JP4192503B2 - Manufacturing method of molten steel - Google Patents

Manufacturing method of molten steel Download PDF

Info

Publication number
JP4192503B2
JP4192503B2 JP2002163806A JP2002163806A JP4192503B2 JP 4192503 B2 JP4192503 B2 JP 4192503B2 JP 2002163806 A JP2002163806 A JP 2002163806A JP 2002163806 A JP2002163806 A JP 2002163806A JP 4192503 B2 JP4192503 B2 JP 4192503B2
Authority
JP
Japan
Prior art keywords
molten steel
slag
hot metal
converter
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002163806A
Other languages
Japanese (ja)
Other versions
JP2004010935A (en
Inventor
良輝 菊地
郁宏 鷲見
英寿 松野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002163806A priority Critical patent/JP4192503B2/en
Publication of JP2004010935A publication Critical patent/JP2004010935A/en
Application granted granted Critical
Publication of JP4192503B2 publication Critical patent/JP4192503B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高炉から出銑された溶銑を用い、この溶銑中の不純物成分を除去して鋼材製品の要求する溶鋼を製造する方法に関するものである。
【0002】
【従来の技術】
高炉で製造された溶銑から鋼材製品を製造するには、製鋼精錬工程を経る必要がある。この製鋼精錬工程では、溶銑に含まれる不純物成分を除去した上で、鋼材製品の材料特性上要求される組成への調整が行われる。溶銑に含まれる不純物成分としては、4mass%以上含有される炭素の他、燐、硫黄等があり、又、鋼材製品の要求成分としては、強度や靭性を高めるマンガンや珪素等がある。
【0003】
炭素や燐の不純物成分を除去するために、溶銑を転炉に装入し、この溶銑に大量の酸素を供給して不純物成分を酸化除去する酸化精錬が行われる。この酸化精錬においては脱炭反応や脱燐反応に伴って鉄も酸化され、酸化鉄を大量に含有するスラグが生成されるため、生成したスラグのみならず溶鋼の酸化度も高くなる。その結果、転炉炉内では鉄やマンガン等の有価成分のスラグへの損失量が多くなる上に、その後の工程で添加される脱酸剤や合金剤の酸化ロスも多くなり、脱酸剤や合金剤の歩留まり低下の原因になっている。
【0004】
それ故、スラグの酸化度を上昇させないようにするため、脱炭精錬終期の送酸速度を減少させることが行われてきたが、送酸速度を下げると酸素ジェットによる攪拌効率も下がるのでスラグの酸化度を下げる効果に限界があり、更に、送酸速度を下げることによる排ガス回収効率の低下や吹錬時間の延長と云った新たな問題が発生する。
【0005】
又、炭素及び燐を同時に除去していた従来の転炉精錬方法に対し、最近は燐を事前の溶銑段階で除去(予備脱燐処理)することが行われている。その結果、転炉における脱炭精錬工程では、脱燐のための媒溶剤は不要となり、少ないスラグ量で吹錬することが可能になった。しかし、転炉脱炭精錬終点での鉄やマンガン歩留を高くするためには、反応原理からスラグとメタル(溶鋼)とでの分配比率を大きくすることが必要であり、単にスラグ量を低減しただけでは、転炉内における鉄やマンガンの損失量を減少させること、並びに、その後の工程における脱酸剤や合金剤の酸化ロスを減少させることは自ずと限界があった。
【0006】
更に、スラグの酸素ポテンシャルを低下するために、吹錬中にコークス等の炭材を炉内に投入・添加することが従来から提案されているが、部分的にはメタル中の酸素やスラグ中の酸素と反応するものの、効率的にメタル中の溶解酸素やスラグ中の酸化鉄を下げるまでには至らなかった。この場合、スラグとの接触反応界面積を増加させ、効率を高めるために炭材を細かくしなけらばならず、効率的な添加が難しいことも問題であった。又、炭材に含まれる窒素や硫黄が鋼材の成分に悪影響を来すこともあり、添加量も限られる。このようなことから、炭材は操業を安定化させるためのスラグフォーミングに用いられるのが主体であり、炭材添加によりスラグ中の鉄やマンガン酸化物を還元するには限界があった。
【0007】
【発明が解決しようとする課題】
本発明は上記事情に鑑みなされたもので、その目的とするところは、転炉精錬工程において鉄やマンガン等の有価成分のスラグへの損失量を抑制することができると共に、その後の工程で添加される脱酸剤や合金剤の酸化ロスを少なくすることのできる溶鋼の製造方法を提供することである。
【0008】
【課題を解決するための手段】
上記課題を解決するための本願第1の発明に係る溶鋼の製造方法は、高炉から出銑された溶銑を予備脱燐処理した後に転炉にて脱炭精錬して溶鋼を製造する溶鋼の製造方法において、前記予備脱燐処理では、溶銑中の燐濃度を鋼材製品の燐濃度レベルまで低減し、転炉脱炭精錬では、処理溶銑トン当たり20kg以下のスラグ量で精錬すると共に、脱炭精錬の後半でCaO源と炭材及び脱酸剤のうちの一種以上とからなる造滓剤を、添加する量の一部又は全部を上吹きランスを通じて吹き付け添加してスラグを還元し、脱炭精錬終点の溶鋼中酸素濃度を300ppm以下とすることを特徴とする。
【0009】
第2の発明に係る溶鋼の製造方法は、第1の発明において、前記予備脱燐処理後の溶銑中燐濃度を0.02mass%以下とすることを特徴とし、第3の発明に係る溶鋼の製造方法は、第1の発明又は第2の発明において、前記転炉脱炭精錬におけるスラグ量を処理溶銑トン当たり10kg以下とすることを特徴とし、第4の発明に係る溶鋼の製造方法は、第1の発明ないし第の発明の何れかにおいて、前記CaO源を生石灰、石灰石、焼成ドロマイト、未焼成ドロマイトのうちの一種以上とすることを特徴とする。
【0010】
又、第の発明に係る溶鋼の製造方法は、第1の発明ないし第の発明の何れかにおいて、前記炭材を土壌黒鉛、人造黒鉛、プラスチックの製造工程或いは加工工程で発生するプラスチック廃材、プラスチック製品の使用後発生する廃棄プラスチックのうちの一種以上とすることを特徴とし、第の発明に係る溶鋼の製造方法は、第1の発明ないし第の発明の何れかにおいて、前記脱酸剤をアルミドロス、アルミニウム、鉄−珪素合金、金属珪素、珪素合金のうちの一種以上とすることを特徴とし、第の発明に係る溶鋼の製造方法は、第1の発明ないし第の発明の何れかにおいて、前記造滓剤のCaO源の割合を、10mass%から90mass%とすることを特徴とし、第の発明に係る溶鋼の製造方法は、第1の発明ないし第の発明の何れかにおいて、前記脱炭精錬終点における溶鋼中酸素濃度と溶鋼中炭素濃度とで計算されるCO分圧を0.7以下とすることを特徴とする。
【0011】
本発明では、転炉脱炭精錬の後半でCaO源と炭材及び脱酸剤のうちの一種以上とからなる造滓剤を添加する。造滓剤中の炭材及び脱酸剤は、メタル中の溶解酸素やスラグ中の酸化鉄或いはマンガン酸化物等との反応に消費される。同時に添加されるCaOによるスラグ脱酸がCO生成反応に優先して進行し、溶解酸素との平衡関係を更に改善する方向及び維持する方向に作用するので、溶融メタル中の酸素濃度の低減化、並びに、スラグ中の酸化鉄含有量の低減化を安定して達成することができる。炭材や脱酸剤のみの添加では、溶解酸素やスラグ中酸化鉄の一時的な低減は可能なものの安定化は困難であるが、CaO源を同時に添加することにより安定化が達成される。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。高炉から出銑された溶銑は高炉鋳床を経由して溶銑鍋に注湯され、溶銑鍋内に貯留される。この溶銑鍋を脱燐処理場まで搬送し、溶銑の予備脱燐処理を施す。
【0013】
酸素ガス等の気体酸素源及び鉄鉱石やミルスケール等の固体酸素源を溶銑に供給して溶銑の予備脱燐処理を行い、予備脱燐処理後の溶銑中燐濃度を鋼材製品の燐濃度レベルまで、具体的には0.030mass%以下まで低減する。
【0014】
この予備脱燐処理では、溶銑のガス攪拌等を付与し更に生石灰等によりCaO分を添加して処理される。この予備脱燐処理は、溶銑鍋のみならず、酸素源や副原料の添加及び溶銑の攪拌機能を備えた設備ならば行うことができ、例えば、溶銑鍋と同様な溶銑搬送容器であるトーピードカーでも当然良く、又、転炉等の脱燐専用の容器に移し替えて行っても良い。脱燐処理時、スラグの過酸化を防止するために適正な攪拌を行う必要があり、一般にはガス攪拌が行われる。
【0015】
特に、安定して脱燐処理を行うには、スラグ量を極力少なくする必要があり、少ないスラグ量でも十分に脱燐させるため、脱燐能の高いスラグを生成する必要がある。これには、スラグの塩基度(CaO/SiO2 )を高めることが効果的であり、スラグの塩基度を高める観点から事前に溶銑中の珪素を除去(「脱珪処理」という)しておくことが好ましい。事前に溶銑中珪素濃度を0.2mass%以下まで脱珪しておけば、少ないCaOの添加でスラグの塩基度を3以上に高めることができる。予備脱燐処理後、生成したスラグを溶銑鍋から取り除き、溶銑を次工程の転炉脱炭精錬に供する。
【0016】
尚、次工程の転炉脱燐精錬におけるスラグ量を少なくするためには、予備脱燐処理後の溶銑中燐濃度を下げるほど望ましく、この観点から、予備脱燐処理後の溶銑中燐濃度が0.02mass%以下となるまで脱燐処理することが好ましい。溶銑の燐濃度が0.02mass%以下であれば、製品の燐規格にもよるが、転炉脱炭精錬における媒溶剤の添加量を溶銑トン当たり5ないし10kg(以下「kg/T」と記す)以下とし、生成スラグ量を10ないし20kg/T以下にすることができる。転炉脱炭精錬におけるスラグ量が少ないほど、鉄やマンガン等の有価成分のスラグへの損失量を抑制することができ、鉄やマンガンの歩留まりが向上する。
【0017】
このようにして予備脱燐処理を施した溶銑を転炉内に装入し、上吹きランス等から酸素を供給して転炉脱炭精錬を行う。図1に、本発明による転炉脱炭精錬を実施する際に用いた転炉設備の1例を示す。図1において、1は転炉、2は上吹きランス、3は原料投入装置、4は底吹き羽口、5は溶銑、6はスラグ、7はCaO源と炭材及び脱酸剤のうちの一種以上とからなる造滓剤である。図1に示すような酸素を上吹きして攪拌用ガスを底吹きする精錬方法を複合吹錬という。
【0018】
上吹きランス2は、その中央部に粉体若しくは粒体の造滓剤7をAr等の不活性ガスを搬送用ガスとして溶銑5に吹き付け投射するための通路と、その外側に酸素を溶銑5に吹き付けるための通路と、更にその外側に上吹きランス2を冷却するための冷却水が往復するための通路との四重管構造になっており、上吹きランス2から酸素を供給して脱炭精錬を行う。そして、この脱炭精錬の後半に、上吹きランス2又は原料投入装置3を介して造滓剤7を転炉1内に投入する。この場合、脱炭精錬の後半とは、酸素を供給する期間の中間点よりも後半部分の期間を意味する。粉状若しくは粒状の造滓剤7は、底吹き羽口4から吹き込むようにすることもできる。
【0019】
この転炉脱炭精錬では、予め鋼材製品の燐濃度レベルまで予備脱燐処理を施しているので、酸素吹錬時に生成する酸化鉄の薄め剤として若しくは浴面からの粒滴の飛散や放熱を抑制するために少量のカバー用スラグ6は必要であるが、本発明における転炉脱炭精錬では脱燐反応の必要性がほとんどないため、スラグ6を形成する媒溶剤の量は、脱燐反応に規定されずにマンガン鉱石中の脈石等から持ち来される酸化珪素(SiO2 )分の塩基度調整分のみの少量で良い。即ち、20kg/T以下の少ないスラグ量で十分である。
【0020】
前述したように、予備脱燐処理にて溶銑中燐濃度を0.02mass%以下まで脱燐しておけば、鋼材製品の燐濃度レベルまで燐濃度が低下しているので、スラグ6の脱燐能が不要であり、媒溶剤の添加は10kg/T以下にでき、マンガン鉱石の使用量にもよるが、マンガン鉱石を添加しても生成スラグ量を20kg/T以下にすることが可能である。又、スラグ組成の変動も問題ないため、炉内へのスラグ残留操業等で繰り返しスラグ6を使用し、新規に供給する媒溶剤をなくすることもできる。
【0021】
転炉精錬工程では、上吹きランス2からの送酸により脱炭が進行し同時に酸化鉄も生成して溶湯温度が上昇する。酸素吹錬の前期から中期にかけては塩基度調整分の生石灰が媒溶剤として添加され、又、必要に応じて単体のマンガン鉱石が添加される。添加されたマンガン鉱石は溶融し、溶銑中炭素による還元が進行する。
【0022】
吹錬中期から後期においては、溶銑5中の炭素の酸化速度に遅滞が見られると共に、スラグ6への酸化鉄の蓄積が始まる、このスラグ6の酸化度の上昇に応じてマンガンの還元も停止し、マンガンはメタルとスラグ6とに分配され、スラグ6中には、酸化鉄(FeO)とマンガン酸化物(MnO)が残留する。このような脱炭反応の進行と共にメタル中の溶解酸素は上昇し、溶銑5で数ppmから数十ppmであった酸素濃度が、脱炭精錬終点の低炭素溶鋼では数百ppmまでになる。
【0023】
複合吹錬において、底吹きガス量や攪拌強度等によりメタル中炭素とメタル中酸素との関係は様々であるが、一般的には[mass%C]×[mass%O]の濃度積は、平衡状態における約0.0023に対して0.8から1.2程度の範囲を示す。転炉精錬におけるこのようなメタル中酸素の挙動から、酸素濃度の上昇が開始する臨界炭素濃度以降で、造滓剤7を添加することが有効である。一般的には、臨界炭素濃度は0.2mass%から0.5mass%程度であり、吹錬中のこの濃度近傍以降に造滓剤7を添加することとする。酸素吹錬の終了間近或いは酸素吹錬終了後に添加することも可能である。
【0024】
CaO源と、炭材及び脱酸剤の一種以上とからなる造滓剤7は、塊状まま或いは粒状・粉状のどちらでも用いることができる。添加方法は、原料投入装置3による上置き投入の他、上吹きランス2による投射法による添加もできる。造滓剤7は炭素やアルミニウム等の還元剤を含むので、搬送用ガスを用いて添加する場合にはAr等の不活性ガスを搬送用ガスとして用いることが好ましい。造滓剤7の形態や添加法は、一種に限らず、同時に併用も可能である。
【0025】
造滓剤7を構成する原料であるCaO源としては、基本的には何でも使えるが、経済性を考え、通常転炉精錬で用いられる生石灰やMgO分を含む焼成ドロマイトを使うことが好ましい。石灰石や未焼成ドロマイトも炉内での吸熱を伴う脱炭酸化が操業に影響しない場合には問題なく使うことができる。
【0026】
造滓剤7を構成する原料である炭材も基本的には何でも使えるが、経済性を考え、プラスチックの製造工程或いは加工工程で発生するプラスチック廃材や、含プラスチック製品を使用後発生する廃棄プラスチックを使うことが好ましい。後者の場合、含プラスチック製品中のプラスチック分以外の混入が好ましくない場合、事前に分別や粉砕による分離を行うことができる。石炭やコークスを用いることにより硫黄、窒素等の不純物が問題となる場合には、これらに替わって土壌黒鉛や人造黒鉛等を用いることができる。
【0027】
造滓剤7を構成する原料である脱酸剤としては、強脱酸元素であるAl成分を含有する、金属アルミニウムやアルミ合金若しくはアルミドロス等の低純度アルミニウム品を使うことが好ましい。その他、成分や経済性で問題なければ珪素やマグネシウム等の強脱酸元素及びその含有品を使うことができる。珪素含有金属としては金属珪素、鉄−珪素合金等がある。
【0028】
造滓剤7を添加し、造滓剤7中のC、Al、Si成分によりスラグ6中の酸化鉄(主にFeO)やマンガン酸化物を還元すると共に、溶鋼中の酸素を部分的に低下させる。更に、同時に添加されるCaO分がスラグ6のFeOや溶鋼の酸素に作用し効率的に脱酸を進行させることができる。炭材や脱酸剤のみの添加では、メタル中溶解酸素やスラグ中酸化鉄の一時的な低減は可能なものの安定化は困難であるが、CaO源を同時に添加することにより安定化が達成される。但し、CaO源添加による安定化を効率的に進行させるには、炭材及び脱酸剤の反応サイト近傍へのCaO源の添加や、CaO源自体を微粉化することが好ましく、従って、炭材及び脱酸剤と混合したものを用い、これを上吹きランス2から投射したり底吹き羽口4からインジェクションしたりすることが望ましい。この場合、メタル及びスラグ6と造滓剤7との反応を促進する上で、スラグ量は20kg/T以下とすることが有効である。
【0029】
造滓剤7は、CaO源の配合比率が10mass%〜90mass%の範囲内となるように炭材及び脱酸剤を配合する。この範囲を外れる場合には、CaO分と炭材又は脱酸剤との配合比率が片寄り、スラグ6を還元するためには大量の造滓剤7が必要になるためである。上記の範囲を外れる場合には、CaO分及び炭材又は脱酸剤のどちらかが過剰に添加されることになる。又、造滓剤7の添加量は、炭材又は脱酸剤が0.3kg/T以上、CaO源が1kg/T以上であれば十分である。
【0030】
CaO源の配合比率が10mass%〜90mass%の範囲内であり、炭材又は脱酸剤が0.3kg/T以上、CaO源が1kg/T以上となるように造滓剤7を添加することで、[mass%C]×[mass%O]の濃度積は、平衡状態での約0.0023に対して安定して0.7以下となる。
【0031】
鉄−マンガン合金や珪素−マンガン合金等のマンガン合金の使用量は、吹錬中に添加されたマンガン源のメタル中への歩留りで決まる脱炭精錬終点のマンガン濃度と製品のマンガン規格との差分で決まる。製品の種類等にもよるが、吹錬途中で高くなったスラグ6中のマンガンを造滓剤7の添加により還元回収する点から判断して、マンガン源がマンガン純分で2kg/T以上添加される場合に本発明を適用することが好ましい。
【0032】
このようにして溶銑5を脱燐処理し更に脱炭精錬することにより、鉄やマンガン等の有価成分のスラグ6への損失量を抑制することができると共に、その後の工程で添加される脱酸剤や合金剤の酸化ロスを少なくすることのできる。その結果、鉄やマンガン更には脱酸剤や合金剤の歩留まりが向上し、製造コストの大幅な削減を達成することが可能となる。
【0033】
【実施例】
高炉から出銑された溶銑に対し、高炉鋳床での脱珪処理、転炉での予備脱燐処理、転炉での脱炭精錬処理の一連の処理を施した試験操業(試験No.1〜12)を説明する。
【0034】
高炉鋳床での脱硅時、塊状の酸化鉄を11kg/Tの原単位で上置き添加した。高炉鋳床から溶銑鍋への落下硫の攪拌により、溶銑中珪素濃度は0.14mass%まで低下した。その後の溶銑鍋内での送酸脱珪処理により、溶銑中珪素濃度は0.06mass%まで低下した。
【0035】
生成したスラグを排滓後、溶銑を図1に示す転炉と同一仕様の転炉に装入して予備脱燐処理を施した。この予備脱燐処理では合計8kg/Tの生石灰と蛍石とを添加し、上吹きランスから11Nm3 /Tの酸素を供給して行い、処理後の溶銑中燐濃度を0.010〜0.028mass%まで低下させた。
【0036】
予備脱燐処理が施された溶銑を一旦取鍋(装入鍋)に出湯し、図1に示す別の転炉に溶銑を装入し、脱炭精錬を施した。用いた転炉は250トン容量であり、脱炭精錬では、炉底部の底吹き羽口から0.1Nm3 /min・Tの窒素若しくはArを供給して溶銑を攪拌しつつ、上吹きランスからの送酸を行った。混入する珪酸に対しスラグの塩基度調整を考慮して生石灰を媒溶剤として添加した。媒溶剤としての生石灰の添加量は、溶銑の燐濃度が0.012 mass%以下では3kg/Tの一定量とし、溶銑の燐濃度に応じて9kg/Tまで増加させた。上吹きランスからの送酸速度は、吹錬初期から11分までは3.0Nm3 /min・T、11分以降は2.0Nm3 /min・Tで行った。脱炭精錬の終点時は溶鋼中炭素濃度が0.05mass%の時点を基準とし、溶鋼中酸素濃度に及ぼす終点炭素濃度の影響を調査するために炭素濃度が0.08mass%及び0.12mass%の場合も実施した。溶鋼温度は1630℃から1645℃に制御した。
【0037】
造滓剤を構成するCaO源として生石灰を用い、炭材として土壌黒鉛及びプラスチックを用い、脱酸剤として金属アルミニウムを50mass%含有するアルミドロスを用い、生石灰に炭材又は脱酸剤を配合して造滓剤を作製し、添加量を1.3〜6.8kg/Tの範囲で変更した。添加法は、上吹きランスを介して連続的に投射する方法と、所定配合の生石灰及び炭材を事前に造粒した塊状造滓剤を原料投入装置により連続的に上置き投入する方法で行った。添加速度は、投射法及び上置き投入法共に溶鋼トン当たり毎分1.5〜2.0kgで実施した。
【0038】
又、比較のために造滓剤を添加しない場合(試験No.13〜15)に加え、造滓剤として炭材単体(試験No.16)、アルミドロス単体(試験No.17)及び生石灰単体(試験No.18)の場合や、予備脱燐処理後の溶銑中燐濃度が高く、転炉脱炭精錬工程においても脱燐の必要が生じ、大量の媒溶剤の添加によりスラグ量が増加した場合(試験No.19,20)も実施した。各試験操業の操業条件及び操業結果を表1に示す。尚、表1に示すCaOは生石灰、Cは土壌黒鉛、Al灰はアルミドロス、PLはプラスチックを表示している。
【0039】
【表1】

Figure 0004192503
【0040】
試験No.13〜15では、脱炭精錬終点の溶鋼中酸素濃度は炭素濃度に応じて300ppm以下になる場合もあったが、スラグの鉄酸化物濃度(T.Fe)は何れも14mass%程度と高い値であった。試験No.16〜18では、スラグ及びメタルの還元が不足し、脱炭精錬終点の溶鋼中酸素濃度は300ppm以上と高く、且つ、スラグの鉄酸化物濃度(T.Fe)も12mass%以上と高い値であった。試験No.19.20では、スラグ量が多いために造滓剤添加の効果が発揮されず、脱炭精錬終点の溶鋼中酸素濃度は300ppm以上と高く、且つ、スラグの鉄酸化物濃度(T.Fe)も12mass%以上と高い値であった。
【0041】
これに対して、予め予備脱燐処理して溶銑燐濃度を0.030mass%以下とすると共にCaO源と炭材とを含む造滓剤又はCaO源と脱酸剤とを含む造滓剤を脱炭精錬の後半で添加して脱炭精錬終点の溶鋼中酸素濃度を300ppm以下とした試験No.1〜12では、スラグ中の鉄酸化物濃度(T.Fe)は9mass%未満であり、スラグ中の酸化鉄の減少即ちスラグ酸化度の低減が達成された。又、次工程で添加される脱酸用アルミニウムの歩留まりは高く40%以上であった。
【0042】
表1には示していないが、鉄と同様にマンガンの損失も少なくすることが可能であり、脱炭精錬終点の溶鋼中のマンガン濃度を高くできる上に、燐の上昇量も問題なく、更に発生スラグ量も少なくすることができた。尚、表1の備考欄には、本発明の範囲内の試験には本発明例と表示し、それ以外の試験には比較例と表示した。
【0043】
【発明の効果】
本発明によれば、鉄やマンガン等の有価成分のスラグへの損失量を抑制することができると共に、その後の工程で添加される脱酸剤や合金剤の酸化ロスを少なくすることのでき、その結果、鉄やマンガン更には脱酸剤や合金剤の歩留まりが向上し、製造コストの大幅な削減を達成することができ、工業上有益な効果がもたらされる。
【図面の簡単な説明】
【図1】本発明による脱炭精錬を実施する際に用いた転炉設備の1例を示す図である。
【符号の説明】
1 転炉
2 上吹きランス
3 原料投入装置
4 底吹き羽口
5 溶銑
6 スラグ
7 造滓剤[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing molten steel required by a steel product by using a hot metal extracted from a blast furnace and removing impurity components in the molten iron.
[0002]
[Prior art]
In order to produce steel products from hot metal produced in a blast furnace, it is necessary to go through a steel refining process. In this steelmaking refining process, after removing the impurity component contained in the hot metal, adjustment to the composition required for the material characteristics of the steel product is performed. As impurity components contained in the hot metal, there are phosphorus, sulfur and the like in addition to carbon contained in 4 mass% or more, and as required components of steel products, there are manganese and silicon which increase strength and toughness.
[0003]
In order to remove carbon and phosphorus impurity components, hot metal is charged into a converter, and a large amount of oxygen is supplied to the hot metal to oxidize and remove the impurity components. In this oxidative refining, iron is also oxidized along with the decarburization reaction and the dephosphorization reaction, and slag containing a large amount of iron oxide is generated, so that not only the generated slag but also the degree of oxidation of the molten steel is increased. As a result, the amount of loss of valuable components such as iron and manganese to the slag increases in the converter, and the oxidation loss of deoxidizers and alloying agents added in the subsequent process also increases. And the yield of alloying agents is reduced.
[0004]
Therefore, in order not to raise the oxidation degree of the slag, the acid feed rate at the end of the decarburization refining has been reduced. However, if the acid feed rate is lowered, the stirring efficiency by the oxygen jet also falls, so the slag There is a limit to the effect of lowering the degree of oxidation, and new problems such as reduction in exhaust gas recovery efficiency and extension of blowing time due to lowering the acid feed rate occur.
[0005]
Further, in contrast to the conventional converter refining method in which carbon and phosphorus are removed at the same time, phosphorus is recently removed (preliminary dephosphorization treatment) in a prior hot metal step. As a result, in the decarburization refining process in the converter, a solvent for dephosphorization is unnecessary, and it has become possible to perform blowing with a small amount of slag. However, in order to increase the yield of iron and manganese at the end of converter decarburization refining, it is necessary to increase the distribution ratio between slag and metal (molten steel) from the reaction principle, and simply reduce the amount of slag. However, there was a limit to reducing the loss of iron and manganese in the converter and reducing the oxidation loss of the deoxidizer and alloying agent in the subsequent process.
[0006]
Furthermore, in order to lower the oxygen potential of slag, it has been conventionally proposed to add and add carbonaceous materials such as coke into the furnace during blowing, but partly in the oxygen and slag in the metal. Although it reacts with oxygen, it has not been able to efficiently reduce dissolved oxygen in metal and iron oxide in slag. In this case, in order to increase the contact reaction interface area with the slag and increase the efficiency, the carbonaceous material has to be made fine, and it is also a problem that efficient addition is difficult. Further, nitrogen and sulfur contained in the carbonaceous material may adversely affect the components of the steel material, and the addition amount is limited. For these reasons, the carbon material is mainly used for slag forming for stabilizing the operation, and there is a limit to reducing iron and manganese oxide in the slag by adding the carbon material.
[0007]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and its object is to suppress the loss of valuable components such as iron and manganese to the slag in the converter refining process, and to add in subsequent processes. An object of the present invention is to provide a method for producing molten steel that can reduce the oxidation loss of the deoxidizer and alloying agent.
[0008]
[Means for Solving the Problems]
The method for producing molten steel according to the first invention of the present application for solving the above-mentioned problem is the production of molten steel in which molten steel produced from a blast furnace is preliminarily dephosphorized and then decarburized and refined in a converter to produce molten steel. In the method, in the preliminary dephosphorization treatment, the phosphorous concentration in the hot metal is reduced to the phosphorous concentration level of the steel product. In the converter decarburization refining, refining is performed with a slag amount of 20 kg or less per ton of the molten iron, and decarburization refining. In the latter half of the process, a slag is reduced by adding a part or all of the added amount of a slagging agent consisting of a CaO source and one or more of a carbonaceous material and a deoxidizing agent through an upper blowing lance , and decarburizing and refining The oxygen concentration in the molten steel at the end point is 300 ppm or less.
[0009]
The method for producing molten steel according to the second invention is characterized in that, in the first invention, the phosphorus concentration in the hot metal after the preliminary dephosphorization treatment is 0.02 mass% or less, and the molten steel according to the third invention In the first invention or the second invention, the production method is characterized in that the amount of slag in the converter decarburization refining is 10 kg or less per ton of treated hot metal , and the method for producing molten steel according to the fourth invention comprises In any one of the first to third inventions, the CaO source is one or more of quicklime, limestone, calcined dolomite, and uncalcined dolomite.
[0010]
A molten steel production method according to a fifth aspect of the present invention is the plastic waste material according to any one of the first to fourth aspects, wherein the carbonaceous material is generated in the production process or processing step of soil graphite, artificial graphite, or plastic. The method for producing molten steel according to a sixth aspect of the present invention is characterized in that, in any one of the first aspect to the fifth aspect, the removal of the plastic waste generated after use of the plastic product is performed. The acid agent is at least one of aluminum dross, aluminum, iron-silicon alloy, metallic silicon, and silicon alloy, and the method for producing molten steel according to the seventh invention includes the first invention to the sixth invention. In any of the inventions, the ratio of the CaO source of the slagging agent is 10 mass% to 90 mass%, and the method for producing molten steel according to the eighth invention is the first invention to the seventh invention. What In addition, characterized by a CO partial pressure of 0.7 or less which is calculated by the oxygen concentration and molten steel in the carbon concentration in molten steel in the decarburization refining endpoint.
[0011]
In the present invention, in the latter half of the converter decarburization refining, a fossilizing agent comprising a CaO source and one or more of carbonaceous material and deoxidizer is added. The carbonaceous material and the deoxidizing agent in the slagging agent are consumed for reaction with dissolved oxygen in the metal, iron oxide or manganese oxide in the slag. Since slag deoxidation by CaO added at the same time proceeds in preference to the CO production reaction and acts in the direction of further improving and maintaining the equilibrium relationship with dissolved oxygen, reducing the oxygen concentration in the molten metal, In addition, a reduction in the iron oxide content in the slag can be stably achieved. Although the addition of only carbonaceous materials and deoxidizers can temporarily reduce dissolved oxygen and iron oxide in the slag, stabilization is difficult, but stabilization is achieved by simultaneously adding a CaO source.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below. The hot metal discharged from the blast furnace is poured into the hot metal ladle via the blast furnace casting and stored in the hot metal ladle. The hot metal ladle is transported to a dephosphorization treatment plant, and the hot metal is preliminarily dephosphorized.
[0013]
A gaseous oxygen source such as oxygen gas and a solid oxygen source such as iron ore or mill scale are supplied to the hot metal to perform preliminary dephosphorization of the hot metal, and the phosphorus concentration in the hot metal after the preliminary dephosphorization treatment is the phosphorus concentration level of the steel product. Specifically, it is reduced to 0.030 mass% or less.
[0014]
In this preliminary dephosphorization treatment, hot metal gas stirring or the like is applied, and further CaO content is added by quick lime or the like. This preliminary dephosphorization treatment can be performed not only in the hot metal ladle, but also in equipment equipped with an oxygen source and auxiliary materials addition and hot metal stirring function. For example, even in a torpedo car that is a hot metal transfer container similar to a hot metal ladle. Of course, it may be transferred to a dedicated container for dephosphorization such as a converter. At the time of dephosphorization treatment, it is necessary to perform proper stirring to prevent slag peroxidation, and gas stirring is generally performed.
[0015]
In particular, in order to stably perform the dephosphorization treatment, it is necessary to reduce the amount of slag as much as possible, and it is necessary to generate slag having a high dephosphorization ability in order to sufficiently remove phosphorus even with a small amount of slag. For this purpose, it is effective to increase the basicity (CaO / SiO 2 ) of the slag, and from the viewpoint of increasing the basicity of the slag, the silicon in the hot metal is removed in advance (referred to as “desiliconization treatment”). It is preferable. If the silicon concentration in the hot metal is desiliconized to 0.2 mass% or less in advance, the basicity of the slag can be increased to 3 or more with the addition of a small amount of CaO. After the preliminary dephosphorization treatment, the generated slag is removed from the hot metal ladle, and the hot metal is subjected to the converter decarburization refining in the next step.
[0016]
In order to reduce the amount of slag in converter dephosphorization in the next step, it is desirable to lower the phosphorus concentration in the hot metal after the preliminary dephosphorization treatment. From this viewpoint, the phosphorus concentration in the hot metal after the preliminary dephosphorization treatment is reduced. It is preferable to perform a dephosphorization process until it becomes 0.02 mass% or less. If the phosphorus concentration in the hot metal is 0.02 mass% or less, depending on the product phosphorus specifications, the addition amount of the solvent in the decarburization of the converter is 5 to 10 kg per ton of hot metal (hereinafter referred to as “kg / T”) The amount of generated slag can be made 10 to 20 kg / T or less. The smaller the amount of slag in converter decarburization refining, the more the loss of valuable components such as iron and manganese to the slag can be suppressed, and the yield of iron and manganese is improved.
[0017]
The hot metal thus preliminarily dephosphorized is charged into the converter, and oxygen is supplied from an upper blow lance or the like to perform converter decarburization and refining. FIG. 1 shows an example of converter equipment used in carrying out converter decarburization refining according to the present invention. In FIG. 1, 1 is a converter, 2 is a top blowing lance, 3 is a raw material charging device, 4 is a bottom blowing tuyere, 5 is hot metal, 6 is slag, 7 is a CaO source, carbonaceous material and deoxidizer. It is a staling agent composed of one or more kinds. A refining method in which oxygen is blown up as shown in FIG.
[0018]
The upper blowing lance 2 has a passage for spraying and projecting a powder or granular iron making agent 7 onto the hot metal 5 using an inert gas such as Ar as a carrier gas at the center thereof, and oxygen on the outer side of the hot metal 5. A quadruple pipe structure with a passage for spraying on the outside and a passage for cooling water for cooling the top blowing lance 2 to the outside of the passage, and supplying oxygen from the top blowing lance 2 Perform charcoal refining. Then, in the latter half of the decarburization refining, the faux additive 7 is charged into the converter 1 via the top blowing lance 2 or the raw material charging device 3. In this case, the second half of the decarburization refining means a period in the second half part from the middle point of the period in which oxygen is supplied. The powdery or granular slagging agent 7 may be blown from the bottom blowing tuyere 4.
[0019]
In this converter decarburization refining, the preliminary dephosphorization treatment is performed in advance to the phosphorus concentration level of the steel product. Therefore, as a thinning agent for iron oxide generated during oxygen blowing, or the dispersion and heat dissipation of droplets from the bath surface. A small amount of the cover slag 6 is necessary for the suppression, but in the converter decarburization refining in the present invention, there is almost no need for the dephosphorization reaction, so the amount of the medium solvent that forms the slag 6 is the dephosphorization reaction. The basic amount of silicon oxide (SiO 2 ) that is brought from gangue or the like in manganese ore is not required. That is, a small slag amount of 20 kg / T or less is sufficient.
[0020]
As described above, if the phosphorus concentration in the hot metal is reduced to 0.02 mass% or less in the preliminary dephosphorization treatment, the phosphorus concentration is lowered to the phosphorus concentration level of the steel product. The capacity of the slag can be reduced to 20 kg / T or less even if manganese ore is added, depending on the amount of manganese ore used. . In addition, since there is no problem in fluctuation of the slag composition, it is possible to repeatedly use the slag 6 in the operation of residual slag in the furnace and to eliminate the newly supplied medium solvent.
[0021]
In the converter refining process, decarburization progresses due to the acid sent from the top blowing lance 2 and at the same time iron oxide is generated and the molten metal temperature rises. From the first to the middle of oxygen blowing, quick lime for basicity adjustment is added as a solvent, and a single manganese ore is added as necessary. The added manganese ore is melted and reduction by carbon in the hot metal proceeds.
[0022]
From the middle to the late stage of blowing, there is a delay in the oxidation rate of carbon in the hot metal 5 and the accumulation of iron oxide in the slag 6 starts. The reduction of manganese stops as the oxidation degree of the slag 6 increases. Then, manganese is distributed to the metal and the slag 6, and iron oxide (FeO) and manganese oxide (MnO) remain in the slag 6. As the decarburization reaction proceeds, the dissolved oxygen in the metal rises, and the oxygen concentration of several ppm to several tens of ppm in the hot metal 5 reaches several hundred ppm in the low carbon molten steel at the end of decarburization refining.
[0023]
In combined blowing, the relationship between carbon in metal and oxygen in metal varies depending on the amount of bottom blowing gas, stirring strength, etc. Generally, the concentration product of [mass% C] × [mass% O] is A range of about 0.8 to 1.2 is shown with respect to about 0.0023 in the equilibrium state. From such behavior of oxygen in the metal in converter refining, it is effective to add the faux-forming agent 7 after the critical carbon concentration at which the oxygen concentration starts to rise. Generally, the critical carbon concentration is about 0.2 mass% to 0.5 mass%, and the slagging agent 7 is added after the vicinity of this concentration during blowing. It is also possible to add near the end of oxygen blowing or after the end of oxygen blowing.
[0024]
The slagging agent 7 composed of a CaO source and at least one of a carbonaceous material and a deoxidizing agent can be used as a lump or in a granular or powder form. The addition method can be added by the projection method using the top blowing lance 2 in addition to the addition by the raw material introduction device 3. Since the slagging agent 7 contains a reducing agent such as carbon or aluminum, it is preferable to use an inert gas such as Ar as the carrier gas when added using a carrier gas. The form and addition method of the faux-forming agent 7 are not limited to one type, and can be used simultaneously.
[0025]
As a CaO source which is a raw material constituting the slagging agent 7, basically anything can be used. However, in consideration of economy, it is preferable to use calcined dolomite containing quick lime and MgO which are usually used in converter refining. Limestone and unburned dolomite can also be used without problems if decarbonation with endothermic heat in the furnace does not affect the operation.
[0026]
Carbonaceous material, which is the raw material that makes up the slagging agent 7, can be used basically. However, for economic reasons, plastic waste generated in the plastic manufacturing process or processing process and waste plastic generated after using plastic-containing products are used. It is preferable to use In the latter case, when mixing other than the plastic content in the plastic-containing product is not preferable, separation by separation or pulverization can be performed in advance. When impurities such as sulfur and nitrogen become a problem by using coal or coke, soil graphite or artificial graphite can be used instead.
[0027]
As a deoxidizer which is a raw material constituting the slagging agent 7, it is preferable to use a low-purity aluminum product such as metal aluminum, aluminum alloy or aluminum dross containing an Al component which is a strong deoxidation element. In addition, if there is no problem in terms of components and economy, strong deoxidizing elements such as silicon and magnesium and their containing products can be used. Examples of the silicon-containing metal include metallic silicon and iron-silicon alloy.
[0028]
Add iron making agent 7, reduce iron oxide (mainly FeO) and manganese oxide in slag 6 by C, Al, Si component in iron making agent 7 and partially reduce oxygen in molten steel Let Furthermore, the CaO component added at the same time acts on FeO of the slag 6 and oxygen of the molten steel, so that deoxidation can proceed efficiently. Although the addition of only carbonaceous materials and deoxidizers can temporarily reduce dissolved oxygen in metal and iron oxide in slag, it is difficult to stabilize, but stabilization is achieved by simultaneously adding a CaO source. The However, it is preferable to add the CaO source to the vicinity of the reaction site of the carbonaceous material and the deoxidizer, or to finely pulverize the CaO source itself in order to promote the stabilization by adding the CaO source efficiently. Further, it is desirable to use a mixture with a deoxidizer and project it from the top blowing lance 2 or inject it from the bottom blowing tuyere 4. In this case, in order to promote the reaction between the metal and slag 6 and the slagging agent 7, it is effective that the amount of slag is 20 kg / T or less.
[0029]
The slagging agent 7 mix | blends a carbon material and a deoxidizer so that the mixture ratio of a CaO source may become in the range of 10 mass%-90 mass%. When it is outside this range, the blending ratio of the CaO component and the carbonaceous material or the deoxidizer is shifted, and a large amount of the slagging agent 7 is required to reduce the slag 6. When it is out of the above range, either the CaO content and the carbonaceous material or the deoxidizer will be added excessively. Further, the amount of the slagging agent 7 is sufficient if the carbonaceous material or deoxidizer is 0.3 kg / T or more and the CaO source is 1 kg / T or more.
[0030]
Add the slagging agent 7 so that the blending ratio of the CaO source is in the range of 10 mass% to 90 mass%, the carbonaceous material or deoxidizer is 0.3 kg / T or more, and the CaO source is 1 kg / T or more. Thus, the concentration product of [mass% C] × [mass% O] is stably 0.7 or less with respect to about 0.0023 in the equilibrium state.
[0031]
The amount of manganese alloys used, such as iron-manganese alloys and silicon-manganese alloys, is the difference between the manganese concentration at the end of decarburization refining determined by the yield of manganese source added during blowing and the product's manganese specifications. Determined by. Judging from the point of reducing and recovering manganese in the slag 6 that has become high during blowing, depending on the type of product, the manganese source is added to the manganese source at 2 kg / T or more. In this case, it is preferable to apply the present invention.
[0032]
By dephosphorizing the hot metal 5 in this way and further decarburizing and refining, the loss amount of valuable components such as iron and manganese to the slag 6 can be suppressed, and deoxidation added in the subsequent steps The oxidation loss of the agent and the alloying agent can be reduced. As a result, the yields of iron, manganese, and deoxidizers and alloying agents can be improved, and production costs can be greatly reduced.
[0033]
【Example】
The test operation (test No. 1) was performed on the hot metal discharged from the blast furnace by a series of treatments including desiliconization treatment in the blast furnace casting bed, preliminary dephosphorization treatment in the converter, and decarburization refining treatment in the converter. To 12) will be described.
[0034]
At the time of degassing on the blast furnace casting floor, massive iron oxide was added on top of a basic unit of 11 kg / T. Due to the stirring of dropping sulfur from the blast furnace casting floor to the hot metal ladle, the silicon concentration in the hot metal decreased to 0.14 mass%. The silicon concentration in the hot metal was lowered to 0.06 mass% by the subsequent acid sending desiliconization treatment in the hot metal ladle.
[0035]
After the generated slag was discharged, the hot metal was charged into a converter having the same specifications as the converter shown in FIG. 1 and subjected to preliminary dephosphorization treatment. In this preliminary dephosphorization treatment, a total of 8 kg / T of quicklime and fluorite are added, and 11 Nm 3 / T of oxygen is supplied from the top blowing lance. Reduced to 028 mass%.
[0036]
The hot metal that had been subjected to the preliminary dephosphorization treatment was once poured into a ladle (charging pot), and the hot metal was charged into another converter shown in FIG. 1 and subjected to decarburization refining. The converter used has a capacity of 250 tons. In decarburization and refining, 0.1Nm 3 / min · T of nitrogen or Ar is supplied from the bottom blowing tuyere at the bottom of the furnace and the hot metal is stirred, and then from the top blowing lance. The acid was sent. Considering the basicity adjustment of slag to the mixed silica, quick lime was added as a solvent. The amount of quick lime added as a solvent was 3 kg / T when the phosphorus concentration of hot metal was 0.012 mass% or less, and was increased to 9 kg / T according to the phosphorus concentration of hot metal. Oxygen-flow-rate from the top blowing lance, from the blow initial up to 11 minutes 3.0Nm 3 / min · T, 11 minutes later was carried out at 2.0Nm 3 / min · T. The end point of decarburization refining is based on the time when the carbon concentration in the molten steel is 0.05 mass%, and the carbon concentration is 0.08 mass% and 0.12 mass% to investigate the effect of the end point carbon concentration on the oxygen concentration in the molten steel. In the case of. The molten steel temperature was controlled from 1630 ° C to 1645 ° C.
[0037]
Using quick lime as the CaO source that constitutes the faux former, using soil graphite and plastic as the charcoal, using aluminum dross containing 50 mass% of metallic aluminum as the deoxidizer, blending the charcoal or deoxidizer with quick lime Thus, the additive was changed in the range of 1.3 to 6.8 kg / T. The addition method is a method of continuously projecting through an upper blowing lance and a method of continuously placing a bulk koji agent preliminarily granulated with a predetermined blend of quicklime and charcoal with a raw material charging device. It was. The rate of addition was 1.5 to 2.0 kg per minute per ton of molten steel for both the projection method and the top loading method.
[0038]
For comparison, in addition to the case where no slagging agent is added (test Nos. 13 to 15), the carbonaceous material alone (test No. 16), the aluminum dross alone (test No. 17) and the quicklime lime alone In the case of (Test No. 18), the phosphorus concentration in the hot metal after the preliminary dephosphorization treatment was high, and it was necessary to remove phosphorus even in the converter decarburization refining process, and the amount of slag increased due to the addition of a large amount of solvent. The case (test No. 19, 20) was also carried out. Table 1 shows the operation conditions and operation results of each test operation. In Table 1, CaO represents quick lime, C represents soil graphite, Al ash represents aluminum dross, and PL represents plastic.
[0039]
[Table 1]
Figure 0004192503
[0040]
In tests No. 13 to 15, the oxygen concentration in the molten steel at the end of decarburization refining was sometimes 300 ppm or less depending on the carbon concentration, but the iron oxide concentration (T.Fe) of the slag was about 14 mass%. It was a high value. In tests No. 16-18, the reduction of slag and metal is insufficient, the oxygen concentration in the molten steel at the end of decarburization refining is as high as 300 ppm or more, and the iron oxide concentration (T.Fe) of slag is also 12 mass% or more. It was a high value. In test No.19.20, the effect of adding a slagging agent was not exhibited due to the large amount of slag, the oxygen concentration in the molten steel at the end of decarburization refining was as high as 300 ppm or more, and the iron oxide concentration of slag (T .Fe) was also a high value of 12 mass% or more.
[0041]
On the other hand, a preliminary dephosphorization treatment is performed in advance to reduce the molten iron phosphorus concentration to 0.030 mass% or less, and to remove a fouling agent containing a CaO source and a carbonaceous material or a CaO source and a deoxidizing agent. In tests No. 1-12, which were added in the latter half of the coal refining and the oxygen concentration in the molten steel at the end of the decarburization refining was 300 ppm or less, the iron oxide concentration (T.Fe) in the slag was less than 9 mass%, and the slag Reduction of iron oxide in the inside, ie reduction of slag oxidation degree, was achieved. Further, the yield of deoxidizing aluminum added in the next step was high and was 40% or more.
[0042]
Although it is not shown in Table 1, it is possible to reduce the loss of manganese similarly to iron, the manganese concentration in the molten steel at the end of decarburization refining can be increased, and the amount of increase in phosphorus is also satisfactory. The amount of generated slag could be reduced. In the remarks column of Table 1, the present invention example is displayed for tests within the scope of the present invention, and the comparative example is displayed for other tests.
[0043]
【The invention's effect】
According to the present invention, the loss amount of valuable components such as iron and manganese to the slag can be suppressed, and the oxidation loss of the deoxidizer and alloying agent added in the subsequent process can be reduced. As a result, the yield of iron, manganese, and further deoxidizers and alloying agents can be improved, and a significant reduction in production cost can be achieved, resulting in an industrially beneficial effect.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of a converter facility used when carrying out decarburization refining according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Converter 2 Top blowing lance 3 Raw material input device 4 Bottom blowing tuyere 5 Hot metal 6 Slag 7 Molding agent

Claims (8)

高炉から出銑された溶銑を予備脱燐処理した後に転炉にて脱炭精錬して溶鋼を製造する溶鋼の製造方法において、前記予備脱燐処理では、溶銑中の燐濃度を鋼材製品の燐濃度レベルまで低減し、転炉脱炭精錬では、処理溶銑トン当たり20kg以下のスラグ量で精錬すると共に、脱炭精錬の後半でCaO源と炭材及び脱酸剤のうちの一種以上とからなる造滓剤を、添加する量の一部又は全部を上吹きランスを通じて吹き付け添加してスラグを還元し、脱炭精錬終点の溶鋼中酸素濃度を300ppm以下とすることを特徴とする溶鋼の製造方法。In the method for producing molten steel, the hot metal discharged from the blast furnace is subjected to preliminary dephosphorization treatment and then decarburized and refined in a converter to produce molten steel. In the preliminary dephosphorization treatment, the phosphorus concentration in the hot metal is adjusted to the phosphorus concentration of the steel product. In the converter decarburization refining, it is refined with a slag amount of 20 kg or less per ton of treated hot metal, and in the latter half of the decarburization refining, consists of one or more of a CaO source, a carbon material and a deoxidizer. A method for producing molten steel, characterized by reducing the slag by adding a part of or all of the added amount of the slagging agent through an upper blowing lance to reduce the slag and setting the oxygen concentration in the molten steel at the end of decarburization refining to 300 ppm or less. . 前記予備脱燐処理後の溶銑中燐濃度を0.02mass%以下とすることを特徴とする請求項1に記載の溶鋼の製造方法。  The method for producing molten steel according to claim 1, wherein the phosphorus concentration in the hot metal after the preliminary dephosphorization treatment is 0.02 mass% or less. 前記転炉脱炭精錬におけるスラグ量を処理溶銑トン当たり10kg以下とすることを特徴とする請求項1又は請求項2に記載の溶鋼の製造方法。  The method for producing molten steel according to claim 1 or 2, wherein the amount of slag in the converter decarburization refining is 10 kg or less per ton of treated molten iron. 前記CaO源を生石灰、石灰石、焼成ドロマイト、未焼成ドロマイトのうちの一種以上とすることを特徴とする請求項1ないし請求項3の何れか1つに記載の溶鋼の製造方法。  The method for producing molten steel according to any one of claims 1 to 3, wherein the CaO source is one or more of quicklime, limestone, calcined dolomite, and uncalcined dolomite. 前記炭材を土壌黒鉛、人造黒鉛、プラスチックの製造工程或いは加工工程で発生するプラスチック廃材、プラスチック製品の使用後発生する廃棄プラスチックのうちの一種以上とすることを特徴とする請求項1ないし請求項4の何れか1つに記載の溶鋼の製造方法。  The charcoal material is at least one of soil graphite, artificial graphite, plastic waste material generated in a plastic manufacturing process or processing step, and waste plastic generated after use of a plastic product. 4. The method for producing molten steel according to any one of 4 above. 前記脱酸剤をアルミドロス、アルミニウム、鉄−珪素合金、金属珪素、珪素合金のうちの一種以上とすることを特徴とする請求項1ないし請求項5の何れか1つに記載の溶鋼の製造方法。  6. The production of molten steel according to any one of claims 1 to 5, wherein the deoxidizer is at least one of aluminum dross, aluminum, iron-silicon alloy, metal silicon, and silicon alloy. Method. 前記造滓剤のCaO源の割合を、10mass%から90mass%とすることを特徴とする請求項1ないし請求項6の何れか1つに記載の溶鋼の製造方法。  The method for producing molten steel according to any one of claims 1 to 6, wherein a ratio of the CaO source of the slagging agent is 10 mass% to 90 mass%. 前記脱炭精錬終点における溶鋼中酸素濃度と溶鋼中炭素濃度とで計算されるCO分圧を0.7以下とすることを特徴とする請求項1ないし請求項7の何れか1つに記載の溶鋼の製造方法。  The CO partial pressure calculated from the oxygen concentration in the molten steel and the carbon concentration in the molten steel at the decarburization refining end point is set to 0.7 or less, according to any one of claims 1 to 7. Manufacturing method of molten steel.
JP2002163806A 2002-06-05 2002-06-05 Manufacturing method of molten steel Expired - Fee Related JP4192503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002163806A JP4192503B2 (en) 2002-06-05 2002-06-05 Manufacturing method of molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002163806A JP4192503B2 (en) 2002-06-05 2002-06-05 Manufacturing method of molten steel

Publications (2)

Publication Number Publication Date
JP2004010935A JP2004010935A (en) 2004-01-15
JP4192503B2 true JP4192503B2 (en) 2008-12-10

Family

ID=30432131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002163806A Expired - Fee Related JP4192503B2 (en) 2002-06-05 2002-06-05 Manufacturing method of molten steel

Country Status (1)

Country Link
JP (1) JP4192503B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103707204B (en) * 2013-12-10 2016-04-13 安徽工业大学 A kind of Copper converter smelting slag that utilizes carries out the method for blasting treatment to surface of the work
KR101692938B1 (en) * 2014-08-13 2017-01-04 정항규 Deoxidizer for making steel and the method of metal refining using thereof
KR101617747B1 (en) * 2014-08-26 2016-05-03 주식회사 포스코 Method for Refining Molten Steel by Converter
CN113846204B (en) * 2021-09-14 2022-10-28 山东钢铁股份有限公司 Steel grade smelting cost control method suitable for 120t top-bottom combined blown converter

Also Published As

Publication number Publication date
JP2004010935A (en) 2004-01-15

Similar Documents

Publication Publication Date Title
WO2013108810A1 (en) Method for preliminary treatment of molten iron
WO1995001458A1 (en) Steel manufacturing method using converter
JP6693536B2 (en) Converter steelmaking method
JPH11158526A (en) Production of high p slag
JPS63195209A (en) Steel making method
JP4192503B2 (en) Manufacturing method of molten steel
JP4210011B2 (en) Dephosphorization method of hot metal using converter
JP2001049320A (en) Production of iron and steel using high phosphorus ore as raw material
JP4649694B2 (en) Hot metal refining method
WO2003029498A1 (en) Method for pretreatment of molten iron and method for refining
JP2003147430A (en) Reducing agent for steelmaking, and steelmaking method
JP2005068533A (en) Method for dephosphorizing molten pig iron
JPH0437135B2 (en)
JP2001107124A (en) Method for dephosphorizing molten iron
JP2003193121A (en) Method for refining molten iron
JPH0557327B2 (en)
JP2882236B2 (en) Stainless steel manufacturing method
JPH0435529B2 (en)
JPS6152208B2 (en)
JPH0214404B2 (en)
JPH01215917A (en) Method for melting stainless steel
JP2755027B2 (en) Steelmaking method
JPH0673427A (en) Method for refining molten high carbon iron being restrained from rephosphorization
JPH01147012A (en) Steelmaking method
JPH0437137B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041027

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080908

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees