JP2004111110A - Manufacturing method of electrode material for secondary battery - Google Patents

Manufacturing method of electrode material for secondary battery Download PDF

Info

Publication number
JP2004111110A
JP2004111110A JP2002269098A JP2002269098A JP2004111110A JP 2004111110 A JP2004111110 A JP 2004111110A JP 2002269098 A JP2002269098 A JP 2002269098A JP 2002269098 A JP2002269098 A JP 2002269098A JP 2004111110 A JP2004111110 A JP 2004111110A
Authority
JP
Japan
Prior art keywords
graphite particles
spheroidized graphite
secondary battery
spheroidized
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002269098A
Other languages
Japanese (ja)
Other versions
JP4188649B2 (en
Inventor
Naoki Matoba
的場 直樹
Tetsushi Kubota
久保田 哲史
Junichi Yasumaru
安丸 純一
Shingo Asada
朝田 真吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Coke and Chemicals Co Ltd
Original Assignee
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Coke and Chemicals Co Ltd filed Critical Kansai Coke and Chemicals Co Ltd
Priority to JP2002269098A priority Critical patent/JP4188649B2/en
Publication of JP2004111110A publication Critical patent/JP2004111110A/en
Application granted granted Critical
Publication of JP4188649B2 publication Critical patent/JP4188649B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of electrode material for secondary battery made of globular graphite particles useful for effectively manufacturing the secondary battery with excellent initial efficiency and cycle property. <P>SOLUTION: In the manufacturing method of the electrode material for the secondary battery made of globular graphite particles, the globular graphite particles are rapidly heated and/or cooled under non-oxidizing atmosphere. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、球状化黒鉛粒子よりなる二次電池用の電極材料を製造する方法に関するものである。
【0002】
【従来の技術】
最近、電子機器等の小型化に伴い、電源となる電池も小型化が求められており、特に電池の高容量化の観点からリチウムイオン二次電池が注目されている。リチウムイオン二次電池の中でも、負極に炭素材料を用いたものは、大容量が得られ、且つ、安全で高電圧が得られるといった点でも有用である。
【0003】
ところが、一般に炭素材料の表面には種々の官能基(例えば、カルボキシル基やフェノール基、ラクトン基、カルボニル基など)が存在するので、この官能基が初回の充電時に電解液と反応して副反応を起こし、充電容量を損失させる。そのため充電に必要な電気容量が、放電に必要な電気容量よりも高くなり、初回の充電効率(以下、「初期効率」と称する場合がある)が低くなる。この問題を解決すべく、炭素材料の原料を真空下または還元性雰囲気下で熱処理することにより炭素材料表面に存在する官能基量を低減することが提案されている(例えば、特許文献1参照。)。しかし、この技術では、炭素材料として鱗片状の黒鉛を用いているので、次の様な問題が生じてくる。
【0004】
すなわち、電池用に用いられる炭素材料としては、天然黒鉛や人造黒鉛があり、電極を成形する際には、粉砕した天然黒鉛や人造黒鉛と溶媒およびバインダー(結着材)を混合してスラリーとしたものを対象物に塗布するのが一般的である。しかし、黒鉛の形状が鱗片状のものを用いるとスラリーの流動性が悪くなって塗布作業性が著しく損なわれる。
【0005】
本発明者らは、こうした問題点の改善を期して研究を重ねた結果、鱗片状の天然黒鉛を粉砕してから再凝集させて球状化することによって、鱗片状黒鉛の利点を維持しながらスラリー特性が改善されると共に、大きな放電電流値での放電容量の低下も抑えられることをつきとめ、こうした知見を基に先に提案した(例えば、特許文献2参照。)。
【0006】
しかし、球状化黒鉛粒子表面に官能基が多量に存在すると、前記特許文献1に指摘されている様に、初回充電時に該官能基が電解液と反応して初期効率の低下を引き起こす。また、鱗片状の黒鉛を粉砕してから再凝集させて球状化するとスラリー特性は良くなるものの黒鉛粒子同士や黒鉛粒子とバインダー粒子との接点が減少し、粒子同士の接点が少なくなって密着性が悪くなり、導電性が低下してサイクル特性の低下を引き起こす。さらに、鱗片状黒鉛粒子を粉砕後、再凝集させて球状化すると、該黒鉛粒子の表面は鱗片状の黒鉛で覆われた状態となり、電解液が該粒子表面から内部へ浸透し難くなって通液性が悪くなり、充放電を繰り返したときのサイクル特性にも悪影響を及ぼす。
【0007】
【特許文献1】
特開平8−148185号公報
【特許文献2】
特開平11−263612号公報
【0008】
【発明が解決しようとする課題】
本発明は、この様な問題点に鑑みてなされたものであり、その目的は、球状化黒鉛粒子よりなる二次電池用電極材料として、特に初期効率とサイクル特性に優れた二次電池を実現するために有用な二次電池用電極材料を効率良く製造できる方法を提供することにある。
【0009】
【課題を解決するための手段】
上記課題を解決することのできた本発明に係る二次電池用電極材料の製法とは、球状化黒鉛粒子よりなる二次電池用電極材料を製造する方法であって、球状化黒鉛粒子を非酸化性雰囲気下で急速加熱および/または急速冷却する点に要旨を有する。
【0010】
本発明では、急速加熱する場合は、昇温速度50℃/s以上で行なうことが好ましく、急速冷却する場合は、降温速度50℃/s以上で行なうことが好ましい。
【0011】
【発明の実施の形態】
本発明者らは、前述した様な課題を解決すべく、様々な角度から検討してきた。その結果、鱗片状黒鉛を球状化した黒鉛粒子を非酸化性雰囲気下で処理してやれば、球状化黒鉛粒子が有する官能基量を所定量以下に抑制できると共に、球状化黒鉛粒子の表面形状を改質でき、上記課題を見事解決できることを見出し、本発明を完成した。以下、本発明の作用効果について説明する。
【0012】
本発明の二次電池用電極材料は、鱗片状黒鉛を粉砕した後、再凝集させて球状化したものである。上述した様に、鱗片状の黒鉛を粉砕した後、これらを再凝集させて球状化した黒鉛粒子は、溶媒やバインダーと混合するときの流動性が良好となるからである。
【0013】
ここで、球状化黒鉛粒子の原料としては、鱗片状の天然黒鉛や人造黒鉛を使用することができ、例えば、鱗片状天然黒鉛は、一般に85%から99%を上まわる純度で入手できるのでそのまま用いれば良い。必要に応じて、公知の方法でさらに純度を高めることも好ましい。原料となる黒鉛の粒度には種々のものがあるが、球状化前の鱗片状黒鉛(原料)は、平均粒子径が10〜200μm程度のものを用いるのが好ましい。
【0014】
また、球状とは、サッカーボールやテニスボールの様な真球状のみならず、ラグビーボールの様な楕円体のものも含む意味であり、本発明では円形度が0.86程度以上のものを指す。但し、円形度は三次元の黒鉛粒子を二次元平面に投影して算出される指標であるので、例えば一般的に入手できる鱗片状天然黒鉛粒子の円形度を算出すると0.84程度になり、本発明の黒鉛粒子の円形度と近似するが、鱗片状黒鉛粒子(原料)は平面的な粒子であるのに対し、本発明における二次電池用電極材料の実際の形状は立体的であり全く異なる。
【0015】
球状化黒鉛粒子は、鱗片状黒鉛を粉砕した後、これらを再凝集させることにより得ることができるが、球状化黒鉛粒子を製造する具体的な方法は特に限定されない。例えば、本発明者らが先に提案した方法(特開平11−263612号)やこれに類似する方法で製造できる。以下、製法の一例を図面を参酌しつつ説明する。
【0016】
図1は、球状化黒鉛粒子を製造する装置の概略説明図であり、1は槽、2はフィーダー、3は対向ノズル、4は分級機、5は吹き上げノズルを夫々示している。
【0017】
鱗片状黒鉛(原料)を、槽1に設けられたフィーダー2から槽1内へ供給する。フィーダー2は、ホッパー式のものを槽1の適当箇所に設置することが好ましく、球状化黒鉛粒子の取出口としても利用できる。また、フィーダー2は、スクリュー式のものを槽1の下部に設けてもよい。槽1内への原料供給量は、槽1の容量を考慮して定めれば良い。
【0018】
槽1の下部側には槽壁を貫通して対向ノズル3を設け、対向ノズル3からジェット気流を吹き込むことにより、槽1内の下部側に衝突域を形成する。衝突域の気流に入った前記鱗片状黒鉛は互いに衝突し、粉砕されながら再凝集して球状化する。
【0019】
対向ノズル3は、複数個(例えば、三〜四個)設けることが好ましい。対向ノズル3からガスを吹き込む際のノズル吐出圧、吹き込みガス量、槽圧などは、円滑な衝突と流動が達成できるように設定され、操作時間を適宜に設定することにより鱗片状黒鉛を球状化する。例えば、ノズル吐出圧は0.01〜0.50MPa程度、吹き込みガス量は0.2〜1.0Nm/min程度、槽圧は−10〜30kPa程度、操作時間は1〜100分程度とすればよい。なお、対向ノズル3から吹き込むガスとしては空気や窒素、水蒸気などを用いれば良く、また槽1内の温度は0〜60℃程度とすれば良い。
【0020】
槽1内では気体の対流が起こり、槽1の下部側の衝突域で互いに衝突して球状化した粒子は、槽1内の対流に沿って上部側へ吹き上げられ、その後再び沈降する。すなわち、粒子は槽1の中心部近傍で吹き上げられた後、槽1の壁際に沿って降下して、槽1内に循環流動が起こる。
【0021】
槽1の上部には、分級機4を設けることで分級限界以下の微粉を槽1外に排出できる。分級機4は、公知のものを設ければ良いが、高速回転分級機を用いるのが通常である。このときの排出量は、原料として用いる鱗片状黒鉛粒子の粒度によって異なる。
【0022】
上記の操作はバッチで行なうことが好ましく、槽1の底部に設けられた吹き上げノズル5から槽1内へ空気を送り込むと球状化黒鉛粒子をフィーダー2から回収できる。
【0023】
ところで、上記の様な方法によって製造された球状化黒鉛粒子を電極材料として使用した場合、得られる二次電池の初期効率は意外にも低いことが明らかになってきた。そこで、二次電池の初期効率が低下する原因について追求したところ、球状化黒鉛粒子の表面に多量の官能基が存在すると、該官能基が初回充電時に電解液と反応して初期効率の低下を引き起こすことを突き止めた。そして、この官能基と電解液の反応についてさらに検討したところ、官能基の中でも特に酸性官能基が初期効率の低下に大きく影響を及ぼすことが分かった。すなわち、酸性官能基とは、カルボキシル基やフェノール基、ラクトン基、カルボニル基などの官能基を指し、これらの官能基は電解液と特に反応し易いことが判明した。
【0024】
また、鱗片状黒鉛を粉砕後再凝集させて球状化した黒鉛粒子を電極材料として使用した場合、得られる二次電池のサイクル特性も意外に低い。この原因は、先にも説明した如く、鱗片状黒鉛を凝集させて球状化することにより、粒子同士の接点が減少して密着性が悪くなり、電極自体の導電性が低下するためと思われる。また、サイクル特性の他の低下原因として、黒鉛粒子内部への通液性の悪化も考えられる。すなわち、鱗片状の黒鉛を球状化すると、この黒鉛粒子の表面は鱗片状の黒鉛で覆われた状態となり、電解液が球状化黒鉛粒子表面から内部へ浸透し難くなって通液性が悪くなると考えられるからである。
【0025】
そこで、本発明者らは、球状化黒鉛粒子表面に存在する酸性官能基量を所定量以下に抑制しつつ、黒鉛粒子表面の接点数を増やし、且つ、電解液が黒鉛粒子表面から内部へ浸透し易くなる様に表面形状を改質できれば、二次電池としての初期効率やサイクル特性を大幅に改善できるのではないかと考え、その線に沿って研究を進めた。その結果、球状化黒鉛粒子を非酸化性雰囲気下で急速加熱および/または急速冷却して得られた球状化黒鉛粒子を、電極材料として使用すると、二次電池の初期効率およびサイクル特性が飛躍的に向上することをつきとめた。
【0026】
すなわち、球状化黒鉛粒子を非酸化性雰囲気下で加熱すると、該黒鉛粒子表面に存在する酸性官能基が分解され、初期効率の低下要因が解消されるためと考えた。そして、球状化黒鉛粒子を、▲1▼非酸化性雰囲気下で急速加熱したあと急速冷却するか、▲2▼非酸化性雰囲気下で急速加熱したあと冷却するか、▲3▼非酸化性雰囲気下で加熱したあと急速冷却すれば、熱衝撃や粒子内ガスの膨張によって黒鉛粒子表面に亀裂が生じ、平滑な粒子表面に凹凸ができて粒子同士の接点数が増加し、加えて、黒鉛粒子表面に生じた該亀裂から電解液が粒子内部へ浸透し易くなるので、黒鉛粒子の内部でも電解反応が起こる結果、サイクル特性が向上するものと考えられる。こうして得られた加熱処理後の球状化黒鉛粒子を電極材料として使用すると、後記実施例によっても明らかな様に初期効率およびサイクル特性に顕著な差異が認められた。
【0027】
以下、本発明の二次電池用電極材料を効率良く製造できる方法について図面を用いて具体的に説明するが、下記に示す構成は本発明を限定する性質のものではなく、前・後記の趣旨に基づいて設計変更することはいずれも本発明の技術的範囲に含まれるものである。
【0028】
図2は、本発明に係る二次電池用電極材料を製造する装置の概略説明図であり、球状化黒鉛粒子を非酸化性雰囲気下で急速加熱および急速冷却することにより二次電池用電極材料を製造する際に用いる装置である。図中、6はホッパー、7は電気炉、8は水槽を夫々示している。電気炉7には、螺旋管9と加熱源10が備えられている。また、水槽8には、脱酸素処理を行なった蒸留水が貯められている。なお、11および12は経路である。
【0029】
鱗片状黒鉛を球状化して得られた黒鉛粒子Aは、経路11からホッパー6へ供給される。一方、加圧した非酸化性ガスBが経路12から供給され、前記ホッパー6の下方から順次排出される球状化黒鉛粒子を、電気炉7内に備えられている螺旋管9へ気流輸送する。電気炉7内は加熱源10によって加熱されており、前記球状化黒鉛粒子は螺旋管9内を通過しつつ急速加熱される。急速加熱された球状化黒鉛粒子は、電気炉7の下方に設けられた水槽8に貯められている蒸留水内へ導入されて急速冷却される。すなわち、球状化黒鉛粒子は非酸化性雰囲気下で急速加熱されることにより粒子内部に包含されているガスが膨張して粒子内部から噴出し、さらに球状化黒鉛粒子が、急速冷却されることで熱衝撃が生じて、粒子表面に亀裂が生じる。このとき、球状化黒鉛粒子は加熱されているので、粒子表面に存在している酸性官能基は熱分解されて粒子表面から除去される。
【0030】
本発明で経路12から非酸化性ガスを供給する理由は、球状化黒鉛粒子表面が酸化されて酸性官能基量が増えない様にするためであり、非酸化性ガスとしては不活性ガスが好ましく、例えば、NやAr、Heなどのガスを用いることができる。
【0031】
非酸化性ガスを加圧する理由は、球状化黒鉛粒子を効率良く電気炉7へ供給するためである。このときのガスの圧力は、管長とガスの熱膨張による管抵抗を考慮して定めると良く、後述する様に、加圧量を調整することで球状化黒鉛粒子を電気炉7へ供給する供給速度を制御でき、該球状化黒鉛粒子を急速加熱できる。
【0032】
電気炉7には加熱源が備えられており、電気炉7内の温度を制御している。電気炉7内の温度は800℃以上にするのが好ましく、より好ましくは1000℃以上、さらに好ましくは1200℃以上である。球状化黒鉛粒子をできるだけ高温に加熱することで急速冷却による熱衝撃を大きくするためである。電気炉7内の温度の上限は特に限定されないが、実操業で用いる電気炉7の能力を考慮すると1400℃程度とするのが良い。なお、図2に示した電気炉7には、加熱源10を4つ設けた場合を示しているが、加熱源10の数は勿論これに限定されるものではなく、電気炉7内の温度を適切に制御できるものであれば幾つでも構わない。
【0033】
電気炉7内には螺旋管9を設けられており、球状化黒鉛粒子はこの螺旋管9内を移動する間に加熱される。球状化黒鉛粒子の輸送管を螺旋状にした理由は、電気炉7内での滞留時間を長くすることができるからであり、球状化黒鉛粒子群を均一温度に加熱できる。また、輸送経路を螺旋状にすることで、装置の省スペース化も図れるので有効である。
【0034】
電気炉7内で加熱された球状化黒鉛粒子は、水槽8に貯められている蒸留水中へ供給されて急速冷却される。このとき、水槽8内は非酸化性ガスで充填されていることが推奨される。電気炉7内で加熱された球状化黒鉛粒子が水槽8内へ供給された途端酸化されるのを防ぐためである。また、前記蒸留水は脱酸素処理されていることが重要である。球状化黒鉛粒子が蒸留水中の酸素で酸化されないためである。蒸留水から脱酸素する手段は特に限定されず、例えば、蒸留水を窒素ガスでバブリングして脱酸素すれば良い。蒸留水の温度は、球状化黒鉛粒子が急速冷却される程度の温度であれば特に限定されず、室温付近(0〜50℃程度)に保持すれば良い。蒸留水の温度を一定に保持するために、必要に応じて水槽8に冷却装置を設置するのも好ましい。
【0035】
ここで、急速加熱は、電気炉7における入側温度からの昇温速度を50℃/s以上とするのが好ましく、より好ましくは100℃/s以上、さらに好ましくは300℃/s以上である。球状化黒鉛粒子を急速加熱することにより粒子表面に部分的剥がれや亀裂が生じやすくなる。球状化黒鉛粒子を急速加熱するには、経路12から供給する非酸化性ガスの圧力を調整すると共に、電気炉7の設定温度を高くすれば良い。該ガスの流れに沿って球状化黒鉛粒子が電気炉7内を移動するので、ガスの圧力が高ければ、球状化黒鉛粒子の移動速度も高くなり、またガス流量も多くなり、結果的に昇温速度を制御できるからである。
【0036】
また、急速冷却は、電気炉7における出側温度からの降温速度を50℃/s以上とするのが好ましく、より好ましくは100℃/s以上、さらに好ましくは300℃/s以上である。急速冷却することにより粒子表面に部分的剥がれや亀裂が生じやすくなる。球状化黒鉛粒子を急速冷却するには、上述した様に、例えば経路12から吹き込む非酸化性ガスの圧力を制御すれば良い。また、水槽8内に貯められている蒸留水の液面を、螺旋管9の出側に近づけることによっても冷却速度を高めることができる。さらに、水槽8内に貯える蒸留水量を多くし、該蒸留水を攪拌しても良い。
【0037】
本発明では、電気炉7における出側温度と蒸留水の温度との差、すなわち、急速冷却時の温度降下量を、少なくとも500℃以上とするのが好ましい。球状化黒鉛粒子に熱衝撃を発生させるためには温度差による熱衝撃が重要となるからである。この温度降下量は、より好ましくは800℃以上とするのが望ましい。
【0038】
本発明の二次電池用電極材料は、鱗片状黒鉛を粉砕した後再凝集させて得られた球状化黒鉛粒子を、非酸化性雰囲気下で急速加熱したあと冷却することによっても製造できる。すなわち、前記図2において、電気炉7内で加熱された球状化黒鉛粒子を、例えば蒸留水を貯めていない水槽8へ供給して冷却すれば、本発明の二次電池用電極材料を製造できる。球状化黒鉛粒子を非酸化性雰囲気下で急速加熱することにより粒子内部に包含されているガスが膨張して粒子内部から噴出して粒子表面に亀裂が生じるからである。このとき、前記水槽8内は予め非酸化性ガス(例えば、不活性ガス)で充填しておくことが推奨される。加熱された球状化黒鉛粒子表面を水槽8内で酸化させないためである。
【0039】
また、本発明の二次電池用電極材料は、鱗片状黒鉛を粉砕した後再凝集させて得られた球状化黒鉛粒子を、非酸化性雰囲気下で加熱したあと急速冷却することによっても製造できる。すなわち、電気炉内で加熱した球状化黒鉛粒子を、例えば脱酸素処理された蒸留水を貯めた水槽へ供給して急速冷却すれば、本発明の二次電池用電極材料を製造できる。加熱した球状化黒鉛粒子を急速冷却することにより粒子表面に熱衝撃が生じて、亀裂が生じるからである。
【0040】
上記方法で得られた加熱処理後の球状化黒鉛粒子の酸性官能基量を調べたところ、酸性官能基量が2ミリ当量/kg以下の球状化黒鉛粒子を二次電池用電極材料として使用すると、二次電池の初期効率が良好になることが判明し、サイクル特性の向上が期待される。すなわち、球状化黒鉛粒子表面に存在する酸性官能基量が2ミリ当量/kg以下であれば、この球状化黒鉛粒子を二次電池用電極材料として使用しても、初回の充電時に酸性官能基と電解液の反応が殆ど生じないので、初期効率を高めることができる。酸性官能基量は、好ましくは0.5ミリ当量/kg以下に抑制するのが望ましい。なお、当量とは、酸性官能基の酸としての化学当量を意味する。また、酸性官能基量を所望量以下に抑制する方法については後述する。
【0041】
酸性官能基量を定量する手段としては、例えば、Boehmらの方法が挙げられる。この測定方法は以下の通りである。
【0042】
<Boehmらの方法>
球状化黒鉛粒子10gと0.01mol/LのCONa水溶液50gをフラスコ中で2時間攪拌後、22時間室温で静置する。静置後、さらに30分間攪拌してから濾過し、濾液を回収する。回収した濾液25mLを0.01mol/LのHCl水溶液で中和滴定し、pHが4.0に到達するまでに要したHCl水溶液量(mL)を測定する。該HCl水溶液量と下記(1)式から酸性官能基量(ミリ当量/kg)を算出する。
酸性官能基量=(25−HCl水溶液量)×2    ・・・(1)
【0043】
次に、球状化黒鉛粒子の外観形状についても特異性を調べた。即ち、加熱処理後の球状化黒鉛粒子群を電子顕微鏡で観察したところ、特有の外観形状が観察されたので、この外観形状と初期効率やサイクル特性との関係を調べた。その結果、球状化黒鉛粒子群を、電子顕微鏡を用いて600倍で観察したときに、少なくとも5つの視野内に観察される粒子の表面に表皮の部分的剥がれがあるものは、二次電池用電極材料として卓越したサイクル特性を与えることが分かった。つまり、この要件を満足たす球状化黒鉛粒子は、粒子表面に適量の亀裂が生じているので表面に凹凸が生じ、粒子同士の接点が増加して密着性を高めることができる。また、粒子表面に生じた亀裂から電解液が粒子内部へ浸透し易くなるので、粒子内部での電解反応も促進される。従って、前記加熱処理によって特有の表面特性が与えられた球状化黒鉛粒子を用いて電極を作成し、該電極によって二次電池を構成すると、サイクル特性に優れた二次電池を実現できるのである。
【0044】
電子顕微鏡の観察倍率については、本発明者らが球状化黒鉛粒子群を種々の倍率で観察したところ、粒子表面の性状を観察するのに最も適切な倍率は600倍であったので上記の様に規定している。そして、観察倍率が600倍であれば、観察視野内に複数個の球状化黒鉛粒子が観察されるので、球状化黒鉛粒子群としている。
【0045】
観察視野を少なくとも5つとした理由は、観察視野が5つよりも少なければ、観察誤差を生じやすいからである。但し、観察視野が多過ぎると、測定精度は高まるが操作が煩雑になるので、観察視野は5つ程度で充分である。なお、本発明で用いる電子顕微鏡の種類は特に限定されず、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などを用いることができる。
【0046】
本発明では、粒子表面のうち50%以上に表皮の部分的剥がれが観察されるのが好ましい。粒子表面に表皮の部分的剥がれが殆ど無く、部分的な剥がれが粒子表面の50%未満の面積にしか観察されない黒鉛粒子を、電極材料として使用した場合は、該黒鉛粒子表面が平滑で粒子同士の接点が少ないと考えられるからである。また、粒子表面が粗大な鱗片状黒鉛で均一に覆われていたり、粒子表面から粒子内部への電解液の流路となる粒子表面における割れ(亀裂)が少ないと、電解液が粒子内部へ殆ど浸透せず、粒子内部における電解液との反応が期待できないからである。表皮の部分的な剥がれは、球状化黒鉛粒子を非酸化性雰囲気下で急速加熱することで粒子内に内包されているガス分(例えば、空気)が急激に膨張して粒子内から噴出するときに生じたり、加熱された球状化黒鉛粒子が急速冷却されたときに生じる熱衝撃によって粒子表面に亀裂が生じるものと考えられる。これらの部分的な剥がれや亀裂は、電子顕微鏡で観察すると粒子表面がささくれ立った様に見える。
【0047】
本発明の球状化黒鉛粒子では、後記実施例で示す電子顕微鏡写真から明らかな様に、表面が平滑ではなく、ささくれ立った様に複数の段差があるので、粒子同士の接点が多くなる。従って、本発明の二次電池用電極材料を用いて二次電池用電極を作成すると、電極作成時に密着性が高まって、導電性が向上し、サイクル特性が高まる。
【0048】
本発明では、上記方法で得られた球状化黒鉛粒子を、種々の二次電池用電極材料として用いることができるが、非水系の二次電池用電極材料として用いるのが好適である。非水系の二次電池としては、リチウムイオン二次電池が例示される。
【0049】
本発明の二次電池用電極材料を用いて電極を作成する際には、バインダーと混合して成形するのが一般的であり、得られた電極は、種々の二次電池用の電極として用いることができる。二次電池としては種々のものがあるが、本発明の二次電池用の電極は、非水系二次電池用の電極として好適に用いることができる。特に、リチウムイオンを黒鉛構造層間へスムーズに脱挿入できるといった理由で、リチウムイオン二次電池の負極として構成するのが最も好ましい。
【0050】
本発明の二次電池用電極を負極として構成されるリチウムイオン二次電池の負極材料としては、本発明の球状化黒鉛粒子の他に、バインダーとして例えばカルボキシメチルセルロースやスチレンブタジエンゴム、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレンなどを混合し、負極を作成すればよい。
【0051】
リチウムイオン二次電池における正極材料としては、例えば、LiCoOやLiNiO、LiNi1−yCo、LiMnO、LiMn、LiFeOなどが用いられる。正極のバインダーとしては、ポリフッ化ビニリデン(PVdF)やポリ四フッ化エチレン(PTFE)などを採用できる。また、導電材として、カーボンブラックなどを混合しても良い。
【0052】
リチウムイオン二次電池における電解液としては、例えば、エチレンカーボネート(EC)などの有機溶媒や、該有機溶媒とジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、1,2−ジメトキシエタン、1,2−ジエトキシメタン、エトキシメトキシエタンなどの低沸点溶媒との混合溶媒に、LiPFやLiBF、LiClO、LiCFSO、LiAsFなどの電解液溶質(電解質塩)を溶解した溶液が用いられる。
【0053】
リチウムイオン二次電池におけるセパレータとしては、例えば、ポリエチレンやポリプロピレンなどのポリオレフィンを主成分とした不織布、クロス、微孔フィルム等が用いられる。
【0054】
【実施例】
以下、本発明を実施例によって更に詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に適合し得る範囲で適当に変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。
【0055】
中国産の鱗片状天然黒鉛(平均粒子径:40μm、純度:99%以上)をホソカワミクロン社製カウンタージェットミル100AFGで球状化した。
【0056】
図1は、ホソカワミクロン社製カウンタージェットミル100AFG(球状化黒鉛粒子を製造する装置)の概略説明図である。槽1の内部は円筒状であり、槽1の下部側には三個の対向ノズル3(ノズル内径:2.5mm)が中心を向く様に対向して配置されている。槽1の頂部には分級機4の一例として高速回転分級機を配置している。フィーダー2は槽1の側壁に設けられており、槽1の底部には吹き上げノズル5を設けている。なお、図1では、対向ノズルを一個のみ図示した。
【0057】
前記鱗片状天然黒鉛200gをフィーダー2から導入して、次に示す条件で球状化した。球状化条件は、対向ノズル3のノズル吐出空気圧:0.13MPa、操作時間:20分間、槽1内温度:30℃である。
【0058】
得られた球状化黒鉛粒子の平均粒径は20μmであり、これを分級による粒度調整をして平均粒径30μmとした。
【0059】
実験例1
球状化した黒鉛粒子(平均粒径:30μm、純度:99%以上)群を、日本電子社製電子顕微鏡(装置名:JXA−733)を用いて600倍で観察した。球状化黒鉛粒子群を電子顕微鏡で撮影した図面代用写真を図3に示す。
【0060】
実験例2
球状化した黒鉛粒子(平均粒子径:30μm、純度:99%以上)群を、前記図2に示す装置で急速加熱および急速冷却して加熱処理した。
【0061】
球状化黒鉛粒子を経路11からホッパー6へ供給すると共に、経路12から非酸化性ガスとして窒素ガスを0.4MPa(30NL/min)で吹き込んで球状化黒鉛粒子を電気炉7へ送給する。電気炉7内は加熱源10で800℃に加熱されており、電気炉7へ導入された球状化黒鉛粒子は昇温速度200℃/sで急速加熱される。球状化黒鉛粒子は螺旋管9内を移動しつつ加熱され、電気炉7の下方から水槽8に貯められている蒸留水内へ導入される。この蒸留水は窒素ガスでバブリングして予め脱酸素処理したものであり、30℃に維持されている。このとき、電気炉7出側から水面までの距離は30cmであり、球状化黒鉛粒子は28m/sの速度で蒸留水中へ導入されるので、降温速度は70000℃/sで急速冷却される。また、水槽8内は前記経路12から供給される非酸化性ガスと同じガス(窒素ガス)で充填されている。
【0062】
急速冷却した球状化黒鉛粒子を乾燥させて平均粒子径を測定すると、30μmであった。急速冷却後の球状化黒鉛粒子群を、日本電子社製電子顕微鏡(装置名:JXA−733)を用いて600倍で観察した。球状化黒鉛粒子群を電子顕微鏡で撮影した図面代用写真を図4に示す。
【0063】
実験例3
球状化した黒鉛粒子(平均粒子径:30μm、純度:99%以上)群を、前記図2に示す装置で急速加熱したあと冷却した。但し、水槽8内は窒素ガスで充填されているが、水槽8内に蒸留水は貯められておらず、図示しないヒーターで800℃に保持されている。
【0064】
前記実験例2と同じ条件で電気炉7内において急速加熱された球状化黒鉛粒子は、電気炉7の下方から水槽8内へ導入されて回収される。球状化黒鉛粒子回収後、ヒーターの電源を切断して室温まで冷却(放冷)した。
【0065】
室温まで冷却した球状化黒鉛粒子の平均粒子径を測定すると、30μmであった。また、冷却後の球状化黒鉛粒子群を、日本電子社製電子顕微鏡(装置名:JXA−733)を用いて600倍で観察した。球状化黒鉛粒子群を電子顕微鏡で撮影した図面代用写真を図5に示す。
【0066】
実験例4
球状化した黒鉛粒子(平均粒子径:30μm、純度:99%以上)群を、蓋付きシャーレ(ステンレス製)に封入し、箱型電気炉にて室温(25℃)から800℃まで2時間かけて加熱した。加熱後、シャーレごと蒸留水内へ導入して急速冷却した。この蒸留水は窒素ガスでバブリングして予め脱酸素処理したものであり、30℃に維持されている。このときの降温速度は、前記実験例2と同様に70000℃/s程度と推定される。なお、水槽8内は窒素ガスで充填されている。
【0067】
急速冷却した球状化黒鉛粒子を乾燥させて平均粒子径を測定すると、30μmであった。急速冷却後の球状化黒鉛粒子群を、日本電子社製電子顕微鏡(装置名:JXA−733)を用いて600倍で観察した。球状化黒鉛粒子群を電子顕微鏡で撮影した図面代用写真を図6に示す。
【0068】
上記実験例1〜4で得られた球状化黒鉛粒子の酸性官能基量を、前述したBoehmらの方法によって測定した。結果を表1に示す。
【0069】
【表1】

Figure 2004111110
【0070】
次に、上記実験例1〜4で得られた球状化黒鉛粒子を二次電池用電極材料として用いて、コイン型のリチウムイオン二次電池を作製し、負極の性能として初期効率とサイクル特性を評価した。
【0071】
リチウムイオン二次電池(コイン型)用の負極は、次に示す様に作成した。上記実験例1〜4で得られた球状化黒鉛粒子100質量部に対して、バインダーとしてカルボキシメチルセルロース1質量部およびスチレンブタジエンゴム粉末1質量部を混合し、これに純水100質量部を加えてスラリー状にした。得られたスラリーを厚さ18μmの銅箔上に塗布し、乾燥機(100℃)で15分間乾燥した。乾燥後の膜を直径1.6cmの円形に打ち抜いたのち、銅箔を除く塗布量を測定すると20mgであった。この膜をローラープレス機で、銅箔上に塗布した塗布物の密度が1.6g/ccとなるようにプレスしてリチウムイオン二次電池用の負極を作製した。
【0072】
リチウムイオン二次電池(コイン型)用の正極は、初期効率を算出するために作製するリチウムイオン二次電池用の正極としてはリチウム箔を用い、サイクル特性を算出するために作製するリチウムイオン二次電池用の正極としてはLiCoOを活物質とする電極を用いた。LiCoOを活物質とする電極は、次に示す方法で作成した。
【0073】
LiCoO90質量部に対して、バインダーとしてポリフッ化ビニリデン(PVdF)5質量部、導電材としてカーボンブラック5質量部を夫々混合し、これにN−メチル−2−ピロリドン(NMP)200質量部を加えてスラリー状にする。得られたスラリーを厚さ30μmのアルミ箔上に塗布し、乾燥機(100℃)で1時間乾燥した。乾燥後の膜を直径1.6cmの円形に打ち抜いたのち、アルミ箔を除く塗布量を測定すると45mgであった。この膜をローラープレス機で、アルミ箔上に塗布した塗布物の密度が2.8g/ccとなるようにプレスしてリチウムイオン二次電池用の正極を作製した。
【0074】
負極と正極を、セパレータを介して対向させ、ステンレス製セルに組み込み電池を作製した。電解液としては、1MのLiPF/(EC+DMC)0.4mLを用いた。セパレータはCelgard社製の「セルガード#3501(商品名)」を用いた。なお、電解液は、エチレンカーボネート(EC)とジメチルカーボネート(DMC)を容積比1:1で混合した溶媒に、LiPFを1Mの割合で溶解したものである(三菱化学社製、商品名「ソルライト」)。また、電池の組み立てはアルゴンガス雰囲気下で行なった。
【0075】
負極の性能を評価するために電池の初期効率を算出した。電池の充電は、電流密度0.4mA/cm(0.1C)の定電流値で0Vまで充電した後、0Vの定電位で電流値が0.01mA/cmとなるまで行なった。電池の放電は、電流値0.4mA/cmで1Vになるまで行なった。一回目の充電容量と放電容量から下記(2)式で計算した。算出結果を表2に示す。なお、電池の正極はリチウム箔である。
【0076】
【数1】
Figure 2004111110
【0077】
また、負極の性能を評価するために電池のサイクル特性を算出した。電池の充電は、電流値6.4mAで4.2Vまで充電した後、4.2Vの定電圧で電流値が0.2mAとなるまで行なった。電池の放電は、電流値6.4mAで3.0Vとなるまで行なった。サイクル特性は、1サイクル目の放電容量と充放電を20, 50, 80, 100サイクル繰り返したときの放電容量から下記(3)式で算出した。算出結果を表2に併せて示す。なお、電池の正極はLiCoOを活物質とする電極である。
【0078】
サイクル数(回)に対してサイクル特性(%)を図7にプロットする。図7では、実験例1で得られた球状化黒鉛粒子を電極材料として用いた場合の結果を○、実験例2で得られた球状化黒鉛粒子を電極材料として用いた場合の結果を□、実験例3で得られた球状化黒鉛粒子を電極材料として用いた場合の結果を△、実験例4で得られた球状化黒鉛粒子を電極材料として用いた場合の結果を×で夫々示した。
【0079】
【数2】
Figure 2004111110
【0080】
【表2】
Figure 2004111110
【0081】
表1および表2から明らかな様に、実験例1で得られた球状化黒鉛粒子には多量の酸性官能基が存在するので、この球状化黒鉛粒子を電極材料として使用した電池の初期効率は、実験例2〜4で得られた球状化黒鉛粒子を電極材料として使用した電池の初期効率よりも悪い。すなわち、実験例2〜4で得られた球状化黒鉛粒子には酸性官能基が殆ど無く、この球状化黒鉛粒子を電極材料として使用すると、電池の初期効率を高めることができる。
【0082】
また、表2および図7から明らかな様に、実験例1で得られた球状化黒鉛粒子を電極材料として使用した電池のサイクル特性は、サイクル数が増えるに連れて急激に劣化し、充放電を100回繰り返すと70%未満まで低下している。一方、実験例2〜4で得られた球状化黒鉛粒子を電極材料として使用した電池のサイクル特性は、充放電を100回繰り返しても劣化量は少なく、80%以上となっている。
【0083】
【発明の効果】
本発明によれば、球状化黒鉛粒子よりなる二次電池用電極材料であって、初期効率およびサイクル特性に優れた二次電池を実現するために有用な二次電池用電極材料を効率良く製造できる方法を提供できる。
【図面の簡単な説明】
【図1】球状化黒鉛粒子を製造する装置の概略説明図である。
【図2】球状化黒鉛粒子を加熱処理する装置の概略説明図である。
【図3】球状化黒鉛粒子群を電子顕微鏡で撮影した図面代用写真である。
【図4】球状化黒鉛粒子群を電子顕微鏡で撮影した図面代用写真である。
【図5】球状化黒鉛粒子群を電子顕微鏡で撮影した図面代用写真である。
【図6】球状化黒鉛粒子群を電子顕微鏡で撮影した図面代用写真である。
【図7】サイクル数とサイクル特性との関係を示したグラフである。
【符号の説明】
1 槽             2 フィーダー
3 対向ノズル         4 分級機
5 吹き上げノズル       6 ホッパー
7 電気炉           8 水槽
9 螺旋管          10 加熱源
11〜12 経路[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing an electrode material for a secondary battery comprising spheroidized graphite particles.
[0002]
[Prior art]
Recently, along with the miniaturization of electronic devices and the like, a battery serving as a power source is also required to be miniaturized. In particular, a lithium ion secondary battery is receiving attention from the viewpoint of increasing the capacity of the battery. Among the lithium ion secondary batteries, those using a carbon material for the negative electrode are useful in that a large capacity can be obtained, and a safe and high voltage can be obtained.
[0003]
However, various functional groups (for example, carboxyl group, phenol group, lactone group, carbonyl group, etc.) are generally present on the surface of the carbon material, and these functional groups react with the electrolytic solution during the first charging to cause side reactions. Cause loss of charge capacity. Therefore, the electric capacity required for charging is higher than the electric capacity required for discharging, and the initial charging efficiency (hereinafter, sometimes referred to as “initial efficiency”) is reduced. In order to solve this problem, it has been proposed to reduce the amount of functional groups present on the surface of the carbon material by heat-treating the raw material of the carbon material in a vacuum or a reducing atmosphere (for example, see Patent Document 1). ). However, in this technique, since flaky graphite is used as the carbon material, the following problems occur.
[0004]
That is, carbon materials used for batteries include natural graphite and artificial graphite, and when forming electrodes, crushed natural graphite or artificial graphite is mixed with a solvent and a binder (binder) to form a slurry. It is common to apply the applied material to an object. However, when a graphite having a flaky shape is used, the fluidity of the slurry is deteriorated and coating workability is significantly impaired.
[0005]
The present inventors have conducted studies with the aim of resolving such problems, and as a result, by grinding and re-aggregating flaky natural graphite to form a spheroid, the slurry while maintaining the advantages of flaky graphite The inventors have found that the characteristics are improved, and that the reduction of the discharge capacity at a large discharge current value can be suppressed, and the inventors have proposed the above based on such knowledge (for example, see Patent Document 2).
[0006]
However, when a large amount of a functional group is present on the surface of the spheroidized graphite particles, as pointed out in Patent Document 1, the functional group reacts with the electrolytic solution at the time of the first charge to cause a decrease in the initial efficiency. In addition, when flake graphite is pulverized and then re-agglomerated to form a spheroid, the slurry characteristics are improved, but the number of contacts between graphite particles or between graphite particles and binder particles is reduced, and the number of contacts between particles is reduced and adhesion is reduced. , The conductivity is reduced, and the cycle characteristics are reduced. Furthermore, when the flaky graphite particles are pulverized, reagglomerated and spheroidized, the surface of the graphite particles is in a state of being covered with flaky graphite, and it becomes difficult for the electrolyte to penetrate from the particle surface into the inside. The liquid properties deteriorate, and the cycle characteristics when charge and discharge are repeated are adversely affected.
[0007]
[Patent Document 1]
JP-A-8-148185
[Patent Document 2]
JP-A-11-263612
[0008]
[Problems to be solved by the invention]
The present invention has been made in view of such problems, and has as its object to realize a secondary battery having excellent initial efficiency and cycle characteristics, particularly as an electrode material for a secondary battery composed of spheroidized graphite particles. It is an object of the present invention to provide a method for efficiently producing an electrode material for a secondary battery useful for performing the above.
[0009]
[Means for Solving the Problems]
The method for producing an electrode material for a secondary battery according to the present invention capable of solving the above-mentioned problems is a method for producing an electrode material for a secondary battery comprising spheroidized graphite particles. The gist lies in the point of rapid heating and / or rapid cooling under a neutral atmosphere.
[0010]
In the present invention, the rapid heating is preferably performed at a temperature rising rate of 50 ° C./s or more, and the rapid cooling is preferably performed at a temperature decreasing rate of 50 ° C./s or more.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
The present inventors have studied from various angles in order to solve the problems as described above. As a result, if the graphite particles obtained by spheroidizing the flaky graphite are treated in a non-oxidizing atmosphere, the amount of the functional groups of the spheroidized graphite particles can be suppressed to a predetermined amount or less, and the surface shape of the spheroidized graphite particles is improved. The present inventors have found that the above problems can be solved satisfactorily and the present invention has been completed. Hereinafter, the operation and effect of the present invention will be described.
[0012]
The electrode material for a secondary battery of the present invention is obtained by pulverizing flaky graphite, reaggregating the flake graphite, and spheroidizing the graphite. As described above, after the flake graphite is pulverized, the flake graphite particles are re-agglomerated, and the spheroidized graphite particles have good fluidity when mixed with a solvent or a binder.
[0013]
Here, as a raw material of the spheroidized graphite particles, flaky natural graphite or artificial graphite can be used. For example, flaky natural graphite is generally available in a purity of more than 85% to 99%, so it is used as it is. You can use it. If necessary, it is preferable to further increase the purity by a known method. There are various particle sizes of graphite as a raw material, and it is preferable to use flake graphite (raw material) having an average particle diameter of about 10 to 200 μm before spheroidization.
[0014]
The term “spherical” means not only a true spherical shape such as a soccer ball or a tennis ball, but also an elliptical shape such as a rugby ball, and in the present invention, refers to a shape having a circularity of about 0.86 or more. . However, since the circularity is an index calculated by projecting three-dimensional graphite particles on a two-dimensional plane, for example, when calculating the circularity of commonly available flaky natural graphite particles, it is about 0.84, Although similar to the circularity of the graphite particles of the present invention, the flaky graphite particles (raw material) are planar particles, whereas the actual shape of the secondary battery electrode material of the present invention is three-dimensional and completely different.
[0015]
The spheroidized graphite particles can be obtained by pulverizing the flake graphite and then reaggregating them, but the specific method for producing the spheroidized graphite particles is not particularly limited. For example, it can be manufactured by the method proposed by the present inventors (JP-A-11-263612) or a method similar thereto. Hereinafter, an example of the manufacturing method will be described with reference to the drawings.
[0016]
FIG. 1 is a schematic explanatory view of an apparatus for producing spheroidized graphite particles, wherein 1 denotes a tank, 2 denotes a feeder, 3 denotes an opposed nozzle, 4 denotes a classifier, and 5 denotes a blow-up nozzle.
[0017]
Scaly graphite (raw material) is supplied into the tank 1 from a feeder 2 provided in the tank 1. The feeder 2 is preferably provided as a hopper type at an appropriate location in the tank 1, and can be used as an outlet for spheroidized graphite particles. Further, the feeder 2 may be provided with a screw type at the lower part of the tank 1. The amount of the raw material supplied into the tank 1 may be determined in consideration of the capacity of the tank 1.
[0018]
An opposing nozzle 3 is provided at the lower side of the tank 1 through the tank wall, and a jet stream is blown from the opposing nozzle 3 to form a collision area on the lower side in the tank 1. The flaky graphite entering the airflow in the collision area collides with each other, re-aggregates while being pulverized, and becomes spherical.
[0019]
It is preferable to provide a plurality (for example, three to four) of the opposed nozzles 3. The nozzle discharge pressure when blowing gas from the opposed nozzle 3, the amount of blown gas, the tank pressure, etc. are set so that smooth collision and flow can be achieved, and the flake graphite is spheroidized by appropriately setting the operation time. I do. For example, the nozzle discharge pressure is about 0.01 to 0.50 MPa, and the blowing gas amount is 0.2 to 1.0 Nm.3/ Min, the tank pressure is about -10 to 30 kPa, and the operation time is about 1 to 100 minutes. The gas blown from the opposed nozzle 3 may be air, nitrogen, water vapor, or the like, and the temperature in the tank 1 may be about 0 to 60 ° C.
[0020]
Gas convection occurs in the tank 1, and particles that collide with each other in the collision area on the lower side of the tank 1 and are blown upward along the convection in the tank 1, and then settle again. That is, after the particles are blown up near the center of the tank 1, they fall down along the wall of the tank 1 and circulate and flow in the tank 1.
[0021]
By providing a classifier 4 at the upper part of the tank 1, fine powder below the classification limit can be discharged out of the tank 1. Although a known classifier may be provided as the classifier 4, a high-speed rotating classifier is generally used. The discharge amount at this time depends on the particle size of the flaky graphite particles used as a raw material.
[0022]
The above operation is preferably performed in a batch. When air is blown into the tank 1 from a blow-up nozzle 5 provided at the bottom of the tank 1, spheroidized graphite particles can be collected from the feeder 2.
[0023]
By the way, when the spheroidized graphite particles produced by the above method are used as an electrode material, it has become clear that the initial efficiency of the obtained secondary battery is unexpectedly low. Therefore, when pursuing the cause of the decrease in the initial efficiency of the secondary battery, when a large amount of functional groups are present on the surface of the spheroidized graphite particles, the functional groups react with the electrolytic solution at the time of the first charge to reduce the initial efficiency. I figured out what was causing it. Further, when the reaction between the functional group and the electrolytic solution was further examined, it was found that among the functional groups, particularly, the acidic functional group greatly affected the reduction in the initial efficiency. That is, the acidic functional group refers to functional groups such as a carboxyl group, a phenol group, a lactone group, and a carbonyl group, and it has been found that these functional groups are particularly easy to react with the electrolytic solution.
[0024]
In addition, when spheroidal graphite is pulverized and then reagglomerated and spheroidized graphite particles are used as an electrode material, the cycle characteristics of the obtained secondary battery are unexpectedly low. The reason for this is, as described above, that the scale-like graphite is agglomerated and formed into a spheroid, thereby reducing the contact points between the particles and deteriorating the adhesion, and the conductivity of the electrode itself is considered to be reduced. . In addition, as another cause of the deterioration of the cycle characteristics, it is conceivable that the liquid permeability into the graphite particles is deteriorated. That is, when the flaky graphite is spheroidized, the surface of the graphite particles becomes covered with the flaky graphite, and the electrolyte becomes difficult to penetrate from the spheroidized graphite particle surface to the inside and the liquid permeability deteriorates. Because it is possible.
[0025]
Therefore, the present inventors have increased the number of contacts on the graphite particle surface while suppressing the amount of acidic functional groups present on the surface of the spheroidized graphite particle to a predetermined amount or less, and the electrolyte has penetrated from the graphite particle surface into the interior. We thought that if the surface shape could be modified to make it easier to perform, the initial efficiency and cycle characteristics of the secondary battery could be significantly improved, and we proceeded with research along that line. As a result, when the spheroidized graphite particles obtained by rapidly heating and / or rapidly cooling the spheroidized graphite particles in a non-oxidizing atmosphere are used as an electrode material, the initial efficiency and cycle characteristics of the secondary battery are dramatically improved. We found that it improved.
[0026]
That is, it was considered that when the spheroidized graphite particles were heated in a non-oxidizing atmosphere, the acidic functional groups present on the surface of the graphite particles were decomposed, and the cause of the decrease in the initial efficiency was eliminated. Then, the spheroidized graphite particles are either (1) rapidly heated and cooled in a non-oxidizing atmosphere and then rapidly cooled; (2) rapidly heated and cooled in a non-oxidizing atmosphere; and (3) non-oxidizing atmosphere. If heated and cooled rapidly, the surface of graphite particles cracks due to thermal shock and expansion of gas inside the particles, and irregularities are formed on the smooth particle surface, increasing the number of contact points between the particles. It is considered that since the electrolytic solution easily penetrates into the inside of the particles from the cracks generated on the surface, the electrolytic reaction also occurs inside the graphite particles, so that the cycle characteristics are improved. When the thus obtained spheroidized graphite particles after the heat treatment were used as an electrode material, remarkable differences were recognized in the initial efficiency and the cycle characteristics as apparent from the examples described later.
[0027]
Hereinafter, a method for efficiently producing the electrode material for a secondary battery of the present invention will be specifically described with reference to the drawings. However, the configuration shown below does not limit the present invention. Any design change based on the above is included in the technical scope of the present invention.
[0028]
FIG. 2 is a schematic explanatory view of an apparatus for producing an electrode material for a secondary battery according to the present invention, in which spheroidized graphite particles are rapidly heated and cooled in a non-oxidizing atmosphere to thereby provide an electrode material for a secondary battery. It is an apparatus used when manufacturing. In the figure, 6 is a hopper, 7 is an electric furnace, and 8 is a water tank. The electric furnace 7 includes a spiral tube 9 and a heating source 10. The water tank 8 stores distilled water that has been subjected to a deoxygenation treatment. Here, 11 and 12 are paths.
[0029]
Graphite particles A obtained by spheroidizing the flake graphite are supplied to the hopper 6 from the path 11. On the other hand, the pressurized non-oxidizing gas B is supplied from the path 12, and the spheroidized graphite particles sequentially discharged from below the hopper 6 are pneumatically transported to the spiral tube 9 provided in the electric furnace 7. The inside of the electric furnace 7 is heated by a heating source 10, and the spheroidized graphite particles are rapidly heated while passing through the spiral tube 9. The rapidly heated spheroidized graphite particles are introduced into distilled water stored in a water tank 8 provided below the electric furnace 7 and rapidly cooled. In other words, the spheroidized graphite particles are rapidly heated in a non-oxidizing atmosphere, whereby the gas contained inside the particles expands and squirts from the inside of the particles, and the spheroidized graphite particles are further rapidly cooled. Thermal shock occurs, causing cracks on the particle surface. At this time, since the spheroidized graphite particles are heated, the acidic functional groups existing on the particle surface are thermally decomposed and removed from the particle surface.
[0030]
The reason why the non-oxidizing gas is supplied from the passage 12 in the present invention is to prevent the surface of the spheroidized graphite particles from being oxidized and increasing the amount of acidic functional groups, and the non-oxidizing gas is preferably an inert gas. , For example, N2Or a gas such as Ar or He.
[0031]
The reason why the non-oxidizing gas is pressurized is to efficiently supply the spheroidized graphite particles to the electric furnace 7. The gas pressure at this time may be determined in consideration of the tube length and the tube resistance due to the thermal expansion of the gas. As will be described later, the supply of the spheroidized graphite particles to the electric furnace 7 is adjusted by adjusting the amount of pressurization. The speed can be controlled and the spheroidized graphite particles can be rapidly heated.
[0032]
The electric furnace 7 is provided with a heating source and controls the temperature inside the electric furnace 7. The temperature in the electric furnace 7 is preferably 800 ° C. or higher, more preferably 1000 ° C. or higher, and further preferably 1200 ° C. or higher. This is because the spheroidized graphite particles are heated to as high a temperature as possible to increase the thermal shock due to rapid cooling. The upper limit of the temperature in the electric furnace 7 is not particularly limited, but is preferably about 1400 ° C. in consideration of the capacity of the electric furnace 7 used in actual operation. Although the electric furnace 7 shown in FIG. 2 shows a case where four heating sources 10 are provided, the number of the heating sources 10 is not limited to this. Any number can be used as long as it can be appropriately controlled.
[0033]
A spiral tube 9 is provided in the electric furnace 7, and the spheroidized graphite particles are heated while moving in the spiral tube 9. The reason why the spheroidized graphite particle transport tube is formed in a spiral shape is that the residence time in the electric furnace 7 can be lengthened, and the spheroidized graphite particle group can be heated to a uniform temperature. Further, by making the transport route helical, the space of the device can be saved, which is effective.
[0034]
The spheroidized graphite particles heated in the electric furnace 7 are supplied into distilled water stored in a water tank 8 and rapidly cooled. At this time, it is recommended that the inside of the water tank 8 be filled with a non-oxidizing gas. This is to prevent the spheroidized graphite particles heated in the electric furnace 7 from being oxidized as soon as they are supplied into the water tank 8. It is important that the distilled water has been deoxygenated. This is because the spheroidized graphite particles are not oxidized by oxygen in distilled water. Means for deoxidizing distilled water is not particularly limited, and for example, distilled water may be degassed by bubbling with nitrogen gas. The temperature of the distilled water is not particularly limited as long as the spheroidized graphite particles are rapidly cooled, and may be maintained at around room temperature (about 0 to 50 ° C.). In order to keep the temperature of the distilled water constant, it is preferable to install a cooling device in the water tank 8 as necessary.
[0035]
Here, in the rapid heating, the rate of temperature rise from the inlet temperature in the electric furnace 7 is preferably 50 ° C./s or more, more preferably 100 ° C./s or more, and further preferably 300 ° C./s or more. . By rapidly heating the spheroidized graphite particles, partial exfoliation and cracks are likely to occur on the particle surface. In order to rapidly heat the spheroidized graphite particles, the pressure of the non-oxidizing gas supplied from the passage 12 may be adjusted and the set temperature of the electric furnace 7 may be increased. Since the spheroidized graphite particles move in the electric furnace 7 along the flow of the gas, if the pressure of the gas is high, the moving speed of the spheroidized graphite particles is increased, and the gas flow rate is also increased. This is because the temperature rate can be controlled.
[0036]
In the rapid cooling, the rate of temperature decrease from the outlet temperature in the electric furnace 7 is preferably 50 ° C./s or more, more preferably 100 ° C./s or more, and still more preferably 300 ° C./s or more. Rapid cooling tends to cause partial peeling or cracking on the particle surface. To rapidly cool the spheroidized graphite particles, as described above, for example, the pressure of the non-oxidizing gas blown from the passage 12 may be controlled. The cooling rate can also be increased by bringing the level of the distilled water stored in the water tank 8 closer to the outlet side of the spiral tube 9. Further, the amount of distilled water stored in the water tank 8 may be increased, and the distilled water may be stirred.
[0037]
In the present invention, it is preferable that the difference between the outlet temperature in the electric furnace 7 and the temperature of distilled water, that is, the amount of temperature drop during rapid cooling is at least 500 ° C. or more. This is because a thermal shock due to a temperature difference is important for generating a thermal shock on the spheroidized graphite particles. This temperature drop is more preferably set to 800 ° C. or more.
[0038]
The electrode material for a secondary battery of the present invention can also be produced by spheroidized graphite particles obtained by pulverizing and reaggregating spheroidal graphite, rapidly heating in a non-oxidizing atmosphere, and then cooling. That is, in FIG. 2, if the spheroidized graphite particles heated in the electric furnace 7 are supplied to, for example, a water tank 8 that does not store distilled water and cooled, the electrode material for a secondary battery of the present invention can be manufactured. . This is because when the spheroidized graphite particles are rapidly heated in a non-oxidizing atmosphere, the gas contained in the particles expands and squirts from the inside of the particles to cause cracks on the particle surfaces. At this time, it is recommended to fill the water tank 8 with a non-oxidizing gas (for example, an inert gas) in advance. This is because the heated surface of the spheroidized graphite particles is not oxidized in the water tank 8.
[0039]
Further, the electrode material for a secondary battery of the present invention can also be manufactured by spheroidized graphite particles obtained by pulverizing and reaggregating flake graphite, and then rapidly cooling after heating in a non-oxidizing atmosphere. . That is, if the spheroidized graphite particles heated in the electric furnace are supplied to, for example, a water tank storing deoxidized distilled water and rapidly cooled, the electrode material for a secondary battery of the present invention can be manufactured. This is because rapid cooling of the heated spheroidized graphite particles causes a thermal shock on the particle surface and causes cracks.
[0040]
When the amount of acidic functional groups of the spheroidized graphite particles after the heat treatment obtained by the above method was examined, it was found that the amount of acidic functional groups was 2 meq / kg or less, and the spheroidized graphite particles were used as an electrode material for a secondary battery. It has been found that the initial efficiency of the secondary battery is improved, and improvement in cycle characteristics is expected. That is, if the amount of the acidic functional group present on the surface of the spheroidized graphite particles is 2 meq / kg or less, even if the spheroidized graphite particles are used as an electrode material for a secondary battery, the acidic functional groups are not charged during the first charging. And the reaction of the electrolytic solution hardly occurs, so that the initial efficiency can be increased. The amount of the acidic functional group is desirably controlled to preferably 0.5 meq / kg or less. In addition, equivalent means the chemical equivalent as an acid of an acidic functional group. A method for suppressing the amount of the acidic functional group to a desired amount or less will be described later.
[0041]
As a means for quantifying the amount of the acidic functional group, for example, the method of Boehm et al. Can be mentioned. This measuring method is as follows.
[0042]
<The method of Boehm et al.>
10 g of spheroidized graphite particles and 0.01 mol / L of C2H5After stirring 50 g of the ONa aqueous solution in the flask for 2 hours, it is left at room temperature for 22 hours. After standing, the mixture is further stirred for 30 minutes and then filtered to collect the filtrate. 25 mL of the collected filtrate is subjected to neutralization titration with a 0.01 mol / L HCl aqueous solution, and the amount (mL) of the HCl aqueous solution required until the pH reaches 4.0 is measured. The amount of the acidic functional group (milli-equivalent / kg) is calculated from the amount of the HCl aqueous solution and the following formula (1).
Amount of acidic functional group = (amount of 25-HCl aqueous solution) × 2 (1)
[0043]
Next, the specificity of the appearance of the spheroidized graphite particles was also examined. That is, when the spheroidized graphite particles after the heat treatment were observed with an electron microscope, a specific external shape was observed. The relationship between the external shape and the initial efficiency and cycle characteristics was examined. As a result, when a group of spheroidized graphite particles was observed at a magnification of 600 using an electron microscope, particles having at least five particles that had partial peeling of the epidermis on the surface of the particles observed in five visual fields were used for secondary batteries. It was found that the electrode material provided excellent cycle characteristics. In other words, the spheroidized graphite particles satisfying this requirement have an appropriate amount of cracks on the particle surface, so that irregularities are generated on the surface, and the number of contact points between the particles is increased, so that the adhesion can be improved. In addition, since the electrolytic solution easily penetrates into the inside of the particle from the crack generated on the surface of the particle, the electrolytic reaction inside the particle is also promoted. Therefore, when an electrode is formed using the spheroidized graphite particles having specific surface characteristics given by the heat treatment, and the electrode is used to constitute a secondary battery, a secondary battery having excellent cycle characteristics can be realized.
[0044]
Regarding the observation magnification of the electron microscope, when the present inventors observed the spheroidized graphite particles at various magnifications, the most appropriate magnification for observing the properties of the particle surface was 600 times. Stipulated. When the observation magnification is 600 times, a plurality of spheroidized graphite particles are observed in the observation visual field.
[0045]
The reason why the number of observation visual fields is at least five is that if the number of observation visual fields is smaller than five, observation errors are likely to occur. However, if the number of observation visual fields is too large, the measurement accuracy is increased, but the operation becomes complicated. Therefore, about five observation visual fields are sufficient. The type of electron microscope used in the present invention is not particularly limited, and a scanning electron microscope (SEM), a transmission electron microscope (TEM), or the like can be used.
[0046]
In the present invention, it is preferable that partial peeling of the epidermis is observed on 50% or more of the particle surface. When graphite particles are used as an electrode material, the surface of which has almost no partial peeling on the particle surface and partial peeling is observed only in an area of less than 50% of the particle surface. This is because it is considered that there are few contact points. Also, if the particle surface is uniformly covered with coarse flaky graphite, or if there is little cracking (crack) on the particle surface that serves as a flow path for the electrolyte from the particle surface to the inside of the particle, the electrolyte will hardly enter the particle. This is because they do not permeate and cannot be expected to react with the electrolytic solution inside the particles. Partial peeling of the skin occurs when the spheroidized graphite particles are rapidly heated in a non-oxidizing atmosphere, causing the gas (eg, air) contained in the particles to expand rapidly and squirt out of the particles. It is considered that cracks occur on the particle surface due to thermal shock generated when the heated spheroidized graphite particles are rapidly cooled. These partial peelings and cracks appear to be bumpy on the particle surface when observed with an electron microscope.
[0047]
In the spheroidized graphite particles of the present invention, as is apparent from the electron micrographs shown in Examples described later, the surface is not smooth and there are a plurality of steps as if they were raised, so that the number of contact points between the particles increases. Therefore, when a secondary battery electrode is prepared using the electrode material for a secondary battery of the present invention, the adhesion is increased when the electrode is prepared, the conductivity is improved, and the cycle characteristics are improved.
[0048]
In the present invention, the spheroidized graphite particles obtained by the above method can be used as various electrode materials for secondary batteries, but are preferably used as electrode materials for non-aqueous secondary batteries. As the non-aqueous secondary battery, a lithium ion secondary battery is exemplified.
[0049]
When producing an electrode using the electrode material for a secondary battery of the present invention, it is common to mix and mold with a binder, and the obtained electrode is used as an electrode for various secondary batteries. be able to. Although there are various types of secondary batteries, the electrode for a secondary battery of the present invention can be suitably used as an electrode for a non-aqueous secondary battery. In particular, it is most preferable to constitute the negative electrode of the lithium ion secondary battery because lithium ions can be smoothly inserted and removed between the graphite structure layers.
[0050]
As the negative electrode material of the lithium ion secondary battery in which the secondary battery electrode of the present invention is used as a negative electrode, in addition to the spheroidized graphite particles of the present invention, as a binder, for example, carboxymethyl cellulose, styrene butadiene rubber, polyvinylidene fluoride ( PVdF), polytetrafluoroethylene, or the like may be mixed to form a negative electrode.
[0051]
As a positive electrode material in a lithium ion secondary battery, for example, LiCoO2And LiNiO2, LiNi1-yCoyO2, LiMnO2, LiMn2O4, LiFeO2Are used. As the binder for the positive electrode, polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), or the like can be used. Further, carbon black or the like may be mixed as the conductive material.
[0052]
Examples of the electrolyte in the lithium ion secondary battery include an organic solvent such as ethylene carbonate (EC), and an organic solvent such as dimethyl carbonate (DMC), diethyl carbonate (DEC), 1,2-dimethoxyethane, and 1,2. -LiPF in a mixed solvent with a low boiling point solvent such as diethoxymethane, ethoxymethoxyethane, etc.6And LiBF4, LiClO4, LiCF3SO3, LiAsF6For example, a solution in which an electrolyte solute (electrolyte salt) is dissolved is used.
[0053]
As the separator in the lithium ion secondary battery, for example, a nonwoven fabric, cloth, microporous film, or the like mainly containing a polyolefin such as polyethylene or polypropylene is used.
[0054]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but the following Examples are not intended to limit the present invention, and may be appropriately modified and implemented within a range that can conform to the purpose of the preceding and the following. It is possible and they are all included in the technical scope of the present invention.
[0055]
Scaly natural graphite from China (average particle diameter: 40 μm, purity: 99% or more) was spheroidized with a counter jet mill 100AFG manufactured by Hosokawa Micron Corporation.
[0056]
FIG. 1 is a schematic explanatory view of a counter jet mill 100AFG (a device for producing spheroidized graphite particles) manufactured by Hosokawa Micron Corporation. The inside of the tank 1 is cylindrical, and three opposing nozzles 3 (nozzle inner diameter: 2.5 mm) are arranged on the lower side of the tank 1 so as to face each other so as to face the center. At the top of the tank 1, a high-speed rotating classifier is arranged as an example of the classifier 4. The feeder 2 is provided on the side wall of the tank 1, and a blow-up nozzle 5 is provided at the bottom of the tank 1. FIG. 1 shows only one opposing nozzle.
[0057]
200 g of the scaly natural graphite was introduced from the feeder 2 and spheroidized under the following conditions. The spheroidizing conditions are: nozzle discharge air pressure of the opposed nozzle 3: 0.13 MPa, operation time: 20 minutes, temperature in the tank 1: 30 ° C.
[0058]
The average particle size of the obtained spheroidized graphite particles was 20 μm, and the average particle size was adjusted to 30 μm by classification.
[0059]
Experimental example 1
A group of spheroidized graphite particles (average particle diameter: 30 μm, purity: 99% or more) was observed at a magnification of 600 using an electron microscope manufactured by JEOL Ltd. (device name: JXA-733). FIG. 3 is a drawing-substitute photograph of the spheroidized graphite particles taken with an electron microscope.
[0060]
Experimental example 2
A group of spheroidized graphite particles (average particle diameter: 30 μm, purity: 99% or more) was heat-treated by rapid heating and rapid cooling by the apparatus shown in FIG.
[0061]
The spheroidized graphite particles are supplied to the hopper 6 from the path 11, and the spheroidized graphite particles are supplied to the electric furnace 7 by blowing nitrogen gas as a non-oxidizing gas at 0.4 MPa (30 NL / min) from the path 12. The inside of the electric furnace 7 is heated to 800 ° C. by the heating source 10, and the spheroidized graphite particles introduced into the electric furnace 7 are rapidly heated at a heating rate of 200 ° C./s. The spheroidized graphite particles are heated while moving in the spiral tube 9, and are introduced into the distilled water stored in the water tank 8 from below the electric furnace 7. This distilled water was previously deoxygenated by bubbling with nitrogen gas and maintained at 30 ° C. At this time, the distance from the exit side of the electric furnace 7 to the water surface is 30 cm, and the spheroidized graphite particles are introduced into distilled water at a speed of 28 m / s. The water tank 8 is filled with the same gas (nitrogen gas) as the non-oxidizing gas supplied from the passage 12.
[0062]
The rapidly cooled spheroidized graphite particles were dried and the average particle diameter was measured to be 30 μm. The spheroidized graphite particles after the rapid cooling were observed at a magnification of 600 using an electron microscope manufactured by JEOL Ltd. (device name: JXA-733). FIG. 4 is a drawing-substitute photograph of the spheroidized graphite particles taken with an electron microscope.
[0063]
Experimental example 3
A group of spheroidized graphite particles (average particle diameter: 30 μm, purity: 99% or more) was rapidly heated by the apparatus shown in FIG. 2 and then cooled. However, although the water tank 8 is filled with nitrogen gas, distilled water is not stored in the water tank 8 and is kept at 800 ° C. by a heater (not shown).
[0064]
The spheroidized graphite particles rapidly heated in the electric furnace 7 under the same conditions as in the experimental example 2 are introduced into the water tank 8 from below the electric furnace 7 and collected. After the recovery of the spheroidized graphite particles, the power supply of the heater was turned off, and the heater was cooled to room temperature (cooled).
[0065]
The measured average particle size of the spheroidized graphite particles cooled to room temperature was 30 μm. Further, the group of spheroidized graphite particles after cooling was observed at a magnification of 600 using an electron microscope manufactured by JEOL Ltd. (device name: JXA-733). FIG. 5 is a drawing-substitute photograph of the spheroidized graphite particles taken with an electron microscope.
[0066]
Experimental example 4
A group of spheroidized graphite particles (average particle diameter: 30 μm, purity: 99% or more) is sealed in a petri dish with a lid (made of stainless steel), and is heated from room temperature (25 ° C.) to 800 ° C. in a box-type electric furnace for 2 hours. And heated. After heating, the petri dish was introduced into distilled water and rapidly cooled. This distilled water was previously deoxygenated by bubbling with nitrogen gas and maintained at 30 ° C. The cooling rate at this time is estimated to be about 70,000 ° C./s, as in Experimental Example 2. The water tank 8 is filled with nitrogen gas.
[0067]
The rapidly cooled spheroidized graphite particles were dried and the average particle diameter was measured to be 30 μm. The spheroidized graphite particles after the rapid cooling were observed at a magnification of 600 using an electron microscope manufactured by JEOL Ltd. (device name: JXA-733). FIG. 6 is a drawing-substitute photograph of the spheroidized graphite particles taken with an electron microscope.
[0068]
The acidic functional group content of the spheroidized graphite particles obtained in Experimental Examples 1 to 4 was measured by the method of Boehm et al. Table 1 shows the results.
[0069]
[Table 1]
Figure 2004111110
[0070]
Next, using the spheroidized graphite particles obtained in Experimental Examples 1 to 4 as an electrode material for a secondary battery, a coin-type lithium ion secondary battery was manufactured. evaluated.
[0071]
A negative electrode for a lithium ion secondary battery (coin type) was prepared as follows. To 100 parts by mass of the spheroidized graphite particles obtained in Experimental Examples 1 to 4, 1 part by mass of carboxymethylcellulose and 1 part by mass of styrene-butadiene rubber powder were mixed as a binder, and 100 parts by mass of pure water was added thereto. A slurry was formed. The obtained slurry was applied on a copper foil having a thickness of 18 μm, and dried with a drier (100 ° C.) for 15 minutes. After the dried film was punched out into a circular shape having a diameter of 1.6 cm, the coating amount excluding the copper foil was measured and found to be 20 mg. This film was pressed with a roller press so that the density of the coating material applied on the copper foil was 1.6 g / cc, to produce a negative electrode for a lithium ion secondary battery.
[0072]
The positive electrode for a lithium ion secondary battery (coin type) uses a lithium foil as a positive electrode for a lithium ion secondary battery, which is manufactured to calculate initial efficiency, and a lithium ion secondary battery, which is manufactured to calculate cycle characteristics. LiCoO as the positive electrode for the secondary battery2Was used as an active material. LiCoO2Was prepared by the following method.
[0073]
LiCoO25 parts by mass of polyvinylidene fluoride (PVdF) as a binder and 5 parts by mass of carbon black as a conductive material were mixed with 90 parts by mass, and 200 parts by mass of N-methyl-2-pyrrolidone (NMP) was added thereto. Make a slurry. The obtained slurry was applied on an aluminum foil having a thickness of 30 μm, and dried for 1 hour in a drier (100 ° C.). After the dried film was punched into a circular shape having a diameter of 1.6 cm, the coating amount excluding the aluminum foil was measured to be 45 mg. This film was pressed with a roller press so that the density of the coating material applied on the aluminum foil was 2.8 g / cc, to produce a positive electrode for a lithium ion secondary battery.
[0074]
The negative electrode and the positive electrode were opposed to each other with a separator interposed therebetween, and the battery was built in a stainless steel cell. As the electrolyte, 1M LiPF60.4 mL of / (EC + DMC) was used. As a separator, "Celgard # 3501 (trade name)" manufactured by Celgard was used. The electrolyte was prepared by mixing LiPF in a solvent obtained by mixing ethylene carbonate (EC) and dimethyl carbonate (DMC) at a volume ratio of 1: 1.6Was dissolved at a ratio of 1M (manufactured by Mitsubishi Chemical Corporation, trade name "Sollite"). The assembly of the battery was performed in an argon gas atmosphere.
[0075]
The initial efficiency of the battery was calculated to evaluate the performance of the negative electrode. The battery is charged at a current density of 0.4 mA / cm.2After charging to 0 V at a constant current value of (0.1 C), the current value was 0.01 mA / cm at a constant potential of 0 V.2It was performed until it became. The battery was discharged at a current value of 0.4 mA / cm.2Until 1 V was reached. It was calculated from the first charge capacity and discharge capacity by the following equation (2). Table 2 shows the calculation results. The positive electrode of the battery is a lithium foil.
[0076]
(Equation 1)
Figure 2004111110
[0077]
In addition, the cycle characteristics of the battery were calculated in order to evaluate the performance of the negative electrode. After charging the battery to 4.2 V at a current value of 6.4 mA, the battery was charged at a constant voltage of 4.2 V until the current value reached 0.2 mA. The battery was discharged until the voltage reached 3.0 V at a current value of 6.4 mA. The cycle characteristics were calculated by the following equation (3) from the discharge capacity in the first cycle and the discharge capacity when charge / discharge was repeated for 20, 50, 80, and 100 cycles. The calculation results are also shown in Table 2. The positive electrode of the battery is LiCoO2Is an electrode using as an active material.
[0078]
FIG. 7 plots the cycle characteristics (%) against the number of cycles (times). In FIG. 7, the results when the spheroidized graphite particles obtained in Experimental Example 1 were used as the electrode material were ○, the results when the spheroidized graphite particles obtained in Experimental Example 2 were used as the electrode material were □, The results when the spheroidized graphite particles obtained in Experimental Example 3 were used as the electrode material were indicated by Δ, and the results when the spheroidized graphite particles obtained in Experimental Example 4 were used as the electrode material were indicated by X.
[0079]
(Equation 2)
Figure 2004111110
[0080]
[Table 2]
Figure 2004111110
[0081]
As is clear from Tables 1 and 2, since the spheroidized graphite particles obtained in Experimental Example 1 have a large amount of acidic functional groups, the initial efficiency of a battery using the spheroidized graphite particles as an electrode material is as follows. The initial efficiency of the battery using the spheroidized graphite particles obtained in Experimental Examples 2 to 4 as an electrode material was worse. That is, the spheroidized graphite particles obtained in Experimental Examples 2 to 4 have almost no acidic functional group, and the use of the spheroidized graphite particles as an electrode material can increase the initial efficiency of the battery.
[0082]
Further, as is clear from Table 2 and FIG. 7, the cycle characteristics of the battery using the spheroidized graphite particles obtained in Experimental Example 1 as an electrode material rapidly deteriorated as the number of cycles increased, and the charge / discharge cycle was increased. Is reduced to less than 70% after repeating 100 times. On the other hand, the cycle characteristics of the batteries using the spheroidized graphite particles obtained in Experimental Examples 2 to 4 as an electrode material show a small amount of deterioration even after repeated charging and discharging 100 times, and are 80% or more.
[0083]
【The invention's effect】
According to the present invention, a secondary battery electrode material comprising spheroidized graphite particles, which is useful for realizing a secondary battery excellent in initial efficiency and cycle characteristics, is efficiently produced. We can provide a method that can do it.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view of an apparatus for producing spheroidized graphite particles.
FIG. 2 is a schematic explanatory view of an apparatus for heat-treating spheroidized graphite particles.
FIG. 3 is a drawing-substituting photograph of a group of spheroidized graphite particles taken with an electron microscope.
FIG. 4 is a drawing-substituting photograph of a group of spheroidized graphite particles taken with an electron microscope.
FIG. 5 is a drawing-substitute photograph of a group of spheroidized graphite particles taken with an electron microscope.
FIG. 6 is a drawing-substituting photograph of a group of spheroidized graphite particles taken with an electron microscope.
FIG. 7 is a graph showing a relationship between the number of cycles and cycle characteristics.
[Explanation of symbols]
1 tank 2 feeder
3 opposed nozzle 4 classifier
5 up nozzle 6 hopper
7 Electric furnace 8 Water tank
9 spiral tube 10 heating source
11-12km route

Claims (2)

球状化黒鉛粒子よりなる二次電池用電極材料を製造する方法であって、
球状化黒鉛粒子を非酸化性雰囲気下で急速加熱および/または急速冷却することを特徴とする二次電池用電極材料の製法。
A method for producing an electrode material for a secondary battery comprising spheroidized graphite particles,
A method for producing an electrode material for a secondary battery, wherein the spheroidized graphite particles are rapidly heated and / or rapidly cooled in a non-oxidizing atmosphere.
前記急速加熱を昇温速度50℃/s以上および/または前記急速冷却を降温速度50℃/s以上で行なう請求項1に記載の製法。2. The method according to claim 1, wherein the rapid heating is performed at a temperature rising rate of 50 ° C./s or more and / or the rapid cooling is performed at a temperature decreasing rate of 50 ° C./s or more.
JP2002269098A 2002-09-13 2002-09-13 Manufacturing method for secondary battery electrode materials Expired - Fee Related JP4188649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002269098A JP4188649B2 (en) 2002-09-13 2002-09-13 Manufacturing method for secondary battery electrode materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002269098A JP4188649B2 (en) 2002-09-13 2002-09-13 Manufacturing method for secondary battery electrode materials

Publications (2)

Publication Number Publication Date
JP2004111110A true JP2004111110A (en) 2004-04-08
JP4188649B2 JP4188649B2 (en) 2008-11-26

Family

ID=32267137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002269098A Expired - Fee Related JP4188649B2 (en) 2002-09-13 2002-09-13 Manufacturing method for secondary battery electrode materials

Country Status (1)

Country Link
JP (1) JP4188649B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069664A1 (en) * 2005-12-14 2007-06-21 Mitsui Mining Co., Ltd. Graphite particle, carbon-graphite composite particle and their production processes
WO2010050595A1 (en) 2008-10-31 2010-05-06 三菱化学株式会社 Negative electrode material for nonaqueous secondary battery
WO2020105196A1 (en) * 2018-11-22 2020-05-28 日立化成株式会社 Negative electrode material for lithium-ion secondary cell, method for manufacturing negative electrode material for lithium-ion secondary cell, negative electrode material slurry for lithium-ion secondary cell, negative electrode for lithium-ion secondary cell, and lithium-ion secondary cell
CN113346076A (en) * 2021-05-14 2021-09-03 沁新集团(天津)新能源技术研究院有限公司 Surface modified graphite negative electrode material of lithium ion battery and preparation method thereof
CN114804095A (en) * 2022-04-27 2022-07-29 中南大学 Graphite negative electrode active material prepared from spheroidized graphite micro powder waste material, and preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101430405B1 (en) 2013-02-22 2014-08-14 (주)우주일렉트로닉스 Anode material for lithium ion battery and pruducing method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069664A1 (en) * 2005-12-14 2007-06-21 Mitsui Mining Co., Ltd. Graphite particle, carbon-graphite composite particle and their production processes
JP5042854B2 (en) * 2005-12-14 2012-10-03 日本コークス工業株式会社 Graphite particles, carbon-graphite composite particles, and methods for producing them
US8329136B2 (en) 2005-12-14 2012-12-11 Nippon Coke & Engineering Company, Limited Graphite particle, carbon-graphite composite particle and their production processes
WO2010050595A1 (en) 2008-10-31 2010-05-06 三菱化学株式会社 Negative electrode material for nonaqueous secondary battery
WO2020105196A1 (en) * 2018-11-22 2020-05-28 日立化成株式会社 Negative electrode material for lithium-ion secondary cell, method for manufacturing negative electrode material for lithium-ion secondary cell, negative electrode material slurry for lithium-ion secondary cell, negative electrode for lithium-ion secondary cell, and lithium-ion secondary cell
CN113196529A (en) * 2018-11-22 2021-07-30 昭和电工材料株式会社 Negative electrode material for lithium ion secondary battery, method for producing negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JPWO2020105196A1 (en) * 2018-11-22 2021-10-07 昭和電工マテリアルズ株式会社 Negative electrode material for lithium ion secondary battery, method for manufacturing negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
CN113346076A (en) * 2021-05-14 2021-09-03 沁新集团(天津)新能源技术研究院有限公司 Surface modified graphite negative electrode material of lithium ion battery and preparation method thereof
CN113346076B (en) * 2021-05-14 2023-01-24 沁新集团(天津)新能源技术研究院有限公司 Surface modified graphite negative electrode material of lithium ion battery and preparation method thereof
CN114804095A (en) * 2022-04-27 2022-07-29 中南大学 Graphite negative electrode active material prepared from spheroidized graphite micro powder waste material, and preparation method and application thereof
CN114804095B (en) * 2022-04-27 2023-12-12 中南大学 Graphite negative electrode active material prepared from spheroidized graphite micropowder waste, and preparation method and application thereof

Also Published As

Publication number Publication date
JP4188649B2 (en) 2008-11-26

Similar Documents

Publication Publication Date Title
CN107615531B (en) Transition metal-containing composite hydroxide and method for producing same, nonaqueous electrolyte secondary battery and positive electrode active material for same, and method for producing same
CN108025925B (en) Composite hydroxide containing nickel and manganese and method for producing same
US9406930B2 (en) Nickel composite hydroxide and production method thereof, cathode active material for non-aqueous electrolyte secondary battery and production method thereof, and nonaqueous electrolyte secondary battery
EP3151317B1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, production method thereof, and nonaqueous electrolyte secondary battery including said material
KR101245418B1 (en) Titanium and dense lithium mixed oxide powder compound, method for producing said compound and compound-containing electrode
US10361428B2 (en) Anode active material, method of preparing the same, and lithium secondary battery including the anode active material
JP6071171B2 (en) Electrode material and lithium ion battery using the same
JP4499498B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode material
JP2024026097A (en) Transition metal-containing composite hydroxide and its manufacturing method, positive electrode active material for nonaqueous electrolyte secondary batteries and its manufacturing method, and nonaqueous electrolyte secondary battery
JP2001196059A (en) Nonaqueous electrolyte battery
WO2019123306A1 (en) A positive electrode material for rechargeable lithium ion batteries and methods of making thereof
WO2016075916A1 (en) Sulfur-carbon composite, nonaqueous electrolyte cell having electrode containing sulfur-carbon composite, and method for producing sulfur-carbon composite
JP5478693B2 (en) Positive electrode active material for secondary battery and method for producing the same
KR101974279B1 (en) Lithium ion secondary battery and method of manufacturing same
JP4209649B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery containing the negative electrode material, and lithium ion secondary battery using the negative electrode
JP6601937B2 (en) Negative electrode active material, negative electrode employing the same, lithium battery, and method for producing the negative electrode active material
JP2022161973A (en) Particle of transition metal complex hydroxide, positive pole active material for lithium-ion secondary battery, and lithium-ion secondary battery
JP6183027B2 (en) Production method of reduced particle size composite particles for electrochemical device electrodes and reduced particle size composite particles for electrochemical device electrodes
JP7114876B2 (en) Transition metal composite hydroxide particles and manufacturing method thereof, positive electrode active material for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery
JP4188649B2 (en) Manufacturing method for secondary battery electrode materials
JP4133151B2 (en) Manufacturing method for secondary battery electrode materials
KR102307910B1 (en) Cathode active material for lithium ion secondary battery, method for preparing the same, and lithium ion secondary battery including the same
CN112820872A (en) Ternary cathode material, preparation method thereof and lithium ion battery
JP4074757B2 (en) Modified graphite particles, production method thereof, and electrode material for secondary battery
JP4338489B2 (en) Graphite for secondary battery electrode, electrode for secondary battery containing graphite for electrode, and lithium ion secondary battery using the electrode

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040722

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080911

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees