JP4184622B2 - Method for producing silicon carbide single crystal ingot - Google Patents

Method for producing silicon carbide single crystal ingot Download PDF

Info

Publication number
JP4184622B2
JP4184622B2 JP2001084854A JP2001084854A JP4184622B2 JP 4184622 B2 JP4184622 B2 JP 4184622B2 JP 2001084854 A JP2001084854 A JP 2001084854A JP 2001084854 A JP2001084854 A JP 2001084854A JP 4184622 B2 JP4184622 B2 JP 4184622B2
Authority
JP
Japan
Prior art keywords
temperature
single crystal
silicon carbide
crystal
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001084854A
Other languages
Japanese (ja)
Other versions
JP2002274995A (en
Inventor
辰雄 藤本
昇 大谷
正和 勝野
祟 藍郷
弘克 矢代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001084854A priority Critical patent/JP4184622B2/en
Publication of JP2002274995A publication Critical patent/JP2002274995A/en
Application granted granted Critical
Publication of JP4184622B2 publication Critical patent/JP4184622B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、昇華再結晶法による低欠陥かつ結晶性の良い大型炭化珪素単結晶の製造方法に関するものである。
【0002】
【従来の技術】
炭化珪素(SiC)は、半導体材料としての優れた物理特性、耐熱性及び機械的強度などから、電力用パワーデバイスを含む各種デバイス用の基板ウェハ向け材料として早くから注目されてきた。SiC単結晶は、昇華再結晶法によって製造されることが一般的であるが、半導体デバイスとしての使用に耐え得る、結晶欠陥の少ない高品質の大型単結晶を得ることが困難であったために、長年、その工業化が阻まれてきた経緯がある。近年、従来の昇華再結晶法を改善した、改良レーリー法( Yu. M. Tairov and V.F. Tsvetkov, Journal of Crystal Growth, vol.52 (1981) pp.146)が提案されるに及び、単結晶インゴットの高品質化および大型化に飛躍的進捗がもたらされた。研究開発レベルであるとはいえ、GaN系青色発光ダイオードやショットキーバリアダイオードなどのデバイス応用研究が進められると同時に、最大でも直径4インチ(100mm)に及ぶ大型単結晶ウェハが実現可能な現況に至っている (C. H. Carter, et al., FEDジャーナル, vol.11 (2000) pp.7)。
【0003】
改良レーリー法とは、SiCの昇華・再結晶を応用して単結晶を製造するものであり、主としてSiCからなる原料を加熱、昇華させ、予め比較的低温部に設置しておいたSiC単結晶からなる種結晶上に再結晶させることにより、大型SiC単結晶インゴットを得る方法である。SiC自体の昇華温度が高いことから、一般的に、結晶成長は2000℃に及ぶ高温下で行う必要がある。このため、結晶成長用の容器には、主としてグラファイトに代表される耐熱材料で構成された坩堝が使用される。結晶欠陥等々の発生の無い良質なSiC単結晶インゴットを得るためには、坩堝内温度分布や昇華SiCガス分布等々を制御して最適成長条件を保ち、かつその条件を全成長時間に亘って維持する必要がある。しかしながら、かような高温下でグラファイト坩堝内部の様子をリアルタイムにモニタリングすることは極めて困難であるが故に、坩堝の外表面の温度測定等々などの情報から推測する以外に有効な方法は無く、かような理由から現時点においても結晶成長条件に不明な制御因子を抱えており、安定結晶成長条件を完全に確立するには至っていないのが実情である。このため、成長結晶の一部に乱れが発生して多結晶化したり、また異種ポリタイプが発生する等々の現象が頻発し、単結晶インゴットの製造歩留まりが低下するという問題が生じていた。
【0004】
【発明が解決しようとする課題】
昇華再結晶法によってSiC単結晶インゴットを製造する場合、その結晶成長時の昇温過程においては、比較的低温域で生成し易いSiCポリタイプが存在することが知られている(Knippenberg, Phillips Res. Reports, vol.18 (1963) pp.161)。例えば、3Cと称されるSiCポリタイプは、成長装置にもよるが、2000℃以下の低温域で、特に非平衡条件下で生成し易いと言われている。ところで、半導体特性が比較的良好な故に、デバイス応用として注目されているSiCポリタイプは、4Hおよび6Hである。昇華再結晶法では、これらのポリタイプからなる単結晶インゴットは、2000℃以上の高温域で安定に晶出するため、4Hおよび6Hポリタイプ単結晶を製造する場合、種結晶付近の温度が前記の温度範囲に入るように坩堝温度を制御しなければならない。このため、原料純化のための脱ガス処理などのような、別途異なる目的で減圧下加熱処理する場合を除き、基本的には低温での異種SiCポリタイプの晶出を抑制する目的から、雰囲気圧力を高くした状態で昇温し、所望の成長温度近傍に到達後に圧力を低下して、成長を開始させる手法が一般的に行われている(N. Ohtani, et al., Electronics and Communications in Japan, Part 2, vol.81 (1998) pp.8)。雰囲気圧力を高くすると、SiC昇華ガスの坩堝内での拡散速度が著しく低下することから、昇華速度が押さえられ、種結晶上での結晶成長が殆ど進展しないことが、本法の基本原理となっている。しかしながら、かような雰囲気圧力制御を行っても、依然として成長結晶が多結晶化したり、異種SiCポリタイプが混入するなどの現象が頻発しており、有効に結晶製造の歩留まりが向上している現況にあるとは言い難い。
【0005】
発明者らは、昇温時の坩堝温度に関する詳細な調査と数値解析シミュレーション基づく解析より、例えば、グラファイト坩堝中での結晶成長の場合、雰囲気圧力低下時に、圧力降下速度にもよるが、坩堝内部の発熱部分付近でも約50〜100℃温度が上昇することを見出した。雰囲気圧力を低下させる場合、坩堝を含めた系全体の温度分布を決定している輻射や熱伝導などの熱流支配要因の中で、雰囲気ガスによる熱伝導の寄与分が寡少になり、結果として一時的に断熱性が向上するために、坩堝内の温度分布が上昇するものと考えられる。このような場合、結晶成長速度が雰囲気圧力低下時の温度変化に誘発されて安定せず、成長結晶の結晶性に乱れが発生し易くなり、場合によっては結晶方位の異なる結晶粒が生成して、多結晶化してしまう。あるいは、他の異種ポリタイプが生成し易い温度域へ成長温度が変移することにより、所望の単一ポリタイプ単結晶を得ることができなくなり、そのような場合、異種ポリタイプとの界面付近からマイクロパイプと呼ばれる中空状微小欠陥が生じてしまう(N. Ohtani, et al., 1st International Workshop on Ultra-Low-Loss Power Device Technology, (2000) )。いずれにしても、高品質SiC単結晶インゴットの製造歩留まりの低下を引き起こすため、安定結晶成長を実現する熱処理プロセスを提案することが強く望まれていた。
【0006】
本発明は、上記事情に鑑みてなされたものであり、結晶性の良い大口径単結晶ウェハの安定製造を可能にするSiC単結晶インゴットの製造方法を提供するものである。
【0007】
【課題を解決するための手段】
本発明のSiC単結晶の製造方法は、主としてSiCからなる原材料を加熱昇華させ、その昇華ガスを予め別位置の、原料部分よりは比較的低温部に設置したSiC単結晶からなる種結晶上に供給し、本種結晶上に昇華再結晶させることによりSiC単結晶インゴットを得る方法であって、
(1) 雰囲気圧力減圧時に坩堝温度を降下させることを特徴とする炭化珪素単結晶インゴットの製造方法
(2) 前記坩堝温度の降下幅が、5℃以上100℃以下であることを特徴とする(1)記載の炭化珪素単結晶インゴットの製造方法
(3) 雰囲気圧力減圧時に坩堝温度を降下させ、圧力減少後に再度、結晶成長温度へ温度を上昇させることを特徴とする(1)または(2)に記載の炭化珪素単結晶インゴットの製造方法
(4) 前記温度上昇を40時間以下の時間内で行うことを特徴とする(3)記載の炭化珪素単結晶インゴットの製造方法
である。
【0008】
【発明の実施の形態】
本発明の製造方法により、雰囲気圧力を減少させる際に生じる坩堝内の一時的な温度上昇が抑制でき、結晶成長速度等々の安定成長支配要因に不安定な擾乱をもたらす事が無く、その結果、結晶性の良い大型単結晶インゴットの安定製造が可能になり、大口径のSiC単結晶ウェハを安定に製造できるようになる。
【0009】
図1に、発明者らの提案する基本的な成長処理パターンの一例を示す。昇温過程においては雰囲気圧力を大きくして、比較的低温で発生し易い異種SiCポリタイプの生成を抑えている。昇温前に、結晶成長が起こらない十分に低温域で減圧下で脱ガス処理を行っても良いが、成長温度へ上昇する際には雰囲気圧力を高くする必要がある。なお、昇温過程時の圧力は0.8×105Pa以上であれば十分である。所望の成長温度に到達後、雰囲気圧力の減少を開始すると同時に温度を降下させる。このときの温度降下幅は、望ましくは5℃以上100℃以下とすることが望ましい。この温度範囲よりも小さいと、坩堝内の温度上昇が抑えられず安定成長が実現できない。また、逆にこの温度範囲を超えて温度を降下させると、圧力低下時に温度が異常に降下してしまい、やはり安定成長が実現されずに多結晶化したり、あるいは異種SiCポリタイプが発生してしまう。なお、成長時の圧力は、1.3×104Pa以下であればよい。また、温度降下の速度は、圧力降下速度とほぼ同等で十分であり、特に問題にはならない。雰囲気圧力が所定の圧力に減少後、異種SiCポリタイプ混入の可能性が無ければ、その温度で成長を継続させても良いが、成長速度が低下して十分な大きさの単結晶インゴットが得られないため、速やかに降下前の成長温度近傍へ復帰させることが望ましい。このときの昇温速度であるが、40時間以下の時間内で行うことが望ましく、これを超えると高温被爆下での断熱材劣化等々の理由により、結晶成長継続が不可能になり、従って成長時間内での温度復帰ができない。
【0010】
【実施例】
以下に、本発明の実施例について説明する。
【0011】
(実施例1)
図2に、種結晶を用いた改良型レーリー法によってSiC単結晶を成長させる、本発明の製造装置の概略図を示す。グラファイト坩堝中にSiC原料粉末を充填し、その上部対向面に6Hポリタイプの単結晶種結晶ウェハを据え付けた後、水冷式二重石英管内に静置した。坩堝内径は25.4mmである。SiC原料粉末の不純物を除去する目的から、約10-3Pa以下の高真空下で高周波加熱方式により約500℃に加熱、保持し、脱ガス処理を行った。しかる後に、アルゴンガスを石英管内圧力が1.0×105Paになるまで充填し、その後2150℃まで約1時間かけて昇温した。なお、坩堝温度の測温方法であるが、坩堝上部の中央部分に直径2〜4mmの光路を設け、石英管外に設置した二色温度計にて測定している。引き続いて、石英管内圧力の減圧を開始すると同時に、高周波電源のパワーを低下させ、圧力1.3×103Paおよび温度2100℃の状態へ約5分で到達した。その後、2100℃の温度で20時間保持して結晶成長させた。なお、本発明の製造法による上記実施例の比較実験として、脱ガス処理後に2100℃まで約1時間で昇温し、その後圧力を1.3×103Paに降下して2100℃の温度にて20時間保持する結晶成長実験を行った。
【0012】
成長完了後に成長結晶を取り出し、観察したところ、本発明の製造方法によって作製した結晶は、全体がほぼ完全な6Hポリタイプの単結晶インゴットであった。一方、比較例の場合では、大傾角結晶粒の無い単結晶状態は維持されているもの、成長結晶の内部に4Hポリタイプが混入しており、6Hポリタイプ部分との界面付近よりマイクロパイプ状の構造欠陥が発生して、結晶性劣化が著しいことが判明した。
【0013】
(実施例2)
実施例1とほぼ同様な成長条件にて、4Hポリタイプの単結晶インゴット成長実験を実施した。ただし、石英管内圧力が1.3×103Paの状態で2050℃まで約1時間かけて昇温し、圧力1.3×103Paおよび温度2000℃まで約5分で到達後、減圧下で2050℃まで約1時間かけて昇温させ、さらにその温度で19時間保持した。また、比較実験として、2050℃まで約1時間で昇温し、その後1.3×103Paまで圧力を降下し、2050℃で20時間保持した実験を行った。
【0014】
本発明の製造法によって得られた結晶は、結晶粒の発生の無い、ほぼ完全な単結晶状態のインゴットであった。このインゴットを成長方向に平行に切り出して厚さ約1mmの薄板を採取し、ラマン分光法によって薄板の各部分のポリタイプを調べたところ、ほぼ全面に亘って4Hポリタイプであることを示す分光データが得られ、異種ポリタイプ発生の無い、安定な結晶成長が行われたことを示している。一方、比較例であるが、成長結晶の、特に坩堝内壁に近い結晶周辺部分に、結晶方位が大きく異なる4Hポリタイプの微小結晶粒が発生しており、結晶全面に亘って単結晶状である4Hポリタイプインゴットは得られなかった。また、上記と同様な方法によって薄板の各部分のポリタイプを調べたところ、やはり結晶周辺部分に6Hおよび15Rポリタイプが発生しており、4Hのみからなる単一ポリタイプインゴットになっていないことが判明した。
【0015】
【発明の効果】
以上のように、本発明によれば、種結晶を用いた改良型レーリー法により、結晶性の良い良質の炭化珪素単結晶インゴットを製造できる。このような炭化珪素単結晶ウェハを用いれば、光学的特性の優れた青色発光素子、電気的特性の優れた高耐圧・耐環境性電子デバイスを作製することができる。
【図面の簡単な説明】
【図1】 本発明の結晶成長方法の温度パターンの一例。
【図2】 本発明の製造方法に用いられる単結晶成長装置の一例を示す構成図。
【符号の説明】
1…種結晶(SiC単結晶)
2…SiC粉末原料
3…グラファイト坩堝
4…二重石英管(水冷式)
5…断熱材
6…真空排気装置
7…高周波加熱コイル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a large silicon carbide single crystal having low defects and good crystallinity by a sublimation recrystallization method.
[0002]
[Prior art]
Silicon carbide (SiC) has been attracting attention as a substrate wafer material for various devices including power devices for electric power because of its excellent physical properties, heat resistance and mechanical strength as a semiconductor material. SiC single crystals are generally manufactured by a sublimation recrystallization method, but because it was difficult to obtain high-quality large single crystals with few crystal defects that can withstand use as semiconductor devices, For many years, its industrialization has been hindered. In recent years, an improved Rayleigh method (Yu. M. Tairov and VF Tsvetkov, Journal of Crystal Growth, vol. 52 (1981) pp. 146), which improved the conventional sublimation recrystallization method, has been proposed, and a single crystal ingot A dramatic progress has been made in improving the quality and size. Although it is at the research and development level, device application research such as GaN-based blue light-emitting diodes and Schottky barrier diodes is being promoted, and at the same time, large single crystal wafers with a maximum diameter of 4 inches (100 mm) can be realized. (CH Carter, et al., FED Journal, vol.11 (2000) pp.7).
[0003]
The modified Rayleigh method is to produce a single crystal by applying SiC sublimation / recrystallization. The SiC single crystal is preliminarily placed in a relatively low temperature part by heating and sublimating the raw material mainly composed of SiC. This is a method for obtaining a large SiC single crystal ingot by recrystallization on a seed crystal composed of Since the sublimation temperature of SiC itself is high, crystal growth generally needs to be performed at a high temperature of 2000 ° C. For this reason, a crucible mainly composed of a heat-resistant material typified by graphite is used for a crystal growth container. In order to obtain a high-quality SiC single crystal ingot free of crystal defects, etc., the optimum growth conditions are maintained by controlling the temperature distribution in the crucible, the sublimation SiC gas distribution, etc., and the conditions are maintained over the entire growth time. There is a need to. However, since it is extremely difficult to monitor the inside of the graphite crucible in real time at such a high temperature, there is no effective method other than guessing from information such as temperature measurement of the outer surface of the crucible, etc. For these reasons, there are still unknown control factors in the crystal growth conditions at present, and the situation is that the stable crystal growth conditions have not been completely established. For this reason, there has been a problem in that the production yield of single crystal ingots is reduced due to frequent occurrences such as disorder in part of the grown crystal resulting in polycrystallization and the occurrence of different polytypes.
[0004]
[Problems to be solved by the invention]
When manufacturing SiC single crystal ingots by sublimation recrystallization, it is known that there are SiC polytypes that tend to form at relatively low temperatures during the temperature rise process during crystal growth (Knippenberg, Phillips Res Reports, vol.18 (1963) pp.161). For example, an SiC polytype called 3C is said to be easily formed in a low temperature range of 2000 ° C. or lower, particularly under non-equilibrium conditions, depending on the growth apparatus. By the way, since the semiconductor characteristics are relatively good, SiC polytypes that are attracting attention as device applications are 4H and 6H. In the sublimation recrystallization method, single crystal ingots composed of these polytypes stably crystallize in a high temperature range of 2000 ° C. or higher. Therefore, when producing 4H and 6H polytype single crystals, the temperature near the seed crystal is The crucible temperature must be controlled so that it falls within the temperature range. For this reason, the atmosphere is basically used for the purpose of suppressing the crystallization of different types of SiC polytypes at low temperatures, except in the case of heat treatment under reduced pressure for different purposes such as degassing for raw material purification. A technique is generally used in which the temperature is raised while increasing the pressure, and the pressure is decreased after reaching the vicinity of the desired growth temperature to start the growth (N. Ohtani, et al., Electronics and Communications in Japan, Part 2, vol.81 (1998) pp.8). When the atmospheric pressure is increased, the diffusion rate of the SiC sublimation gas in the crucible is remarkably reduced. Therefore, the basic principle of this method is that the sublimation rate is suppressed and the crystal growth on the seed crystal hardly progresses. ing. However, even if such atmospheric pressure control is carried out, there are still frequent occurrences such as polycrystal growth and mixing of different types of SiC polytypes, and the yield of crystal production is effectively improved. It is hard to say that there is.
[0005]
Based on a detailed investigation on the temperature of the crucible at the time of temperature rise and an analysis based on numerical analysis simulation, the inventors have found that, for example, in the case of crystal growth in a graphite crucible, depending on the pressure drop speed, It was found that the temperature rises by about 50 to 100 ° C. even in the vicinity of the exothermic part. When the atmospheric pressure is lowered, the contribution of heat conduction by the atmosphere gas is reduced among the heat flow controlling factors such as radiation and heat conduction that determine the temperature distribution of the entire system including the crucible. It is considered that the temperature distribution in the crucible rises because the heat insulation is improved. In such a case, the crystal growth rate is not stabilized due to the temperature change when the atmospheric pressure is lowered, and the crystallinity of the grown crystal is likely to be disturbed. In some cases, crystal grains having different crystal orientations are generated. , It will be polycrystallized. Alternatively, the growth temperature shifts to a temperature range where other heterogeneous polytypes are likely to be generated, making it impossible to obtain a desired single polytype single crystal. In such a case, from the vicinity of the interface with the heterogeneous polytype. hollow micro defects called micropipe occurs (N. Ohtani, et al., 1 st International Workshop on Ultra-Low-Loss Power Device Technology, (2000)). In any case, it has been strongly desired to propose a heat treatment process that realizes stable crystal growth because it causes a decrease in the production yield of high-quality SiC single crystal ingots.
[0006]
The present invention has been made in view of the above circumstances, and provides a method for producing a SiC single crystal ingot that enables stable production of a large-diameter single crystal wafer having good crystallinity.
[0007]
[Means for Solving the Problems]
The method for producing a SiC single crystal according to the present invention heats and sublimates a raw material mainly composed of SiC, and the sublimation gas is preliminarily placed on a seed crystal composed of a SiC single crystal placed at a relatively low temperature part from the raw material part. A method for obtaining a SiC single crystal ingot by supplying and sublimating and recrystallizing the seed crystal;
(1) A method for producing a silicon carbide single crystal ingot characterized by lowering the crucible temperature when the atmospheric pressure is reduced (2) The crucible temperature drop is 5 ° C. or more and 100 ° C. or less ( 1) The method for producing a silicon carbide single crystal ingot according to 1), wherein the crucible temperature is lowered when the atmospheric pressure is reduced, and the temperature is raised again to the crystal growth temperature after the pressure is reduced (1) or (2) (4) The method for producing a silicon carbide single crystal ingot according to (3), wherein the temperature increase is performed within a period of 40 hours or less.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
By the production method of the present invention, it is possible to suppress a temporary temperature rise in the crucible that occurs when the atmospheric pressure is reduced, without causing unstable disturbance to stable growth dominating factors such as crystal growth rate, and as a result, A large-sized single crystal ingot having good crystallinity can be stably manufactured, and a large-diameter SiC single crystal wafer can be stably manufactured.
[0009]
FIG. 1 shows an example of a basic growth processing pattern proposed by the inventors. In the temperature rising process, the atmospheric pressure is increased to suppress the generation of heterogeneous SiC polytypes that are likely to occur at relatively low temperatures. Before the temperature rise, degassing treatment may be performed under reduced pressure in a sufficiently low temperature range where crystal growth does not occur. However, when the temperature is raised to the growth temperature, it is necessary to increase the atmospheric pressure. It is sufficient that the pressure during the temperature raising process is 0.8 × 10 5 Pa or more. After reaching the desired growth temperature, the temperature is decreased simultaneously with the start of the decrease in the atmospheric pressure. The temperature drop at this time is desirably 5 ° C. or more and 100 ° C. or less. If it is smaller than this temperature range, the temperature rise in the crucible cannot be suppressed and stable growth cannot be realized. On the other hand, if the temperature is lowered beyond this temperature range, the temperature will drop abnormally when the pressure drops, resulting in polycrystallization without realizing stable growth, or generation of different SiC polytypes. End up. Note that the growth pressure may be 1.3 × 10 4 Pa or less. Further, the temperature drop speed is almost equal to the pressure drop speed and is not particularly problematic. If there is no possibility of mixing different types of SiC polytypes after the atmospheric pressure has decreased to the specified pressure, growth may be continued at that temperature, but the growth rate will decrease and a sufficiently large single crystal ingot will be obtained. Therefore, it is desirable to quickly return to the vicinity of the growth temperature before the drop. The rate of temperature rise at this time is preferably within 40 hours or less. If the temperature is exceeded, crystal growth cannot be continued due to factors such as deterioration of the heat insulating material under high-temperature exposure. The temperature cannot be recovered in time.
[0010]
【Example】
Examples of the present invention will be described below.
[0011]
(Example 1)
FIG. 2 shows a schematic view of the production apparatus of the present invention for growing a SiC single crystal by an improved Rayleigh method using a seed crystal. A graphite crucible was filled with SiC raw material powder, a 6H polytype single crystal seed crystal wafer was installed on the upper facing surface, and then placed in a water-cooled double quartz tube. The inner diameter of the crucible is 25.4 mm. In order to remove impurities from the SiC raw material powder, degassing was performed by heating and holding at about 500 ° C. by high-frequency heating under a high vacuum of about 10 −3 Pa or less. Thereafter, argon gas was charged until the pressure in the quartz tube became 1.0 × 10 5 Pa, and then the temperature was raised to 2150 ° C. over about 1 hour. In addition, although it is the temperature measuring method of a crucible temperature, it provided with the optical path of diameter 2-4mm in the center part of the upper part of a crucible, and measured with the two-color thermometer installed outside the quartz tube. Subsequently, the pressure in the quartz tube was started to be reduced, and at the same time, the power of the high-frequency power source was lowered to reach the state of pressure 1.3 × 10 3 Pa and temperature 2100 ° C. in about 5 minutes. Thereafter, the crystal was grown at a temperature of 2100 ° C. for 20 hours. In addition, as a comparative experiment of the above example by the production method of the present invention, after degassing treatment, the temperature was raised to 2100 ° C. in about 1 hour, and then the pressure was lowered to 1.3 × 10 3 Pa and the temperature was increased to 2100 ° C. A crystal growth experiment was carried out for a long time.
[0012]
When the grown crystal was taken out and observed after completion of the growth, the crystal produced by the production method of the present invention was a single crystal ingot of 6H polytype almost completely as a whole. On the other hand, in the case of the comparative example, the single crystal state without the large-angle crystal grains is maintained, but the 4H polytype is mixed in the inside of the grown crystal, and the micropipe shape is formed near the interface with the 6H polytype portion. It has been found that the structural defects of FIG.
[0013]
(Example 2)
A 4H polytype single crystal ingot growth experiment was carried out under growth conditions substantially the same as in Example 1. However, when the pressure inside the quartz tube is 1.3 × 10 3 Pa, the temperature is raised to 2050 ° C. over about 1 hour. After reaching the pressure 1.3 × 10 3 Pa and the temperature 2000 ° C. in about 5 minutes, the pressure is reduced to 2050 ° C. under reduced pressure. The temperature was raised over about 1 hour, and the temperature was further maintained for 19 hours. As a comparative experiment, an experiment was performed in which the temperature was raised to 2050 ° C. in about 1 hour, and then the pressure was reduced to 1.3 × 10 3 Pa and held at 2050 ° C. for 20 hours.
[0014]
The crystal obtained by the production method of the present invention was an ingot in an almost complete single crystal state with no generation of crystal grains. This ingot was cut out in parallel to the growth direction, a thin plate having a thickness of about 1 mm was collected, and the polytype of each part of the thin plate was examined by Raman spectroscopy. As a result, it was found that the entire surface was a 4H polytype. Data were obtained, indicating that stable crystal growth was achieved without the occurrence of different polytypes. On the other hand, as a comparative example, 4H polytype microcrystal grains having greatly different crystal orientations are generated in the peripheral portion of the grown crystal, particularly close to the inner wall of the crucible, and it is a single crystal over the entire crystal surface. A 4H polytype ingot was not obtained. Further, when the polytype of each part of the thin plate was examined by the same method as above, 6H and 15R polytypes were generated in the peripheral part of the crystal, and it was not a single polytype ingot consisting only of 4H. There was found.
[0015]
【The invention's effect】
As described above, according to the present invention, a high-quality silicon carbide single crystal ingot having good crystallinity can be produced by an improved Rayleigh method using a seed crystal. By using such a silicon carbide single crystal wafer, it is possible to produce a blue light-emitting element having excellent optical characteristics and a high voltage / environment resistant electronic device having excellent electrical characteristics.
[Brief description of the drawings]
FIG. 1 shows an example of a temperature pattern of the crystal growth method of the present invention.
FIG. 2 is a configuration diagram showing an example of a single crystal growth apparatus used in the manufacturing method of the present invention.
[Explanation of symbols]
1 ... Seed crystal (SiC single crystal)
2 ... SiC powder raw material 3 ... Graphite crucible 4 ... Double quartz tube (water-cooled)
5 ... Heat insulating material 6 ... Vacuum exhaust device 7 ... High frequency heating coil

Claims (4)

昇華再結晶法により種結晶上に炭化珪素単結晶を成長させる工程を包含する炭化珪素単結晶の製造方法であって、結晶成長時の雰囲気圧力を低下させる際に、坩堝温度を降下させることを特徴とする炭化珪素単結晶インゴットの製造方法。A method for producing a silicon carbide single crystal comprising a step of growing a silicon carbide single crystal on a seed crystal by a sublimation recrystallization method, wherein the crucible temperature is lowered when the atmospheric pressure during crystal growth is reduced. A method for producing a silicon carbide single crystal ingot, which is characterized. 前記坩堝温度の降下幅が、5℃以上100℃以下であることを特徴とする請求項1記載の炭化珪素単結晶インゴットの製造方法。2. The method for producing a silicon carbide single crystal ingot according to claim 1, wherein a fall width of the crucible temperature is 5 ° C. or more and 100 ° C. or less. 前記炭化珪素単結晶インゴットの製造方法において、圧力低下後に再度、降下前の結晶成長温度へ温度を上昇させることを特徴とする請求項1または2に記載の炭化珪素単結晶インゴットの製造方法。3. The method for manufacturing a silicon carbide single crystal ingot according to claim 1, wherein in the method for manufacturing a silicon carbide single crystal ingot, the temperature is increased again to the crystal growth temperature before the decrease after the pressure is reduced. 前記圧力低下後の温度上昇を40時間以下の時間内で行うことを特徴とする請求項3記載の炭化珪素単結晶インゴットの製造方法。The method for producing a silicon carbide single crystal ingot according to claim 3, wherein the temperature rise after the pressure drop is performed within 40 hours or less.
JP2001084854A 2001-03-23 2001-03-23 Method for producing silicon carbide single crystal ingot Expired - Lifetime JP4184622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001084854A JP4184622B2 (en) 2001-03-23 2001-03-23 Method for producing silicon carbide single crystal ingot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001084854A JP4184622B2 (en) 2001-03-23 2001-03-23 Method for producing silicon carbide single crystal ingot

Publications (2)

Publication Number Publication Date
JP2002274995A JP2002274995A (en) 2002-09-25
JP4184622B2 true JP4184622B2 (en) 2008-11-19

Family

ID=18940465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001084854A Expired - Lifetime JP4184622B2 (en) 2001-03-23 2001-03-23 Method for producing silicon carbide single crystal ingot

Country Status (1)

Country Link
JP (1) JP4184622B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4460236B2 (en) * 2003-07-23 2010-05-12 新日本製鐵株式会社 Silicon carbide single crystal wafer
JP2008120616A (en) * 2006-11-09 2008-05-29 Bridgestone Corp Process for producing silicon carbide single crystal
US8449671B2 (en) * 2007-06-27 2013-05-28 Ii-Vi Incorporated Fabrication of SiC substrates with low warp and bow
JP4987784B2 (en) * 2008-04-03 2012-07-25 新日本製鐵株式会社 Method for producing silicon carbide single crystal ingot
JP5131262B2 (en) * 2009-11-30 2013-01-30 新日鐵住金株式会社 Silicon carbide single crystal and method for producing the same

Also Published As

Publication number Publication date
JP2002274995A (en) 2002-09-25

Similar Documents

Publication Publication Date Title
JP4853449B2 (en) SiC single crystal manufacturing method, SiC single crystal wafer, and SiC semiconductor device
KR101666596B1 (en) Sic single crystal and method for producing same
US9702057B2 (en) Method for producing an n-type SiC single crystal from a Si—C solution comprising a nitride
EP2857562B1 (en) Sic single-crystal ingot and production method for same
KR101635693B1 (en) Seed crystal isolating spindle for single crystal production device and method for producing single crystals
JP2013075771A (en) Method and device for producing sic single crystal
JP2006131433A (en) Method of producing silicon carbide single crystal
JP2004099340A (en) Seed crystal for silicon carbide single crystal growth, silicon carbide single crystal ingot and method of manufacturing the same
JP2008074663A (en) Method for producing silicon carbide single crystal, silicon carbide single crystal ingot, and silicon carbide single crystal substrate
JP3590485B2 (en) Single crystal silicon carbide ingot and method for producing the same
JP5890377B2 (en) Method for producing SiC single crystal
CN108149324B (en) Aluminum nitride self-nucleation growth method
JP4184622B2 (en) Method for producing silicon carbide single crystal ingot
JP4987784B2 (en) Method for producing silicon carbide single crystal ingot
JP2018140903A (en) Method for manufacturing silicon carbide single crystal ingot
KR20050120707A (en) Process for producing single crystal
JP5761264B2 (en) Method for manufacturing SiC substrate
JP2000034199A (en) Production of silicon carbide single crystal
JP2003137694A (en) Seed crystal for growing silicon carbide single crystal, silicon carbide single crystal ingot and method of producing the same
JP4218460B2 (en) Graphite heater for single crystal production, single crystal production apparatus and single crystal production method
WO2011135669A1 (en) PROCESS FOR PRODUCTION OF SiC SUBSTRATE
JP2004099390A (en) Method of manufacturing compound semiconductor single crystal and compound semiconductor single crystal
CN111962157B (en) Healing method of silicon carbide crystal micropipe, silicon carbide product and application
JP2019163184A (en) ScAlMgO4 SINGLE CRYSTAL SUBSTRATE, AND PRODUCTION METHOD THEREOF
WO2017043215A1 (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080904

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4184622

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term