JP2008074663A - Method for producing silicon carbide single crystal, silicon carbide single crystal ingot, and silicon carbide single crystal substrate - Google Patents

Method for producing silicon carbide single crystal, silicon carbide single crystal ingot, and silicon carbide single crystal substrate Download PDF

Info

Publication number
JP2008074663A
JP2008074663A JP2006255673A JP2006255673A JP2008074663A JP 2008074663 A JP2008074663 A JP 2008074663A JP 2006255673 A JP2006255673 A JP 2006255673A JP 2006255673 A JP2006255673 A JP 2006255673A JP 2008074663 A JP2008074663 A JP 2008074663A
Authority
JP
Japan
Prior art keywords
single crystal
silicon carbide
carbide single
crystal
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006255673A
Other languages
Japanese (ja)
Other versions
JP4879686B2 (en
Inventor
Tatsuo Fujimoto
辰雄 藤本
Masashi Nakabayashi
正史 中林
Hiroshi Tsuge
弘志 柘植
Masakazu Katsuno
正和 勝野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006255673A priority Critical patent/JP4879686B2/en
Publication of JP2008074663A publication Critical patent/JP2008074663A/en
Application granted granted Critical
Publication of JP4879686B2 publication Critical patent/JP4879686B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the production method of a silicon carbide single crystal ingot having excellent crystallinity even in the case that the concentration of an impurity is changed in a crystal during growth of the crystal. <P>SOLUTION: In the production method of the silicon carbide single crystal, including a process for growing the silicon carbide single crystal ingot on a seed crystal, when the concentration of impurity in an atmospheric gas is changed during growth of the silicon carbide single crystal, temperature is controlled so that the growth temperature becomes constant. Nitrogen is used as the impurity in the atmospheric gas, and the concentration of nitrogen in the crystal is changed by changing the concentration of nitrogen in the gas. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、炭化珪素単結晶の製造方法、炭化珪素単結晶インゴット及び炭化珪素単結晶基板に関するものである。本発明の炭化珪素単結晶基板は、主に各種電子デバイス等の製造用基板として用いられる。   The present invention relates to a method for producing a silicon carbide single crystal, a silicon carbide single crystal ingot, and a silicon carbide single crystal substrate. The silicon carbide single crystal substrate of the present invention is mainly used as a substrate for manufacturing various electronic devices and the like.

炭化珪素(SiC)は、優れた半導体特性、耐熱性及び機械的強度等から、特に大電力制御用パワーデバイスを含む、各種半導体デバイスの基板用材料として注目を集めている。デバイス製造に適した、2インチ(約50mm)以上の大口径を有する単結晶のインゴットは、目下のところ、改良レーリー法と称される昇華再結晶法によって、製造されることが一般的になっている(非特許文献1)。近年、SiC単結晶製造技術が進捗し、SiC単結晶中の各種の転位欠陥密度の低減化、及び口径4インチ(約100mm)に及ぶSiC結晶の大口径化が実現しつつある(非特許文献2)。実用化においても、GaN系青色発光ダイオードやショットキーバリアダイオード等が既に商品化されており、また他方で、GaN系高周波デバイス、及びMOSFETに代表される低損失パワーデバイス等々も試作されるに至っている。   Silicon carbide (SiC) is attracting attention as a substrate material for various semiconductor devices, particularly including power devices for high power control, because of excellent semiconductor properties, heat resistance, mechanical strength, and the like. Single crystal ingots with a large diameter of 2 inches (approx. 50 mm) or more suitable for device manufacture are currently generally manufactured by a sublimation recrystallization method called the modified Rayleigh method. (Non-Patent Document 1). In recent years, SiC single crystal manufacturing technology has progressed, reducing the density of various dislocation defects in SiC single crystals, and increasing the diameter of SiC crystals with a diameter of 4 inches (about 100 mm) (non-patent literature). 2). In practical use, GaN-based blue light-emitting diodes and Schottky barrier diodes have already been commercialized. On the other hand, GaN-based high-frequency devices, low-loss power devices represented by MOSFETs, etc. have also been prototyped. Yes.

耐圧特性及び動作信頼性に優れるパワーデバイス用を製造するための一要件として、使用する基板の転位欠陥密度が小さく、結晶品質に優れる必要がある。SiC単結晶基板の場合、特徴的な欠陥であるマイクロパイプ欠陥が知られている。マイクロパイプ欠陥とは、大型の螺旋転位の中心部分に微細な穴が貫通したものであり、このような欠陥が存在すると、高電圧印加下で電流リークの発生原因となるため、デバイスの耐圧特性等に深刻な影響を与えてしまう。したがって、マイクロパイプ欠陥密度をできる限り低減化することが応用上重要である。   As one requirement for manufacturing a power device having excellent breakdown voltage characteristics and operational reliability, it is necessary that the dislocation defect density of the substrate to be used is small and the crystal quality is excellent. In the case of a SiC single crystal substrate, micropipe defects, which are characteristic defects, are known. A micropipe defect is a small hole penetrating through the center of a large screw dislocation, and the presence of such a defect causes current leakage under high voltage application. Will be seriously affected. Therefore, it is important in application to reduce the micropipe defect density as much as possible.

マイクロパイプ欠陥が発生する原因の一つとして、異種ポリタイプの発生が挙げられる。したがって、マイクロパイプの増加を抑えて高い結晶性を有するSiC単結晶を製造するためには、異種ポリタイプ発生が皆無な安定成長製造法の確立が必須である。近年、安定製造技術の進歩があり、最近では単位面積(1cm2)当たりのマイクロパイプ欠陥の数が数個以下の良質単結晶が報告されるに及んでいる(非特許文献3)。 One of the causes of the occurrence of micropipe defects is the occurrence of different polytypes. Therefore, in order to manufacture a SiC single crystal having high crystallinity while suppressing an increase in micropipes, it is essential to establish a stable growth manufacturing method that does not generate any different polytypes. In recent years, there has been progress in stable manufacturing technology, and recently, high-quality single crystals having a number of micropipe defects per unit area (1 cm 2 ) of several or less have been reported (Non-patent Document 3).

一方、損失低減化等、デバイス特性の向上や、最適化の観点から、様々な半導体特性が基板自身に求められる。基板の電気抵抗率もその一例である。成長結晶の電気抵抗率の制御は、成長時の不活性ガスからなる雰囲気中に、不純物元素を含む気体状原料ガスを添加して行うことが一般的である。特に、代表的なn型不純物である窒素の場合、気体状原料ガスは窒素ガスであり、目的とする結晶中濃度が得られるように窒素ガスを導入して成長を行うことで、電気抵抗率を制御することが可能である(非特許文献4)。
Yu. M. Tairov and V. F. Tsvetkov, Journal of Crystal Growth, vol.52 (1981) pp.146 C. H. Carter, et al., FEDジャーナル, vol.11 (2000) pp.7 A. H. Powell, et al., Material Science Forum, vol.457-460 (2004) pp.41 N. Ohtani, et al., Electronics and Communications in Japan, Part2, vol.81 (1998) pp.8
On the other hand, various semiconductor characteristics are required for the substrate itself from the viewpoint of device characteristics improvement and optimization such as loss reduction. One example is the electrical resistivity of the substrate. Control of the electrical resistivity of the grown crystal is generally performed by adding a gaseous source gas containing an impurity element to an atmosphere of an inert gas during growth. In particular, in the case of nitrogen, which is a typical n-type impurity, the gaseous source gas is nitrogen gas, and by introducing nitrogen gas so as to obtain the target concentration in the crystal, the electrical resistivity is increased. Can be controlled (Non-patent Document 4).
Yu. M. Tairov and VF Tsvetkov, Journal of Crystal Growth, vol.52 (1981) pp.146 CH Carter, et al., FED Journal, vol.11 (2000) pp.7 AH Powell, et al., Material Science Forum, vol.457-460 (2004) pp.41 N. Ohtani, et al., Electronics and Communications in Japan, Part2, vol.81 (1998) pp.8

しかしながら、例えば、改良レーリー法のような昇華再結晶法において、使用する種結晶と成長結晶の不純物濃度が著しく異なる場合、成長中に、異種ポリタイプの発生によるマイクロパイプ欠陥を含む、各種転位欠陥の発生により、成長結晶の結晶性が大きく劣化することが確認された。本発明者らは、この問題を解決するために、成長結晶中の不純物濃度が、成長結晶中で種結晶中と同じ濃度から所定の濃度変化率の範囲内にて漸増あるいは漸減して所望の濃度まで変化させる方法を提案している(特願2005-109194号)。種結晶と成長結晶中の不純物濃度が異なる場合、SiC結晶格子間隔の差に起因する歪エネルギーが発生し、所定の臨界値を越えると成長結晶中に各種欠陥が発生する原因になるが、この歪エネルギーが上記の欠陥発生の臨界値以下に保たれるように、成長方向における成長結晶中の窒素濃度変化率を所定の値以下に保つことが、特願2005-109194号における発明の主旨である。即ち、成長結晶中の不純物濃度勾配条件を維持しながら、所望の濃度まで不純物濃度を変化させることにより、成長中に新たな結晶欠陥を発生させずに、種結晶と同様な良好な結晶性を有した成長結晶を得ることができるようになる。   However, for example, in the sublimation recrystallization method such as the modified Rayleigh method, when the impurity concentration of the seed crystal used and the grown crystal is significantly different, various dislocation defects including micropipe defects due to the generation of different polytypes during the growth. It was confirmed that the crystallinity of the grown crystal greatly deteriorated due to the occurrence of. In order to solve this problem, the present inventors gradually increase or decrease the impurity concentration in the growth crystal within the predetermined concentration change range from the same concentration in the growth crystal as in the seed crystal. A method for changing the concentration is proposed (Japanese Patent Application No. 2005-109194). When the impurity concentration in the seed crystal is different from that in the grown crystal, strain energy is generated due to the difference in the SiC crystal lattice spacing, and if it exceeds the specified critical value, it will cause various defects in the grown crystal. The purpose of the invention in Japanese Patent Application No. 2005-109194 is to keep the nitrogen concentration change rate in the growth crystal in the growth direction below a predetermined value so that the strain energy is kept below the critical value for the generation of defects. is there. In other words, by maintaining the impurity concentration gradient condition in the grown crystal and changing the impurity concentration to the desired concentration, the same crystallinity as that of the seed crystal can be obtained without generating new crystal defects during the growth. It becomes possible to obtain the grown crystal.

前記発明は極めて有効であり、例えば不純物として窒素を採用した場合、結晶中の窒素濃度を変化させる際に、成長方向における成長結晶中の窒素濃度変化率を所定の値以下に保つ方法を採用することにより、欠陥発生を抑制する傾向が顕現する。しかしながら、成長回数を増やして統計的な観点から、欠陥の発生確率を調べたところ、3C-SiCと思われる微細結晶、あるいは異種ポリタイプの発生するケースが、完全には皆無では無いことが発明者らの調査によって判明した。このような状況では、目的とする所定の窒素濃度に有する、高品質なSiC単結晶を工業的に製造する場合に、製造コストや生産効率性の点で問題が生じてしまう。   The invention is extremely effective. For example, when nitrogen is used as an impurity, a method of maintaining the nitrogen concentration change rate in the growth crystal in the growth direction at a predetermined value or less when changing the nitrogen concentration in the crystal is adopted. As a result, the tendency to suppress the occurrence of defects becomes apparent. However, when the number of growths was increased and the probability of occurrence of defects was examined from a statistical point of view, it was invented that there were no cases where 3C-SiC microcrystals or heterogeneous polytypes occurred completely. Revealed by their investigation. In such a situation, when a high-quality SiC single crystal having a predetermined predetermined nitrogen concentration is industrially produced, problems arise in terms of production cost and production efficiency.

上記のような理由から、目的とする所定の結晶中不純物濃度を有し、かつ転位欠陥が少ない高結晶品質のSiC単結晶インゴットがより安定に製造できるようになることが望ましく、例えば、成長中に窒素濃度を変化させる場合でも、結晶欠陥発生の原因となるような微細3C-SiC結晶粒、あるいは異種ポリタイプの発生を更に抑制できる技術が必要である。   For the reasons described above, it is desirable that a high-crystal quality SiC single crystal ingot having a desired impurity concentration in a crystal and having few dislocation defects can be manufactured more stably. Even when the nitrogen concentration is changed, there is a need for a technique that can further suppress the generation of fine 3C-SiC crystal grains or heterogeneous polytypes that cause crystal defects.

本発明は、上記の事情に鑑みてなされたものであり、結晶成長中に窒素等々の不純物濃度を変化させても、結晶性に優れる高品質SiC単結晶が安定的に製造できる方法を提供するものである。   The present invention has been made in view of the above circumstances, and provides a method capable of stably producing a high-quality SiC single crystal having excellent crystallinity even when the concentration of impurities such as nitrogen is changed during crystal growth. Is.

本発明は、上記の従来技術での問題を解決し、欠陥の少ない結晶性に優れた炭化珪素単結晶基板を取り出せる炭化珪素単結晶を安定に製造する方法、及びその炭化珪素単結晶インゴットより作製される炭化珪素単結晶基板に関するものであって、
(1) 種結晶上に炭化珪素単結晶インゴットを成長させる工程を包含する炭化珪素単結晶の製造方法であって、成長中に結晶中の不純物濃度を漸増あるいは漸減させる際に、成長温度が一定になるように温度制御することを特徴とする炭化珪素単結晶の製造方法、
(2) 前記炭化珪素単結晶の製造方法であって、成長中に雰囲気ガス中の不純物としての窒素濃度を漸増あるいは漸減させることによって、結晶中の窒素濃度を変化させることを特徴とする(1)記載の炭化珪素単結晶の製造方法、
(3) 前記炭化珪素単結晶が、高周波誘導加熱によって加熱された、主として黒鉛からなる坩堝内で作製されることを特徴とする(1)又は(2)に記載の炭化珪素単結晶の製造方法、
(4) 前記雰囲気ガスが、アルゴン、ヘリウム、あるいはこれらの混合ガスのいずれかであることを特徴とする(2)又は(3)に記載の炭化珪素単結晶の製造方法、
(5) (1)〜(4)のいずれかに記載の製造方法で得られた炭化珪素単結晶インゴットであって、該インゴットの口径が50mm以上である炭化珪素単結晶インゴット、
(6) (5)に記載の炭化珪素単結晶インゴットであって、該インゴットの口径が75mm以上である炭化珪素単結晶インゴット、
(7) (5)又は(6)に記載の炭化珪素単結晶インゴットから切断され、研磨して得られる炭化珪素単結晶基板であって、該基板が単一のポリタイプからなる炭化珪素単結晶基板、
(8) (7)に記載の炭化珪素単結晶基板上に、炭化珪素薄膜をエピタキシャル成長してなる炭化珪素単結晶エピタキシャル基板、
(9) (7)に記載の炭化珪素単結晶基板上に、窒化ガリウム、窒化アルミニウム、窒化インジウム、又はこれらの混晶のいずれかの薄膜をエピタキシャル成長してなるヘテロエピタキシャル基板、
である。
The present invention solves the above-described problems in the prior art, and stably produces a silicon carbide single crystal capable of taking out a silicon carbide single crystal substrate with few defects and excellent crystallinity, and is produced from the silicon carbide single crystal ingot A silicon carbide single crystal substrate,
(1) A method for producing a silicon carbide single crystal comprising a step of growing a silicon carbide single crystal ingot on a seed crystal, wherein the growth temperature is constant when the impurity concentration in the crystal is gradually increased or decreased during the growth. A method for producing a silicon carbide single crystal, wherein the temperature is controlled to be
(2) The method for producing a silicon carbide single crystal, wherein the nitrogen concentration in the crystal is changed by gradually increasing or decreasing the nitrogen concentration as an impurity in the atmospheric gas during the growth (1) ) Manufacturing method of the silicon carbide single crystal according to
(3) The method for producing a silicon carbide single crystal according to (1) or (2), wherein the silicon carbide single crystal is produced in a crucible mainly made of graphite heated by high-frequency induction heating. ,
(4) The method for producing a silicon carbide single crystal according to (2) or (3), wherein the atmospheric gas is argon, helium, or a mixed gas thereof.
(5) A silicon carbide single crystal ingot obtained by the production method according to any one of (1) to (4), wherein the diameter of the ingot is 50 mm or more,
(6) The silicon carbide single crystal ingot according to (5), wherein the ingot has a diameter of 75 mm or more,
(7) A silicon carbide single crystal substrate obtained by cutting and polishing the silicon carbide single crystal ingot according to (5) or (6), wherein the substrate is a single polytype silicon carbide single crystal. substrate,
(8) A silicon carbide single crystal epitaxial substrate obtained by epitaxially growing a silicon carbide thin film on the silicon carbide single crystal substrate according to (7),
(9) A heteroepitaxial substrate formed by epitaxially growing a thin film of gallium nitride, aluminum nitride, indium nitride, or a mixed crystal thereof on the silicon carbide single crystal substrate according to (7),
It is.

本発明によれば、種結晶を用いた改良型レーリー法等々のような、種結晶上に炭化珪素単結晶インゴットを成長させる工程を包含する炭化珪素単結晶の製造法により、所望の不純物濃度を有し且つ良質のSiC単結晶を、再現性良く成長させることができる。このような結晶から極めて小さな高性能電力制御用パワーデバイスを歩留り良く作製することができる。   According to the present invention, a desired impurity concentration can be obtained by a silicon carbide single crystal manufacturing method including a step of growing a silicon carbide single crystal ingot on a seed crystal, such as an improved Rayleigh method using a seed crystal. It is possible to grow a high-quality SiC single crystal with good reproducibility. An extremely small high-performance power control power device can be manufactured from such crystals with a high yield.

所定の窒素濃度を有するSiC単結晶の安定製造を妨げている原因を究明する過程において、発明者らは、雰囲気ガス中の窒素濃度を結晶成長中に変化させると、黒鉛製坩堝を含むホットゾーンの温度が変化することを見出した。以下に、その実験概要と結果を説明する。   In the process of investigating the cause that hinders the stable production of SiC single crystal having a predetermined nitrogen concentration, the inventors changed the nitrogen concentration in the atmospheric gas during crystal growth and found a hot zone including a graphite crucible. It was found that the temperature of changed. The experimental outline and results will be described below.

図1に、本実験で用いた単結晶成長装置の概略図を示す。通常のSiC単結晶成長では、主として黒鉛からなる坩堝を用い、この坩堝内にアチソン法等々により作製したSiC結晶原料粉末を充填し、その対向位置に種結晶を配置する。本実験では、雰囲気ガス中の窒素濃度以外の影響を排除するために、SiC原料の充填及び種結晶の装着は実施せず、空の坩堝をそのまま用いた。何も充填しない空の坩堝を成長炉内にセットし、石英管の内部を一度真空排気した後に、雰囲気ガスとして高純度Arガス(純度99.9995%)を流入させて石英管内圧力を約1.3kPaに保った。引き続いて、ワークコイルに電流を流して高周波誘導加熱を開始し、そのままワークコイル電流を一定にして約10時間放置した。坩堝温度の計測は、坩堝上部を覆う断熱材の中央部に予め設けた直径約3mmの光路を通して輻射光を取り出し、二色温度計を用いて行った。ホットゾーン全系の温度が安定化したことを確認後、雰囲気ガス中の窒素濃度を変化させ、このときの坩堝上部の表面温度を測温した。ここで窒素濃度は、アルゴンガス(純度99.9995%)と窒素ガス(純度99.9995%)の体積混合比で定義する。   FIG. 1 shows a schematic diagram of a single crystal growth apparatus used in this experiment. In normal SiC single crystal growth, a crucible mainly made of graphite is used, and this crucible is filled with SiC crystal raw material powder produced by the Atchison method or the like, and a seed crystal is placed at the opposite position. In this experiment, in order to eliminate the influence other than the nitrogen concentration in the atmospheric gas, the filling of the SiC raw material and the mounting of the seed crystal were not performed, and an empty crucible was used as it was. Set an empty crucible in the growth furnace, evacuate the inside of the quartz tube once, and then inject high-purity Ar gas (purity 99.9995%) as the atmospheric gas to bring the pressure inside the quartz tube to about 1.3 kPa. Kept. Subsequently, high-frequency induction heating was started by passing a current through the work coil, and the work coil current was kept constant for about 10 hours. The temperature of the crucible was measured using a two-color thermometer by taking out the radiant light through an optical path having a diameter of about 3 mm provided in advance in the center of the heat insulating material covering the upper part of the crucible. After confirming that the temperature of the entire hot zone was stabilized, the nitrogen concentration in the atmospheric gas was changed, and the surface temperature of the upper part of the crucible at this time was measured. Here, the nitrogen concentration is defined by a volume mixing ratio of argon gas (purity 99.9995%) and nitrogen gas (purity 99.9995%).

図2に、窒素濃度を50%まで変化させた場合の、上部表面温度の測定結果を示す。窒素濃度が0%(純Ar雰囲気)の場合、表面温度は約2150℃であったが、Arガス中の窒素濃度を順次増加させると、それに伴って表面温度が順次低下することが判る。窒素濃度50%の場合に、温度は2115℃となり、窒素濃度0%の場合と比較して、約35℃の温度減少が起こった。なお、窒素濃度50%での測温終了後に、雰囲気ガスを純Arに切り替えると、温度は漸次増加し始め、最終的に約2145℃まで回復することが確認された。本結果より、観察された窒素濃度の増加に伴う表面温度の減少が、ホットゾーン全系の加熱ダメージ等々による非可逆的な構造変化によるものではないことが判る。また、雰囲気ガスとして使用したアルゴンを、ヘリウム、あるいはアルゴンとヘリウムの混合ガスとした場合でも、ほぼ同様の結果が得られた。また、SiC単結晶基板の電気抵抗率に影響を与え得る、他の不純物として、アルミニウムや硼素が挙げられるが、これらの元素についても、雰囲気ガスにトリメチルアルミニウム(Al(CH3)3)や、トリメチルボロン(B(CH3)3)等の原料ガスを、所定の割合で混合することで、SiC単結晶中に導入することが可能であり、これらの混合ガスを用いて上記と同様な実験を行った結果、同様な傾向を示す結果が得られている。 FIG. 2 shows the measurement results of the upper surface temperature when the nitrogen concentration is changed to 50%. When the nitrogen concentration was 0% (pure Ar atmosphere), the surface temperature was about 2150 ° C., but it can be seen that when the nitrogen concentration in the Ar gas is sequentially increased, the surface temperature is gradually decreased accordingly. The temperature was 2115 ° C. when the nitrogen concentration was 50%, and a temperature decrease of about 35 ° C. occurred compared to the case where the nitrogen concentration was 0%. It was confirmed that when the atmosphere gas was switched to pure Ar after temperature measurement at a nitrogen concentration of 50%, the temperature started to increase gradually and finally recovered to about 2145 ° C. From this result, it can be seen that the decrease in the surface temperature accompanying the increase in the observed nitrogen concentration is not due to irreversible structural changes due to heating damage of the entire hot zone. Further, even when argon used as the atmosphere gas was helium or a mixed gas of argon and helium, substantially the same result was obtained. In addition, other impurities that can affect the electrical resistivity of the SiC single crystal substrate include aluminum and boron, but for these elements, trimethylaluminum (Al (CH 3 ) 3 ) and atmospheric gas, It is possible to introduce a raw material gas such as trimethylboron (B (CH 3 ) 3 ) into a SiC single crystal by mixing at a predetermined ratio, and using these mixed gases, an experiment similar to the above is performed. As a result of the above, a result showing a similar tendency is obtained.

前記の実験結果は、2000℃に及ぶ高温域において、雰囲気中の窒素濃度を変化させると、黒鉛坩堝を含むホットゾーンの温度が変化することを示しており、同様な現象は、坩堝内にSiC原料粉末と種結晶を組み込んで、実際にSiC単結晶成長を行った場合にも起こっているものと十分に推量できると考えられる。成長中の温度変化は、SiC単結晶の成長速度に影響を与え、成長速度が過大になると原子レベルでの正常なSi-C積層による安定成長が妨げられると同時に、特に成長温度の低温化が著しい場合には、異種ポリタイプ、特に低温で安定である3C-SiCの発生確率が高くなるため、これらを原因とする結晶性の劣化が起こる可能性が高くなる。   The above experimental results show that the temperature of the hot zone including the graphite crucible changes when the nitrogen concentration in the atmosphere is changed at a high temperature range up to 2000 ° C. It is thought that it can be sufficiently inferred that it occurs even when SiC single crystal growth is actually performed by incorporating raw material powder and seed crystal. Changes in temperature during growth affect the growth rate of SiC single crystals, and if the growth rate is excessive, stable growth due to normal Si-C stacking at the atomic level is hindered, and at the same time, the growth temperature is lowered. In the case of remarkable, since the generation probability of different polytypes, particularly 3C-SiC which is stable at a low temperature is increased, the possibility of deterioration of crystallinity due to these increases.

成長中に窒素濃度が変化する際に、坩堝表面の温度が一定となるように、図2に示す結果に準拠して、ワークコイルに流れる電流を制御することで、成長中の温度変化に起因する結晶性劣化を回避できる。また、二色温度計による温度測定データをワークコイル電流へフィードバックさせ、自動温度制御することも考えられるが、成長するSiC単結晶の口径が大きくなると、坩堝の容積も大きくなるために温度制御レスポンスが過大に大きくなり、自動温度制御は著しく困難になる傾向が強くなる。このような傾向は、特に成長するSiC単結晶の口径が75mm以上になると顕著になるため、図2に示す結果に準拠してワークコイルに流れる電流を制御する本発明の製造方法が安定な製造を行う上で極めて有利になる。   Due to the temperature change during growth by controlling the current flowing through the work coil in accordance with the result shown in Fig. 2 so that the temperature of the crucible surface becomes constant when the nitrogen concentration changes during growth. Crystallinity deterioration can be avoided. It is also possible to feed back the temperature measurement data from the two-color thermometer to the work coil current for automatic temperature control. However, as the diameter of the growing SiC single crystal increases, the crucible volume also increases, resulting in a temperature control response. Becomes excessively large and automatic temperature control tends to be extremely difficult. Such a tendency becomes prominent particularly when the diameter of the growing SiC single crystal is 75 mm or more. Therefore, the manufacturing method of the present invention that controls the current flowing through the work coil in accordance with the result shown in FIG. It is extremely advantageous to perform.

本法を用いれば、成長時に結晶の口径が拡大するような構造を有する坩堝を用いることにより、結晶中の不純物濃度が種結晶中のそれと異なった、種結晶口径よりも大きな口径を有するSiC単結晶インゴットを得ることができる。更に、この手法を繰り返すことにより、口径として50mm〜300mmまでの口径を有するSiC単結晶インゴットを得ることができるが、SiC単結晶の口径の上限については、特に制限を設ける技術的な理由はない。   By using this method, a crucible having a structure in which the diameter of the crystal is enlarged during growth is used, so that the SiC single crystal having a larger diameter than that of the seed crystal, in which the impurity concentration in the crystal is different from that in the seed crystal. A crystalline ingot can be obtained. Furthermore, by repeating this method, a SiC single crystal ingot having a diameter of 50 mm to 300 mm can be obtained, but there is no technical reason to limit the upper limit of the diameter of the SiC single crystal. .

さらに、これらの単結晶を切断、研磨加工を施すことにより、50mm以上300mm以下の口径を有する炭化珪素単結晶基板が作製可能である。さらに、これらのSiC単結晶インゴットから、切断及び研磨によって作製したSiC単結晶基板上に化学気相蒸着法(CVD法)等により、SiC、窒化ガリウム、窒化アルミニウム、窒化インジウム等々の薄膜をエピタキシャル成長させることにより、ホモあるいはヘテロエピタキシャル基板を作製することができる。このエピタキシャル基板は、各種の電子デバイス作製用基板として用いられる。特に、SiCエピタキシャル薄膜は、基板として用いた炭化珪素単結晶基板の良好な結晶性を継承しており、電子デバイスを作製した際に優れた特性を発揮するデバイスを得ることができる。   Furthermore, a silicon carbide single crystal substrate having a diameter of 50 mm or more and 300 mm or less can be produced by cutting and polishing these single crystals. Furthermore, from these SiC single crystal ingots, thin films of SiC, gallium nitride, aluminum nitride, indium nitride, etc. are epitaxially grown by chemical vapor deposition (CVD) on a SiC single crystal substrate produced by cutting and polishing. Thus, a homo- or heteroepitaxial substrate can be produced. This epitaxial substrate is used as a substrate for manufacturing various electronic devices. In particular, the SiC epitaxial thin film inherits the good crystallinity of the silicon carbide single crystal substrate used as the substrate, and a device that exhibits excellent characteristics when an electronic device is produced can be obtained.

以下に、本発明の実施例について説明する。   Examples of the present invention will be described below.

(実施例1)
まず、結晶成長時の窒素濃度を変化させた場合の、坩堝上部温度変化を調べることを目的とする予備実験として、図1に示す単結晶成長装置を用いて以下に記すSiC単結晶成長を実施した。
(Example 1)
First, the SiC single crystal growth described below was performed using the single crystal growth apparatus shown in Fig. 1 as a preliminary experiment to investigate the temperature change of the crucible upper part when the nitrogen concentration during crystal growth was changed. did.

成長方法は、前述の方法とほぼ同一であるが、坩堝3内にはSiC結晶粉末原料2を充填し、種結晶1として、口径50mmの(0001)面を有した4H-SiC単結晶基板を坩堝内の対向面に取り付けた。使用した種結晶のマイクロパイプ欠陥密度は5個/cm2以下であり、ド−ピング元素としての窒素の濃度は1×1019cm-3であった。黒鉛坩堝3は、二重石英管4の内部に、黒鉛の支持棒上に静置され、坩堝周囲は、熱シールドのための断熱材5によって覆われている。石英管4の内部を真空排気した後、ワークコイル7に電流を流し、坩堝上部の表面温度を1700℃まで上げた。その後、雰囲気ガスとして高純度Arガス(純度99.9995%)を流入させ、石英管内圧力を約80kPaに保ちながら、温度を目標温度である2250℃まで上昇させた。成長圧力である1.3kPaには約30分かけて減圧し、その後、約20時間成長を継続した。この成長時間中、成長開始時には雰囲気ガス中の窒素濃度を7%とし、成長開始後から窒素濃度を一定速度で増加させ、5時間で20%まで増加させ、その後は、20%で一定として成長終了時まで保った。二色温度計による坩堝上部の表面温度を計測したところ、窒素濃度変化前後で約35℃の温度低下を確認した。成長終了後、坩堝内より成長結晶と取り出したところ、結晶の口径は51mmで、成長結晶の高さから計算される成長速度は約0.9mm/hであった。この結晶を成長方向に平行に切断し、窒素濃度を変化した前後の結晶部分の結晶中窒素原子数密度をSIMSにより調べたところ、窒素濃度増加前後でそれぞれ、9.8×1018/cm3、及び7.2×1019/cm3であった。このときの成長100μm当たりの結晶中窒素濃度変化率は、735%/(0.9mm/h×5時間)=約16.3%/100μmであった。 The growth method is almost the same as the above-described method, but a 4H-SiC single crystal substrate having a (0001) plane with a diameter of 50 mm is filled as the seed crystal 1 with the SiC crystal powder raw material 2 in the crucible 3. It attached to the opposing surface in a crucible. The seed crystal used had a micropipe defect density of 5 pieces / cm 2 or less, and the concentration of nitrogen as a doping element was 1 × 10 19 cm −3 . The graphite crucible 3 is placed inside a double quartz tube 4 on a graphite support rod, and the periphery of the crucible is covered with a heat insulating material 5 for heat shielding. After evacuating the inside of the quartz tube 4, a current was passed through the work coil 7 to raise the surface temperature of the upper part of the crucible to 1700 ° C. Thereafter, high-purity Ar gas (purity 99.9995%) was introduced as an atmospheric gas, and the temperature was raised to the target temperature of 2250 ° C. while maintaining the pressure in the quartz tube at about 80 kPa. The growth pressure was reduced to 1.3 kPa over about 30 minutes, and then the growth was continued for about 20 hours. During this growth time, the nitrogen concentration in the atmospheric gas is set to 7% at the start of growth, and after the start of growth, the nitrogen concentration is increased at a constant rate, increased to 20% in 5 hours, and then grown at a constant 20%. Kept until the end. When the surface temperature of the upper part of the crucible was measured with a two-color thermometer, a temperature drop of about 35 ° C. was confirmed before and after the nitrogen concentration change. When the growth crystal was taken out from the crucible after the growth was finished, the diameter of the crystal was 51 mm, and the growth rate calculated from the height of the growth crystal was about 0.9 mm / h. When this crystal was cut in parallel to the growth direction and the nitrogen atom number density in the crystal portion before and after the nitrogen concentration was changed was examined by SIMS, it was 9.8 × 10 18 / cm 3 before and after the nitrogen concentration increase, and It was 7.2 × 10 19 / cm 3 . At this time, the change rate of nitrogen concentration in the crystal per 100 μm of growth was 735% / (0.9 mm / h × 5 hours) = about 16.3% / 100 μm.

上記の予備実験の結果を元に、窒素濃度を変化させる時間中にワークコイル電流を、坩堝上部の表面温度が2250℃にほぼ一定になるように、増加させた。二色温度計の測温実績記録では、2248〜2253℃の範囲内で制御されていることが確認できた。これ以外の成長条件は変えずに、同様な成長を計20回行い、得られた総計20個の成長結晶について、それぞれ成長端近くより口径51mm、厚さ1.0mmのSiC単結晶基板を切り出し、引き続いてラマン散乱によるポリタイプ同定調査を実施したところ、20個の成長中の19個の成長では、全面に亘り4H-SiC単結晶が成長しており、マイクロパイプ密度も、結晶と同等の低い密度を有していることが確認できた。また、520℃に溶融した水酸化カリウム溶液中で5分間エッチングを施し、エッチピット数密度を調べたところ、目視観察と同様のマイクロパイプ密度の貫通中空状欠陥が検出され、種結晶と同等の品質が実現できていることを確認した。また更に、種結晶と同等の高品質結晶が得られていることを確認するため、予め測定していた種結晶のX線トポグラフ撮影デ−タと、成長した結晶から切り出した基板のX線トポグラフ撮影デ−タを比較したところ、新たに欠陥は成長中に発生しておらず、種結晶と同等の高品質を有していることがX線トポグラフ撮影によっても確認できた。   Based on the result of the preliminary experiment, the work coil current was increased so that the surface temperature of the upper part of the crucible became substantially constant at 2250 ° C. during the time of changing the nitrogen concentration. In the temperature measurement record of the two-color thermometer, it was confirmed that the temperature was controlled within the range of 2248-2253 ° C. Without changing the growth conditions other than this, the same growth was performed 20 times in total, and for each of the obtained 20 growth crystals, a SiC single crystal substrate with a diameter of 51 mm and a thickness of 1.0 mm was cut from the vicinity of the growth edge, respectively. Subsequent investigation of polytype identification by Raman scattering revealed that 19 out of 20 growths showed 4H-SiC single crystal growth over the entire surface, and the micropipe density was as low as the crystal. It was confirmed that it had a density. In addition, etching was performed in a potassium hydroxide solution melted at 520 ° C. for 5 minutes, and when the number of etch pits was examined, a hollow defect having a micropipe density similar to that of visual observation was detected, which was equivalent to that of a seed crystal. Confirmed that the quality was achieved. Furthermore, in order to confirm that a high-quality crystal equivalent to the seed crystal is obtained, the X-ray topographic imaging data of the seed crystal measured in advance and the X-ray topograph of the substrate cut out from the grown crystal are obtained. As a result of comparing the imaging data, it was confirmed by X-ray topography imaging that no new defects were generated during the growth, and the quality was equivalent to that of the seed crystal.

この基板の電気抵抗率を測定した。使用した装置は、ナプソン社製NC80MAPシート抵抗非接触測定装置である。測定の結果、基板全面の平均抵抗率は、0.012Ωcmであり、低い抵抗率を有していることが確認された。   The electrical resistivity of this substrate was measured. The apparatus used is a Napson NC80MAP sheet resistance non-contact measuring apparatus. As a result of the measurement, the average resistivity of the entire surface of the substrate was 0.012 Ωcm, and it was confirmed that the substrate had a low resistivity.

こうして得られた基板に、化学気相蒸着法(CVD法)によりSiC単結晶薄膜をエピタキシャル成長させ、SiC単結晶エピタキシャル基板を作製した。このエピタキシャル基板の結晶性について調べるために、溶融水酸化カリウム溶液中に浸漬してエピタキシャル基板表面のエッチングを実施した。その結果、SiC単結晶基板が有していた良好な結晶品質がSiC単結晶薄膜においても継承されていることが確認できた。   A SiC single crystal epitaxial substrate was fabricated by epitaxially growing a SiC single crystal thin film on the substrate thus obtained by chemical vapor deposition (CVD). In order to investigate the crystallinity of this epitaxial substrate, the surface of the epitaxial substrate was etched by being immersed in a molten potassium hydroxide solution. As a result, it was confirmed that the good crystal quality that the SiC single crystal substrate had was inherited in the SiC single crystal thin film.

比較実験として、窒素濃度が変化する間もワークコイル電流は一定とする以外は、上記の予備実験とほぼ同一の成長条件で成長して得られた総計20個のSiC単結晶について、成長端近くより口径51mm、厚さ1.0mmのSiC単結晶基板を切り出し、上記と同様のポリタイプ同定調査を行った。20個中の14個の結晶では、全面に亘り4H-SiC単結晶が成長していることが判明したが、残り6個の結晶では、窒素濃度が変化した結晶部分、あるいは変化後部分の近傍において、微細3C-SiC結晶粒(4個)あるいは異種ポリタイプ(2個)の発生していることが判明した。発生した異種ポリタイプは、主に6H-SiCであった。これらの結晶では、そこから結晶亜粒界やマイクロパイプ欠陥等が発生し、結晶性が大きく劣化した。   As a comparative experiment, a total of 20 SiC single crystals obtained by growing under almost the same growth conditions as the above preliminary experiment, except that the work coil current is kept constant while the nitrogen concentration changes, are near the growth edge. A SiC single crystal substrate having a diameter of 51 mm and a thickness of 1.0 mm was cut out, and a polytype identification investigation similar to the above was performed. In 14 out of 20 crystals, it was found that 4H-SiC single crystal had grown over the entire surface, but in the remaining 6 crystals, the crystal part where the nitrogen concentration changed or the vicinity of the part after the change , It was found that fine 3C-SiC crystal grains (4) or different polytypes (2) were generated. The heterogeneous polytype generated was mainly 6H—SiC. In these crystals, crystal subgrain boundaries, micropipe defects, and the like occurred, and the crystallinity was greatly deteriorated.

以上の結果より、本発明の窒素濃度変化時のワークコイル電流制御による成長温度一定化が、転位欠陥密度が小さい、結晶性の良好なSiC単結晶の安定成長に有効であることが判る。   From the above results, it can be seen that the constant growth temperature by controlling the work coil current when the nitrogen concentration is changed according to the present invention is effective for stable growth of a SiC single crystal having a small dislocation defect density and good crystallinity.

(実施例2)
4Hポリタイプの種結晶の口径が76mmであり、この種結晶を用いて口径76mmのSiC単結晶インゴットを成長させたこと以外は、実施例1とほぼ同様な成長条件にて、単結晶成長を実施した。成長を20回行い、得られた総計20個について、それぞれ成長結晶の成長端近くより切り出した口径76mm、厚さ1.0mmのSiC単結晶基板の結晶性を実施例1と同様の方法により評価した。表1にその結果を示す。なお、成功率とは、種結晶の結晶品質とほぼ同等の良結晶性4HポリタイプSiC単結晶インゴットが得られた確率を表す。比較例では、窒素濃度を変化させた時間帯以降もワークコイル電流は一定とした。
(Example 2)
The diameter of the 4H polytype seed crystal is 76 mm, and single crystal growth was performed under substantially the same growth conditions as in Example 1 except that this seed crystal was used to grow a SiC single crystal ingot with a diameter of 76 mm. Carried out. Growth was performed 20 times, and the crystallinity of the SiC single crystal substrate having a diameter of 76 mm and a thickness of 1.0 mm cut out from the vicinity of the growth end of each grown crystal was evaluated by the same method as in Example 1 for a total of 20 obtained. . Table 1 shows the results. The success rate represents the probability of obtaining a highly crystalline 4H polytype SiC single crystal ingot that is almost equivalent to the crystal quality of the seed crystal. In the comparative example, the work coil current was constant after the time period when the nitrogen concentration was changed.

Figure 2008074663
Figure 2008074663

さらに、本発明の口径76mmインゴットから、実施例1と同様の切断及び研磨により、(0001)面ジャストの面方位を有する、口径76mm、厚さ360μmの鏡面基板を作製し、この鏡面基板上に、窒化ガリウム薄膜を有機金属化学気相成長法(MOCVD法)によりエピタキシャル成長させた。窒化ガリウム薄膜の成長条件は、成長温度1050℃、トリメチルガリウム(TNG)、アンモニア(NH3)、シラン(SiH4)の流量を、それぞれ55×10-6モル/min、4リットル/min、23×10-11モル/minとし、さらに、成長圧力を大気圧とした。約1時間の成長により、n型窒化ガリウム薄膜が厚さ約3μm成長していることを確認した。このようにして得られたエピタキシャル薄膜を、ノルマルスキー光学顕微鏡により観察したところ、基板全面に渡って平坦性に優れ、良好なモフォロジ―を有する、品質の高い窒化ガリウムエピタキシャル薄膜が形成されていることが確認できた。 Further, from the 76 mm diameter ingot of the present invention, a mirror surface substrate having a diameter of 76 mm and a thickness of 360 μm having a plane orientation of (0001) plane was produced by cutting and polishing in the same manner as in Example 1. A gallium nitride thin film was epitaxially grown by metal organic chemical vapor deposition (MOCVD). The growth conditions of the gallium nitride thin film are as follows: the growth temperature is 1050 ° C., the flow rates of trimethylgallium (TNG), ammonia (NH 3 ), and silane (SiH 4 ) are 55 × 10 −6 mol / min, 4 liter / min, and 23, respectively. × 10 -11 mol / min, and the growth pressure was atmospheric pressure. It was confirmed that the n-type gallium nitride thin film was grown to a thickness of about 3 μm after about 1 hour of growth. When the epitaxial thin film thus obtained was observed with a normalsky optical microscope, a high-quality gallium nitride epitaxial thin film with excellent flatness and good morphology was formed over the entire surface of the substrate. Was confirmed.

本発明の製造方法が、口径76mmの大型単結晶成長においても、欠陥密度が低い良質な単結晶を安定に製造する上で有効であり、各種のデバイス用基板として産業上極めて効果のある製造方法であることを示している。   The production method of the present invention is effective for stably producing a high-quality single crystal having a low defect density even in the growth of a large single crystal having a diameter of 76 mm, and is an industrially extremely effective production method as a substrate for various devices. It is shown that.

(実施例3)
4Hポリタイプの種結晶の口径が76mmであり、この種結晶を内径100mmの黒鉛製坩堝内部の上面中央付近に設置し、SiC単結晶インゴットを成長させた。成長条件は実施例1とほぼ同様である。ただし、アルゴンガス中の窒素濃度については約30%とした。成長後、坩堝内部より成長結晶を取り出したところ、成長結晶端付近で直径がほぼ100mmの単結晶部分が実現されていた。この成長を個別に10回実施し、得られた10個の結晶について、それぞれ成長端近くより、口径100mm、厚さ1.0mmのSiC単結晶基板を切り出し、その中心付近の結晶性を実施例1と同様に評価した。その結果。10個の単結晶の内、9個について、ほぼ4Hポリタイプのみから構成されるSiC単結晶が実現されており、マイクロパイプ密度についても、種結晶とほぼ同等の密度を有していることが確認できた。更に、この基板の電気抵抗率を、実施例1と同様に測定したところ、平均抵抗率は0.009Ωcmであった。
(Example 3)
The diameter of the 4H polytype seed crystal was 76 mm, and this seed crystal was placed near the center of the upper surface inside the graphite crucible having an inner diameter of 100 mm to grow a SiC single crystal ingot. The growth conditions are almost the same as in Example 1. However, the nitrogen concentration in the argon gas was about 30%. After the growth, when the grown crystal was taken out from the inside of the crucible, a single crystal portion having a diameter of about 100 mm was realized near the edge of the grown crystal. This growth was carried out 10 times individually, and for each of the 10 crystals obtained, an SiC single crystal substrate having a diameter of 100 mm and a thickness of 1.0 mm was cut from the vicinity of the growth edge, and the crystallinity in the vicinity of the center was measured in Example 1. And evaluated in the same manner. as a result. Of the 10 single crystals, 9 of them are SiC single crystals composed only of 4H polytype, and the micropipe density is almost the same as the seed crystal. It could be confirmed. Furthermore, when the electrical resistivity of this substrate was measured in the same manner as in Example 1, the average resistivity was 0.009 Ωcm.

昇華再結晶法(改良レーリー法)の原理を説明する図Diagram explaining the principle of the sublimation recrystallization method (modified Rayleigh method) ワークコイル電流を一定に保った場合に、坩堝表面温度の雰囲気ガス中窒素濃度依存性を説明する図Figure explaining the dependence of the crucible surface temperature on the nitrogen concentration in the ambient gas when the work coil current is kept constant

符号の説明Explanation of symbols

1 種結晶(SiC単結晶)
2 SiC結晶粉末原料
3 坩堝
4 二重石英管(水冷)
5 断熱材
6 真空排気装置
7 ワークコイル
8 測温用窓
9 二色温度計(放射温度計)
1 seed crystal (SiC single crystal)
2 SiC crystal powder raw material
3 crucible
4 Double quartz tube (water cooling)
5 Insulation
6 Vacuum exhaust system
7 Work coil
8 Temperature measuring window
9 Two-color thermometer (radiation thermometer)

Claims (9)

種結晶上に炭化珪素単結晶インゴットを成長させる工程を包含する炭化珪素単結晶の製造方法であって、成長中に結晶中の不純物濃度を漸増あるいは漸減させる際に、成長温度が一定になるように温度制御することを特徴とする炭化珪素単結晶の製造方法。   A method for producing a silicon carbide single crystal comprising a step of growing a silicon carbide single crystal ingot on a seed crystal, wherein the growth temperature is made constant when the impurity concentration in the crystal is gradually increased or decreased during the growth. A method for producing a silicon carbide single crystal, characterized in that the temperature is controlled at a minimum. 前記炭化珪素単結晶の製造方法であって、成長中に雰囲気ガス中の不純物としての窒素濃度を漸増あるいは漸減させることによって、結晶中の窒素濃度を変化させることを特徴とする請求項1記載の炭化珪素単結晶の製造方法。   2. The method for producing a silicon carbide single crystal according to claim 1, wherein the nitrogen concentration in the crystal is changed by gradually increasing or decreasing the nitrogen concentration as an impurity in the atmospheric gas during the growth. A method for producing a silicon carbide single crystal. 前記炭化珪素単結晶が、高周波誘導加熱によって加熱された、主として黒鉛からなる坩堝内で作製されることを特徴とする請求項1又は2に記載の炭化珪素単結晶の製造方法。   3. The method for producing a silicon carbide single crystal according to claim 1, wherein the silicon carbide single crystal is produced in a crucible mainly made of graphite heated by high frequency induction heating. 前記雰囲気ガスが、アルゴン、ヘリウム、あるいはこれらの混合ガスのいずれかであることを特徴とする請求項2又は3に記載の炭化珪素単結晶の製造方法。   4. The method for producing a silicon carbide single crystal according to claim 2, wherein the atmospheric gas is argon, helium, or a mixed gas thereof. 請求項1〜4のいずれかに記載の製造方法で得られた炭化珪素単結晶インゴットであって、該インゴットの口径が50mm以上である炭化珪素単結晶インゴット。   5. A silicon carbide single crystal ingot obtained by the production method according to claim 1, wherein the ingot has a diameter of 50 mm or more. 請求項5に記載の炭化珪素単結晶インゴットであって、該インゴットの口径が75mm以上である炭化珪素単結晶インゴット。   6. The silicon carbide single crystal ingot according to claim 5, wherein the ingot has a diameter of 75 mm or more. 請求項5又は6に記載の炭化珪素単結晶インゴットから切断され、研磨して得られる炭化珪素単結晶基板であって、該基板が単一のポリタイプからなる炭化珪素単結晶基板。   7. A silicon carbide single crystal substrate obtained by cutting and polishing the silicon carbide single crystal ingot according to claim 5 or 6, wherein the substrate is made of a single polytype. 請求項7に記載の炭化珪素単結晶基板上に、炭化珪素薄膜をエピタキシャル成長してなる炭化珪素単結晶エピタキシャル基板。   8. A silicon carbide single crystal epitaxial substrate obtained by epitaxially growing a silicon carbide thin film on the silicon carbide single crystal substrate according to claim 7. 請求項7に記載の炭化珪素単結晶基板上に、窒化ガリウム、窒化アルミニウム、窒化インジウム、又はこれらの混晶のいずれかの薄膜をエピタキシャル成長してなるヘテロエピタキシャル基板。   8. A heteroepitaxial substrate formed by epitaxially growing a thin film of gallium nitride, aluminum nitride, indium nitride, or a mixed crystal thereof on the silicon carbide single crystal substrate according to claim 7.
JP2006255673A 2006-09-21 2006-09-21 Silicon carbide single crystal manufacturing method, silicon carbide single crystal ingot, and silicon carbide single crystal substrate Active JP4879686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006255673A JP4879686B2 (en) 2006-09-21 2006-09-21 Silicon carbide single crystal manufacturing method, silicon carbide single crystal ingot, and silicon carbide single crystal substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006255673A JP4879686B2 (en) 2006-09-21 2006-09-21 Silicon carbide single crystal manufacturing method, silicon carbide single crystal ingot, and silicon carbide single crystal substrate

Publications (2)

Publication Number Publication Date
JP2008074663A true JP2008074663A (en) 2008-04-03
JP4879686B2 JP4879686B2 (en) 2012-02-22

Family

ID=39347107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006255673A Active JP4879686B2 (en) 2006-09-21 2006-09-21 Silicon carbide single crystal manufacturing method, silicon carbide single crystal ingot, and silicon carbide single crystal substrate

Country Status (1)

Country Link
JP (1) JP4879686B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011219297A (en) * 2010-04-07 2011-11-04 Nippon Steel Corp Silicon carbide single crystal substrate, silicon carbide epitaxial wafer, and thin film epitaxial wafer
JP2013028475A (en) * 2011-07-27 2013-02-07 Kyocera Corp Single crystal substrate and semiconductor element using the same
JP2013252979A (en) * 2012-06-05 2013-12-19 Toyota Motor Corp SiC SINGLE CRYSTAL INGOT, SiC SINGLE CRYSTAL, AND PRODUCTION METHOD
WO2016152813A1 (en) * 2015-03-24 2016-09-29 新日鐵住金株式会社 Method for producing silicon carbide single crystal
WO2017086449A1 (en) * 2015-11-19 2017-05-26 新日鐵住金株式会社 SiC SINGLE CRYSTAL PRODUCTION METHOD AND SiC SINGLE CRYSTAL INGOT
JP2018039730A (en) * 2017-11-21 2018-03-15 住友電気工業株式会社 Silicon carbide ingot, and silicon carbide substrate manufacturing method
US10106910B2 (en) 2015-01-22 2018-10-23 Toyota Jidosha Kabushiki Kaisha Method for producing SiC single crystal
US10427324B2 (en) 2013-11-20 2019-10-01 Sumitomo Electric Industries, Ltd. Silicon carbide ingot and method for manufacturing silicon carbide substrate
JP2021031332A (en) * 2019-08-23 2021-03-01 住友金属鉱山株式会社 Silicon carbide substrate and method for manufacturing the same
US11856678B2 (en) 2019-10-29 2023-12-26 Senic Inc. Method of measuring a graphite article, apparatus for a measurement, and ingot growing system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01108200A (en) * 1987-10-19 1989-04-25 Sanyo Electric Co Ltd Production of sic ingot
JP2000319099A (en) * 1999-05-07 2000-11-21 Hiroyuki Matsunami SiC WAFER, SiC SEMICONDUCTOR DEVICE AND PRODUCTION OF SiC WAFER
JP2000340512A (en) * 1999-03-23 2000-12-08 Matsushita Electric Ind Co Ltd Method for growing semiconductor film and manufacture for semiconductor device
JP2003104799A (en) * 2001-09-28 2003-04-09 Nippon Steel Corp Silicon carbide single crystal ingot and its manufacturing method
JP2006248825A (en) * 2005-03-09 2006-09-21 Denso Corp Silicon carbide ingot and its manufacturing method
JP2006290635A (en) * 2005-04-05 2006-10-26 Nippon Steel Corp Method for producing silicon carbide single crystal and ingot of silicon carbide single crystal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01108200A (en) * 1987-10-19 1989-04-25 Sanyo Electric Co Ltd Production of sic ingot
JP2000340512A (en) * 1999-03-23 2000-12-08 Matsushita Electric Ind Co Ltd Method for growing semiconductor film and manufacture for semiconductor device
JP2000319099A (en) * 1999-05-07 2000-11-21 Hiroyuki Matsunami SiC WAFER, SiC SEMICONDUCTOR DEVICE AND PRODUCTION OF SiC WAFER
JP2003104799A (en) * 2001-09-28 2003-04-09 Nippon Steel Corp Silicon carbide single crystal ingot and its manufacturing method
JP2006248825A (en) * 2005-03-09 2006-09-21 Denso Corp Silicon carbide ingot and its manufacturing method
JP2006290635A (en) * 2005-04-05 2006-10-26 Nippon Steel Corp Method for producing silicon carbide single crystal and ingot of silicon carbide single crystal

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011219297A (en) * 2010-04-07 2011-11-04 Nippon Steel Corp Silicon carbide single crystal substrate, silicon carbide epitaxial wafer, and thin film epitaxial wafer
JP2013028475A (en) * 2011-07-27 2013-02-07 Kyocera Corp Single crystal substrate and semiconductor element using the same
JP2013252979A (en) * 2012-06-05 2013-12-19 Toyota Motor Corp SiC SINGLE CRYSTAL INGOT, SiC SINGLE CRYSTAL, AND PRODUCTION METHOD
EP2857562A1 (en) * 2012-06-05 2015-04-08 Toyota Jidosha Kabushiki Kaisha SiC SINGLE-CRYSTAL INGOT, SiC SINGLE CRYSTAL, AND PRODUCTION METHOD FOR SAME
EP2857562A4 (en) * 2012-06-05 2015-06-03 Toyota Motor Co Ltd SiC SINGLE-CRYSTAL INGOT, SiC SINGLE CRYSTAL, AND PRODUCTION METHOD FOR SAME
US9732436B2 (en) 2012-06-05 2017-08-15 Toyota Jidosha Kabushiki Kaisha SiC single-crystal ingot, SiC single crystal, and production method for same
US10427324B2 (en) 2013-11-20 2019-10-01 Sumitomo Electric Industries, Ltd. Silicon carbide ingot and method for manufacturing silicon carbide substrate
US10106910B2 (en) 2015-01-22 2018-10-23 Toyota Jidosha Kabushiki Kaisha Method for producing SiC single crystal
KR20170102288A (en) * 2015-03-24 2017-09-08 신닛테츠스미킨 카부시키카이샤 Manufacturing method of silicon carbide single crystal
JPWO2016152813A1 (en) * 2015-03-24 2018-01-11 新日鐵住金株式会社 Method for producing silicon carbide single crystal
KR101951136B1 (en) * 2015-03-24 2019-02-21 쇼와 덴코 가부시키가이샤 Manufacturing method of silicon carbide single crystal
WO2016152813A1 (en) * 2015-03-24 2016-09-29 新日鐵住金株式会社 Method for producing silicon carbide single crystal
US10526722B2 (en) 2015-03-24 2020-01-07 Showa Denko K.K. Method for manufacturing silicon carbide single crystal
WO2017086449A1 (en) * 2015-11-19 2017-05-26 新日鐵住金株式会社 SiC SINGLE CRYSTAL PRODUCTION METHOD AND SiC SINGLE CRYSTAL INGOT
JP2018039730A (en) * 2017-11-21 2018-03-15 住友電気工業株式会社 Silicon carbide ingot, and silicon carbide substrate manufacturing method
JP2021031332A (en) * 2019-08-23 2021-03-01 住友金属鉱山株式会社 Silicon carbide substrate and method for manufacturing the same
JP7322594B2 (en) 2019-08-23 2023-08-08 住友金属鉱山株式会社 Silicon carbide substrate and manufacturing method thereof
US11856678B2 (en) 2019-10-29 2023-12-26 Senic Inc. Method of measuring a graphite article, apparatus for a measurement, and ingot growing system

Also Published As

Publication number Publication date
JP4879686B2 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
JP4879686B2 (en) Silicon carbide single crystal manufacturing method, silicon carbide single crystal ingot, and silicon carbide single crystal substrate
JP5706823B2 (en) SiC single crystal wafer and manufacturing method thereof
JP4964672B2 (en) Low resistivity silicon carbide single crystal substrate
JP4469396B2 (en) Silicon carbide single crystal ingot, substrate obtained therefrom and epitaxial wafer
JP4926556B2 (en) Method for manufacturing silicon carbide single crystal ingot and silicon carbide single crystal substrate
JP4853449B2 (en) SiC single crystal manufacturing method, SiC single crystal wafer, and SiC semiconductor device
CN106435733B (en) Silicon carbide single crystal and silicon carbide single crystal wafer
EP2059946B1 (en) Micropipe-free silicon carbide and related method of manufacture
JP4818754B2 (en) Method for producing silicon carbide single crystal ingot
JP5068423B2 (en) Silicon carbide single crystal ingot, silicon carbide single crystal wafer, and manufacturing method thereof
JP4585359B2 (en) Method for producing silicon carbide single crystal
JP4603386B2 (en) Method for producing silicon carbide single crystal
JP5501654B2 (en) Silicon carbide single crystal substrate and manufacturing method thereof
US6562124B1 (en) Method of manufacturing GaN ingots
KR20170099958A (en) Method for producing silicon carbide single crystal ingot and silicon carbide single crystal ingot
JP2004099340A (en) Seed crystal for silicon carbide single crystal growth, silicon carbide single crystal ingot and method of manufacturing the same
JP2015224169A (en) Production method of silicon carbide ingot
JP2008110907A (en) Method for producing silicon carbide single crystal ingot, and silicon carbide single crystal ingot
JP4690906B2 (en) Seed crystal for growing silicon carbide single crystal, method for producing the same, and method for producing silicon carbide single crystal
JP5212343B2 (en) Silicon carbide single crystal ingot, substrate obtained therefrom and epitaxial wafer
JP5614387B2 (en) Silicon carbide single crystal manufacturing method and silicon carbide single crystal ingot
JP4408247B2 (en) Seed crystal for growing silicon carbide single crystal and method for producing silicon carbide single crystal using the same
JP4987784B2 (en) Method for producing silicon carbide single crystal ingot
JP4850807B2 (en) Crucible for growing silicon carbide single crystal and method for producing silicon carbide single crystal using the same
JP5370025B2 (en) Silicon carbide single crystal ingot

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111130

R151 Written notification of patent or utility model registration

Ref document number: 4879686

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350