JP4188649B2 - Manufacturing method for secondary battery electrode materials - Google Patents

Manufacturing method for secondary battery electrode materials Download PDF

Info

Publication number
JP4188649B2
JP4188649B2 JP2002269098A JP2002269098A JP4188649B2 JP 4188649 B2 JP4188649 B2 JP 4188649B2 JP 2002269098 A JP2002269098 A JP 2002269098A JP 2002269098 A JP2002269098 A JP 2002269098A JP 4188649 B2 JP4188649 B2 JP 4188649B2
Authority
JP
Japan
Prior art keywords
graphite particles
spheroidized graphite
secondary battery
spheroidized
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002269098A
Other languages
Japanese (ja)
Other versions
JP2004111110A (en
Inventor
直樹 的場
哲史 久保田
純一 安丸
真吾 朝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Coke and Chemicals Co Ltd
Original Assignee
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Coke and Chemicals Co Ltd filed Critical Kansai Coke and Chemicals Co Ltd
Priority to JP2002269098A priority Critical patent/JP4188649B2/en
Publication of JP2004111110A publication Critical patent/JP2004111110A/en
Application granted granted Critical
Publication of JP4188649B2 publication Critical patent/JP4188649B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、球状化黒鉛粒子よりなる二次電池用の電極材料を製造する方法に関するものである。
【0002】
【従来の技術】
最近、電子機器等の小型化に伴い、電源となる電池も小型化が求められており、特に電池の高容量化の観点からリチウムイオン二次電池が注目されている。リチウムイオン二次電池の中でも、負極に炭素材料を用いたものは、大容量が得られ、且つ、安全で高電圧が得られるといった点でも有用である。
【0003】
ところが、一般に炭素材料の表面には種々の官能基(例えば、カルボキシル基やフェノール基、ラクトン基、カルボニル基など)が存在するので、この官能基が初回の充電時に電解液と反応して副反応を起こし、充電容量を損失させる。そのため充電に必要な電気容量が、放電に必要な電気容量よりも高くなり、初回の充電効率(以下、「初期効率」と称する場合がある)が低くなる。この問題を解決すべく、炭素材料の原料を真空下または還元性雰囲気下で熱処理することにより炭素材料表面に存在する官能基量を低減することが提案されている(例えば、特許文献1参照。)。しかし、この技術では、炭素材料として鱗片状の黒鉛を用いているので、次の様な問題が生じてくる。
【0004】
すなわち、電池用に用いられる炭素材料としては、天然黒鉛や人造黒鉛があり、電極を成形する際には、粉砕した天然黒鉛や人造黒鉛と溶媒およびバインダー(結着材)を混合してスラリーとしたものを対象物に塗布するのが一般的である。しかし、黒鉛の形状が鱗片状のものを用いるとスラリーの流動性が悪くなって塗布作業性が著しく損なわれる。
【0005】
本発明者らは、こうした問題点の改善を期して研究を重ねた結果、鱗片状の天然黒鉛を粉砕してから再凝集させて球状化することによって、鱗片状黒鉛の利点を維持しながらスラリー特性が改善されると共に、大きな放電電流値での放電容量の低下も抑えられることをつきとめ、こうした知見を基に先に提案した(例えば、特許文献2参照。)。
【0006】
しかし、球状化黒鉛粒子表面に官能基が多量に存在すると、前記特許文献1に指摘されている様に、初回充電時に該官能基が電解液と反応して初期効率の低下を引き起こす。また、鱗片状の黒鉛を粉砕してから再凝集させて球状化するとスラリー特性は良くなるものの黒鉛粒子同士や黒鉛粒子とバインダー粒子との接点が減少し、粒子同士の接点が少なくなって密着性が悪くなり、導電性が低下してサイクル特性の低下を引き起こす。さらに、鱗片状黒鉛粒子を粉砕後、再凝集させて球状化すると、該黒鉛粒子の表面は鱗片状の黒鉛で覆われた状態となり、電解液が該粒子表面から内部へ浸透し難くなって通液性が悪くなり、充放電を繰り返したときのサイクル特性にも悪影響を及ぼす。
【0007】
【特許文献1】
特開平8-148185号公報
【特許文献2】
特開平11-263612号公報
【0008】
【発明が解決しようとする課題】
本発明は、この様な問題点に鑑みてなされたものであり、その目的は、球状化黒鉛粒子よりなる二次電池用電極材料として、特に初期効率とサイクル特性に優れた二次電池を実現するために有用な二次電池用電極材料を効率良く製造できる方法を提供することにある。
【0009】
【課題を解決するための手段】
上記課題を解決することのできた本発明に係る二次電池用電極材料の製法とは、球状化黒鉛粒子よりなる二次電池用電極材料を製造する方法であって、球状化黒鉛粒子を非酸化性雰囲気下で急速加熱および/または急速冷却する点に要旨を有する。
【0010】
本発明では、急速加熱する場合は、昇温速度50℃/s以上で行なうことが好ましく、急速冷却する場合は、降温速度50℃/s以上で行なうことが好ましい。
【0011】
【発明の実施の形態】
本発明者らは、前述した様な課題を解決すべく、様々な角度から検討してきた。その結果、鱗片状黒鉛を球状化した黒鉛粒子を非酸化性雰囲気下で処理してやれば、球状化黒鉛粒子が有する官能基量を所定量以下に抑制できると共に、球状化黒鉛粒子の表面形状を改質でき、上記課題を見事解決できることを見出し、本発明を完成した。以下、本発明の作用効果について説明する。
【0012】
本発明の二次電池用電極材料は、鱗片状黒鉛を粉砕した後、再凝集させて球状化したものである。上述した様に、鱗片状の黒鉛を粉砕した後、これらを再凝集させて球状化した黒鉛粒子は、溶媒やバインダーと混合するときの流動性が良好となるからである。
【0013】
ここで、球状化黒鉛粒子の原料としては、鱗片状の天然黒鉛や人造黒鉛を使用することができ、例えば、鱗片状天然黒鉛は、一般に85%から99%を上まわる純度で入手できるのでそのまま用いれば良い。必要に応じて、公知の方法でさらに純度を高めることも好ましい。原料となる黒鉛の粒度には種々のものがあるが、球状化前の鱗片状黒鉛(原料)は、平均粒子径が10〜200μm程度のものを用いるのが好ましい。
【0014】
また、球状とは、サッカーボールやテニスボールの様な真球状のみならず、ラグビーボールの様な楕円体のものも含む意味であり、本発明では円形度が0.86程度以上のものを指す。但し、円形度は三次元の黒鉛粒子を二次元平面に投影して算出される指標であるので、例えば一般的に入手できる鱗片状天然黒鉛粒子の円形度を算出すると0.84程度になり、本発明の黒鉛粒子の円形度と近似するが、鱗片状黒鉛粒子(原料)は平面的な粒子であるのに対し、本発明における二次電池用電極材料の実際の形状は立体的であり全く異なる。
【0015】
球状化黒鉛粒子は、鱗片状黒鉛を粉砕した後、これらを再凝集させることにより得ることができるが、球状化黒鉛粒子を製造する具体的な方法は特に限定されない。例えば、本発明者らが先に提案した方法(特開平11-263612号)やこれに類似する方法で製造できる。以下、製法の一例を図面を参酌しつつ説明する。
【0016】
図1は、球状化黒鉛粒子を製造する装置の概略説明図であり、1は槽、2はフィーダー、3は対向ノズル、4は分級機、5は吹き上げノズルを夫々示している。
【0017】
鱗片状黒鉛(原料)を、槽1に設けられたフィーダー2から槽1内へ供給する。フィーダー2は、ホッパー式のものを槽1の適当箇所に設置することが好ましく、球状化黒鉛粒子の取出口としても利用できる。また、フィーダー2は、スクリュー式のものを槽1の下部に設けてもよい。槽1内への原料供給量は、槽1の容量を考慮して定めれば良い。
【0018】
槽1の下部側には槽壁を貫通して対向ノズル3を設け、対向ノズル3からジェット気流を吹き込むことにより、槽1内の下部側に衝突域を形成する。衝突域の気流に入った前記鱗片状黒鉛は互いに衝突し、粉砕されながら再凝集して球状化する。
【0019】
対向ノズル3は、複数個(例えば、三〜四個)設けることが好ましい。対向ノズル3からガスを吹き込む際のノズル吐出圧、吹き込みガス量、槽圧などは、円滑な衝突と流動が達成できるように設定され、操作時間を適宜に設定することにより鱗片状黒鉛を球状化する。例えば、ノズル吐出圧は0.01〜0.50MPa程度、吹き込みガス量は0.2〜1.0Nm3/min程度、槽圧は−10〜30kPa程度、操作時間は1〜100分程度とすればよい。なお、対向ノズル3から吹き込むガスとしては空気や窒素、水蒸気などを用いれば良く、また槽1内の温度は0〜60℃程度とすれば良い。
【0020】
槽1内では気体の対流が起こり、槽1の下部側の衝突域で互いに衝突して球状化した粒子は、槽1内の対流に沿って上部側へ吹き上げられ、その後再び沈降する。すなわち、粒子は槽1の中心部近傍で吹き上げられた後、槽1の壁際に沿って降下して、槽1内に循環流動が起こる。
【0021】
槽1の上部には、分級機4を設けることで分級限界以下の微粉を槽1外に排出できる。分級機4は、公知のものを設ければ良いが、高速回転分級機を用いるのが通常である。このときの排出量は、原料として用いる鱗片状黒鉛粒子の粒度によって異なる。
【0022】
上記の操作はバッチで行なうことが好ましく、槽1の底部に設けられた吹き上げノズル5から槽1内へ空気を送り込むと球状化黒鉛粒子をフィーダー2から回収できる。
【0023】
ところで、上記の様な方法によって製造された球状化黒鉛粒子を電極材料として使用した場合、得られる二次電池の初期効率は意外にも低いことが明らかになってきた。そこで、二次電池の初期効率が低下する原因について追求したところ、球状化黒鉛粒子の表面に多量の官能基が存在すると、該官能基が初回充電時に電解液と反応して初期効率の低下を引き起こすことを突き止めた。そして、この官能基と電解液の反応についてさらに検討したところ、官能基の中でも特に酸性官能基が初期効率の低下に大きく影響を及ぼすことが分かった。すなわち、酸性官能基とは、カルボキシル基やフェノール基、ラクトン基、カルボニル基などの官能基を指し、これらの官能基は電解液と特に反応し易いことが判明した。
【0024】
また、鱗片状黒鉛を粉砕後再凝集させて球状化した黒鉛粒子を電極材料として使用した場合、得られる二次電池のサイクル特性も意外に低い。この原因は、先にも説明した如く、鱗片状黒鉛を凝集させて球状化することにより、粒子同士の接点が減少して密着性が悪くなり、電極自体の導電性が低下するためと思われる。また、サイクル特性の他の低下原因として、黒鉛粒子内部への通液性の悪化も考えられる。すなわち、鱗片状の黒鉛を球状化すると、この黒鉛粒子の表面は鱗片状の黒鉛で覆われた状態となり、電解液が球状化黒鉛粒子表面から内部へ浸透し難くなって通液性が悪くなると考えられるからである。
【0025】
そこで、本発明者らは、球状化黒鉛粒子表面に存在する酸性官能基量を所定量以下に抑制しつつ、黒鉛粒子表面の接点数を増やし、且つ、電解液が黒鉛粒子表面から内部へ浸透し易くなる様に表面形状を改質できれば、二次電池としての初期効率やサイクル特性を大幅に改善できるのではないかと考え、その線に沿って研究を進めた。その結果、球状化黒鉛粒子を非酸化性雰囲気下で急速加熱および/または急速冷却して得られた球状化黒鉛粒子を、電極材料として使用すると、二次電池の初期効率およびサイクル特性が飛躍的に向上することをつきとめた。
【0026】
すなわち、球状化黒鉛粒子を非酸化性雰囲気下で加熱すると、該黒鉛粒子表面に存在する酸性官能基が分解され、初期効率の低下要因が解消されるためと考えた。そして、球状化黒鉛粒子を、▲1▼非酸化性雰囲気下で急速加熱したあと急速冷却するか、▲2▼非酸化性雰囲気下で急速加熱したあと冷却するか、▲3▼非酸化性雰囲気下で加熱したあと急速冷却すれば、熱衝撃や粒子内ガスの膨張によって黒鉛粒子表面に亀裂が生じ、平滑な粒子表面に凹凸ができて粒子同士の接点数が増加し、加えて、黒鉛粒子表面に生じた該亀裂から電解液が粒子内部へ浸透し易くなるので、黒鉛粒子の内部でも電解反応が起こる結果、サイクル特性が向上するものと考えられる。こうして得られた加熱処理後の球状化黒鉛粒子を電極材料として使用すると、後記実施例によっても明らかな様に初期効率およびサイクル特性に顕著な差異が認められた。
【0027】
以下、本発明の二次電池用電極材料を効率良く製造できる方法について図面を用いて具体的に説明するが、下記に示す構成は本発明を限定する性質のものではなく、前・後記の趣旨に基づいて設計変更することはいずれも本発明の技術的範囲に含まれるものである。
【0028】
図2は、本発明に係る二次電池用電極材料を製造する装置の概略説明図であり、球状化黒鉛粒子を非酸化性雰囲気下で急速加熱および急速冷却することにより二次電池用電極材料を製造する際に用いる装置である。図中、6はホッパー、7は電気炉、8は水槽を夫々示している。電気炉7には、螺旋管9と加熱源10が備えられている。また、水槽8には、脱酸素処理を行なった蒸留水が貯められている。なお、11および12は経路である。
【0029】
鱗片状黒鉛を球状化して得られた黒鉛粒子Aは、経路11からホッパー6へ供給される。一方、加圧した非酸化性ガスBが経路12から供給され、前記ホッパー6の下方から順次排出される球状化黒鉛粒子を、電気炉7内に備えられている螺旋管9へ気流輸送する。電気炉7内は加熱源10によって加熱されており、前記球状化黒鉛粒子は螺旋管9内を通過しつつ急速加熱される。急速加熱された球状化黒鉛粒子は、電気炉7の下方に設けられた水槽8に貯められている蒸留水内へ導入されて急速冷却される。すなわち、球状化黒鉛粒子は非酸化性雰囲気下で急速加熱されることにより粒子内部に包含されているガスが膨張して粒子内部から噴出し、さらに球状化黒鉛粒子が、急速冷却されることで熱衝撃が生じて、粒子表面に亀裂が生じる。このとき、球状化黒鉛粒子は加熱されているので、粒子表面に存在している酸性官能基は熱分解されて粒子表面から除去される。
【0030】
本発明で経路12から非酸化性ガスを供給する理由は、球状化黒鉛粒子表面が酸化されて酸性官能基量が増えない様にするためであり、非酸化性ガスとしては不活性ガスが好ましく、例えば、N2やAr、Heなどのガスを用いることができる。
【0031】
非酸化性ガスを加圧する理由は、球状化黒鉛粒子を効率良く電気炉7へ供給するためである。このときのガスの圧力は、管長とガスの熱膨張による管抵抗を考慮して定めると良く、後述する様に、加圧量を調整することで球状化黒鉛粒子を電気炉7へ供給する供給速度を制御でき、該球状化黒鉛粒子を急速加熱できる。
【0032】
電気炉7には加熱源が備えられており、電気炉7内の温度を制御している。電気炉7内の温度は800℃以上にするのが好ましく、より好ましくは1000℃以上、さらに好ましくは1200℃以上である。球状化黒鉛粒子をできるだけ高温に加熱することで急速冷却による熱衝撃を大きくするためである。電気炉7内の温度の上限は特に限定されないが、実操業で用いる電気炉7の能力を考慮すると1400℃程度とするのが良い。なお、図2に示した電気炉7には、加熱源10を4つ設けた場合を示しているが、加熱源10の数は勿論これに限定されるものではなく、電気炉7内の温度を適切に制御できるものであれば幾つでも構わない。
【0033】
電気炉7内には螺旋管9を設けられており、球状化黒鉛粒子はこの螺旋管9内を移動する間に加熱される。球状化黒鉛粒子の輸送管を螺旋状にした理由は、電気炉7内での滞留時間を長くすることができるからであり、球状化黒鉛粒子群を均一温度に加熱できる。また、輸送経路を螺旋状にすることで、装置の省スペース化も図れるので有効である。
【0034】
電気炉7内で加熱された球状化黒鉛粒子は、水槽8に貯められている蒸留水中へ供給されて急速冷却される。このとき、水槽8内は非酸化性ガスで充填されていることが推奨される。電気炉7内で加熱された球状化黒鉛粒子が水槽8内へ供給された途端酸化されるのを防ぐためである。また、前記蒸留水は脱酸素処理されていることが重要である。球状化黒鉛粒子が蒸留水中の酸素で酸化されないためである。蒸留水から脱酸素する手段は特に限定されず、例えば、蒸留水を窒素ガスでバブリングして脱酸素すれば良い。蒸留水の温度は、球状化黒鉛粒子が急速冷却される程度の温度であれば特に限定されず、室温付近(0〜50℃程度)に保持すれば良い。蒸留水の温度を一定に保持するために、必要に応じて水槽8に冷却装置を設置するのも好ましい。
【0035】
ここで、急速加熱は、電気炉7における入側温度からの昇温速度を50℃/s以上とするのが好ましく、より好ましくは100℃/s以上、さらに好ましくは300℃/s以上である。球状化黒鉛粒子を急速加熱することにより粒子表面に部分的剥がれや亀裂が生じやすくなる。球状化黒鉛粒子を急速加熱するには、経路12から供給する非酸化性ガスの圧力を調整すると共に、電気炉7の設定温度を高くすれば良い。該ガスの流れに沿って球状化黒鉛粒子が電気炉7内を移動するので、ガスの圧力が高ければ、球状化黒鉛粒子の移動速度も高くなり、またガス流量も多くなり、結果的に昇温速度を制御できるからである。
【0036】
また、急速冷却は、電気炉7における出側温度からの降温速度を50℃/s以上とするのが好ましく、より好ましくは100℃/s以上、さらに好ましくは300℃/s以上である。急速冷却することにより粒子表面に部分的剥がれや亀裂が生じやすくなる。球状化黒鉛粒子を急速冷却するには、上述した様に、例えば経路12から吹き込む非酸化性ガスの圧力を制御すれば良い。また、水槽8内に貯められている蒸留水の液面を、螺旋管9の出側に近づけることによっても冷却速度を高めることができる。さらに、水槽8内に貯える蒸留水量を多くし、該蒸留水を攪拌しても良い。
【0037】
本発明では、電気炉7における出側温度と蒸留水の温度との差、すなわち、急速冷却時の温度降下量を、少なくとも500℃以上とするのが好ましい。球状化黒鉛粒子に熱衝撃を発生させるためには温度差による熱衝撃が重要となるからである。この温度降下量は、より好ましくは800℃以上とするのが望ましい。
【0038】
本発明の二次電池用電極材料は、鱗片状黒鉛を粉砕した後再凝集させて得られた球状化黒鉛粒子を、非酸化性雰囲気下で急速加熱したあと冷却することによっても製造できる。すなわち、前記図2において、電気炉7内で加熱された球状化黒鉛粒子を、例えば蒸留水を貯めていない水槽8へ供給して冷却すれば、本発明の二次電池用電極材料を製造できる。球状化黒鉛粒子を非酸化性雰囲気下で急速加熱することにより粒子内部に包含されているガスが膨張して粒子内部から噴出して粒子表面に亀裂が生じるからである。このとき、前記水槽8内は予め非酸化性ガス(例えば、不活性ガス)で充填しておくことが推奨される。加熱された球状化黒鉛粒子表面を水槽8内で酸化させないためである。
【0039】
また、本発明の二次電池用電極材料は、鱗片状黒鉛を粉砕した後再凝集させて得られた球状化黒鉛粒子を、非酸化性雰囲気下で加熱したあと急速冷却することによっても製造できる。すなわち、電気炉内で加熱した球状化黒鉛粒子を、例えば脱酸素処理された蒸留水を貯めた水槽へ供給して急速冷却すれば、本発明の二次電池用電極材料を製造できる。加熱した球状化黒鉛粒子を急速冷却することにより粒子表面に熱衝撃が生じて、亀裂が生じるからである。
【0040】
上記方法で得られた加熱処理後の球状化黒鉛粒子の酸性官能基量を調べたところ、酸性官能基量が2ミリ当量/kg以下の球状化黒鉛粒子を二次電池用電極材料として使用すると、二次電池の初期効率が良好になることが判明し、サイクル特性の向上が期待される。すなわち、球状化黒鉛粒子表面に存在する酸性官能基量が2ミリ当量/kg以下であれば、この球状化黒鉛粒子を二次電池用電極材料として使用しても、初回の充電時に酸性官能基と電解液の反応が殆ど生じないので、初期効率を高めることができる。酸性官能基量は、好ましくは0.5ミリ当量/kg以下に抑制するのが望ましい。なお、当量とは、酸性官能基の酸としての化学当量を意味する。また、酸性官能基量を所望量以下に抑制する方法については後述する。
【0041】
酸性官能基量を定量する手段としては、例えば、Boehmらの方法が挙げられる。この測定方法は以下の通りである。
【0042】
<Boehmらの方法>
球状化黒鉛粒子10gと0.01mol/LのC25ONa水溶液50gをフラスコ中で2時間攪拌後、22時間室温で静置する。静置後、さらに30分間攪拌してから濾過し、濾液を回収する。回収した濾液25mLを0.01mol/LのHCl水溶液で中和滴定し、pHが4.0に到達するまでに要したHCl水溶液量(mL)を測定する。該HCl水溶液量と下記(1)式から酸性官能基量(ミリ当量/kg)を算出する。
酸性官能基量=(25−HCl水溶液量)×2 ・・・(1)
【0043】
次に、球状化黒鉛粒子の外観形状についても特異性を調べた。即ち、加熱処理後の球状化黒鉛粒子群を電子顕微鏡で観察したところ、特有の外観形状が観察されたので、この外観形状と初期効率やサイクル特性との関係を調べた。その結果、球状化黒鉛粒子群を、電子顕微鏡を用いて600倍で観察したときに、少なくとも5つの視野内に観察される粒子の表面に表皮の部分的剥がれがあるものは、二次電池用電極材料として卓越したサイクル特性を与えることが分かった。つまり、この要件を満足たす球状化黒鉛粒子は、粒子表面に適量の亀裂が生じているので表面に凹凸が生じ、粒子同士の接点が増加して密着性を高めることができる。また、粒子表面に生じた亀裂から電解液が粒子内部へ浸透し易くなるので、粒子内部での電解反応も促進される。従って、前記加熱処理によって特有の表面特性が与えられた球状化黒鉛粒子を用いて電極を作成し、該電極によって二次電池を構成すると、サイクル特性に優れた二次電池を実現できるのである。
【0044】
電子顕微鏡の観察倍率については、本発明者らが球状化黒鉛粒子群を種々の倍率で観察したところ、粒子表面の性状を観察するのに最も適切な倍率は600倍であったので上記の様に規定している。そして、観察倍率が600倍であれば、観察視野内に複数個の球状化黒鉛粒子が観察されるので、球状化黒鉛粒子群としている。
【0045】
観察視野を少なくとも5つとした理由は、観察視野が5つよりも少なければ、観察誤差を生じやすいからである。但し、観察視野が多過ぎると、測定精度は高まるが操作が煩雑になるので、観察視野は5つ程度で充分である。なお、本発明で用いる電子顕微鏡の種類は特に限定されず、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などを用いることができる。
【0046】
本発明では、粒子表面のうち50%以上に表皮の部分的剥がれが観察されるのが好ましい。粒子表面に表皮の部分的剥がれが殆ど無く、部分的な剥がれが粒子表面の50%未満の面積にしか観察されない黒鉛粒子を、電極材料として使用した場合は、該黒鉛粒子表面が平滑で粒子同士の接点が少ないと考えられるからである。また、粒子表面が粗大な鱗片状黒鉛で均一に覆われていたり、粒子表面から粒子内部への電解液の流路となる粒子表面における割れ(亀裂)が少ないと、電解液が粒子内部へ殆ど浸透せず、粒子内部における電解液との反応が期待できないからである。表皮の部分的な剥がれは、球状化黒鉛粒子を非酸化性雰囲気下で急速加熱することで粒子内に内包されているガス分(例えば、空気)が急激に膨張して粒子内から噴出するときに生じたり、加熱された球状化黒鉛粒子が急速冷却されたときに生じる熱衝撃によって粒子表面に亀裂が生じるものと考えられる。これらの部分的な剥がれや亀裂は、電子顕微鏡で観察すると粒子表面がささくれ立った様に見える。
【0047】
本発明の球状化黒鉛粒子では、後記実施例で示す電子顕微鏡写真から明らかな様に、表面が平滑ではなく、ささくれ立った様に複数の段差があるので、粒子同士の接点が多くなる。従って、本発明の二次電池用電極材料を用いて二次電池用電極を作成すると、電極作成時に密着性が高まって、導電性が向上し、サイクル特性が高まる。
【0048】
本発明では、上記方法で得られた球状化黒鉛粒子を、種々の二次電池用電極材料として用いることができるが、非水系の二次電池用電極材料として用いるのが好適である。非水系の二次電池としては、リチウムイオン二次電池が例示される。
【0049】
本発明の二次電池用電極材料を用いて電極を作成する際には、バインダーと混合して成形するのが一般的であり、得られた電極は、種々の二次電池用の電極として用いることができる。二次電池としては種々のものがあるが、本発明の二次電池用の電極は、非水系二次電池用の電極として好適に用いることができる。特に、リチウムイオンを黒鉛構造層間へスムーズに脱挿入できるといった理由で、リチウムイオン二次電池の負極として構成するのが最も好ましい。
【0050】
本発明の二次電池用電極を負極として構成されるリチウムイオン二次電池の負極材料としては、本発明の球状化黒鉛粒子の他に、バインダーとして例えばカルボキシメチルセルロースやスチレンブタジエンゴム、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレンなどを混合し、負極を作成すればよい。
【0051】
リチウムイオン二次電池における正極材料としては、例えば、LiCoO2やLiNiO2、LiNi1-yCoy2、LiMnO2、LiMn24、LiFeO2などが用いられる。正極のバインダーとしては、ポリフッ化ビニリデン(PVdF)やポリ四フッ化エチレン(PTFE)などを採用できる。また、導電材として、カーボンブラックなどを混合しても良い。
【0052】
リチウムイオン二次電池における電解液としては、例えば、エチレンカーボネート(EC)などの有機溶媒や、該有機溶媒とジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、1,2−ジメトキシエタン、1,2−ジエトキシメタン、エトキシメトキシエタンなどの低沸点溶媒との混合溶媒に、LiPF6やLiBF4、LiClO4、LiCF3SO3、LiAsF6などの電解液溶質(電解質塩)を溶解した溶液が用いられる。
【0053】
リチウムイオン二次電池におけるセパレータとしては、例えば、ポリエチレンやポリプロピレンなどのポリオレフィンを主成分とした不織布、クロス、微孔フィルム等が用いられる。
【0054】
【実施例】
以下、本発明を実施例によって更に詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に適合し得る範囲で適当に変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。
【0055】
中国産の鱗片状天然黒鉛(平均粒子径:40μm、純度:99%以上)をホソカワミクロン社製カウンタージェットミル100AFGで球状化した。
【0056】
図1は、ホソカワミクロン社製カウンタージェットミル100AFG(球状化黒鉛粒子を製造する装置)の概略説明図である。槽1の内部は円筒状であり、槽1の下部側には三個の対向ノズル3(ノズル内径:2.5mm)が中心を向く様に対向して配置されている。槽1の頂部には分級機4の一例として高速回転分級機を配置している。フィーダー2は槽1の側壁に設けられており、槽1の底部には吹き上げノズル5を設けている。なお、図1では、対向ノズルを一個のみ図示した。
【0057】
前記鱗片状天然黒鉛200gをフィーダー2から導入して、次に示す条件で球状化した。球状化条件は、対向ノズル3のノズル吐出空気圧:0.13MPa、操作時間:20分間、槽1内温度:30℃である。
【0058】
得られた球状化黒鉛粒子の平均粒径は20μmであり、これを分級による粒度調整をして平均粒径30μmとした。
【0059】
実験例1
球状化した黒鉛粒子(平均粒径:30μm、純度:99%以上)群を、日本電子社製電子顕微鏡(装置名:JXA−733)を用いて600倍で観察した。球状化黒鉛粒子群を電子顕微鏡で撮影した図面代用写真を図3に示す。
【0060】
実験例2
球状化した黒鉛粒子(平均粒子径:30μm、純度:99%以上)群を、前記図2に示す装置で急速加熱および急速冷却して加熱処理した。
【0061】
球状化黒鉛粒子を経路11からホッパー6へ供給すると共に、経路12から非酸化性ガスとして窒素ガスを0.4MPa(30NL/min)で吹き込んで球状化黒鉛粒子を電気炉7へ送給する。電気炉7内は加熱源10で800℃に加熱されており、電気炉7へ導入された球状化黒鉛粒子は昇温速度200℃/sで急速加熱される。球状化黒鉛粒子は螺旋管9内を移動しつつ加熱され、電気炉7の下方から水槽8に貯められている蒸留水内へ導入される。この蒸留水は窒素ガスでバブリングして予め脱酸素処理したものであり、30℃に維持されている。このとき、電気炉7出側から水面までの距離は30cmであり、球状化黒鉛粒子は28m/sの速度で蒸留水中へ導入されるので、降温速度は70000℃/sで急速冷却される。また、水槽8内は前記経路12から供給される非酸化性ガスと同じガス(窒素ガス)で充填されている。
【0062】
急速冷却した球状化黒鉛粒子を乾燥させて平均粒子径を測定すると、30μmであった。急速冷却後の球状化黒鉛粒子群を、日本電子社製電子顕微鏡(装置名:JXA−733)を用いて600倍で観察した。球状化黒鉛粒子群を電子顕微鏡で撮影した図面代用写真を図4に示す。
【0063】
実験例3
球状化した黒鉛粒子(平均粒子径:30μm、純度:99%以上)群を、前記図2に示す装置で急速加熱したあと冷却した。但し、水槽8内は窒素ガスで充填されているが、水槽8内に蒸留水は貯められておらず、図示しないヒーターで800℃に保持されている。
【0064】
前記実験例2と同じ条件で電気炉7内において急速加熱された球状化黒鉛粒子は、電気炉7の下方から水槽8内へ導入されて回収される。球状化黒鉛粒子回収後、ヒーターの電源を切断して室温まで冷却(放冷)した。
【0065】
室温まで冷却した球状化黒鉛粒子の平均粒子径を測定すると、30μmであった。また、冷却後の球状化黒鉛粒子群を、日本電子社製電子顕微鏡(装置名:JXA−733)を用いて600倍で観察した。球状化黒鉛粒子群を電子顕微鏡で撮影した図面代用写真を図5に示す。
【0066】
実験例4
球状化した黒鉛粒子(平均粒子径:30μm、純度:99%以上)群を、蓋付きシャーレ(ステンレス製)に封入し、箱型電気炉にて室温(25℃)から800℃まで2時間かけて加熱した。加熱後、シャーレごと蒸留水内へ導入して急速冷却した。この蒸留水は窒素ガスでバブリングして予め脱酸素処理したものであり、30℃に維持されている。このときの降温速度は、前記実験例2と同様に70000℃/s程度と推定される。なお、水槽8内は窒素ガスで充填されている。
【0067】
急速冷却した球状化黒鉛粒子を乾燥させて平均粒子径を測定すると、30μmであった。急速冷却後の球状化黒鉛粒子群を、日本電子社製電子顕微鏡(装置名:JXA−733)を用いて600倍で観察した。球状化黒鉛粒子群を電子顕微鏡で撮影した図面代用写真を図6に示す。
【0068】
上記実験例1〜4で得られた球状化黒鉛粒子の酸性官能基量を、前述したBoehmらの方法によって測定した。結果を表1に示す。
【0069】
【表1】

Figure 0004188649
【0070】
次に、上記実験例1〜4で得られた球状化黒鉛粒子を二次電池用電極材料として用いて、コイン型のリチウムイオン二次電池を作製し、負極の性能として初期効率とサイクル特性を評価した。
【0071】
リチウムイオン二次電池(コイン型)用の負極は、次に示す様に作成した。上記実験例1〜4で得られた球状化黒鉛粒子100質量部に対して、バインダーとしてカルボキシメチルセルロース1質量部およびスチレンブタジエンゴム粉末1質量部を混合し、これに純水100質量部を加えてスラリー状にした。得られたスラリーを厚さ18μmの銅箔上に塗布し、乾燥機(100℃)で15分間乾燥した。乾燥後の膜を直径1.6cmの円形に打ち抜いたのち、銅箔を除く塗布量を測定すると20mgであった。この膜をローラープレス機で、銅箔上に塗布した塗布物の密度が1.6g/ccとなるようにプレスしてリチウムイオン二次電池用の負極を作製した。
【0072】
リチウムイオン二次電池(コイン型)用の正極は、初期効率を算出するために作製するリチウムイオン二次電池用の正極としてはリチウム箔を用い、サイクル特性を算出するために作製するリチウムイオン二次電池用の正極としてはLiCoO2を活物質とする電極を用いた。LiCoO2を活物質とする電極は、次に示す方法で作成した。
【0073】
LiCoO290質量部に対して、バインダーとしてポリフッ化ビニリデン(PVdF)5質量部、導電材としてカーボンブラック5質量部を夫々混合し、これにN−メチル−2−ピロリドン(NMP)200質量部を加えてスラリー状にする。得られたスラリーを厚さ30μmのアルミ箔上に塗布し、乾燥機(100℃)で1時間乾燥した。乾燥後の膜を直径1.6cmの円形に打ち抜いたのち、アルミ箔を除く塗布量を測定すると45mgであった。この膜をローラープレス機で、アルミ箔上に塗布した塗布物の密度が2.8g/ccとなるようにプレスしてリチウムイオン二次電池用の正極を作製した。
【0074】
負極と正極を、セパレータを介して対向させ、ステンレス製セルに組み込み電池を作製した。電解液としては、1MのLiPF6/(EC+DMC)0.4mLを用いた。セパレータはCelgard社製の「セルガード#3501(商品名)」を用いた。なお、電解液は、エチレンカーボネート(EC)とジメチルカーボネート(DMC)を容積比1:1で混合した溶媒に、LiPF6を1Mの割合で溶解したものである(三菱化学社製、商品名「ソルライト」)。また、電池の組み立てはアルゴンガス雰囲気下で行なった。
【0075】
負極の性能を評価するために電池の初期効率を算出した。電池の充電は、電流密度0.4mA/cm2(0.1C)の定電流値で0Vまで充電した後、0Vの定電位で電流値が0.01mA/cm2となるまで行なった。電池の放電は、電流値0.4mA/cm2で1Vになるまで行なった。一回目の充電容量と放電容量から下記(2)式で計算した。算出結果を表2に示す。なお、電池の正極はリチウム箔である。
【0076】
【数1】
Figure 0004188649
【0077】
また、負極の性能を評価するために電池のサイクル特性を算出した。電池の充電は、電流値6.4mAで4.2Vまで充電した後、4.2Vの定電圧で電流値が0.2mAとなるまで行なった。電池の放電は、電流値6.4mAで3.0Vとなるまで行なった。サイクル特性は、1サイクル目の放電容量と充放電を20, 50, 80, 100サイクル繰り返したときの放電容量から下記(3)式で算出した。算出結果を表2に併せて示す。なお、電池の正極はLiCoO2を活物質とする電極である。
【0078】
サイクル数(回)に対してサイクル特性(%)を図7にプロットする。図7では、実験例1で得られた球状化黒鉛粒子を電極材料として用いた場合の結果を○、実験例2で得られた球状化黒鉛粒子を電極材料として用いた場合の結果を□、実験例3で得られた球状化黒鉛粒子を電極材料として用いた場合の結果を△、実験例4で得られた球状化黒鉛粒子を電極材料として用いた場合の結果を×で夫々示した。
【0079】
【数2】
Figure 0004188649
【0080】
【表2】
Figure 0004188649
【0081】
表1および表2から明らかな様に、実験例1で得られた球状化黒鉛粒子には多量の酸性官能基が存在するので、この球状化黒鉛粒子を電極材料として使用した電池の初期効率は、実験例2〜4で得られた球状化黒鉛粒子を電極材料として使用した電池の初期効率よりも悪い。すなわち、実験例2〜4で得られた球状化黒鉛粒子には酸性官能基が殆ど無く、この球状化黒鉛粒子を電極材料として使用すると、電池の初期効率を高めることができる。
【0082】
また、表2および図7から明らかな様に、実験例1で得られた球状化黒鉛粒子を電極材料として使用した電池のサイクル特性は、サイクル数が増えるに連れて急激に劣化し、充放電を100回繰り返すと70%未満まで低下している。一方、実験例2〜4で得られた球状化黒鉛粒子を電極材料として使用した電池のサイクル特性は、充放電を100回繰り返しても劣化量は少なく、80%以上となっている。
【0083】
【発明の効果】
本発明によれば、球状化黒鉛粒子よりなる二次電池用電極材料であって、初期効率およびサイクル特性に優れた二次電池を実現するために有用な二次電池用電極材料を効率良く製造できる方法を提供できる。
【図面の簡単な説明】
【図1】 球状化黒鉛粒子を製造する装置の概略説明図である。
【図2】 球状化黒鉛粒子を加熱処理する装置の概略説明図である。
【図3】 球状化黒鉛粒子群を電子顕微鏡で撮影した図面代用写真である。
【図4】 球状化黒鉛粒子群を電子顕微鏡で撮影した図面代用写真である。
【図5】 球状化黒鉛粒子群を電子顕微鏡で撮影した図面代用写真である。
【図6】 球状化黒鉛粒子群を電子顕微鏡で撮影した図面代用写真である。
【図7】 サイクル数とサイクル特性との関係を示したグラフである。
【符号の説明】
1 槽 2 フィーダー
3 対向ノズル 4 分級機
5 吹き上げノズル 6 ホッパー
7 電気炉 8 水槽
9 螺旋管 10 加熱源
11〜12 経路[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an electrode material for a secondary battery comprising spheroidized graphite particles.
[0002]
[Prior art]
Recently, with the miniaturization of electronic devices and the like, a battery serving as a power source is also required to be miniaturized. In particular, a lithium ion secondary battery has attracted attention from the viewpoint of increasing the capacity of the battery. Among lithium ion secondary batteries, those using a carbon material for the negative electrode are also useful in that a large capacity can be obtained and a safe and high voltage can be obtained.
[0003]
However, since various functional groups (for example, carboxyl group, phenol group, lactone group, carbonyl group, etc.) are generally present on the surface of the carbon material, this functional group reacts with the electrolyte during the first charge and causes side reactions. Cause charge capacity to be lost. Therefore, the electric capacity required for charging becomes higher than the electric capacity required for discharging, and the initial charging efficiency (hereinafter, sometimes referred to as “initial efficiency”) is lowered. In order to solve this problem, it has been proposed to reduce the amount of functional groups present on the surface of the carbon material by heat-treating the raw material of the carbon material in a vacuum or a reducing atmosphere (see, for example, Patent Document 1). ). However, in this technique, scale-like graphite is used as the carbon material, and the following problems arise.
[0004]
That is, as a carbon material used for a battery, there are natural graphite and artificial graphite. When forming an electrode, a mixture of a pulverized natural graphite or artificial graphite, a solvent and a binder (binder) is used as a slurry. It is common to apply what has been applied to an object. However, if the graphite has a scaly shape, the fluidity of the slurry is deteriorated and the coating workability is significantly impaired.
[0005]
As a result of repeated research aimed at improving these problems, the present inventors have crushed the flake-shaped natural graphite and then re-agglomerated to make it spherical, thereby maintaining the advantage of flake-shaped graphite. The inventors have found out that the characteristics are improved and that the reduction of the discharge capacity at a large discharge current value can be suppressed, and have been proposed based on such knowledge (see, for example, Patent Document 2).
[0006]
However, when a large amount of functional groups are present on the surface of the spheroidized graphite particles, as pointed out in Patent Document 1, the functional groups react with the electrolytic solution during the initial charge, causing a decrease in initial efficiency. In addition, when the flake graphite is pulverized and then re-agglomerated to make it spherical, the slurry characteristics are improved, but the contact between the graphite particles and between the graphite particles and the binder particles is reduced, and the contact between the particles is reduced and adhesion is reduced. Becomes worse, the conductivity is lowered, and the cycle characteristics are lowered. Furthermore, when the flaky graphite particles are pulverized and then re-agglomerated to make them spherical, the surface of the graphite particles is covered with the flaky graphite, and the electrolyte does not easily penetrate from the particle surface to the inside. The liquidity deteriorates and the cycle characteristics when charging and discharging are repeated are also adversely affected.
[0007]
[Patent Document 1]
Japanese Unexamined Patent Publication No. 8-148185
[Patent Document 2]
Japanese Patent Laid-Open No. 11-263612
[0008]
[Problems to be solved by the invention]
The present invention has been made in view of such problems, and its purpose is to realize a secondary battery having particularly excellent initial efficiency and cycle characteristics as an electrode material for a secondary battery made of spheroidized graphite particles. Therefore, an object of the present invention is to provide a method capable of efficiently producing a useful electrode material for a secondary battery.
[0009]
[Means for Solving the Problems]
The method for producing a secondary battery electrode material according to the present invention that has solved the above problems is a method for producing a secondary battery electrode material comprising spheroidized graphite particles, wherein the spheroidized graphite particles are non-oxidized. It has a gist in that it is rapidly heated and / or rapidly cooled in a neutral atmosphere.
[0010]
In the present invention, the rapid heating is preferably performed at a temperature rising rate of 50 ° C./s or more, and the rapid cooling is preferably performed at a temperature decreasing rate of 50 ° C./s or more.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The present inventors have studied from various angles in order to solve the problems as described above. As a result, if the graphite particles obtained by spheroidizing the flaky graphite are treated in a non-oxidizing atmosphere, the amount of functional groups of the spheroidized graphite particles can be suppressed to a predetermined amount or less, and the surface shape of the spheroidized graphite particles can be improved. The present invention has been completed by finding out that the above problems can be solved. Hereinafter, the function and effect of the present invention will be described.
[0012]
The electrode material for a secondary battery of the present invention is obtained by pulverizing scaly graphite and then reaggregating it to make it spherical. This is because, as described above, graphite particles obtained by pulverizing scale-like graphite and then re-aggregating and spheroidizing them have good fluidity when mixed with a solvent or a binder.
[0013]
Here, as the raw material of the spheroidized graphite particles, scaly natural graphite or artificial graphite can be used. For example, scaly natural graphite is generally available in a purity exceeding 85% to 99%, so that it is used as it is. Use it. If necessary, it is also preferred to further increase the purity by a known method. There are various particle sizes of graphite as a raw material, but it is preferable to use scaly graphite (raw material) having an average particle diameter of about 10 to 200 μm before spheroidization.
[0014]
The spherical shape means not only a true spherical shape such as a soccer ball or a tennis ball but also an ellipsoidal shape such as a rugby ball, and in the present invention, it indicates a circularity of about 0.86 or more. However, since the circularity is an index calculated by projecting three-dimensional graphite particles onto a two-dimensional plane, for example, when calculating the circularity of scaly natural graphite particles that are generally available, the circularity is about 0.84. The graphite particles (raw material) are two-dimensional particles, whereas the actual shape of the electrode material for a secondary battery in the present invention is three-dimensional and completely different.
[0015]
The spheroidized graphite particles can be obtained by pulverizing scaly graphite and then re-aggregating them, but the specific method for producing the spheroidized graphite particles is not particularly limited. For example, it can be produced by a method previously proposed by the present inventors (Japanese Patent Laid-Open No. 11-263612) or a method similar thereto. Hereinafter, an example of the manufacturing method will be described with reference to the drawings.
[0016]
FIG. 1 is a schematic explanatory view of an apparatus for producing spheroidized graphite particles, wherein 1 is a tank, 2 is a feeder, 3 is a counter nozzle, 4 is a classifier, and 5 is a blowing nozzle.
[0017]
Scaly graphite (raw material) is fed into the tank 1 from a feeder 2 provided in the tank 1. The feeder 2 is preferably a hopper type one installed at an appropriate location in the tank 1 and can also be used as an outlet for spheroidized graphite particles. In addition, the feeder 2 may be a screw type provided in the lower part of the tank 1. The raw material supply amount into the tank 1 may be determined in consideration of the capacity of the tank 1.
[0018]
A counter nozzle 3 is provided on the lower side of the tank 1 through the tank wall, and a jet stream is blown from the counter nozzle 3 to form a collision area on the lower side of the tank 1. The scaly graphites that have entered the air current in the collision zone collide with each other, re-aggregate and spheroidize while being crushed.
[0019]
It is preferable to provide a plurality of counter nozzles 3 (for example, three to four). The nozzle discharge pressure, the amount of gas blown, the tank pressure, etc. when gas is blown from the counter nozzle 3 are set so that smooth collision and flow can be achieved, and the scale-like graphite is spheroidized by setting the operation time appropriately. To do. For example, the nozzle discharge pressure is about 0.01 to 0.50 MPa, and the amount of blown gas is 0.2 to 1.0 Nm.Three/ Min, the tank pressure may be about −10 to 30 kPa, and the operation time may be about 1 to 100 minutes. In addition, what is necessary is just to use air, nitrogen, water vapor | steam etc. as a gas blown from the opposing nozzle 3, and the temperature in the tank 1 should just be about 0-60 degreeC.
[0020]
Gas convection occurs in the tank 1, and the particles that collide with each other in the collision area on the lower side of the tank 1 and spheroidize are blown upward along the convection in the tank 1, and then settle again. That is, the particles are blown up in the vicinity of the center of the tank 1, and then descend along the wall of the tank 1 to circulate in the tank 1.
[0021]
By providing a classifier 4 at the top of the tank 1, fine powder below the classification limit can be discharged out of the tank 1. The classifier 4 may be a known one, but a high-speed rotation classifier is usually used. The discharge amount at this time varies depending on the particle size of the scaly graphite particles used as a raw material.
[0022]
The above operation is preferably performed in a batch. When air is fed into the tank 1 from the blowing nozzle 5 provided at the bottom of the tank 1, the spheroidized graphite particles can be recovered from the feeder 2.
[0023]
By the way, when the spheroidized graphite particles produced by the method as described above are used as an electrode material, it has been revealed that the initial efficiency of the obtained secondary battery is unexpectedly low. Therefore, when the cause of the decrease in the initial efficiency of the secondary battery was investigated, if a large amount of functional groups exist on the surface of the spheroidized graphite particles, the functional groups react with the electrolyte during the initial charge, and the initial efficiency is decreased. I have found out what causes it. Further examination of the reaction between the functional group and the electrolytic solution revealed that the acidic functional group among the functional groups has a great influence on the decrease in initial efficiency. That is, the acidic functional group refers to a functional group such as a carboxyl group, a phenol group, a lactone group, or a carbonyl group, and it has been found that these functional groups are particularly easy to react with the electrolytic solution.
[0024]
In addition, when graphite particles obtained by pulverizing and re-aggregating scaly graphite and spheroidizing are used as electrode materials, the cycle characteristics of the obtained secondary battery are also surprisingly low. As explained above, the reason seems to be that the flake graphite is agglomerated and spheroidized to reduce the contact between the particles, resulting in poor adhesion and lowering the conductivity of the electrode itself. . Another possible cause of the decrease in cycle characteristics is a deterioration in liquid permeability into the graphite particles. In other words, when the flaky graphite is spheroidized, the surface of the graphite particles is covered with the flaky graphite, and the electrolyte does not easily penetrate from the surface of the spheroidized graphite particles, resulting in poor liquid permeability. It is possible.
[0025]
Therefore, the present inventors increased the number of contacts on the graphite particle surface while suppressing the amount of acidic functional groups present on the spheroidized graphite particle surface to a predetermined amount or less, and the electrolyte penetrated from the graphite particle surface to the inside. We thought that if the surface shape could be modified so that it would be easier to do, the initial efficiency and cycle characteristics of the secondary battery could be greatly improved, and research was conducted along that line. As a result, when the spheroidized graphite particles obtained by rapidly heating and / or rapidly cooling the spheroidized graphite particles in a non-oxidizing atmosphere are used as electrode materials, the initial efficiency and cycle characteristics of the secondary battery are dramatically improved. I found out that I could improve.
[0026]
That is, it was considered that when the spheroidized graphite particles are heated in a non-oxidizing atmosphere, the acidic functional group present on the surface of the graphite particles is decomposed, and the factor of lowering the initial efficiency is eliminated. The spheroidized graphite particles are either (1) rapidly heated in a non-oxidizing atmosphere and then rapidly cooled, (2) rapidly heated in a non-oxidizing atmosphere and then cooled, or (3) a non-oxidizing atmosphere. If heated quickly after being heated, the surface of the graphite particles will crack due to thermal shock or expansion of the gas in the particles, and the surface of the smooth particles will be uneven, increasing the number of contacts between the particles. Since the electrolytic solution easily penetrates into the inside of the particle from the crack generated on the surface, it is considered that the cycle characteristic is improved as a result of the electrolytic reaction occurring inside the graphite particle. When the spheroidized graphite particles after heat treatment thus obtained were used as electrode materials, significant differences were observed in the initial efficiency and cycle characteristics, as will be apparent from the examples described later.
[0027]
Hereinafter, the method for efficiently producing the electrode material for a secondary battery of the present invention will be specifically described with reference to the drawings. However, the structure shown below is not intended to limit the present invention. Any design change based on the above is included in the technical scope of the present invention.
[0028]
FIG. 2 is a schematic explanatory view of an apparatus for producing an electrode material for a secondary battery according to the present invention, and by rapidly heating and rapidly cooling the spheroidized graphite particles in a non-oxidizing atmosphere, It is an apparatus used when manufacturing. In the figure, 6 is a hopper, 7 is an electric furnace, and 8 is a water tank. The electric furnace 7 includes a spiral tube 9 and a heating source 10. The water tank 8 stores distilled water that has been subjected to deoxygenation treatment. 11 and 12 are routes.
[0029]
Graphite particles A obtained by spheroidizing flaky graphite are supplied from the path 11 to the hopper 6. On the other hand, the pressurized non-oxidizing gas B is supplied from the path 12, and the spheroidized graphite particles sequentially discharged from below the hopper 6 are air-transported to the spiral tube 9 provided in the electric furnace 7. The electric furnace 7 is heated by a heating source 10, and the spheroidized graphite particles are rapidly heated while passing through the spiral tube 9. The rapidly heated spheroidized graphite particles are introduced into distilled water stored in a water tank 8 provided below the electric furnace 7 and rapidly cooled. That is, when the spheroidized graphite particles are rapidly heated in a non-oxidizing atmosphere, the gas contained in the particles expands and ejects from the inside of the particles, and further, the spheroidized graphite particles are rapidly cooled. Thermal shock occurs, causing cracks on the particle surface. At this time, since the spheroidized graphite particles are heated, the acidic functional groups present on the particle surface are thermally decomposed and removed from the particle surface.
[0030]
The reason for supplying the non-oxidizing gas from the path 12 in the present invention is to prevent the surface of the spheroidized graphite particles from being oxidized and increase the amount of acidic functional groups, and an inert gas is preferable as the non-oxidizing gas. , For example, N2A gas such as Ar, He or the like can be used.
[0031]
The reason for pressurizing the non-oxidizing gas is to efficiently supply the spheroidized graphite particles to the electric furnace 7. The gas pressure at this time may be determined in consideration of the tube length and the tube resistance due to the thermal expansion of the gas. As will be described later, the supply of supplying the spheroidized graphite particles to the electric furnace 7 by adjusting the amount of pressurization The speed can be controlled, and the spheroidized graphite particles can be rapidly heated.
[0032]
The electric furnace 7 is provided with a heating source and controls the temperature in the electric furnace 7. The temperature in the electric furnace 7 is preferably 800 ° C. or higher, more preferably 1000 ° C. or higher, and further preferably 1200 ° C. or higher. This is because the thermal shock due to rapid cooling is increased by heating the spheroidized graphite particles to the highest possible temperature. The upper limit of the temperature in the electric furnace 7 is not particularly limited, but is preferably about 1400 ° C. in consideration of the capacity of the electric furnace 7 used in actual operation. The electric furnace 7 shown in FIG. 2 shows a case where four heating sources 10 are provided, but the number of the heating sources 10 is not limited to this, and the temperature in the electric furnace 7 is not limited thereto. Any number can be used as long as it can be controlled appropriately.
[0033]
A spiral tube 9 is provided in the electric furnace 7, and the spheroidized graphite particles are heated while moving in the spiral tube 9. The reason why the spheroidized graphite particle transport pipe is spiral is that the residence time in the electric furnace 7 can be increased, and the spheroidized graphite particle group can be heated to a uniform temperature. In addition, it is effective because the space of the apparatus can be saved by making the transportation route spiral.
[0034]
The spheroidized graphite particles heated in the electric furnace 7 are supplied to distilled water stored in the water tank 8 and rapidly cooled. At this time, it is recommended that the water tank 8 is filled with a non-oxidizing gas. This is to prevent the spheroidized graphite particles heated in the electric furnace 7 from being oxidized as soon as they are supplied into the water tank 8. In addition, it is important that the distilled water is deoxygenated. This is because the spheroidized graphite particles are not oxidized by oxygen in distilled water. The means for deoxygenating from distilled water is not particularly limited. For example, deoxygenation may be performed by bubbling distilled water with nitrogen gas. The temperature of the distilled water is not particularly limited as long as the spheroidized graphite particles are rapidly cooled, and may be maintained near room temperature (about 0 to 50 ° C.). In order to keep the temperature of distilled water constant, it is also preferable to install a cooling device in the water tank 8 as necessary.
[0035]
Here, the rapid heating is preferably performed at a rate of temperature rise from the entry temperature in the electric furnace 7 of 50 ° C./s or more, more preferably 100 ° C./s or more, and further preferably 300 ° C./s or more. . Rapid heating of the spheroidized graphite particles tends to cause partial peeling or cracks on the particle surface. In order to rapidly heat the spheroidized graphite particles, the pressure of the non-oxidizing gas supplied from the path 12 may be adjusted and the set temperature of the electric furnace 7 may be increased. Since the spheroidized graphite particles move in the electric furnace 7 along the gas flow, the higher the gas pressure, the higher the moving speed of the spheroidized graphite particles and the higher the gas flow rate. This is because the temperature rate can be controlled.
[0036]
The rapid cooling is preferably performed at a rate of temperature decrease from the outlet temperature in the electric furnace 7 of 50 ° C./s or more, more preferably 100 ° C./s or more, and further preferably 300 ° C./s or more. Rapid cooling tends to cause partial peeling or cracks on the particle surface. In order to rapidly cool the spheroidized graphite particles, for example, the pressure of the non-oxidizing gas blown from the passage 12 may be controlled as described above. The cooling rate can also be increased by bringing the level of distilled water stored in the water tank 8 closer to the exit side of the spiral tube 9. Furthermore, the amount of distilled water stored in the water tank 8 may be increased, and the distilled water may be stirred.
[0037]
In the present invention, the difference between the outlet temperature in the electric furnace 7 and the temperature of distilled water, that is, the temperature drop during rapid cooling is preferably at least 500 ° C. or more. This is because a thermal shock due to a temperature difference is important for generating a thermal shock in the spheroidized graphite particles. This temperature drop is more preferably 800 ° C. or more.
[0038]
The electrode material for a secondary battery of the present invention can also be produced by rapidly heating spheroidized graphite particles obtained by pulverizing and re-aggregating scaly graphite in a non-oxidizing atmosphere and then cooling. That is, in FIG. 2, if the spheroidized graphite particles heated in the electric furnace 7 are supplied to, for example, a water tank 8 in which distilled water is not stored, the secondary battery electrode material of the present invention can be manufactured. . This is because when the spheroidized graphite particles are rapidly heated in a non-oxidizing atmosphere, the gas contained in the particles expands and is ejected from the inside of the particles to cause cracks on the particle surface. At this time, it is recommended that the water tank 8 be filled with a non-oxidizing gas (for example, an inert gas) in advance. This is because the surface of the heated spheroidized graphite particles is not oxidized in the water tank 8.
[0039]
The electrode material for a secondary battery of the present invention can also be produced by rapidly cooling spheroidized graphite particles obtained by pulverizing and re-aggregating scaly graphite in a non-oxidizing atmosphere. . That is, if the spheroidized graphite particles heated in an electric furnace are supplied to, for example, a water tank storing deoxygenated distilled water and rapidly cooled, the electrode material for a secondary battery of the present invention can be produced. This is because when the heated spheroidized graphite particles are rapidly cooled, a thermal shock is generated on the surface of the particles and cracks are generated.
[0040]
When the amount of acidic functional groups of the spheroidized graphite particles after heat treatment obtained by the above method was examined, the spheroidized graphite particles having an acidic functional group amount of 2 meq / kg or less were used as an electrode material for a secondary battery. Thus, it has been found that the initial efficiency of the secondary battery is improved, and improvement in cycle characteristics is expected. That is, if the amount of acidic functional groups present on the surface of the spheroidized graphite particles is 2 meq / kg or less, even if the spheroidized graphite particles are used as an electrode material for a secondary battery, the acidic functional groups at the first charge Since the reaction of the electrolyte solution hardly occurs, the initial efficiency can be increased. The amount of acidic functional group is preferably suppressed to 0.5 meq / kg or less. In addition, an equivalent means the chemical equivalent as an acid of an acidic functional group. Moreover, the method of suppressing the amount of acidic functional groups below a desired amount will be described later.
[0041]
Examples of the means for quantifying the amount of acidic functional groups include the method of Boehm et al. This measuring method is as follows.
[0042]
<Boehm's method>
10 g of spheroidized graphite particles and 0.01 mol / L C2HFive50 g of ONa aqueous solution is stirred in the flask for 2 hours and then allowed to stand at room temperature for 22 hours. After standing, the mixture is further stirred for 30 minutes and then filtered to collect the filtrate. 25 mL of the collected filtrate is neutralized and titrated with 0.01 mol / L HCl aqueous solution, and the amount of HCl aqueous solution (mL) required until pH reaches 4.0 is measured. The amount of acidic functional group (milli equivalent / kg) is calculated from the amount of the aqueous HCl and the following formula (1).
Acidic functional group amount = (25-HCl aqueous solution amount) × 2 (1)
[0043]
Next, the peculiarity was also examined for the appearance shape of the spheroidized graphite particles. That is, when the spheroidized graphite particles after the heat treatment were observed with an electron microscope, a characteristic appearance was observed, and the relationship between the appearance and the initial efficiency and cycle characteristics was examined. As a result, when the spheroidized graphite particles are observed at 600 times using an electron microscope, the surface of the particles observed in at least five fields of view has a partial peeling of the epidermis. It was found to give excellent cycle characteristics as an electrode material. That is, since the spheroidized graphite particles satisfying this requirement have an appropriate amount of cracks on the particle surface, irregularities are generated on the surface, and the contact between the particles can be increased to improve the adhesion. In addition, since the electrolytic solution easily penetrates into the particle from cracks generated on the particle surface, the electrolytic reaction inside the particle is also promoted. Therefore, a secondary battery having excellent cycle characteristics can be realized by forming an electrode using spheroidized graphite particles imparted with a specific surface characteristic by the heat treatment and constituting a secondary battery with the electrode.
[0044]
Regarding the observation magnification of the electron microscope, when the present inventors observed the spheroidized graphite particles at various magnifications, the most appropriate magnification for observing the properties of the particle surface was 600 times. It is stipulated in. If the observation magnification is 600 times, a plurality of spheroidized graphite particles are observed in the observation field of view, so that a spheroidized graphite particle group is obtained.
[0045]
The reason for using at least five observation fields is that if there are fewer than five observation fields, an observation error is likely to occur. However, if there are too many observation fields, the measurement accuracy increases, but the operation becomes complicated, so about five observation fields are sufficient. In addition, the kind of electron microscope used by this invention is not specifically limited, A scanning electron microscope (SEM), a transmission electron microscope (TEM), etc. can be used.
[0046]
In the present invention, it is preferable that partial peeling of the epidermis is observed on 50% or more of the particle surface. When graphite particles with almost no skin peeling on the particle surface and partial peeling observed only in an area of less than 50% of the particle surface are used as the electrode material, the graphite particle surface is smooth and This is because there are few contact points. In addition, if the particle surface is uniformly covered with coarse scaly graphite, or if there are few cracks (cracks) on the particle surface that serves as a flow path for the electrolyte solution from the particle surface to the inside of the particle, the electrolyte solution hardly enters the inside of the particle. This is because it does not penetrate and reaction with the electrolytic solution inside the particles cannot be expected. Partial peeling of the skin occurs when the gas (eg, air) contained in the particles expands rapidly by rapidly heating the spheroidized graphite particles in a non-oxidizing atmosphere and ejects from the particles. It is considered that cracks occur in the particle surface due to thermal shock generated when the heated spheroidized graphite particles are rapidly cooled. These partial peels and cracks appear to have fluttered the particle surface when observed with an electron microscope.
[0047]
In the spheroidized graphite particles of the present invention, as is apparent from the electron micrographs shown in the examples described later, the surface is not smooth, and there are a plurality of steps so as to be raised, so the number of contact points between the particles increases. Therefore, when an electrode for a secondary battery is produced using the electrode material for a secondary battery of the present invention, the adhesion is enhanced at the time of producing the electrode, the conductivity is improved, and the cycle characteristics are enhanced.
[0048]
In the present invention, the spheroidized graphite particles obtained by the above method can be used as various secondary battery electrode materials, but are preferably used as non-aqueous secondary battery electrode materials. A lithium ion secondary battery is illustrated as a non-aqueous secondary battery.
[0049]
When preparing an electrode using the electrode material for secondary battery of the present invention, it is generally mixed with a binder and molded, and the obtained electrode is used as an electrode for various secondary batteries. be able to. Although there are various types of secondary batteries, the secondary battery electrode of the present invention can be suitably used as an electrode for a non-aqueous secondary battery. In particular, it is most preferable to configure as a negative electrode of a lithium ion secondary battery because lithium ions can be smoothly inserted and removed between graphite structure layers.
[0050]
In addition to the spheroidized graphite particles of the present invention, the negative electrode material of the lithium ion secondary battery configured using the secondary battery electrode of the present invention as a negative electrode includes, for example, carboxymethyl cellulose, styrene butadiene rubber, polyvinylidene fluoride ( PVdF), polytetrafluoroethylene, or the like may be mixed to produce the negative electrode.
[0051]
As a positive electrode material in a lithium ion secondary battery, for example, LiCoO2And LiNiO2, LiNi1-yCoyO2LiMnO2, LiMn2OFourLiFeO2Etc. are used. As the positive electrode binder, polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), or the like can be employed. Further, carbon black or the like may be mixed as a conductive material.
[0052]
Examples of the electrolyte solution in the lithium ion secondary battery include an organic solvent such as ethylene carbonate (EC), the organic solvent and dimethyl carbonate (DMC), diethyl carbonate (DEC), 1,2-dimethoxyethane, and 1,2. -LiPF in a mixed solvent with a low boiling point solvent such as diethoxymethane, ethoxymethoxyethane, etc.6And LiBFFourLiClOFour, LiCFThreeSOThree, LiAsF6A solution in which an electrolyte solution solute (electrolyte salt) such as the above is dissolved is used.
[0053]
As the separator in the lithium ion secondary battery, for example, a nonwoven fabric, a cloth, a microporous film, or the like whose main component is a polyolefin such as polyethylene or polypropylene is used.
[0054]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples are not intended to limit the present invention, and may be implemented with appropriate modifications within a range that can meet the purpose described above and below. These are all possible and are within the scope of the present invention.
[0055]
Chinese scale-like natural graphite (average particle size: 40 μm, purity: 99% or more) was spheronized with a counter jet mill 100AFG manufactured by Hosokawa Micron.
[0056]
FIG. 1 is a schematic explanatory diagram of a counter jet mill 100AFG (an apparatus for producing spheroidized graphite particles) manufactured by Hosokawa Micron. The inside of the tank 1 has a cylindrical shape, and three opposed nozzles 3 (nozzle inner diameter: 2.5 mm) are arranged on the lower side of the tank 1 so as to face each other. As an example of the classifier 4, a high-speed rotary classifier is disposed at the top of the tank 1. The feeder 2 is provided on the side wall of the tank 1, and a blowing nozzle 5 is provided at the bottom of the tank 1. In FIG. 1, only one counter nozzle is shown.
[0057]
200 g of the scale-like natural graphite was introduced from the feeder 2 and spheroidized under the following conditions. The spheroidizing conditions are: nozzle discharge air pressure of the counter nozzle 3: 0.13 MPa, operation time: 20 minutes, temperature in the tank 1: 30 ° C.
[0058]
The average particle size of the obtained spheroidized graphite particles was 20 μm, and the particle size was adjusted by classification to obtain an average particle size of 30 μm.
[0059]
Experimental example 1
A group of spheroidized graphite particles (average particle size: 30 μm, purity: 99% or more) was observed at 600 times using an electron microscope (device name: JXA-733) manufactured by JEOL Ltd. A drawing-substituting photograph obtained by photographing the spheroidized graphite particles with an electron microscope is shown in FIG.
[0060]
Experimental example 2
A group of spheroidized graphite particles (average particle size: 30 μm, purity: 99% or more) was subjected to heat treatment by rapid heating and rapid cooling with the apparatus shown in FIG.
[0061]
Spherical graphite particles are supplied from the path 11 to the hopper 6, and nitrogen gas is blown from the path 12 as a non-oxidizing gas at 0.4 MPa (30 NL / min) to feed the spheroidized graphite particles to the electric furnace 7. The inside of the electric furnace 7 is heated to 800 ° C. by the heating source 10, and the spheroidized graphite particles introduced into the electric furnace 7 are rapidly heated at a temperature rising rate of 200 ° C./s. The spheroidized graphite particles are heated while moving in the spiral tube 9, and are introduced into distilled water stored in the water tank 8 from below the electric furnace 7. This distilled water was previously deoxygenated by bubbling with nitrogen gas and maintained at 30 ° C. At this time, the distance from the exit side of the electric furnace 7 to the water surface is 30 cm, and the spheroidized graphite particles are introduced into the distilled water at a speed of 28 m / s, so that the temperature is rapidly cooled at a cooling rate of 70000 ° C./s. The water tank 8 is filled with the same gas (nitrogen gas) as the non-oxidizing gas supplied from the passage 12.
[0062]
The rapidly cooled spheroidized graphite particles were dried and the average particle size was measured and found to be 30 μm. The group of spheroidized graphite particles after rapid cooling was observed at 600 times using an electron microscope manufactured by JEOL Ltd. (device name: JXA-733). FIG. 4 shows a drawing-substituting photograph obtained by photographing the spheroidized graphite particles with an electron microscope.
[0063]
Experimental example 3
A group of spheroidized graphite particles (average particle size: 30 μm, purity: 99% or more) was rapidly heated with the apparatus shown in FIG. 2 and then cooled. However, although the water tank 8 is filled with nitrogen gas, distilled water is not stored in the water tank 8 and is maintained at 800 ° C. by a heater (not shown).
[0064]
The spheroidized graphite particles rapidly heated in the electric furnace 7 under the same conditions as in Experimental Example 2 are introduced into the water tank 8 from below the electric furnace 7 and collected. After collecting the spheroidized graphite particles, the heater was turned off and cooled to room temperature (cooled).
[0065]
When the average particle diameter of the spheroidized graphite particles cooled to room temperature was measured, it was 30 μm. Moreover, the spheroidized graphite particle group after cooling was observed at 600 times using an electron microscope (device name: JXA-733) manufactured by JEOL Ltd. FIG. 5 shows a drawing-substituting photograph obtained by photographing the spheroidized graphite particles with an electron microscope.
[0066]
Experimental Example 4
A group of spheroidized graphite particles (average particle size: 30 μm, purity: 99% or more) is enclosed in a petri dish with a lid (made of stainless steel), and it takes 2 hours from room temperature (25 ° C) to 800 ° C in a box-type electric furnace. And heated. After heating, the petri dish was introduced into distilled water and rapidly cooled. This distilled water was previously deoxygenated by bubbling with nitrogen gas and maintained at 30 ° C. The temperature drop rate at this time is estimated to be about 70000 ° C./s as in Experimental Example 2. The water tank 8 is filled with nitrogen gas.
[0067]
The rapidly cooled spheroidized graphite particles were dried and the average particle size was measured and found to be 30 μm. The group of spheroidized graphite particles after rapid cooling was observed at 600 times using an electron microscope manufactured by JEOL Ltd. (device name: JXA-733). FIG. 6 shows a drawing-substituting photograph obtained by photographing the spheroidized graphite particles with an electron microscope.
[0068]
The amount of acidic functional groups of the spheroidized graphite particles obtained in Experimental Examples 1 to 4 was measured by the method described above by Boehm et al. The results are shown in Table 1.
[0069]
[Table 1]
Figure 0004188649
[0070]
Next, using the spheroidized graphite particles obtained in the above experimental examples 1 to 4 as an electrode material for a secondary battery, a coin-type lithium ion secondary battery was produced, and the initial efficiency and cycle characteristics were obtained as the performance of the negative electrode. evaluated.
[0071]
A negative electrode for a lithium ion secondary battery (coin type) was prepared as follows. 1 part by weight of carboxymethyl cellulose and 1 part by weight of styrene butadiene rubber powder are mixed as binder with 100 parts by weight of the spheroidized graphite particles obtained in the above experimental examples 1 to 4, and 100 parts by weight of pure water is added thereto. A slurry was formed. The obtained slurry was applied onto a copper foil having a thickness of 18 μm, and dried for 15 minutes with a dryer (100 ° C.). After the dried film was punched into a circle having a diameter of 1.6 cm, the coating amount excluding the copper foil was 20 mg. This film was pressed with a roller press so that the density of the coating applied on the copper foil was 1.6 g / cc to prepare a negative electrode for a lithium ion secondary battery.
[0072]
The positive electrode for a lithium ion secondary battery (coin type) uses a lithium foil as the positive electrode for a lithium ion secondary battery produced to calculate initial efficiency, and the lithium ion secondary produced to calculate cycle characteristics. LiCoO as a positive electrode for secondary batteries2Was used as an active material. LiCoO2The electrode using the active material was prepared by the following method.
[0073]
LiCoO2To 90 parts by mass, 5 parts by mass of polyvinylidene fluoride (PVdF) as a binder and 5 parts by mass of carbon black as a conductive material were mixed, and 200 parts by mass of N-methyl-2-pyrrolidone (NMP) was added thereto. Make a slurry. The obtained slurry was applied onto an aluminum foil having a thickness of 30 μm, and dried for 1 hour with a dryer (100 ° C.). After the dried film was punched into a circle having a diameter of 1.6 cm, the coating amount excluding the aluminum foil was 45 mg. This film was pressed with a roller press so that the density of the coating applied on the aluminum foil was 2.8 g / cc to produce a positive electrode for a lithium ion secondary battery.
[0074]
The negative electrode and the positive electrode were opposed to each other through a separator, and the battery was assembled in a stainless steel cell. As electrolyte, 1M LiPF6/ (EC + DMC) 0.4 mL was used. The separator used was “Celguard # 3501 (trade name)” manufactured by Celgard. The electrolyte solution was LiPF in a solvent in which ethylene carbonate (EC) and dimethyl carbonate (DMC) were mixed at a volume ratio of 1: 1.6(Mitsubishi Chemical Corporation, trade name "Sollite"). The battery was assembled in an argon gas atmosphere.
[0075]
In order to evaluate the performance of the negative electrode, the initial efficiency of the battery was calculated. The battery is charged with a current density of 0.4 mA / cm.2After charging to 0 V with a constant current value of (0.1 C), the current value is 0.01 mA / cm at a constant potential of 0 V.2This was done until The battery discharge is performed at a current value of 0.4 mA / cm.2Until 1V. It calculated by the following formula (2) from the first charge capacity and discharge capacity. Table 2 shows the calculation results. The positive electrode of the battery is a lithium foil.
[0076]
[Expression 1]
Figure 0004188649
[0077]
Moreover, in order to evaluate the performance of a negative electrode, the cycling characteristics of the battery were calculated. The battery was charged to 4.2 V at a current value of 6.4 mA, and then charged at a constant voltage of 4.2 V until the current value reached 0.2 mA. The battery was discharged until it reached 3.0 V at a current value of 6.4 mA. The cycle characteristics were calculated by the following equation (3) from the discharge capacity at the first cycle and the discharge capacity when charging / discharging was repeated 20, 50, 80, 100 cycles. The calculation results are also shown in Table 2. The positive electrode of the battery is LiCoO2It is an electrode which uses as active material.
[0078]
The cycle characteristics (%) are plotted in FIG. 7 against the number of cycles (times). In FIG. 7, the result when the spheroidized graphite particles obtained in Experimental Example 1 are used as an electrode material is ◯, the result when the spheroidized graphite particles obtained in Experimental Example 2 are used as an electrode material is □, The results when the spheroidized graphite particles obtained in Experimental Example 3 are used as electrode materials are indicated by Δ, and the results when the spheroidized graphite particles obtained in Experimental Example 4 are used as electrode materials are indicated by ×.
[0079]
[Expression 2]
Figure 0004188649
[0080]
[Table 2]
Figure 0004188649
[0081]
As apparent from Tables 1 and 2, since the spheroidized graphite particles obtained in Experimental Example 1 have a large amount of acidic functional groups, the initial efficiency of a battery using the spheroidized graphite particles as an electrode material is as follows. The initial efficiency of the battery using the spheroidized graphite particles obtained in Experimental Examples 2 to 4 as the electrode material is worse. That is, the spheroidized graphite particles obtained in Experimental Examples 2 to 4 have almost no acidic functional group, and the use of the spheroidized graphite particles as an electrode material can increase the initial efficiency of the battery.
[0082]
Further, as apparent from Table 2 and FIG. 7, the cycle characteristics of the battery using the spheroidized graphite particles obtained in Experimental Example 1 as the electrode material deteriorates rapidly as the number of cycles increases, and charge / discharge When it is repeated 100 times, it drops to less than 70%. On the other hand, the cycle characteristics of the batteries using the spheroidized graphite particles obtained in Experimental Examples 2 to 4 as an electrode material are less than 80% even when charging and discharging are repeated 100 times, and are 80% or more.
[0083]
【The invention's effect】
According to the present invention, an electrode material for a secondary battery comprising spheroidized graphite particles, which is useful for realizing a secondary battery excellent in initial efficiency and cycle characteristics, is efficiently produced. Can provide a way.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory diagram of an apparatus for producing spheroidized graphite particles.
FIG. 2 is a schematic explanatory diagram of an apparatus for heat-treating spheroidized graphite particles.
FIG. 3 is a drawing-substituting photograph taken with an electron microscope of a spheroidized graphite particle group.
FIG. 4 is a drawing-substituting photograph taken with an electron microscope of a spheroidized graphite particle group.
FIG. 5 is a drawing-substituting photograph taken with an electron microscope of a spheroidized graphite particle group.
FIG. 6 is a drawing-substituting photograph obtained by photographing a spheroidized graphite particle group with an electron microscope.
FIG. 7 is a graph showing the relationship between the number of cycles and cycle characteristics.
[Explanation of symbols]
1 tank 2 feeder
3 Counter nozzle 4 Classifier
5 Blow-up nozzle 6 Hopper
7 Electric furnace 8 Water tank
9 Spiral tube 10 Heating source
11-12 route

Claims (5)

球状化黒鉛粒子よりなる二次電池用電極材料を製造する方法であって、
球状化黒鉛粒子を非酸化性雰囲気下で急速加熱および/または急速冷却して、球状化黒鉛粒子表面に亀裂を生じさせることを特徴とする二次電池用電極材料の製法。
A method for producing an electrode material for a secondary battery comprising spheroidized graphite particles,
The spheroidized graphite particles by rapid heating and / or rapid cooling under a non-oxidizing atmosphere, preparation of the secondary battery electrode material characterized Rukoto cause cracks in the spheroidized graphite particle surface.
前記急速加熱を昇温速度50℃/s以上および/または前記急速冷却を降温速度50℃/s以上で行なう請求項1に記載の製法。  The process according to claim 1, wherein the rapid heating is performed at a temperature rising rate of 50 ° C./s or more and / or the rapid cooling is performed at a temperature decreasing rate of 50 ° C./s or more. 前記球状化黒鉛粒子を非酸化性雰囲気下で加熱した後、非酸化性雰囲気下で降温速度50℃/s以上で急速冷却する請求項1に記載の二次電池用電極材料の製法。The method for producing an electrode material for a secondary battery according to claim 1, wherein the spheroidized graphite particles are heated in a non-oxidizing atmosphere and then rapidly cooled in the non-oxidizing atmosphere at a temperature decrease rate of 50 ° C / s or more. 前記急速冷却時の温度降下量が、500℃以上である請求項1〜3のいずれか一項に記載の二次電池用電極材料の製法。The manufacturing method of the electrode material for secondary batteries as described in any one of Claims 1-3 whose amount of temperature drops at the time of the said rapid cooling is 500 degreeC or more. 前記球状化黒鉛粒子を非酸化性雰囲気下で昇温速度50℃/s以上で急速加熱した後、降温速度50℃/s以上で急速冷却する請求項1〜4のいずれか一項に記載の二次電池用電極材料の製法。5. The spheroidized graphite particles are rapidly heated in a non-oxidizing atmosphere at a temperature rising rate of 50 ° C./s or more, and then rapidly cooled at a temperature falling rate of 50 ° C./s or more. Manufacturing method of electrode material for secondary battery.
JP2002269098A 2002-09-13 2002-09-13 Manufacturing method for secondary battery electrode materials Expired - Fee Related JP4188649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002269098A JP4188649B2 (en) 2002-09-13 2002-09-13 Manufacturing method for secondary battery electrode materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002269098A JP4188649B2 (en) 2002-09-13 2002-09-13 Manufacturing method for secondary battery electrode materials

Publications (2)

Publication Number Publication Date
JP2004111110A JP2004111110A (en) 2004-04-08
JP4188649B2 true JP4188649B2 (en) 2008-11-26

Family

ID=32267137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002269098A Expired - Fee Related JP4188649B2 (en) 2002-09-13 2002-09-13 Manufacturing method for secondary battery electrode materials

Country Status (1)

Country Link
JP (1) JP4188649B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101430405B1 (en) 2013-02-22 2014-08-14 (주)우주일렉트로닉스 Anode material for lithium ion battery and pruducing method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101309859B (en) * 2005-12-14 2011-03-09 日本焦化工业株式会社 Graphite particle, carbon-graphite composite particle and their production process
CN102203989B (en) 2008-10-31 2014-05-14 三菱化学株式会社 Negative electrode material for nonaqueous secondary battery
WO2020105196A1 (en) * 2018-11-22 2020-05-28 日立化成株式会社 Negative electrode material for lithium-ion secondary cell, method for manufacturing negative electrode material for lithium-ion secondary cell, negative electrode material slurry for lithium-ion secondary cell, negative electrode for lithium-ion secondary cell, and lithium-ion secondary cell
CN113346076B (en) * 2021-05-14 2023-01-24 沁新集团(天津)新能源技术研究院有限公司 Surface modified graphite negative electrode material of lithium ion battery and preparation method thereof
CN114804095B (en) * 2022-04-27 2023-12-12 中南大学 Graphite negative electrode active material prepared from spheroidized graphite micropowder waste, and preparation method and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101430405B1 (en) 2013-02-22 2014-08-14 (주)우주일렉트로닉스 Anode material for lithium ion battery and pruducing method thereof

Also Published As

Publication number Publication date
JP2004111110A (en) 2004-04-08

Similar Documents

Publication Publication Date Title
CN107615531B (en) Transition metal-containing composite hydroxide and method for producing same, nonaqueous electrolyte secondary battery and positive electrode active material for same, and method for producing same
CN108025925B (en) Composite hydroxide containing nickel and manganese and method for producing same
US9406930B2 (en) Nickel composite hydroxide and production method thereof, cathode active material for non-aqueous electrolyte secondary battery and production method thereof, and nonaqueous electrolyte secondary battery
KR101245418B1 (en) Titanium and dense lithium mixed oxide powder compound, method for producing said compound and compound-containing electrode
JP4499498B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode material
CN1186833C (en) Non-aqueous electrolyte secomdary battery
Guo et al. Aerosol assisted synthesis of hierarchical tin–carbon composites and their application as lithium battery anode materials
CN110462895B (en) Lithium metal composite oxide powder with suppressed gas evolution
JP2024026097A (en) Transition metal-containing composite hydroxide and its manufacturing method, positive electrode active material for nonaqueous electrolyte secondary batteries and its manufacturing method, and nonaqueous electrolyte secondary battery
JP2001196059A (en) Nonaqueous electrolyte battery
EP2838143A1 (en) Negative electrode for nonaqueous electrolyte rechargeable battery and nonaqueous electrolyte rechargeable battery using same
JP4209649B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery containing the negative electrode material, and lithium ion secondary battery using the negative electrode
KR101974279B1 (en) Lithium ion secondary battery and method of manufacturing same
US7563543B2 (en) Negative electrode of lithium ion secondary battery obtained by isostatically pressing a spherical graphite to eliminate voids therein
JP6601937B2 (en) Negative electrode active material, negative electrode employing the same, lithium battery, and method for producing the negative electrode active material
KR101520557B1 (en) Non-aqueous electrolyte secondary battery
JP4188649B2 (en) Manufacturing method for secondary battery electrode materials
JP4032624B2 (en) Method for producing lithium transition metal composite oxide
JP2006114408A (en) Lithium manganese complex oxide particle and positive electrode for secondary battery using this, as well as lithium secondary battery
CN112820872A (en) Ternary cathode material, preparation method thereof and lithium ion battery
JP4133151B2 (en) Manufacturing method for secondary battery electrode materials
KR102307910B1 (en) Cathode active material for lithium ion secondary battery, method for preparing the same, and lithium ion secondary battery including the same
CN108778990A (en) The manufacturing method of phosphoric acid vanadium lithium
JP4338489B2 (en) Graphite for secondary battery electrode, electrode for secondary battery containing graphite for electrode, and lithium ion secondary battery using the electrode
JP4032784B2 (en) Method for producing lithium transition metal composite oxide

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040722

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080911

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees