる第一の工程と、基板上に成長させた反射層の反射ピーク波長を測定する第二の工程とをこの順に備え、前記第二の工程における測定の結果に基づいて前記半導体発光素子用ウエハに備える反射層の成長条件を決定することを特徴とする半導体発光素子用ウエハの製造方法である。この構成により、半導体発光素子用ウエハの製造時に最も近いリアクタの状態で成長した反射層の特性を知ることができ、これを基に発光層からの光の波長とのずれを最小限に抑えた反射層を成長することができるという作用を有する。
【0010】
【発明の実施の形態】
以下、本発明について、図面を参照しながら詳細に説明する。
【0011】
図1に反射層を有する半導体発光素子用ウエハの概略断面図を示す。ここでは、一例として、AlGaInP系材料を用いた発光ダイオード用の半導体発光素子用ウエハを示している。
【0012】
半導体発光素子用ウエハ200は、n型GaAs基板201の上に、n型GaAsバッファ層202を有する。このバッファ層202の上には、n型AlInPからなる低屈折率層301とn型AlGaAs層からなる高屈折率層302を交互に積層させ、トータル10対の対数で構成される反射層203を有する。さらに、反射層203の上には、n型AlGaInPクラッド層204とアンドープAlGaInP活性層205とp型AlGaInPクラッド層206を有する。p型AlGaInPクラッド層206の上にはp型AlGaAsからなる電流拡散層207を有する。
【0013】
アンドープAlGaInP活性層205は、n型AlGaInPクラッド層204から注入された電子と、p型AlGaInPクラッド層206から注入された正孔との再結合により発光を生成するための発光層として働く。アンドープAlGaInP活性層205から発せられた光のうち基板201の側へ進む光は、反射層203により反射されて電流拡散層207の側へ向う。
【0014】
図2に本発明の一実施の形態に係る半導体発光素子用ウエハの製造で用いる半導体結晶成長装置の概略図を示す。半導体結晶成長装置100は、リアクタ110と原料ガス11の供給系120と排気系130とを有する。リアクタ110の内部にはウエハを載置させる支持体1が設けられており、支持体1の上にGaAs等からなる基板2が載置されている。支持体1はグラファイト等の熱伝導率の高い材料を用いて形成され、結晶の成長時には支持体1の下部に設けられたヒーター3により約400℃から約1000℃程度の高温に加熱される。リアクタ110は、このような高温に耐えられるように選択された石英やステンレス、モリブデン等の材料を用いた部品により構成されている。
【0015】
図1に示す半導体発光素子用ウエハの成長時には、供給系120より所定の半導体層を得るための原料ガス11をリアクタ110へ供給する。リアクタ110の内部では、ヒーター3により加熱されて高温に保持された支持体1とその上に載置された基板2により原料ガスが分解され、支持体1の上に堆積するとともに基板2の上に所望の半導体層が成長する。支持体1上への堆積または基板2への成長に用いられなかった余剰の原料ガス12は、排気系130へと送られる。
【0016】
図1に示す半導体発光素子用ウエハを図2に示すような半導体結晶成長装置で成長させる場合、半導体発光素子に備える反射層を構成する高屈折率層と低屈折率層の組成や層厚を厳密に制御させなければならないが、上記のように、基板2上への半導体層の成長を行うと基板2以外のリアクタ110の内部にも半導体の堆積が生じるため、厳密にはリアクタの内部の状態は成長のたびに変化していることとなる。したがって、反射層の成長条件も変化していることとなる。このような成長条件の変化は、組成や層厚の精密な制御が必要な反射層に影響し、反射ピーク波長のずれを引き起こす原因となる。
【0017】
そこで、本発明のように、該半導体発光素子用ウエハの製造工程の前に、基板上に反射層を成長させる第一の工程と、基板上に成長させた反射層の反射ピーク波長を測定する第二の工程とをこの順に備えることとし、前記第二の工程における測定の結果に基づいて前記半導体発光素子用ウエハに備える反射層の成長条件を決定すると、半導体発光素子用ウエハの製造時に最も近いリアクタの状態で成長した反射層の特性を知ることができ、これを基に発光層からの光の波長とのずれを抑えた反射層を安定して成長することができる。
【0018】
本発明においては、前記半導体発光素子用ウエハに備える反射層の成長条件が、前記第二の工程における測定により得られた反射ピーク波長と前記発光層から光のピーク波長とが略一致するように前記第一の工程で用いた反射層の成長条件を調整することによって決定されることが好ましい。前記第一の工程において成長した反射層の反射ピーク波長が、これと同じ条件で成長した場合の該半導体発光素子用ウエハの反射層の反射ピーク波長に最も近いので、前記第二の工程の測定結果に基づいて半導体発光素子用ウエハの反射層の成長条件を調整することで、所定の発光波長とのずれを最小限に抑えることができるからである。前記第一の工程で成長した反射層の成長条件を調整する際には、リアクタの内部の状態の変化の傾向に対応して行うと良い。
【0019】
一般にリアクタの内部の状態の変化を定量評価することは困難であるが、例えば、リアクタのメンテナンス後から反射層の成長を連続的に、又は、他の結晶成長を挟みながら数回行い、反射ピーク波長の変化の推移を予め記録しておくと、リアクタの内部への半導体の堆積の量と反射ピーク波長の関係をおおよそ把握することができる。そこで、この関係から、前記第二の工程で得られた波長に基づいて同じ条件で成長した場合の半導体発光素子用ウエハの反射層の反射ピーク波長を予測し、所定の発光波長と一致するように該半導体発光素子用ウエハの反射層の成長条件を調整すると、所定の発光波長と反射ピーク波長とのずれを最小限にすることができる。
【0020】
図3に、リアクタのメンテナンス後から反射層の成長を他の結晶成長(層厚約10μm)を挟みながら8回行ったときの反射上ピーク波長の変化の推移の例を示す。横軸はウエハ上の半導体層の累積厚みであり、リアクタ内の半導体の堆積の厚みに略対応する。これより、反射層の反射ピーク波長はリアクタ内の半導体の堆積の厚みに対し単調に増加していることがわかる。
【0021】
そこで、特定の時点において、本発明の第一の工程において成長した反射層の成長条件に、上記の単調増加の傾向から推測した反射ピーク波長の変化分を考慮して調整を加え、該半導体発光素子用ウエハに備える反射層の成長条件を決定することにより、半導体発光素子用ウエハにおいて所定の発光波長と反射ピーク波長とのずれを最小限にすることができる。
【0022】
なお、ここでは、反射ピーク波長が単調増加する傾向を有するリアクタの例を示したが、リアクタの構造や成長条件によっては、単調減少したり、略一定である場合もある。そのような場合には、それぞれの傾向を基にして反射ピーク波長の変化分を考慮するとよい。
【0023】
また、本発明において、前記反射層は屈折率の異なる高屈折率層と低屈折率層とを少なくとも1対以上含む半導体多層膜からなり、前記高屈折率層と前記低屈折率層のいずれか一方のみの層厚を調整することが好ましい。高屈折率層と低屈折率層のいずれか一方のみの層厚を調整することで、反射ピーク波長の調整が容易となるからである。
【0024】
上記したように、反射層の反射ピーク波長は、高屈折率層と低屈折率層の屈折率と層厚で決定される。一般に、層厚が厚くなると、反射ピーク波長は長波長側へシフトし、層厚が薄くなると、反射ピーク波長は短波長側へシフトする。リアクタの状態の変化による影響を受けやすいのは層厚であるので、リアクタの内部の状態に応じて層厚を変化させると良い。層厚の調整は、成長時間の増減で行うことが好ましい。原料ガスを増減させる方法よりも容易に行うことができ層厚の制御性も良いからである。
【0025】
さらにまた、本発明において、前記高屈折率層と前記低屈折率層のいずれか一方またはその両方が、Inを含む化合物半導体からなることが好ましい。反射層を構成する層がInを含む場合、リアクタの内部の状態の影響を受けやすいので、このように材料を特定することで本発明の効果を最大限に享受することができるからである。
【0026】
Inを含む化合物半導体を用いた反射層がリアクタの内部の状態の影響を受けやすい理由は現在のところ不明であるが、Inの原料として用いるトリメチルインジウムやトリエチルインジウムがトリメチルガリウムやトリメチルアルミニウム等の他の有機金属材料に比べ熱的に不安定であることが考えられる。
【0027】
なお、ここでは半導体発光素子として発光ダイオードを例にとって説明したが、反射層を有する半導体発光素子であればこれに限定するものではなく、例えば、発光層の上部と下部に反射層を有する垂直共振器型レーザダイオードの場合も本発明の思想の範囲に属するものである。
【0028】
【実施例】
以下、MOCVD法を用いたAlGaInP系発光ダイオードの製造方法を例にとり本発明の実施例を説明する。
【0029】
(比較例)
まず、リアクタの支持体にGaAs基板を載置し、ヒーターを用いて支持体とその上に載置したGaAs基板とを加熱し、AsH3ガスを流しながら結晶成長温度である650℃にまで温度を上昇させる。次に、原料ガスとしてトリメチルガリウム(以下、TMGと記す)を流し始め、GaAsからなるバッファ層を0.5μmの厚みで成長させる。バッファ層の成長の後、TMGとAsH3ガスの供給を止め、引き続き、トリメチルアルミニウム(以下、TMAと記す)とTMGとトリメチルインジウム(以下、TMIと記す)とPH3ガスを流しながらAl0.5In0.5Pからなる低屈折率層を50nmの厚みで成長させる。このときの成長時間は90.5秒であった。低屈折率層の成長の後、TMAとTMGとTMIとPH3ガスの供給を止め、引き続き、TMAとTMGとAsH3ガスを流しながらAl0.5Ga0.5Asからなる高屈折率層を48nmの厚みで成長させる。このときの成長時間は95.0秒であった。この後同様にして、低屈折率層と高屈折率層を合計10対成長し、反射層の成長を終える。反射層の成長の後、約400℃以下になった時点でAsH3ガスの供給を止める。さらに室温程度にまで温度を降下させた後、リアクタからウエハを取り出す。測定の結果、反射層の反射ピーク波長は609.5nmであった。
【0030】
次に、図1に示す半導体発光素子用ウエハと同様の層構成で発光ダイオード構造を成長させる。ここで、発光ダイオード構造の発光層は発光波長が610nmとなるように調整し、反射層の成長条件は上記と同じとした。さらに、反射層のみの成長と発光ダイオード構造の成長を計8回繰り返した。
【0031】
図4に、発光ダイオード構造の成長を挟みながら8回成長させた反射層の反射ピーク波長と、発光ダイオード構造のウエハを電極形成しプローブ法で評価した発光強度の推移を示す。反射層の成長時間を一定として成長させた場合、反射ピーク波長は次第に長波長側へシフトし、発光ダイオードの発光強度は次第に低下している。
【0032】
(実施例)
次に、上記比較例と同様にして発光ダイオード構造の成長を挟みながら反射層の成長を8回行った。ここで、発光ダイオード構造の成長にあたっては、直前に成長させた反射層の反射ピーク波長を評価し、上記比較例の結果を参考に反射ピーク波長が長波長側へシフトする分を、低屈折率層の成長時間を短くし反射ピーク波長が約610nmになるよう調整を加えることによって補正して、反射層の条件を決定した。
【0033】
図5に、調整を加えた低屈折率層の成長時間と8回成長させた発光ダイオード構造の発光強度の推移を示す。反射層の成長時間を短くする調整を加えることで、発光ダイオードの発光強度は安定していることがわかる。
【0034】
【発明の効果】
本発明によれば、半導体発光素子用ウエハの製造時に最も近いリアクタの状態で成長した反射層の特性を知ることができ、これを基に発光層からの光の波長とのずれを最小限に抑えた反射層を成長することができるので、半導体発光素子の発光特性を安定させることができ、製造歩留まりを安定させることができるという優れた効果が得られる。
【図面の簡単な説明】
【図1】反射層を有する半導体発光素子用ウエハの概略断面図
【図2】本発明の一実施の形態に係る半導体発光素子用ウエハの製造で用いる半導体結晶成長装置の概略図
【図3】リアクタのメンテナンス後から反射層の成長を他の結晶成長を挟みながら8回行ったときの反射ピーク波長の変化の推移の例を示す図
【図4】発光ダイオード構造の成長を挟みながら8回成長させた反射層の反射ピーク波長と、発光ダイオード構造のウエハを電極形成しプローブ法で評価した発光強度の推移を示す図
【図5】調整を加えた低屈折率層の成長時間と発光ダイオード構造の発光強度の推移を示す図
【符号の説明】
1 支持体
2 基板
3 ヒーター
11 原料ガス
12 余剰の原料ガス
100 半導体結晶成長装置
110 リアクタ
120 原料ガス供給系
130 排気系
200 半導体発光素子用ウエハ
201 n型GaAs基板
202 n型GaAsバッファ層
203 反射層
204 n型AlGaInPクラッド層
205 アンドープAlGaInP活性層
206 p型AlGaInPクラッド層
207 電流拡散層
301 低屈折率層
302 高屈折率層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a semiconductor light emitting device wafer such as a light emitting diode or a laser diode, and more particularly to a method for manufacturing a semiconductor light emitting device wafer having a reflective layer for reflecting light from a light emitting layer.
[0002]
[Prior art]
Group 3-5 compound semiconductors such as GaAs, AlGaAs, AlGaInP, and GaInAsP are widely used for manufacturing light emitting devices such as light emitting diodes and laser diodes. Compound semiconductors used in these devices are grown using a liquid phase epitaxial method, a metal organic vapor phase growth method (hereinafter referred to as MOCVD method), a vapor phase epitaxy method, or the like. Recently, the MOCVD method has been widely used.
[0003]
In the MOCVD method, an organic metal gas and a hydride gas are supplied to a reactor as raw materials, and a compound semiconductor is formed on a substrate crystal placed on the support while heating the support placed inside the reactor. Is a way to grow. Since the growth rate can be changed by the flow rate of the source gas, the controllability of the film thickness is relatively good and suitable for the growth of a multilayer structure. Therefore, utilizing such characteristics, light emitting diodes and laser diodes having a reflective layer having a multilayer structure in which thin layers having different thicknesses having different refractive indexes are alternately laminated are manufactured.
[0004]
This reflective layer is formed by alternately stacking a high refractive index layer and a low refractive index layer having different refractive indexes and having a thickness of about 1/4 of the emission wavelength, and selectively reflects a wavelength in a predetermined band. This is also called a Bragg reflector. The reflected wavelength varies depending on the refractive index and the layer thickness of the high refractive index layer and the low refractive index layer. The reflectance can be increased as the refractive index difference between the high refractive index layer and the low refractive index layer increases. For example, in an AlGaAs light emitting diode, GaAs may be selected for the high refractive index layer, and AlAs may be selected for the low refractive index layer. The layer thickness of the high refractive index layer and the low refractive index layer is approximately 60 nm, and the logarithm is 30. By adjusting the degree, a reflection layer having a reflection peak wavelength of about 650 nm and a peak reflectance of about 99% is produced.
[0005]
In the reflective layer of the AlGaInP light emitting diode, AlGaAs or AlGaInP is used for the high refractive index layer, and AlInP or AlGaAs is used for the low refractive index layer. For example, there is a reflective layer using GaAs for the high refractive index layer and AlGaInP for the low refractive index layer (see, for example, Patent Document 1). Also, a hybrid that combines a first reflective layer using GaAs for the high refractive index layer and AlInP for the low refractive index layer, and a second reflective layer using AlGaInP for the high refractive index layer and AlInP for the low refractive index layer. There exists a type | mold reflection layer (for example, refer patent document 2). As described above, in an AlGaInP-based light emitting diode, a reflection layer using AlGaInP, which is a material of the same system as the light emitting layer, is often used in consideration of absorption and refractive index with respect to light from the light emitting layer.
[0006]
[Patent Document 1]
Japanese Patent Laid-Open No. 4-100277 (page 6, FIG. 21)
[Patent Document 2]
Japanese Patent Laid-Open No. 7-86638 (page 3, FIG. 1)
[0007]
[Problems to be solved by the invention]
The manufacturing of a wafer for a semiconductor light emitting device using the MOCVD method is performed by placing a substrate on a susceptor inside the reactor and growing a semiconductor layer on the substrate, but also on a susceptor other than the substrate. Strictly speaking, since the semiconductor is deposited, the internal state of the reactor changes with each growth. That is, when growing using the MOCVD method, the characteristics of the reflective layer grown under the same growth conditions vary depending on the internal state of the reactor, and the reflective peak wavelength of the reflective layer may deviate from the initial value. If the reflection peak wavelength deviates from a predetermined value, the light from the light emitting layer cannot be sufficiently reflected and the light emission efficiency may be lowered. For this reason, there is a problem that the manufacturing yield is not stable and the manufacturing cost is increased.
[0008]
Accordingly, the present invention has been made to solve such problems, and provides a method for manufacturing a wafer for a semiconductor light-emitting element capable of stably growing while suppressing a deviation of the reflection peak wavelength of the reflection layer from a predetermined value. To do.
[0009]
[Means for Solving the Problems]
The present invention is a method for manufacturing a wafer for a semiconductor light emitting device, comprising: a light emitting layer on a substrate; and a reflective layer for reflecting light from the light emitting layer between the substrate and the light emitting layer. The first step of growing the reflective layer on the substrate and the second step of measuring the reflection peak wavelength of the reflective layer grown on the substrate before the manufacturing process of the semiconductor light emitting device wafer A method for manufacturing a semiconductor light emitting element wafer, comprising the steps of: determining a growth condition of a reflective layer provided in the semiconductor light emitting element wafer based on a measurement result in the second step. With this configuration, it is possible to know the characteristics of the reflective layer grown in the state of the reactor closest to the manufacturing of the semiconductor light emitting device wafer, and based on this, the deviation from the light wavelength from the light emitting layer is minimized. The reflective layer can be grown.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings.
[0011]
FIG. 1 is a schematic sectional view of a semiconductor light emitting device wafer having a reflective layer. Here, as an example, a semiconductor light emitting element wafer for a light emitting diode using an AlGaInP-based material is shown.
[0012]
The semiconductor light emitting device wafer 200 has an n-type GaAs buffer layer 202 on an n-type GaAs substrate 201. On the buffer layer 202, a low refractive index layer 301 made of n-type AlInP and a high refractive index layer 302 made of an n-type AlGaAs layer are alternately stacked, and a reflective layer 203 composed of a total of 10 pairs of logarithms is formed. Have. Furthermore, an n-type AlGaInP cladding layer 204, an undoped AlGaInP active layer 205, and a p-type AlGaInP cladding layer 206 are provided on the reflective layer 203. On the p-type AlGaInP clad layer 206, a current diffusion layer 207 made of p-type AlGaAs is provided.
[0013]
The undoped AlGaInP active layer 205 functions as a light emitting layer for generating light emission by recombination of electrons injected from the n-type AlGaInP cladding layer 204 and holes injected from the p-type AlGaInP cladding layer 206. Of the light emitted from the undoped AlGaInP active layer 205, the light traveling toward the substrate 201 is reflected by the reflective layer 203 and travels toward the current diffusion layer 207.
[0014]
FIG. 2 shows a schematic diagram of a semiconductor crystal growth apparatus used in manufacturing a semiconductor light emitting device wafer according to an embodiment of the present invention. The semiconductor crystal growth apparatus 100 includes a reactor 110, a source gas 11 supply system 120, and an exhaust system 130. A support body 1 on which a wafer is placed is provided inside the reactor 110, and a substrate 2 made of GaAs or the like is placed on the support body 1. The support 1 is formed using a material having high thermal conductivity such as graphite, and is heated to a high temperature of about 400 ° C. to about 1000 ° C. by a heater 3 provided at the bottom of the support 1 during crystal growth. The reactor 110 is composed of parts using materials such as quartz, stainless steel, and molybdenum selected so as to withstand such high temperatures.
[0015]
When the semiconductor light emitting device wafer shown in FIG. 1 is grown, the source gas 11 for obtaining a predetermined semiconductor layer is supplied from the supply system 120 to the reactor 110. Inside the reactor 110, the source gas is decomposed by the support 1 heated by the heater 3 and held at a high temperature and the substrate 2 placed thereon, and is deposited on the support 1 and on the substrate 2. A desired semiconductor layer is grown. Excess source gas 12 not used for deposition on the support 1 or growth on the substrate 2 is sent to the exhaust system 130.
[0016]
When the semiconductor light emitting device wafer shown in FIG. 1 is grown by a semiconductor crystal growth apparatus as shown in FIG. 2, the composition and layer thickness of the high refractive index layer and the low refractive index layer constituting the reflective layer included in the semiconductor light emitting device are set. Although it must be strictly controlled, as described above, when a semiconductor layer is grown on the substrate 2, semiconductor deposition occurs in the reactor 110 other than the substrate 2. The state changes with each growth. Therefore, the growth conditions of the reflective layer are also changed. Such a change in growth conditions affects the reflective layer that requires precise control of composition and layer thickness, and causes a shift in the reflection peak wavelength.
[0017]
Therefore, as in the present invention, before the manufacturing process of the semiconductor light emitting device wafer, the first step of growing the reflective layer on the substrate and the reflection peak wavelength of the reflective layer grown on the substrate are measured. The second step is provided in this order, and the growth condition of the reflective layer provided in the semiconductor light emitting device wafer is determined based on the measurement result in the second step. The characteristics of the reflective layer grown in the state of the near reactor can be known, and based on this, the reflective layer with suppressed deviation from the wavelength of light from the light emitting layer can be stably grown.
[0018]
In the present invention, the growth conditions of the reflective layer provided on the semiconductor light emitting device wafer are such that the reflection peak wavelength obtained by the measurement in the second step substantially coincides with the peak wavelength of light from the light emitting layer. It is preferably determined by adjusting the growth conditions of the reflective layer used in the first step. Since the reflection peak wavelength of the reflection layer grown in the first step is the closest to the reflection peak wavelength of the reflection layer of the semiconductor light emitting device wafer when grown under the same conditions, the measurement in the second step This is because the deviation from the predetermined emission wavelength can be minimized by adjusting the growth conditions of the reflective layer of the semiconductor light emitting device wafer based on the results. When adjusting the growth condition of the reflective layer grown in the first step, it is preferable to adjust the growth condition of the internal state of the reactor.
[0019]
In general, it is difficult to quantitatively evaluate the change in the internal state of the reactor. For example, after the reactor is maintained, the reflective layer is grown continuously or several times while sandwiching other crystal growths. If the transition of the wavelength change is recorded in advance, the relationship between the amount of semiconductor deposition inside the reactor and the reflection peak wavelength can be roughly grasped. Therefore, from this relationship, the reflection peak wavelength of the reflection layer of the semiconductor light emitting device wafer when grown under the same conditions based on the wavelength obtained in the second step is predicted and matches the predetermined emission wavelength. Further, by adjusting the growth conditions of the reflective layer of the semiconductor light emitting device wafer, the deviation between the predetermined emission wavelength and the reflection peak wavelength can be minimized.
[0020]
FIG. 3 shows an example of changes in the peak wavelength on reflection when the reflective layer is grown eight times while maintaining another crystal growth (layer thickness of about 10 μm) after the maintenance of the reactor. The horizontal axis is the cumulative thickness of the semiconductor layer on the wafer, and roughly corresponds to the thickness of the semiconductor deposition in the reactor. From this, it can be seen that the reflection peak wavelength of the reflection layer monotonously increases with the thickness of the semiconductor deposition in the reactor.
[0021]
Therefore, at a specific time, the growth conditions of the reflective layer grown in the first step of the present invention are adjusted in consideration of the change in the reflection peak wavelength estimated from the above monotonically increasing tendency, and the semiconductor light emitting By determining the growth conditions of the reflective layer provided in the element wafer, the deviation between the predetermined emission wavelength and the reflection peak wavelength in the semiconductor light emitting element wafer can be minimized.
[0022]
Here, an example of a reactor in which the reflection peak wavelength has a tendency to monotonously increase is shown, but depending on the reactor structure and growth conditions, it may decrease monotonously or be approximately constant. In such a case, it is preferable to consider the change in the reflection peak wavelength based on each tendency.
[0023]
Further, in the present invention, the reflective layer is composed of a semiconductor multilayer film including at least one pair of a high refractive index layer and a low refractive index layer having different refractive indexes, and one of the high refractive index layer and the low refractive index layer. It is preferable to adjust the thickness of only one of the layers. This is because it is easy to adjust the reflection peak wavelength by adjusting the thickness of only one of the high refractive index layer and the low refractive index layer.
[0024]
As described above, the reflection peak wavelength of the reflective layer is determined by the refractive index and the layer thickness of the high refractive index layer and the low refractive index layer. Generally, when the layer thickness is increased, the reflection peak wavelength is shifted to the longer wavelength side, and when the layer thickness is decreased, the reflection peak wavelength is shifted to the shorter wavelength side. Since it is the layer thickness that is easily affected by the change in the state of the reactor, it is preferable to change the layer thickness according to the internal state of the reactor. It is preferable to adjust the layer thickness by increasing or decreasing the growth time. This is because it can be performed more easily than the method of increasing or decreasing the source gas, and the controllability of the layer thickness is good.
[0025]
Furthermore, in the present invention, it is preferable that either one or both of the high refractive index layer and the low refractive index layer is made of a compound semiconductor containing In. This is because, when the layer constituting the reflective layer contains In, it is easily affected by the internal state of the reactor, and thus the effect of the present invention can be fully enjoyed by specifying the material in this way.
[0026]
The reason why the reflective layer using a compound semiconductor containing In is susceptible to the internal state of the reactor is currently unknown, but trimethylindium or triethylindium used as the In raw material is not limited to trimethylgallium or trimethylaluminum. It is considered that it is thermally unstable compared to other organometallic materials.
[0027]
Here, the light emitting diode has been described as an example of the semiconductor light emitting element, but the semiconductor light emitting element is not limited to this as long as the semiconductor light emitting element has a reflective layer. The type of laser diode belongs to the scope of the idea of the present invention.
[0028]
【Example】
Examples of the present invention will be described below by taking as an example a method for manufacturing an AlGaInP light emitting diode using MOCVD.
[0029]
(Comparative example)
First, a GaAs substrate is mounted on the support of the reactor, the support and the GaAs substrate mounted thereon are heated using a heater, and the temperature is increased to 650 ° C., which is the crystal growth temperature, while flowing AsH 3 gas. To raise. Next, trimethylgallium (hereinafter referred to as TMG) is started to flow as a source gas, and a buffer layer made of GaAs is grown to a thickness of 0.5 μm. After the growth of the buffer layer, the supply of TMG and AsH 3 gas is stopped, and subsequently Al 0.5 In while flowing trimethylaluminum (hereinafter referred to as TMA), TMG, trimethylindium (hereinafter referred to as TMI), and PH 3 gas. A low refractive index layer made of 0.5 P is grown to a thickness of 50 nm. The growth time at this time was 90.5 seconds. After the growth of the low refractive index layer, the supply of TMA, TMG, TMI, and PH 3 gas is stopped, and then the high refractive index layer made of Al 0.5 Ga 0.5 As is formed to a thickness of 48 nm while flowing TMA, TMG, and AsH 3 gas. Grow in. The growth time at this time was 95.0 seconds. Thereafter, in the same manner, a total of 10 pairs of a low refractive index layer and a high refractive index layer are grown, and the growth of the reflective layer is completed. After the reflective layer is grown, the supply of AsH 3 gas is stopped when the temperature becomes about 400 ° C. or lower. Further, after the temperature is lowered to about room temperature, the wafer is taken out from the reactor. As a result of the measurement, the reflection peak wavelength of the reflection layer was 609.5 nm.
[0030]
Next, a light emitting diode structure is grown with the same layer structure as the semiconductor light emitting device wafer shown in FIG. Here, the light emitting layer of the light emitting diode structure was adjusted to have an emission wavelength of 610 nm, and the growth conditions of the reflective layer were the same as described above. Furthermore, the growth of only the reflective layer and the growth of the light emitting diode structure were repeated a total of 8 times.
[0031]
FIG. 4 shows the transition of the reflection peak wavelength of the reflection layer grown eight times while sandwiching the growth of the light emitting diode structure, and the emission intensity evaluated by the probe method after forming a wafer of the light emitting diode structure as an electrode. When the reflection layer is grown at a constant growth time, the reflection peak wavelength gradually shifts to the longer wavelength side, and the light emission intensity of the light emitting diode gradually decreases.
[0032]
(Example)
Next, the reflective layer was grown eight times while sandwiching the growth of the light emitting diode structure in the same manner as in the comparative example. Here, in the growth of the light emitting diode structure, the reflection peak wavelength of the reflection layer grown immediately before is evaluated, and the amount of shift of the reflection peak wavelength toward the longer wavelength side with reference to the result of the comparative example is reduced to a low refractive index. The conditions for the reflective layer were determined by correcting by making the adjustment so that the growth time of the layer was shortened and the reflection peak wavelength was about 610 nm.
[0033]
FIG. 5 shows changes in the growth time of the adjusted low refractive index layer and the emission intensity of the light emitting diode structure grown eight times. It can be seen that the light emission intensity of the light emitting diode is stabilized by adjusting the growth time of the reflective layer.
[0034]
【The invention's effect】
According to the present invention, it is possible to know the characteristics of the reflective layer grown in the state of the reactor closest to the manufacturing of the semiconductor light emitting device wafer, and based on this, the deviation from the wavelength of light from the light emitting layer is minimized. Since the suppressed reflective layer can be grown, the light emission characteristics of the semiconductor light emitting element can be stabilized, and the excellent effect that the manufacturing yield can be stabilized can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a semiconductor light-emitting element wafer having a reflective layer. FIG. 2 is a schematic diagram of a semiconductor crystal growth apparatus used in manufacturing a semiconductor light-emitting element wafer according to an embodiment of the invention. Fig. 4 shows an example of changes in the reflection peak wavelength when the reflective layer is grown 8 times with other crystal growths after the reactor maintenance. Fig. 4 Grows 8 times with the growth of the light emitting diode structure. FIG. 5 is a graph showing the transition of the reflection peak wavelength of the reflection layer and the emission intensity evaluated by the probe method after forming a wafer having a light emitting diode structure. FIG. Of change in emission intensity of light [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Support body 2 Substrate 3 Heater 11 Source gas 12 Excess source gas 100 Semiconductor crystal growth apparatus 110 Reactor 120 Source gas supply system 130 Exhaust system 200 Semiconductor light emitting element wafer 201 n-type GaAs substrate 202 n-type GaAs buffer layer 203 Reflective layer 204 n-type AlGaInP cladding layer 205 undoped AlGaInP active layer 206 p-type AlGaInP cladding layer 207 current diffusion layer 301 low refractive index layer 302 high refractive index layer

Claims (2)

基板上に発光層を有し、前記基板と前記発光層との間に、前記発光層からの光を反射させるための屈折率の異なる高屈折率層と低屈折率層とを少なくとも1対以上含む半導体多層膜からなる反射層を備える半導体発光素子用ウエハの製造方法であって、該半導体発光素子用ウエハの製造工程の前に、半導体発光素子用ウエハの基板とは別の基板上に反射層を成長させる第一の工程と、基板上に成長させた反射層の反射ピーク波長を測定する第二の工程とをこの順に備え、前記第二の工程における測定により得られた反射ピーク波長に基づいて半導体発光素子用ウエハに備える発光層からの光のピーク波長と反射層の反射ピーク波長が略一致するように半導体発光素子用ウエハに備える反射層の成長条件が前記第一の工程で用いた反射層の成長条件から前記高屈折率層と前記低屈折率層のいずれか一方のみの層厚を調整することによって決定されることを特徴とする半導体発光素子用ウエハの製造方法。A light emitting layer is provided on the substrate, and at least one pair of a high refractive index layer and a low refractive index layer having different refractive indexes for reflecting light from the light emitting layer is provided between the substrate and the light emitting layer . A method for manufacturing a semiconductor light emitting device wafer comprising a reflective layer comprising a semiconductor multilayer film , wherein the semiconductor light emitting device wafer is reflected on a substrate different from the substrate of the semiconductor light emitting device wafer before the semiconductor light emitting device wafer manufacturing process. a first step of growing a layer, the second and a step in this order, the second reflection peak wavelengths obtained by the measurement in the step of measuring a reflection peak wavelength of the reflection layer grown on the substrate Based on the above, the growth condition of the reflective layer provided in the semiconductor light emitting device wafer is the first step so that the peak wavelength of light from the light emitting layer provided in the semiconductor light emitting device wafer and the reflection peak wavelength of the reflective layer substantially coincide with each other. Formation of the reflective layer used Method of manufacturing a wafer for a semiconductor light emitting device characterized by being determined by adjusting the thickness of either one of the high refractive index layer and the low refractive index layer from the condition. 前記高屈折率層と前記低屈折率層のいずれか一方またはその両方が、Inを含む化合物半導体からなることを特徴とする請求項1記載の半導体発光素子用ウエハの製造方法。2. The method of manufacturing a wafer for a semiconductor light emitting element according to claim 1 , wherein either one or both of the high refractive index layer and the low refractive index layer are made of a compound semiconductor containing In .
JP2002309326A 2002-10-24 2002-10-24 Manufacturing method of semiconductor light emitting device wafer Expired - Fee Related JP4196063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002309326A JP4196063B2 (en) 2002-10-24 2002-10-24 Manufacturing method of semiconductor light emitting device wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002309326A JP4196063B2 (en) 2002-10-24 2002-10-24 Manufacturing method of semiconductor light emitting device wafer

Publications (2)

Publication Number Publication Date
JP2004146561A JP2004146561A (en) 2004-05-20
JP4196063B2 true JP4196063B2 (en) 2008-12-17

Family

ID=32455182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002309326A Expired - Fee Related JP4196063B2 (en) 2002-10-24 2002-10-24 Manufacturing method of semiconductor light emitting device wafer

Country Status (1)

Country Link
JP (1) JP4196063B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007221020A (en) * 2006-02-20 2007-08-30 Ricoh Co Ltd Surface-emitting laser element, surface-emitting laser array having it, image forming device having either the element or the array, light pickup apparatus having either the element or the array, light transmitting module having either the element or the array, light transmitting/receiving module having either the element or the array and light communication system having both the element and the array

Also Published As

Publication number Publication date
JP2004146561A (en) 2004-05-20

Similar Documents

Publication Publication Date Title
JP4282173B2 (en) Nitrogen compound semiconductor light emitting device and method of manufacturing the same
JP4259709B2 (en) Quantum well active layer
JP6129051B2 (en) Reflector, surface emitting laser, laser apparatus, photoacoustic apparatus, and image forming apparatus
JPH0832181A (en) Method for p-type doping luminous
JP2001148544A (en) Semiconductor light-emitting element
US6858519B2 (en) Atomic hydrogen as a surfactant in production of highly strained InGaAs, InGaAsN, InGaAsNSb, and/or GaAsNSb quantum wells
JP4196063B2 (en) Manufacturing method of semiconductor light emitting device wafer
JPH11121864A (en) Surface emission laser and its manufacture
JP3875298B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP3666444B2 (en) Surface emitting semiconductor laser and manufacturing method thereof
JPH08264901A (en) Epitaxial wafer, semiconductor laser element using it, and manufacture of laser element
JP3293221B2 (en) Surface emitting semiconductor laser and method of manufacturing the same
JP2002299768A (en) Semiconductor light-emitting device
JP4656782B2 (en) Nitride semiconductor laser device and semiconductor optical device thereof
JP4567896B2 (en) Manufacturing method of semiconductor light emitting device
WO2023199660A1 (en) Nitride semiconductor light emitting element and method for producing nitride semiconductor light emitting element
WO2023176674A1 (en) Method for manufacturing nitride semiconductor light-emitting element, and nitride semiconductor light-emitting element
JPH08115877A (en) Semiconductor epitaxially growing method
TW201234585A (en) Semiconductor substrate, method for manufacturing semiconductor substrate and vertical resonator surface light-emitting laser
JPH08264886A (en) Semiconductor laser element and manufacture thereof
JP2664389B2 (en) Manufacturing method of semiconductor laser
JP2004165349A (en) Process for growing compound semiconductor epitaxially and process for fabricating light emitting element
JP2008071820A (en) Method for manufacturing semiconductor device
JP2001015808A (en) Nitrogen compound semiconductor light emitting device and manufacture thereof
JP3773019B2 (en) Manufacturing method of semiconductor laser device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050601

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees