JP4183008B2 - Micro relay - Google Patents

Micro relay Download PDF

Info

Publication number
JP4183008B2
JP4183008B2 JP2007050098A JP2007050098A JP4183008B2 JP 4183008 B2 JP4183008 B2 JP 4183008B2 JP 2007050098 A JP2007050098 A JP 2007050098A JP 2007050098 A JP2007050098 A JP 2007050098A JP 4183008 B2 JP4183008 B2 JP 4183008B2
Authority
JP
Japan
Prior art keywords
armature
movable contact
longitudinal direction
fixed
base substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007050098A
Other languages
Japanese (ja)
Other versions
JP2007180047A (en
Inventor
慎一 岸本
健 橋本
勉 下村
英樹 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2007050098A priority Critical patent/JP4183008B2/en
Publication of JP2007180047A publication Critical patent/JP2007180047A/en
Application granted granted Critical
Publication of JP4183008B2 publication Critical patent/JP4183008B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H51/00Electromagnetic relays
    • H01H51/22Polarised relays
    • H01H51/2272Polarised relays comprising rockable armature, rocking movement around central axis parallel to the main plane of the armature
    • H01H51/2281Contacts rigidly combined with armature

Description

本発明は、マイクロリレーに関するものである。   The present invention relates to a micro relay.

従来から、静電駆動型のマイクロリレーに比べて駆動力を大きくできるマイクロリレーとして、電磁石装置の電磁力を利用してアーマチュアを駆動し接点を開閉するようにしたマイクロリレーが知られている(例えば、特許文献1参照)。   2. Description of the Related Art Conventionally, as a microrelay that can increase the driving force compared to an electrostatically driven microrelay, a microrelay that uses an electromagnetic force of an electromagnet device to drive an armature to open and close a contact is known ( For example, see Patent Document 1).

以下、この種のマイクロリレーの一例について、図2〜図7を参照しながら説明する。   Hereinafter, an example of this type of microrelay will be described with reference to FIGS.

このマイクロリレーは、ヨーク20に巻回されたコイル22,22への励磁電流に応じて磁束を発生する電磁石装置2と、矩形板状のガラス基板からなり厚み方向の一面側において長手方向の両端部それぞれに各一対の固定接点14が設けられたベース基板1と、ベース基板1の上記一表面側に固着される枠状(矩形枠状)のフレーム部31およびフレーム部31の内側に配置されて4本の支持ばね部32を介してフレーム部31に揺動自在に支持され電磁石装置2により駆動されるアーマチュア30およびアーマチュア30にそれぞれ2本の接圧ばね部35を介して支持されそれぞれ可動接点39が設けられた2つの可動接点基台部34を有するアーマチュアブロック3と、アーマチュアブロック3におけるベース基板1とは反対側で周部がフレーム部31に固着された矩形板状のガラス基板からなるカバー4とを備えている。   This micro relay is composed of an electromagnet device 2 that generates a magnetic flux in response to an exciting current applied to coils 22 and 22 wound around a yoke 20, and both ends in the longitudinal direction on one surface side in the thickness direction. The base substrate 1 provided with a pair of fixed contacts 14 on each of the parts, a frame-shaped (rectangular frame-shaped) frame portion 31 fixed to the one surface side of the base substrate 1, and an inner side of the frame portion 31. The armature 30 and the armature 30 driven by the electromagnet device 2 are swingably supported by the frame portion 31 via the four support spring portions 32, and are respectively supported by the two contact pressure spring portions 35 and movable. An armature block 3 having two movable contact base portions 34 provided with contacts 39, and a peripheral portion on the side opposite to the base substrate 1 in the armature block 3 And a cover 4 made of a rectangular plate-shaped glass substrate which is fixed to the frame portion 31.

電磁石装置2におけるヨーク20は、2つのコイル22,22が直接巻回される細長の矩形板状のコイル巻回部20aと、コイル巻回部20aの長手方向の両端部それぞれからアーマチュア30に近づく向きに延設されコイル22,22への励磁電流に応じて互いの先端面が異極に励磁される一対の脚片20b,20bと、ヨーク20の両脚片20b,20bの間でコイル巻回部20aの長手方向の中央部に重ねて配置された矩形板状の永久磁石21と、細長の矩形板状であってヨーク20のコイル巻回部20aにおける永久磁石21との対向面とは反対側でコイル巻回部20aと直交するようにコイル巻回部20aに固着されるプリント基板23とを備えている。なお、ヨーク20は、電磁軟鉄などの鉄板を曲げ加工、鋳造加工、プレス加工などにより加工することによって形成されており、両脚片20b,20bの断面が矩形状に形成されている。   The yoke 20 in the electromagnet device 2 approaches the armature 30 from each of the elongated rectangular plate-shaped coil winding part 20a around which the two coils 22 and 22 are directly wound, and both ends in the longitudinal direction of the coil winding part 20a. Coil winding between a pair of leg pieces 20b, 20b extending in the direction and excited at opposite ends according to the excitation current to the coils 22, 22, and both leg pieces 20b, 20b of the yoke 20 A rectangular plate-like permanent magnet 21 disposed on the central portion in the longitudinal direction of the portion 20a and an elongated rectangular plate shape opposite to the surface of the coil winding portion 20a of the yoke 20 facing the permanent magnet 21 And a printed circuit board 23 fixed to the coil winding portion 20a so as to be orthogonal to the coil winding portion 20a. The yoke 20 is formed by processing an iron plate such as electromagnetic soft iron by bending, casting, pressing, or the like, and the cross sections of both leg pieces 20b, 20b are formed in a rectangular shape.

永久磁石21は、コイル巻回部20aとの重ね方向(厚み方向)の両面それぞれの磁極面21a,21bが異極に着磁されており、一方の磁極面21bがヨーク20のコイル巻回部20aに当接し、他方の磁極面21aがヨーク20の両脚片20b,20bの先端面と同一平面上に位置するように厚み寸法を設定してある。   In the permanent magnet 21, the magnetic pole surfaces 21a and 21b on both surfaces in the overlapping direction (thickness direction) with the coil winding portion 20a are magnetized in different polarities, and one magnetic pole surface 21b is the coil winding portion of the yoke 20. The thickness dimension is set so that the other magnetic pole surface 21a is in contact with 20a and is located on the same plane as the tip surfaces of both leg pieces 20b, 20b of the yoke 20.

また、各コイル22,22はそれぞれ、永久磁石21とヨーク20の脚片20b,20bとによって口軸方向(つまり、コイル巻回部20aの長手方向)への移動が規制される。プリント基板23は、絶縁基板23aの一表面における長手方向の両端部に導体パターン23bが形成されており、各導体パターン23bにおいて円形状に形成された部位が外部接続用電極を構成し、矩形状に形成された部位がコイル接続部を構成している。ここにおいて、コイル接続部には、コイル22,22の端末が接続されるが、コイル22,22は、外部接続用電極間に電源を接続してコイル22,22へ励磁電流を流したときにヨーク20の両脚片20b,20bの先端面が互いに異なる磁極となるように接続されている。なお、各導体パターン23bにおける外部接続用電極には、導電性材料(例えば、Au,Ag,Cu,半田など)からなるバンプ24が適宜固着されるが、バンプ24を固着する代わりに、ボンディングワイヤをボンディングしてもよい。   Further, the movement of each of the coils 22 and 22 in the mouth axis direction (that is, the longitudinal direction of the coil winding portion 20a) is restricted by the permanent magnet 21 and the leg pieces 20b and 20b of the yoke 20, respectively. In the printed circuit board 23, conductor patterns 23b are formed at both ends in the longitudinal direction on one surface of the insulating substrate 23a, and the circularly formed portions of the conductor patterns 23b constitute external connection electrodes, and are rectangular. The site | part formed in comprises the coil connection part. Here, the terminals of the coils 22 and 22 are connected to the coil connecting portion, but the coils 22 and 22 are connected when a power source is connected between the external connection electrodes and an excitation current is passed through the coils 22 and 22. The leg surfaces 20b, 20b of the yoke 20 are connected so that the tip surfaces of the leg pieces 20b are different from each other. Note that bumps 24 made of a conductive material (for example, Au, Ag, Cu, solder, etc.) are appropriately fixed to the external connection electrodes in each conductor pattern 23b. Instead of fixing the bumps 24, bonding wires are bonded. May be bonded.

ベース基板1は、パイレックス(登録商標)のような耐熱ガラスにより形成されており、外周形状が矩形状であって、中央部には厚み方向に貫通し電磁石装置2を収納する収納孔16が貫設され、四隅の各近傍には厚み方向に貫通するスルーホール10が貫設されている。また、ベース基板1の厚み方向の両面であって各スルーホール10それぞれの周縁にはランド12が形成されている。ここに、ベース基板1の厚み方向において重なるランド12同士はスルーホール10の内周面に被着された導電性材料(例えば、Cu,Cr,Ti,Pt,Co,Ni,Au,あるいはこれらの合金など)からなる導体層(図示せず)により電気的に接続されている。また、ベース基板1の厚み方向の他表面側の各ランド12にはバンプ13が適宜固着されており、バンプ13をランド12に固着することによって、ベース基板1の上記他表面側ではスルーホール10の開口面がバンプ13により覆われる。スルーホール10の開口面は円形状であって、ベース基板1の上記一表面には、それぞれスルーホール10の開口面およびランド12を覆う4枚のシリコン薄膜からなる蓋体19が固着されている。   The base substrate 1 is made of heat-resistant glass such as Pyrex (registered trademark), and has a rectangular outer peripheral shape. A storage hole 16 that penetrates in the thickness direction and stores the electromagnet device 2 passes through the center portion. A through hole 10 penetrating in the thickness direction is provided in the vicinity of each of the four corners. Also, lands 12 are formed on both sides of the base substrate 1 in the thickness direction and on the periphery of each through hole 10. Here, the lands 12 that overlap in the thickness direction of the base substrate 1 are electrically conductive materials (for example, Cu, Cr, Ti, Pt, Co, Ni, Au, or the like) deposited on the inner peripheral surface of the through hole 10. They are electrically connected by a conductor layer (not shown) made of an alloy or the like. Further, bumps 13 are appropriately fixed to the lands 12 on the other surface side in the thickness direction of the base substrate 1, and the through holes 10 are formed on the other surface side of the base substrate 1 by fixing the bumps 13 to the lands 12. The opening surface is covered with the bump 13. The opening surface of the through hole 10 has a circular shape, and a lid 19 made of four silicon thin films covering the opening surface of the through hole 10 and the land 12 is fixed to the one surface of the base substrate 1. .

また、上述の各一対の固定接点14は、ベース基板1の長手方向の両端部においてベース基板1の短手方向に離間して形成された2つのスルーホール10の間で上記短手方向に並設されており、上記短手方向において隣り合うスルーホール10の周縁に形成されたランド12と導電パターン18を介して電気的に接続されている。ここに、固定接点14および導電パターン18およびランド12の材料としては、例えば、Cr,Ti,Pt,Co,Cu,Ni,Au,あるいはこれらの合金などの導電性材料を採用すればよく、バンプ13の材料としては、例えば、Au,Ag,Cu,半田などの導電性材料を採用すればよい。なお、上述のスルーホール10および収納孔16は、例えば、サンドブラスト法やエッチング法などによって形成すればよく、上述の導体層は、例えば、めっき法、蒸着法、スパッタ法などによって形成すればよい。   In addition, each of the pair of fixed contacts 14 described above is arranged in parallel in the short direction between two through holes 10 that are spaced apart in the short direction of the base substrate 1 at both ends in the longitudinal direction of the base substrate 1. And is electrically connected to the lands 12 formed on the periphery of the adjacent through holes 10 in the short direction via the conductive patterns 18. Here, as the material of the fixed contact 14, the conductive pattern 18 and the land 12, for example, a conductive material such as Cr, Ti, Pt, Co, Cu, Ni, Au, or an alloy thereof may be employed. For example, a conductive material such as Au, Ag, Cu, or solder may be employed as the material 13. The through hole 10 and the storage hole 16 described above may be formed by, for example, a sand blast method or an etching method, and the above-described conductor layer may be formed by, for example, a plating method, a vapor deposition method, a sputtering method, or the like.

また、収納孔16の開口面は十字状であって、ベース基板1の上記一表面側には、収納孔16を閉塞するシリコン薄膜からなる蓋体17が固着されている。すなわち、電磁石装置2は、ヨーク20の両脚片20b,20bの各先端面が蓋体17と対向する形で収納孔16に挿入される。なお、本例では、収納孔16の内周面と蓋体17とで囲まれる空間が電磁石装置2を収納する収納部を構成しており、電磁石装置20は、永久磁石21がベース基板1の厚み寸法内でアーマチュア30とヨーク20とにより形成される磁路中に設けられ、プリント基板23における絶縁基板23aの表面がベース基板1の上記他表面と略面一となっている。なお、蓋体17,19は、シリコン基板をエッチングや研磨などで薄膜化することにより形成したシリコン薄膜により構成されており、厚み寸法を20μmに設定してある。ここに、蓋体17の厚み寸法は20μmに限定するものではなく、例えば、5μm〜50μm程度の範囲内で適宜設定すればよい。また、蓋体17,19は、シリコン薄膜に限らず、ガラス基板をエッチングや研磨などで薄膜化することにより形成したガラス薄膜により構成してもよい。   The opening surface of the storage hole 16 has a cross shape, and a lid 17 made of a silicon thin film that closes the storage hole 16 is fixed to the one surface side of the base substrate 1. That is, the electromagnet device 2 is inserted into the storage hole 16 so that the front end surfaces of the leg pieces 20 b and 20 b of the yoke 20 face the lid body 17. In this example, the space surrounded by the inner peripheral surface of the storage hole 16 and the lid body 17 constitutes a storage unit that stores the electromagnet device 2, and the electromagnet device 20 includes the permanent magnet 21 of the base substrate 1. Within the thickness dimension, it is provided in a magnetic path formed by the armature 30 and the yoke 20, and the surface of the insulating substrate 23 a in the printed circuit board 23 is substantially flush with the other surface of the base substrate 1. The lids 17 and 19 are made of a silicon thin film formed by thinning a silicon substrate by etching or polishing, and the thickness dimension is set to 20 μm. Here, the thickness dimension of the lid 17 is not limited to 20 μm, and may be appropriately set within a range of about 5 μm to 50 μm, for example. The lids 17 and 19 are not limited to the silicon thin film, and may be formed of a glass thin film formed by thinning a glass substrate by etching or polishing.

収納孔16は、ベース基板1の上記一表面から上記他表面に近づくにつれて徐々に開口面積が大きくなるテーパ形状となっており、ベース基板1の上記他表面側から電磁石装置2を挿入しやすく、且つ、ベース基板1の上記一表面における収納孔16の開口面積を比較的小さくすることができる。   The storage hole 16 has a tapered shape in which the opening area gradually increases from the one surface of the base substrate 1 toward the other surface, and the electromagnetic device 2 can be easily inserted from the other surface side of the base substrate 1. In addition, the opening area of the accommodation hole 16 on the one surface of the base substrate 1 can be made relatively small.

アーマチュアブロック3は、シリコン基板からなる半導体基板を半導体微細加工プロセスにより加工することによって、上述の矩形枠状のフレーム部31と、上述の4本の支持ばね32と、フレーム部31の内側に配置されアーマチュア30の一部を構成する矩形板状の可動基台部30aと、上述の4本の接圧ばね部35と、上述の2つの可動接点基台部34とを形成してあり、可動基台部30aと、可動基台部30aにおけるベース基板1との対向面に固着された磁性体(例えば、軟鉄、電磁ステンレス、パーマロイなど)からなる矩形板状の磁性体部30bとでアーマチュア30を構成している。したがって、アーマチュア30が4本の支持ばね部32を介してフレーム部31に揺動自在に支持されている。なお、可動基台部30aはフレーム部31よりも薄肉であり、アーマチュア30の厚み寸法は、アーマチュアブロック3とベース基板1とを固着した状態においてアーマチュア30の磁性体部30bと蓋体17との間に所定のギャップが形成されるように設定されている。   The armature block 3 is disposed on the inside of the above-described rectangular frame-shaped frame portion 31, the above-described four support springs 32, and the frame portion 31 by processing a semiconductor substrate made of a silicon substrate by a semiconductor microfabrication process. The movable base portion 30a having a rectangular plate shape constituting a part of the armature 30, the above-described four contact pressure spring portions 35, and the above-described two movable contact base portions 34 are formed. The armature 30 includes a base 30a and a rectangular plate-shaped magnetic body 30b made of a magnetic material (for example, soft iron, electromagnetic stainless steel, permalloy, etc.) fixed to the surface of the movable base 30a facing the base substrate 1. Is configured. Accordingly, the armature 30 is swingably supported by the frame portion 31 via the four support spring portions 32. The movable base portion 30a is thinner than the frame portion 31, and the thickness of the armature 30 is such that the armature block 3 and the base substrate 1 are fixed to each other between the magnetic body portion 30b of the armature 30 and the lid body 17. A predetermined gap is set between them.

上述の支持ばね部32は、可動基台部30aの短手方向の両側面側で可動基台部30aの長手方向に離間して2箇所に形成されている。各支持ばね部32は、一端部がフレーム部31に連続一体に連結され他端部が可動基台部30aに連続一体に連結されている。なお、各支持ばね部32は、平面形状において上記一端部と上記他端部との間の部位を同一面内で蛇行した形状に形成することにより長さ寸法を長くしてあり、アーマチュア30が揺動する際に各支持ばね部32にかかる応力を分散させることができ、各支持ばね部32が破損するのを防止することができる。   The above-described support spring portions 32 are formed at two locations on both sides in the short direction of the movable base portion 30a so as to be separated from each other in the longitudinal direction of the movable base portion 30a. Each support spring portion 32 has one end portion connected to the frame portion 31 continuously and integrally, and the other end portion connected to the movable base portion 30a continuously and integrally. In addition, each support spring part 32 is lengthened by forming the site | part between the said one end part and the said other end part in the planar shape in the meandering shape in the same surface, and the armature 30 is made into the shape. It is possible to disperse the stress applied to each support spring portion 32 when swinging, and to prevent each support spring portion 32 from being damaged.

また、可動基台部30aは、短手方向の両側縁の中央部から矩形状の突片36が連続一体に延設され、フレーム部31の内周面において突片36に対応する部位からも矩形状の突片37が連続一体に延設されている。すなわち、可動基台部30aから延設された突片36とフレーム部31から延設された突片37とは互いの先端面同士が対向している。ここに、可動基台部30aから延設された各突片36の先端面には凸部36aが形成されており、フレーム部31から延設された各突片37の先端面には、凸部36aが入り込む凹部37aが形成されている。したがって、凸部36aが凹部37aの内周面に当接することでフレーム部31の厚み方向に直交する面内におけるアーマチュア30の移動が規制される。なお、アーマチュア30の同一の側縁側に配設される2つの支持ばね部32は、突片36の両側に位置している。   In addition, the movable base portion 30a has a rectangular protruding piece 36 extending continuously and integrally from the center of both side edges in the lateral direction, and also from a portion corresponding to the protruding piece 36 on the inner peripheral surface of the frame portion 31. A rectangular projecting piece 37 is continuously extended. In other words, the projecting piece 36 extending from the movable base portion 30a and the projecting piece 37 extending from the frame portion 31 are opposed to each other at their front end surfaces. Here, a convex portion 36a is formed on the tip surface of each protruding piece 36 extending from the movable base portion 30a, and the protruding surface of each protruding piece 37 extended from the frame portion 31 is convex. A recess 37a into which the portion 36a enters is formed. Therefore, the movement of the armature 30 in the plane orthogonal to the thickness direction of the frame portion 31 is restricted by the convex portion 36a contacting the inner peripheral surface of the concave portion 37a. The two support spring portions 32 disposed on the same side edge side of the armature 30 are located on both sides of the projecting piece 36.

また、アーマチュアブロック3は、アーマチュア30の長手方向においてアーマチュア30の両端部とフレーム部31との間にそれぞれ可動接点基台部34が配置されており、各可動接点基台部34におけるベース基板1との対向面に導電性材料からなる可動接点39が固着されている。ここに、可動接点基台部34は上述の2本の接圧ばね部35を介して可動基台部30aに支持されている。なお、可動基台部30aは上述のように矩形板状に形成されており、磁性体部30bの変位量を制限するストッパ部33が四隅それぞれから連続一体に延設されており、接圧ばね部35の平面形状は、ストッパ部33の外周縁の3辺に沿ったコ字状に形成されている。このストッパ部33は、ベース基板1の上記一表面と接触することにより磁性体部30bの変位量を制限する。   In the armature block 3, movable contact base portions 34 are arranged between both end portions of the armature 30 and the frame portion 31 in the longitudinal direction of the armature 30, and the base substrate 1 in each movable contact base portion 34. A movable contact 39 made of a conductive material is fixed to the surface facing the surface. Here, the movable contact base portion 34 is supported by the movable base portion 30a via the two contact pressure spring portions 35 described above. The movable base portion 30a is formed in a rectangular plate shape as described above, and the stopper portions 33 that limit the displacement amount of the magnetic body portion 30b are continuously extended from the four corners, and the contact pressure spring. The planar shape of the portion 35 is formed in a U shape along three sides of the outer peripheral edge of the stopper portion 33. The stopper portion 33 limits the amount of displacement of the magnetic body portion 30 b by coming into contact with the one surface of the base substrate 1.

なお、アーマチュアブロック3は、上述の説明から分かるように、フレーム部31、可動基台部30a、支持ばね部32、可動接点保持部34、接圧ばね部35が上述の半導体基板の一部により構成されている。半導体基板としては、例えば厚み寸法が200μm程度のシリコン基板を用いればよいが、当該厚み寸法は特に限定するものではなく、例えば、50μm〜300μm程度の範囲で適宜設定すればよい。   As can be seen from the above description, the armature block 3 includes the frame portion 31, the movable base portion 30a, the support spring portion 32, the movable contact holding portion 34, and the contact pressure spring portion 35, which are part of the semiconductor substrate described above. It is configured. As the semiconductor substrate, for example, a silicon substrate having a thickness dimension of about 200 μm may be used. However, the thickness dimension is not particularly limited, and may be appropriately set in a range of, for example, about 50 μm to 300 μm.

また、可動接点基台部34の厚み寸法と可動接点39の厚み寸法との合計寸法についても、接点開成状態において可動接点39と固定接点14との間の距離が所定距離となるように設定されている。   Further, the total dimension of the thickness dimension of the movable contact base portion 34 and the thickness dimension of the movable contact 39 is also set so that the distance between the movable contact 39 and the fixed contact 14 is a predetermined distance in the contact open state. ing.

カバー4は、パイレックス(登録商標)のような耐熱ガラスにより構成されており、アーマチュアブロック3との対向面にアーマチュア30の揺動空間を確保する凹所4aが形成されている。   The cover 4 is made of heat-resistant glass such as Pyrex (registered trademark), and a recess 4 a that secures a swinging space of the armature 30 is formed on the surface facing the armature block 3.

ところで、上述のアーマチュアブロック3のフレーム部31におけるベース基板1との対向面の周部には全周に亙って接合用金属薄膜38bが形成され、カバー4との対向面の周部には全周に亙って接合用金属薄膜38aが形成されている。また、ベース基板1におけるアーマチュアブロック3との対向面の周部にも全周に亙って接合用金属薄膜15が形成され、カバー4におけるアーマチュアブロック3との対向面の周部にも全周に亙って接合用金属薄膜42が形成されている。したがって、アーマチュアブロック3とベース基板1およびカバー4とを圧接または陽極接合により気密的に接合することができ、ベース基板1とカバー4とフレーム部31とで囲まれる空間の気密性を向上できる。   By the way, a metal thin film 38b for bonding is formed over the entire periphery of the surface of the frame portion 31 of the armature block 3 facing the base substrate 1 over the entire periphery. A bonding metal thin film 38a is formed over the entire circumference. Also, a metal thin film 15 for bonding is formed over the entire periphery of the surface of the base substrate 1 facing the armature block 3, and the entire periphery of the periphery of the cover 4 facing the armature block 3 is also formed. Accordingly, the bonding metal thin film 42 is formed. Therefore, the armature block 3, the base substrate 1 and the cover 4 can be hermetically bonded by pressure welding or anodic bonding, and the airtightness of the space surrounded by the base substrate 1, the cover 4 and the frame portion 31 can be improved.

その結果、上記のマイクロリレーは、ベース基板1と、カバー4と、ベース基板1とカバー4との間に介在するフレーム部31とで囲まれる気密空間(密閉空間)内に、アーマチュア30、可動接点33、固定接点14が収納される。なお、上述の接合用金属薄膜15,38a,38b,42の材料としては、例えば、Au,Al−Siなどを採用すればよい。   As a result, the above-described microrelay has the armature 30 movable in an airtight space (sealed space) surrounded by the base substrate 1, the cover 4, and the frame portion 31 interposed between the base substrate 1 and the cover 4. The contact 33 and the fixed contact 14 are accommodated. In addition, as a material of the above-described bonding metal thin films 15, 38a, 38b, 42, for example, Au, Al-Si, or the like may be employed.

以上説明したマイクロリレーをプリント基板のような実装基板に実装する際には、例えばベース基板1の上記他表面側において露出した2個のバンプ24および4個のバンプ13それぞれを上記実装基板の一表面側に形成された導体パターンに接続すればよい。   When the micro relay described above is mounted on a mounting board such as a printed circuit board, for example, the two bumps 24 and the four bumps 13 exposed on the other surface side of the base board 1 are respectively connected to the mounting board. What is necessary is just to connect to the conductor pattern formed in the surface side.

次に、上記のマイクロリレーの動作について説明する。   Next, the operation of the micro relay will be described.

上記のマイクロリレーでは、コイル22,22への通電が行われると、磁化の向きに応じて磁性体部30bの長手方向の一端部がヨーク20の一方の脚片20bに吸引されてアーマチュア30が揺動しアーマチュア30の一端側の可動接点基台部34に固着された可動接点39が対向する一対の固定接点14,14に所定の接点圧で接触する(つまり、一対の固定接点14,14間が可動接点39を介して短絡される)。この状態で通電を停止しても、永久磁石21の発生する磁束により、吸引力が維持され、そのままの状態が保持される。   In the micro relay described above, when the coils 22 are energized, one end of the magnetic body portion 30b in the longitudinal direction is attracted to one leg piece 20b of the yoke 20 according to the direction of magnetization, and the armature 30 is The movable contact 39 that swings and is fixed to the movable contact base 34 on one end of the armature 30 contacts the pair of fixed contacts 14 and 14 facing each other with a predetermined contact pressure (that is, the pair of fixed contacts 14 and 14). Are short-circuited via the movable contact 39). Even if energization is stopped in this state, the attractive force is maintained by the magnetic flux generated by the permanent magnet 21, and the state is maintained as it is.

また、コイル22,22への通電方向を逆向きにすると、アーマチュア30の磁性体部30bがヨーク20の他方の脚片20bに吸引されてアーマチュア30が揺動しアーマチュア30の他端側の可動接点基台部34に保持された可動接点39が対向する一対の固定接点14,14に所定の接点圧で接触する。この状態で通電を停止しても、永久磁石21の発生する磁束により、吸引力が維持され、そのままの状態が保持される。   Further, when the energization direction to the coils 22 and 22 is reversed, the magnetic body portion 30b of the armature 30 is attracted to the other leg piece 20b of the yoke 20, and the armature 30 swings to move the other end side of the armature 30. The movable contact 39 held by the contact base 34 contacts the pair of fixed contacts 14 and 14 facing each other with a predetermined contact pressure. Even if energization is stopped in this state, the attractive force is maintained by the magnetic flux generated by the permanent magnet 21, and the state is maintained as it is.

なお、上記のマイクロリレーは、永久磁石21による磁性体部30bの吸引力が支持ばね32による復帰力よりも強くなるように支持ばね32のばね定数を設定してあるが、永久磁石21による磁性体部30bの吸引力が支持ばね32による復帰力よりも弱くなるように支持ばね32のばね定数を設定してもよい。   In the micro relay, the spring constant of the support spring 32 is set so that the attractive force of the magnetic body portion 30b by the permanent magnet 21 is stronger than the return force by the support spring 32. The spring constant of the support spring 32 may be set so that the suction force of the body part 30 b is weaker than the return force by the support spring 32.

以上説明したマイクロリレーによれば、アーマチュアブロック3におけるベース基板1とは反対側で周部がフレーム部31に固着されたカバー4を備えていることにより、アーマチュア3および固定接点14および可動接点39が密閉空間内に配置されるので、可動接点39と固定接点14との間に異物が侵入するのを防止できて可動接点39と固定接点14との接触信頼性を向上させることができる。また、リレー全体の厚み寸法をベース基板1の厚み寸法とアーマチュアブロック3のフレーム部31の厚み寸法とカバー4の厚み寸法との合計寸法によって規定することができ、ベース基板1とカバー4とフレーム部31とで構成される器体の薄型化が可能となる。   According to the micro relay described above, the armature 3, the fixed contact 14, and the movable contact 39 are provided with the cover 4 having a peripheral portion fixed to the frame portion 31 on the opposite side of the base substrate 1 in the armature block 3. Is disposed in the sealed space, foreign matter can be prevented from entering between the movable contact 39 and the fixed contact 14, and the contact reliability between the movable contact 39 and the fixed contact 14 can be improved. Moreover, the thickness dimension of the whole relay can be defined by the total dimension of the thickness dimension of the base substrate 1, the thickness dimension of the frame portion 31 of the armature block 3, and the thickness dimension of the cover 4. The container composed of the portion 31 can be made thinner.

また、上記のマイクロリレーでは、永久磁石21がコイル巻回部20aの長手方向の中央部におけるアーマチュア30側に重ねて配置され重ね方向の両面が異極に着磁されているので、アーマチュア30の長手方向の中心部を中心としてアーマチュア30が揺動可能となり、耐衝撃性が向上する。また、アーマチュア30の可動基台部30aから延設した各突片36におけるベース基板1との対向面から支点突起36bを突設してあるので、このような一対の支点突起36bを設けることでアーマチュア30の揺動動作をより安定させることができる。   Further, in the micro relay described above, the permanent magnet 21 is disposed so as to overlap the armature 30 side in the longitudinal center of the coil winding portion 20a, and both surfaces in the overlapping direction are magnetized with different polarities. The armature 30 can swing around the center in the longitudinal direction, and impact resistance is improved. In addition, since the fulcrum protrusions 36b are provided so as to protrude from the surface of each protrusion 36 extending from the movable base portion 30a of the armature 30 so as to face the base substrate 1, by providing such a pair of fulcrum protrusions 36b. The swinging motion of the armature 30 can be further stabilized.

ところで、上記のマイクロリレーでは、図2(b)に示すように、可動接点39における固定接点14との対向面を固定接点14側へ突出する凸曲面に形成しているので、従来のように固定接点と可動接点との互いの対向面が平面状に形成されている場合に比べて、可動接点39と固定接点14との接触信頼性をより向上させることができ、しかも、アーマチュア30に2本の接圧ばね部35を介して支持された可動接点基台部34に可動接点39が設けられているので、所望の接点圧を得ることができるとともに接触信頼性の更なる向上を図れる。なお、上記凸曲面については所望の曲率半径を設定した曲面としてもよいし、仮想的な球面の一部を構成する曲面(いわゆるSR形状)としてもよい。   By the way, in the micro relay described above, as shown in FIG. 2B, the surface of the movable contact 39 that faces the fixed contact 14 is formed as a convex curved surface that protrudes toward the fixed contact 14 side. The contact reliability between the movable contact 39 and the fixed contact 14 can be further improved as compared with the case where the opposing surfaces of the fixed contact and the movable contact are formed in a planar shape. Since the movable contact 39 is provided on the movable contact base 34 supported through the contact pressure spring 35, a desired contact pressure can be obtained and contact reliability can be further improved. The convex curved surface may be a curved surface having a desired radius of curvature, or may be a curved surface constituting a part of a virtual spherical surface (so-called SR shape).

なお、可動接点39における固定接点14との対向面を固定接点14側へ突出する凸曲面に形成する代わりに、図8に示すように固定接点14における可動接点39との対向面を可動接点39側へ突出する凸曲面に形成してもよいし、固定接点14と可動接点39との互いの対向面を他方側へ突出する凸曲面に形成してもよい。
特開平5−114347号公報
Instead of forming the surface of the movable contact 39 facing the fixed contact 14 as a convex curved surface protruding toward the fixed contact 14, the surface of the fixed contact 14 facing the movable contact 39 as shown in FIG. It may be formed in a convex curved surface projecting to the side, or the opposing surfaces of the fixed contact 14 and the movable contact 39 may be formed in a convex curved surface projecting to the other side.
Japanese Patent Laid-Open No. 5-114347

ここで、可動接点39の平面形状において幅が狭くなる部分(電路の断面積が小さくなる部分)が形成されていると、一対の固定接点14,14間を短絡する可動接点39の抵抗値が高くなってしまう。 Here, when a portion with a narrow width (a portion with a small cross-sectional area of the electric circuit) is formed in the planar shape of the movable contact 39, the resistance value of the movable contact 39 that short-circuits between the pair of fixed contacts 14 and 14 is It will be high.

本発明は、上記事由に鑑みて為されたものであり、その目的は、一対の固定接点間を短絡する可動接点の抵抗値を小さくすることができるマイクロリレーを提供することにある。 This invention is made | formed in view of the said reason, The objective is to provide the micro relay which can make small the resistance value of the movable contact which short-circuits between a pair of fixed contacts .

請求項1の発明は、電磁石装置を収納する収納部が形成され且つ厚み方向の一表面側に一対の固定接点が設けられたベース基板と、ベース基板の前記一表面側に固着される枠状のフレーム部、および、フレーム部の内側に配置されて支持ばね部を介してフレーム部に揺動自在に支持され電磁石装置により駆動されるアーマチュア、および、アーマチュアに接圧ばね部を介して支持された可動接点基台部、および、可動接点基台部に設けられて一対の固定接点に跨って接離する可動接点を有するアーマチュアブロックと、アーマチュアブロックにおけるベース基板とは反対側で周部がフレーム部に固着されたカバーとを備え、アーマチュアはフレーム部に囲まれる面内での形状が長方形状であって、可動接点基台部は、アーマチュアの短手方向を長手方向とし、長手方向での両端部においてそれぞれ接圧ばね部に連結され、一対の固定接点はアーマチュアの長手方向に並設されていて、可動接点基台部の長手方向の両端部には、それぞれ、平面形状が矩形状で一対の固定接点に跨って配置される可動接点が設けられ、可動接点基台部の長手方向の中間部は両端部に比べて細幅に形成されていることを特徴とする。 According to the first aspect of the present invention, there is provided a base substrate having an accommodating portion for accommodating an electromagnet device and having a pair of fixed contacts provided on one surface side in the thickness direction, and a frame shape fixed to the one surface side of the base substrate. A frame portion, an armature disposed inside the frame portion and supported by the frame portion through a support spring portion so as to be swingable, and supported by the armature via a contact pressure spring portion. Armature block having a movable contact base portion, a movable contact provided on the movable contact base portion and contacting and separating over a pair of fixed contacts, and a peripheral portion framed on the opposite side of the base substrate in the armature block a anchored cover part, the armature is a rectangular shape in a plane surrounded by the frame portion, the movable contact base portion, the lateral direction of the armature And longitudinally, are connected to the respective contact pressure spring portion at both ends in the longitudinal direction, a pair of fixed contacts have been arranged in the longitudinal direction of the armature, the longitudinal ends of the movable contact base portion, each movable contact is provided a planar shape is disposed across the pair of fixed contacts in a rectangular shape, the longitudinal direction of the intermediate portion of the movable contact base portion that you have been formed on the narrow than both end portions Features.

この発明によれば、可動接点の平面形状において幅が狭くなる部分(電路の断面積が小さくなる部分)が形成されているものに比べて、一対の固定接点間を短絡する可動接点の抵抗値を小さくすることができる。 According to the present invention, the resistance value of the movable contact that short-circuits the pair of fixed contacts as compared to the portion in which the width of the movable contact is reduced (the portion in which the cross-sectional area of the electric circuit is reduced) is formed. Can be reduced.

請求項1の発明は、可動接点基台部の長手方向の両端部には、それぞれ、平面形状が矩形状で一対の固定接点に跨って配置される可動接点が設けられ、可動接点基台部の長手方向の中間部は両端部に比べて細幅に形成されているので、可動接点の平面形状において幅が狭くなる部分(電路の断面積が小さくなる部分)が形成されているものに比べて、一対の固定接点間を短絡する可動接点の抵抗値を小さくすることができる。 According to the first aspect of the present invention , the movable contact base portion is provided with movable contacts disposed on both ends of the movable contact base portion in the longitudinal direction and having a rectangular planar shape and arranged across a pair of fixed contacts. Since the middle part in the longitudinal direction is narrower than both ends, compared to the part where the width of the movable contact is narrower (the part where the cross-sectional area of the electric circuit is smaller) is formed. Thus, the resistance value of the movable contact that short-circuits the pair of fixed contacts can be reduced.

以下、本発明を実施するための最良の形態について、図面を参照しながら説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

本実施形態のマイクロリレーの基本構成は図2〜図8の例と略同じであって、図1に示すように一対の固定接点14,14がアーマチュア30の長手方向(図1の左右方向)に並設されている点、可動接点基台部34の形状、可動接点基台部34に一対の固定接点14,14に接離可能な可動接点39を2つ設けている点が相違する。他の構成は従来例と同様なので図示および説明を省略する。なお、本実施形態においても、図2〜図8の例と同様に、可動接点39と固定接点14との互いの対向面の一方に他方側へ突出する凸曲面を形成してあるので、従来例と同様に可動接点39と固定接点14との接触信頼性を向上できる。   The basic configuration of the microrelay of this embodiment is substantially the same as the example of FIGS. 2 to 8, and as shown in FIG. 1, the pair of fixed contacts 14, 14 is the longitudinal direction of the armature 30 (the left-right direction in FIG. 1). Are different from each other in that the movable contact base 34 is provided with two movable contacts 39 that can be connected to and separated from the pair of fixed contacts 14 and 14. Since other configurations are the same as those of the conventional example, illustration and description thereof are omitted. In the present embodiment as well, as in the examples of FIGS. 2 to 8, a convex curved surface protruding to the other side is formed on one of the opposing surfaces of the movable contact 39 and the fixed contact 14. As in the example, the contact reliability between the movable contact 39 and the fixed contact 14 can be improved.

本実施形態における可動接点基台部34は長手方向の両端部それぞれに平面形状が矩形状で一対の固定接点14に跨って配置される可動接点39を設け、長手方向の中間部を両端部に比べて細幅に形成してある。   In the present embodiment, the movable contact base 34 is provided with a movable contact 39 that is disposed across the pair of fixed contacts 14 in a rectangular shape at both ends in the longitudinal direction, and has an intermediate portion in the longitudinal direction at both ends. It is formed narrower than that.

しかして、本実施形態のマイクロリレーでは、可動接点39の平面形状において幅が狭くなる部分(電路の断面積が小さくなる部分)が形成されているものに比べて、一対の固定接点14,14間を短絡する可動接点39の抵抗値を小さくすることができる。 Thus , in the microrelay of the present embodiment, the pair of fixed contacts 14 and 14 are compared with those in which the portion where the width is narrowed (the portion where the cross-sectional area of the electric circuit is reduced) is formed in the planar shape of the movable contact 39. The resistance value of the movable contact 39 which short-circuits between them can be made small.

本発明の実施形態の要部平面図である。It is a principal part top view of embodiment of this invention. マイクロリレーの一例を示し、(a)は分解斜視図、(b)は可動接点が固定接点に接触した状態の要部断面図である。An example of a micro relay is shown, (a) is a disassembled perspective view, (b) is principal part sectional drawing of the state in which the movable contact contacted the fixed contact. 同上を示す斜視図である。It is a perspective view which shows the same as the above. 同上の要部分解斜視図である。It is a principal part exploded perspective view same as the above. 同上におけるアーマチュアブロックを示し、(a)は平面図、(b)は下面図である。The armature block in the same as above is shown, (a) is a plan view and (b) is a bottom view. 同上におけるアーマチュアブロックの分解斜視図である。It is a disassembled perspective view of the armature block in the same as the above. 同上に用いるカバーの斜視図である。It is a perspective view of the cover used for the same as the above. 同上の他の構成例において可動接点が固定接点に接触した状態の要部断面図である。It is principal part sectional drawing of the state in which the movable contact contacted the fixed contact in the other structural example same as the above.

符号の説明Explanation of symbols

1 ベース基板
2 電磁石装置
3 アーマチュアブロック
4 カバー
14 固定接点
30 アーマチュア
31 フレーム部
32 支持ばね部
34 可動接点基台部
35 接圧ばね部
39 可動接点
DESCRIPTION OF SYMBOLS 1 Base substrate 2 Electromagnet apparatus 3 Armature block 4 Cover 14 Fixed contact 30 Armature 31 Frame part 32 Supporting spring part 34 Movable contact base part 35 Contact pressure spring part 39 Movable contact

Claims (1)

電磁石装置を収納する収納部が形成され且つ厚み方向の一表面側に一対の固定接点が設けられたベース基板と、
ベース基板の前記一表面側に固着される枠状のフレーム部、および、フレーム部の内側に配置されて支持ばね部を介してフレーム部に揺動自在に支持され電磁石装置により駆動されるアーマチュア、および、アーマチュアに接圧ばね部を介して支持された可動接点基台部、および、可動接点基台部に設けられて一対の固定接点に跨って接離する可動接点を有するアーマチュアブロックと、
アーマチュアブロックにおけるベース基板とは反対側で周部がフレーム部に固着されたカバーとを備え、
アーマチュアはフレーム部に囲まれる面内での形状が長方形状であって、
可動接点基台部は、アーマチュアの短手方向を長手方向とし、長手方向での両端部においてそれぞれ接圧ばね部に連結され、
一対の固定接点はアーマチュアの長手方向に並設されていて、
可動接点基台部の長手方向の両端部には、それぞれ、平面形状が矩形状で一対の固定接点に跨って配置される可動接点が設けられ、
可動接点基台部の長手方向の中間部は両端部に比べて細幅に形成されていることを特徴とするマイクロリレー
A base substrate in which a storage portion for storing an electromagnet device is formed and a pair of fixed contacts are provided on one surface side in the thickness direction;
A frame-like frame portion fixed to the one surface side of the base substrate, and an armature disposed inside the frame portion and supported by the frame portion through a support spring portion so as to be swingable and driven by an electromagnet device; And an armature block having a movable contact base portion supported by the armature via a contact pressure spring portion, and a movable contact provided on the movable contact base portion and contacting and separating over a pair of fixed contacts,
The armature block includes a cover on the side opposite to the base substrate and a peripheral portion fixed to the frame portion,
The armature is rectangular in the plane surrounded by the frame part,
The movable contact base portion has the longitudinal direction of the armature as the longitudinal direction, and is connected to the contact pressure spring portion at both ends in the longitudinal direction ,
A pair of fixed contacts are juxtaposed in the longitudinal direction of the armature ,
At both ends in the longitudinal direction of the movable contact base portion, there are provided movable contacts that are arranged across a pair of fixed contacts with a rectangular planar shape,
Longitudinal direction of the intermediate portion microrelay characterized that you have been formed in narrow compared to both end portions of the movable contact base portion.
JP2007050098A 2007-02-28 2007-02-28 Micro relay Expired - Fee Related JP4183008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007050098A JP4183008B2 (en) 2007-02-28 2007-02-28 Micro relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007050098A JP4183008B2 (en) 2007-02-28 2007-02-28 Micro relay

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004018962A Division JP4059201B2 (en) 2004-01-27 2004-01-27 Micro relay

Publications (2)

Publication Number Publication Date
JP2007180047A JP2007180047A (en) 2007-07-12
JP4183008B2 true JP4183008B2 (en) 2008-11-19

Family

ID=38304981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007050098A Expired - Fee Related JP4183008B2 (en) 2007-02-28 2007-02-28 Micro relay

Country Status (1)

Country Link
JP (1) JP4183008B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8405147B2 (en) 2005-07-11 2013-03-26 Peregrine Semiconductor Corporation Method and apparatus for use in improving linearity of MOSFETs using an accumulated charge sink
US8536636B2 (en) 2007-04-26 2013-09-17 Peregrine Semiconductor Corporation Tuning capacitance to enhance FET stack voltage withstand
US8559907B2 (en) 2004-06-23 2013-10-15 Peregrine Semiconductor Corporation Integrated RF front end with stacked transistor switch
US8583111B2 (en) 2001-10-10 2013-11-12 Peregrine Semiconductor Corporation Switch circuit and method of switching radio frequency signals
US8604864B2 (en) 2008-02-28 2013-12-10 Peregrine Semiconductor Corporation Devices and methods for improving voltage handling and/or bi-directionality of stacks of elements when connected between terminals
US8742502B2 (en) 2005-07-11 2014-06-03 Peregrine Semiconductor Corporation Method and apparatus for use in improving linearity of MOSFETs using an accumulated charge sink-harmonic wrinkle reduction
US8954902B2 (en) 2005-07-11 2015-02-10 Peregrine Semiconductor Corporation Method and apparatus improving gate oxide reliability by controlling accumulated charge
US9406695B2 (en) 2013-11-20 2016-08-02 Peregrine Semiconductor Corporation Circuit and method for improving ESD tolerance and switching speed
US9590674B2 (en) 2012-12-14 2017-03-07 Peregrine Semiconductor Corporation Semiconductor devices with switchable ground-body connection
US9831857B2 (en) 2015-03-11 2017-11-28 Peregrine Semiconductor Corporation Power splitter with programmable output phase shift
US9948281B2 (en) 2016-09-02 2018-04-17 Peregrine Semiconductor Corporation Positive logic digitally tunable capacitor
US10236872B1 (en) 2018-03-28 2019-03-19 Psemi Corporation AC coupling modules for bias ladders
US10505530B2 (en) 2018-03-28 2019-12-10 Psemi Corporation Positive logic switch with selectable DC blocking circuit
US10886911B2 (en) 2018-03-28 2021-01-05 Psemi Corporation Stacked FET switch bias ladders
USRE48965E1 (en) 2005-07-11 2022-03-08 Psemi Corporation Method and apparatus improving gate oxide reliability by controlling accumulated charge
US11476849B2 (en) 2020-01-06 2022-10-18 Psemi Corporation High power positive logic switch

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8583111B2 (en) 2001-10-10 2013-11-12 Peregrine Semiconductor Corporation Switch circuit and method of switching radio frequency signals
US8649754B2 (en) 2004-06-23 2014-02-11 Peregrine Semiconductor Corporation Integrated RF front end with stacked transistor switch
US9680416B2 (en) 2004-06-23 2017-06-13 Peregrine Semiconductor Corporation Integrated RF front end with stacked transistor switch
US8559907B2 (en) 2004-06-23 2013-10-15 Peregrine Semiconductor Corporation Integrated RF front end with stacked transistor switch
US9369087B2 (en) 2004-06-23 2016-06-14 Peregrine Semiconductor Corporation Integrated RF front end with stacked transistor switch
US8954902B2 (en) 2005-07-11 2015-02-10 Peregrine Semiconductor Corporation Method and apparatus improving gate oxide reliability by controlling accumulated charge
USRE48965E1 (en) 2005-07-11 2022-03-08 Psemi Corporation Method and apparatus improving gate oxide reliability by controlling accumulated charge
US8742502B2 (en) 2005-07-11 2014-06-03 Peregrine Semiconductor Corporation Method and apparatus for use in improving linearity of MOSFETs using an accumulated charge sink-harmonic wrinkle reduction
US8405147B2 (en) 2005-07-11 2013-03-26 Peregrine Semiconductor Corporation Method and apparatus for use in improving linearity of MOSFETs using an accumulated charge sink
US9087899B2 (en) 2005-07-11 2015-07-21 Peregrine Semiconductor Corporation Method and apparatus for use in improving linearity of MOSFETs using an accumulated charge sink-harmonic wrinkle reduction
US9130564B2 (en) 2005-07-11 2015-09-08 Peregrine Semiconductor Corporation Method and apparatus for use in improving linearity of MOSFETs using an accumulated charge sink
US9608619B2 (en) 2005-07-11 2017-03-28 Peregrine Semiconductor Corporation Method and apparatus improving gate oxide reliability by controlling accumulated charge
US10951210B2 (en) 2007-04-26 2021-03-16 Psemi Corporation Tuning capacitance to enhance FET stack voltage withstand
US8536636B2 (en) 2007-04-26 2013-09-17 Peregrine Semiconductor Corporation Tuning capacitance to enhance FET stack voltage withstand
US9177737B2 (en) 2007-04-26 2015-11-03 Peregrine Semiconductor Corporation Tuning capacitance to enhance FET stack voltage withstand
US9024700B2 (en) 2008-02-28 2015-05-05 Peregrine Semiconductor Corporation Method and apparatus for use in digitally tuning a capacitor in an integrated circuit device
US8604864B2 (en) 2008-02-28 2013-12-10 Peregrine Semiconductor Corporation Devices and methods for improving voltage handling and/or bi-directionality of stacks of elements when connected between terminals
US9293262B2 (en) 2008-02-28 2016-03-22 Peregrine Semiconductor Corporation Digitally tuned capacitors with tapered and reconfigurable quality factors
US8669804B2 (en) 2008-02-28 2014-03-11 Peregrine Semiconductor Corporation Devices and methods for improving voltage handling and/or bi-directionality of stacks of elements when connected between terminals
US9197194B2 (en) 2008-02-28 2015-11-24 Peregrine Semiconductor Corporation Methods and apparatuses for use in tuning reactance in a circuit device
US9106227B2 (en) 2008-02-28 2015-08-11 Peregrine Semiconductor Corporation Devices and methods for improving voltage handling and/or bi-directionality of stacks of elements when connected between terminals
US9590674B2 (en) 2012-12-14 2017-03-07 Peregrine Semiconductor Corporation Semiconductor devices with switchable ground-body connection
US9406695B2 (en) 2013-11-20 2016-08-02 Peregrine Semiconductor Corporation Circuit and method for improving ESD tolerance and switching speed
US9831857B2 (en) 2015-03-11 2017-11-28 Peregrine Semiconductor Corporation Power splitter with programmable output phase shift
US9948281B2 (en) 2016-09-02 2018-04-17 Peregrine Semiconductor Corporation Positive logic digitally tunable capacitor
US10236872B1 (en) 2018-03-28 2019-03-19 Psemi Corporation AC coupling modules for bias ladders
US10505530B2 (en) 2018-03-28 2019-12-10 Psemi Corporation Positive logic switch with selectable DC blocking circuit
US10862473B2 (en) 2018-03-28 2020-12-08 Psemi Corporation Positive logic switch with selectable DC blocking circuit
US10886911B2 (en) 2018-03-28 2021-01-05 Psemi Corporation Stacked FET switch bias ladders
US11018662B2 (en) 2018-03-28 2021-05-25 Psemi Corporation AC coupling modules for bias ladders
US11418183B2 (en) 2018-03-28 2022-08-16 Psemi Corporation AC coupling modules for bias ladders
US11870431B2 (en) 2018-03-28 2024-01-09 Psemi Corporation AC coupling modules for bias ladders
US11476849B2 (en) 2020-01-06 2022-10-18 Psemi Corporation High power positive logic switch

Also Published As

Publication number Publication date
JP2007180047A (en) 2007-07-12

Similar Documents

Publication Publication Date Title
JP4183008B2 (en) Micro relay
WO2005071707A1 (en) Micro relay
JP4265542B2 (en) Micro relay
JP4222320B2 (en) Micro relay
JP4059201B2 (en) Micro relay
JP4059203B2 (en) Micro relay
JP2011090816A (en) Contact device, relay using the same, and micro relay
JP4020081B2 (en) Micro relay
JP4059204B2 (en) Micro relay
JP4059200B2 (en) Micro relay
JP4196008B2 (en) Micro relay
JP4059198B2 (en) Micro relay and manufacturing method thereof
JP4069869B2 (en) Micro relay and matrix relay using the same
JP4222319B2 (en) Micro relay
JP4196010B2 (en) Method for bonding glass substrate and semiconductor substrate and method for manufacturing micro relay
JP4059205B2 (en) Micro relay
JP4222313B2 (en) Micro relay
JP4971969B2 (en) Micro relay
JP4063228B2 (en) Micro relay
JP4107244B2 (en) Micro relay
JP4059199B2 (en) Micro relay
JP4720760B2 (en) Micro relay
JP2006210062A (en) Microrelay
JP4222318B2 (en) Micro relay
JP2011086588A (en) Contact device, relay using it, and micro relay

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080825

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees