JP4182663B2 - Solid acid catalyst, production method thereof, and hydrodesulfurization isomerization method of light hydrocarbon oil using the same - Google Patents

Solid acid catalyst, production method thereof, and hydrodesulfurization isomerization method of light hydrocarbon oil using the same Download PDF

Info

Publication number
JP4182663B2
JP4182663B2 JP2002007718A JP2002007718A JP4182663B2 JP 4182663 B2 JP4182663 B2 JP 4182663B2 JP 2002007718 A JP2002007718 A JP 2002007718A JP 2002007718 A JP2002007718 A JP 2002007718A JP 4182663 B2 JP4182663 B2 JP 4182663B2
Authority
JP
Japan
Prior art keywords
catalyst
zirconium hydroxide
solid acid
binder
acid catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002007718A
Other languages
Japanese (ja)
Other versions
JP2002301372A (en
Inventor
克哉 渡辺
敬士 川上
浩二 馬場
孝夫 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
Cosmo Oil Co Ltd
Petroleum Energy Center PEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd, Petroleum Energy Center PEC filed Critical Cosmo Oil Co Ltd
Priority to JP2002007718A priority Critical patent/JP4182663B2/en
Publication of JP2002301372A publication Critical patent/JP2002301372A/en
Application granted granted Critical
Publication of JP4182663B2 publication Critical patent/JP4182663B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は固体酸触媒とその製造方法に関し、詳しくは、第VIII族金属を担持した硫酸根含有ジルコニア−アルミナ触媒の、工業的使用に適するものと、その製造方法に関する。本発明はまた、この触媒を使用して行なう、軽質炭化水素油の水素化脱硫異性化方法にも関する。
【0002】
【従来の技術】
炭化水素の異性化やアルキル化に、固体酸触媒、とくに第VIII族金属を担持した硫酸根含有ジルコニア触媒が使用されている。この触媒に限らず、工業的に使用する固体酸触媒は、触媒活性が高いだけでなく、反応装置に充填したときに自重で破壊されないよう、触媒がある程度の強度を有する必要がある。そのため、従来は、粉体である固体酸触媒をそのまま加圧してタブレット化するか、または適当な結合材を用いて、柱状、四ツ葉状、球状、粒状などの形をもった成形体としてから、反応装置に充填して用いることが多かった。
【0003】
しかし、単に加圧成形して得たタブレット触媒は、粉体を押し固めただけのものであるから、実装置を運転している間に破壊されやすく、また多孔体ではないために、触媒内部を反応の場として使えず、反応物との接触面積が小さくて、活性が低い。
【0004】
結合材を用いて成形体とすれば、多孔質で接触効率の高い触媒が得られるものの、一定の強度を確保するためには、ある程度の結合材の量が必要であり、多量の結合材が加われば成形触媒中の固体酸濃度が減少し、触媒活性が低くなる。さらに、結合材自体が触媒表面の活性点を破壊し、触媒の性能を低下させることもある。
【0005】
結合材を使用する技術の例を挙げれば、水酸化ジルコニウムまたはジルコニアに、結合材としてベーマイト状態のアルミナを混合して成形することからなる触媒の製造方法が提案された(特開平9−38494および特開平11−57478)。これらの方法によれば、多孔質で接触効率の高い触媒が得られるものの、結合材であるアルミナと、原料である水酸化ジルコニウムやジルコニアとの結合力が弱いために、触媒の圧縮強度を、あまり高くすることができない。圧縮強度を高めるためには、結合材であるアルミナの混合量を増さなければならないが、そうすると成形した触媒中に占めるアルミナの相対的な割合が増大してしまい、固体酸量の少ない、すなわち活性の低い触媒となってしまう。
【0006】
別法として、水酸化ジルコニウムまたはジルコニアに硫酸根を担持させたものを焼成し、その後にアルミナを結合剤として添加して成形する方法もあるが、この製造方法による触媒は、アルミナが硫酸根を被覆してしまって固体酸性が著しく低いため、実用的な触媒といえない。
【0007】
このようなわけで、粉体である固体酸触媒から、圧縮強度が高く、かつ、結合材の量が少なく、従って強い固体酸性を有する、成形された固体酸触媒を製造するにはどうすればよいかが、この技術の分野で引き続き課題になっていた。
【0008】
【発明が解決しようとする課題】
本発明は、固体酸触媒を製造する既知の諸方法の欠点にかんがみてなされたものであって、その目的は、固体酸触媒の製造において、触媒の圧縮強度が高く、かつ、成形触媒においても本来の固体酸性が維持されている触媒を製造する方法を提供することにある。
【0009】
その方法により製造した固体酸触媒を用いて、有機イオウ化合物を含有する軽質炭化水素油の脱硫と異性化とを、同時に達成することができる水素化脱硫異性化方法を提供することもまた、本発明の目的に含まれる。
【0010】
【課題を解決するための手段】
この目的を達成する本発明の固体酸触媒の製造方法には、つぎの二つの態様がある。その一つは、下記の諸工程からなる固体酸触媒の製造方法である:
(A)ジルコニウム水酸化物に硫酸根含有物質を添加し硫酸化処理をすること、
(B)硫酸化処理されたジルコニウム水酸化物に、結合材として擬べ一マイトを、触媒製品中の酸化ジルコニウム/アルミナの質量比が97/3〜80/20の範囲となる量加え、第VIII族金属の1種または2種以上を含む水溶液で混練すること、
(C)混練物を触媒の形状に成形すること、および
(D)得られた成形物を550〜800℃の温度で焼成すること。
【0011】
いまひとつは、下記の諸工程からなる固体酸触媒の製造方法である:
(A)ジルコニウム水酸化物に硫酸根含有物質を添加し硫酸化処理をすること、
(B)硫酸化処理されたジルコニウム水酸化物に第VIII族金属の1種または2種以上を担持させた後、結合材として擬べ一マイトを、触媒製品中の酸化ジルコニウム/アルミナの質量比が97/3〜80/20の範囲となる量加え、水で混練すること、
(C)混練物を触媒の形状に成形すること、および、
(D)得られた成形物を550〜800℃の温度で焼成すること。
【0012】
本発明の軽質炭化水素油の水素化脱硫異性化方法は、上記いずれかの方法により製造した触媒を使用して、イオウ分含有量700質量ppm以下の軽質炭化水素および水素を、温度:160〜240℃、圧力:1.0〜4.5MPa、LHSV:1.0〜10h−1、水素/油比:100〜1000NL/Lの反応条件下に触媒に接触させることを特徴とする。
【0013】
【発明の実施の形態】
発明者らは、前記した既知の諸技術の欠点を克服することを意図して、鋭意研究を重ねた。その結果、固体酸触媒の製造において、それが本来有するばずの触媒活性に悪影響を与えないためには、触媒製造の工程を、まず硫酸根を含有させた水酸化ジルコニウムを用意してこれを原料として使用することからスタートするのが必須条件であることを見出した。さらに、この硫酸根含有水酸化ジルコニウムを焼成することなくそのまま成形原料として使用すること、その上で、結合材として擬ベーマイトを添加した混練物を550〜800℃で焼成することによって、高い圧縮強度と高い水素化脱硫異性化活性とが両立する触媒が得られることを見出して、本発明を完成した。
【0014】
以下、本発明の各構成要素について説明する。
【0015】
[水酸化ジルコニウム]
本発明で使用する水酸化ジルコニウムは、ジルコニウムの水酸化物だけでなく、部分酸化水酸化物であってもよい。それゆえ、以下の記述においては、「水酸化ジルコニウム」、「ジルコニウムの水酸化物」の語で、両者を代表させる。水酸化ジルコニウムには、Zr(OH)、Zr(OH)2、Zr(OH)3およびZrO(OH)2などの諸形態があり、そのいずれも使用することができるが、Zr(OH)4およびZrO(OH)2が好ましい。これらの水酸化ジルコニウムは、水和物であってもよい。水酸化ジルコニウムは市場で入手できるから、それを使用すればよいが、場合によっては、ジルコニウムの水可溶性塩溶液の液性をアルカリ性にして沈殿させるなど、既知の方法によって製造してもよい。
【0016】
[硫酸化処理剤および硫酸根の量]
本発明の一つの特徴は、ジルコニウムの水酸化物に対し、硫酸根を含有させる硫酸化処理をしてから触媒製造を進める。硫酸根を与える処理剤としては、硫酸、硫酸アンモニウム、亜硫酸、亜硫酸アンモニウム、硫化水素、亜硫酸ガス等が挙げられるが、好ましくは硫酸、硫酸アンモニウムである。含有させる硫酸根の量は、イオウ(S)分として、0.1〜10質量%、好ましくは0.5〜5質量%である。硫酸根の量がイオウ分として0.1%未満であると、製品である触媒中の固体酸の量が少なすぎ、触媒が十分な活性を示さない。一方、10質量%を超えると、ジルコニアの表面をイオウが被覆しすぎて、かえって触媒活性が低くなるばかりか、触媒製造中に硫酸が流出してしまい、装置を腐食するなどの問題が生じる。
【0017】
[硫酸化処理の方法]
硫酸化処理を行なうには種々の方法が可能であるが、一般的には、吸着法、含浸法および混合法である。
【0018】
吸着法は、液体または固体である硫酸化処理剤を1〜10倍の水に溶解して、溶液を、ジルコニウムの水酸化物に吸着させる方法である。たとえば、処理剤の水溶液にジルコニウムの水酸化物を入れ、攪拌して吸着させる。その後、余分な処理剤水溶液は、濾過により除くことが可能である。濾過して得た硫酸根を含有するジルコニウムの水酸化物は、乾燥させてもさせなくてもよい。含有させる硫酸根の量は、水に溶解する硫酸化処理剤の量や、吸着させる時間などを調節することによってコントロールできる。
【0019】
含浸法は、固体または液体の硫酸化処理剤を溶媒に溶解し、この溶液をジルコニウムの水酸化物に含浸させることにより、硫酸根を含有するジルコニウムの水酸化物を得る方法である。
【0020】
混合法は、硫酸化処理剤が固体であるものを、ジルコニウムの水酸化物に含有させる場合に採用する方法である。
【0021】
[第VIII族金属の担持]
第VIII族金属成分としては、白金、パラジウム、ルテニウム、イリジウム、ニッケル、コバルト等が用いられ、好ましいのは、白金、パラジウムおよびルテニウムである。これらの第VIII族金属は、2種以上を混合して担持させてもよい。
【0022】
第VIII族金属成分を触媒に担持させる手法には、前述のように、硫酸化処理されたジルコニウム水酸化物と結合材とに、これら金属の1種または2種以上を含む水溶液として添加して混練する(B)、同時混練法とでもいうべき手法と、硫酸化処理されたジルコニウム水酸化物に、まずこれら金属の1種または2種以上を担持させたのちに結合材を加え、水で混練する(B)、混練前担持法とでもいうべき手法とがある。
【0023】
同時混練法の場合には、第VIII族金属成分を、その塩化物、臭化物、ヨウ化物、硫酸塩、硝酸塩、アンミン錯塩等各種の水溶性塩の形で添加する。装置の腐食を考慮に入れると、酸性を有しないアンミン錯塩が好ましい。
【0024】
混練前担持法の場合、第VIII族金属成分を担持させる方法にはとくに制限がないが、当業者に周知の含浸法およびイオン交換法が、代表的な方法である。要するに、硫酸根を担持した水酸化ジルコニウムに、高分散かつ均一に担持させることができる限り、どのような方法でもよい。担持に使用する金属化合物は、上記した各種の水溶性塩のいずれでもよい。
【0025】
第VIII族金属の担持量は、上記した担持の手法のどちらを選択したかにかかわらず、最終的に得られる固体酸触媒中に占める割合で、0.05〜10質量%、好ましくは0.05〜5質量%となるようにする。0.05質量%未満では貴金属成分を有する固体酸触媒としての性能が不十分であり、逆に10質量%を超えると、金属成分の分散性が低下して、触媒の性能がむしろ低くなることがある。
【0026】
[結合材]
本発明に用いる結合材は、アルミナの中で、擬ベーマイト構造を有するものが最適であるから、これを用いる。擬ベーマイトは、一般に、粉末状態か、または液中に分散したゾルの状態のものを入手することができ、水酸化アルミニウムが低重合した構造(AlOOH)を有している(nは1より大きい数)。擬ベーマイトは、粒子表面を酢酸イオンや塩素イオンのような1価のマイナス電荷で安定化させ、それ以上の重合による高分子化を抑制した状態で市販されている。本発明においては、後工程の焼成により、擬ベーマイトの結晶形態が変化して、最終的にはγ−アルミナまたはη−アルミナとなるのであるが、結合材として、たとえば、γ−アルミナやα−アルミナをはじめから使用した場合には、触媒の圧縮強度が高まらず、実用的な触媒は得られない。
【0027】
この差異は、擬ベーマイト構造を有するアルミナの粒子がプラス電荷を帯びており、触媒製造のための原料である硫酸根含有水酸化ジルコニウムと強く結合するためである。硫酸根含有水酸化ジルコニウムは粒子表面が硫酸によりマイナス電荷を帯びているため、アルミナのプラス電荷と結合することができ、その結合が強い圧縮強度をもたらすと考えられる。これに対し、γ−アルミナやα−アルミナ等は表面のプラス電荷が足りないため、硫酸根含有水酸化ジルコニウムとは強固に結合せず、結果として、触媒の実用上必要な圧縮強度を実現することができないものと解される。
【0028】
[触媒の製造−手順]
前記のように、本発明では固体酸触媒の製造手順として、硫酸根含有水酸化ジルコニウムと結合材とを、1種または2種以上の第VIII族金属を含有する水溶液で混練するか(B)、または、第VIII族金属を1種または2種以上まず担持させた硫酸根含有水酸化ジルコニウムと、結合材とを水で混練する(B)、という2種の態様がある。これに続いて、混練物を触媒形状に成形し、550〜800℃の温度で焼成して安定化させる。
【0029】
[触媒の製造−混練]
本発明を実施するに当たり、触媒原料を混練するには、一般に触媒の製造に用いられているニーダーであれば、どのようなものを用いてもかまわない。上記した(B)の態様においては、硫酸根含有水酸化ジルコニウムと結合材とを混合し、攪拌したのち、そこへ1種または2種以上の第VIII族金属を含有する水溶液を添加しながら、混練する。上記(B)の態様においては、1種または2種以上の第VIII族金属を担持した硫酸根含有水酸化ジルコニウムを、結合材と混合し、攪拌したのち、そこへ水を添加して混練する。
【0030】
混練に当たっては、メタノール、エタノールなどのアルコール系の有機溶媒、硫酸、希硫酸、硝酸、塩酸、酢酸などの酸性溶媒など、さまざまな溶媒を、単独で、または2種以上混合して使用することができる。しかし、通常は水で十分であり、かつそれが好ましい。
【0031】
硫酸根含有水酸化ジルコニウムと結合材、または1種または2種以上の第VIII族金属を担持した硫酸根含有水酸化ジルコニウムと結合材との割合は、最終的に得られる固体酸触媒中に占める割合にして、酸化物基準で、酸化ジルコニウム/アルミナ=97/3〜80/20(単位は質量%)となるようにすることが好ましい。アルミナの量が3質量%未満では結合材の量が少なすぎて結合力が弱く、触媒に必要な圧縮強度が発現しない。一方、アルミナの量が20質量%を超えると、触媒の圧縮強度は高まるものの、相対的な硫酸根含有水酸化ジルコニウムの量が減少してしまい、必要な固体酸量を確保できなくなる。95/5〜85/15の範囲が、とくに好ましい。
【0032】
[触媒の製造−成形]
硫酸根含有水酸化ジルコニウムと結合材とを1種または2種以上の第VIII族金属を含有する水溶液で混練したもの、および1種または2種以上の第VIII族金属を担持した硫酸根含有水酸化ジルコニウムと結合材とを水系媒体で混練したものは、当業者に既知の手法で、触媒形状に成形することができる。成形の手法には、たとえば押出成形法、転動造粒法、油中滴下法などの方法があるが、好ましいのは押出成形法である。成形体の寸法・形状には、とくに制限はないが、通常、触媒の断面の直径が1〜5mmとなるように成形するのが適当である。とくに、円柱状、四つ葉状等の輪郭をもった押出成形品を製造するときは、触媒の長さが1〜20mm程度のものを容易に得ることができ、実用上好適である。
【0033】
[触媒の製造−そのほか可能な触媒製造手順]
その他の触媒成型方法として、硫酸根含有水酸化ジルコニウムと結合材とを水で混練したものを押出成形し、乾燥させ、その後に1種または2種以上の第VIII族金属を含有する水溶液を含浸させることによっても、焼成して触媒とするための前駆体を得ることが可能である。しかし、製造工程が増すことになるから、触媒製造コストが上昇し、結果として不利になる。
【0034】
[触媒の製造−焼成の時点]
本発明の触媒製造方法においては、1種または2種以上の第VIII族金属を担持した硫酸根含有水酸化ジルコニウムの混練物を成形した成形品を、最後に適切な温度で焼成することが肝要である。その理由は、上記のような成形品を焼成して安定化させることにより、水酸化ジルコニウムが酸化ジルコニウム(ジルコニア)に転化し、1種または2種以上の第VIII族金属を担持した硫酸根含有ジルコニアとなり、それが触媒として高い性能を発揮することになるからである。
【0035】
従来技術の中には、焼成を経てジルコニアになったものを触媒原料として使用する製造方法があるが、焼成によって原料がすでに強い固体酸性を帯びている結果、結合材である擬ベーマイトのゲルとジルコニア上の硫酸根との結びつきが強くなり過ぎ、硫酸根がアルミニウムによってすべて被覆されてしまう。そうなると、触媒は硫酸根を含有するにもかかわらず、その固体酸性が発現せず、固体酸触媒として機能しないものになってしまう。
【0036】
[触媒の製造−焼成条件]
成形により得られた、触媒前駆体というべきものは、乾燥したのち、焼成して固体酸として安定化させる。「安定化」とは、触媒前駆体を焼成することによって水酸化ジルコニウムの脱水縮合を起こさせ、酸化ジルコニウムに結晶化させることである。この安定化のための焼成は、酸化性の雰囲気下、温度550〜800℃の範囲、好ましくは600〜750℃の範囲で、0.5〜10時間にわたり加熱することにより実施する。焼成温度が550℃未満では、ジルコニウム化合物中に残存する水酸化ジルコニウムの割合が多くなり、安定化が不足であって、固体酸性が発現しない。800℃よりも高すぎると、含有させた硫酸根が揮発してしまい、固体酸性を示さない触媒となってしまう。
【0037】
[触媒中のイオウ分]
最終的な触媒中のイオウ濃度は、焼成の温度や時間により若干変化するが、0.1〜5質量%の範囲にあることが必要である。0.5〜4質量%の範囲にあることが好ましい。イオウ濃度が0.1質量%より少ないと、触媒が固体酸触媒として十分機能せず、活性が不足である。5質量%を超えると、ジルコニアの表面を硫酸根が過剰に覆い、表面に積層して活性点をつぶしてしまうため、この場合もかえって活性が低下する。
【0038】
触媒中のイオウ分の測定には、試料を酸素気流中で燃焼させ、試料中に含まれているイオウ(S)を酸化させて亜硫酸ガス(SO)に変え、水分とダストを除去した後、赤外線検出器たとえばソリッド・ステート型の検出器を用いて、SOを検出することにより行なう。この分析方法によれば、試料中のイオウ分量を、0.001〜99.99%の濃度範囲で求めることができる。
【0039】
[触媒の物性]
本発明の製造方法により得られた触媒は、焼成安定化させた後、比表面積が50〜200m/g、とりわけ60〜180m/gの範囲にあることが好ましい。比表面積が50m/gより小さいものは、一般に第VIII族金属の分散性が低く、反応物と接触する面積が狭いため、固体酸触媒として活用することができない。200m/gより大きい触媒は、固体酸性を有するが、通常、高い強度を期待することができない。
【0040】
本発明の製造方法により得られた触媒は、焼成安定化させた後、全細孔容積が0.05〜0.5cc/gであることが好ましい。より好ましい全細孔容積は、0.1〜0.4cc/gである。全細孔容積が0.05cc/gより小さいものは、触媒の内部にまで反応物が拡散することができず、結果として反応物の接触効率が悪く、触媒活性が低い。全細孔容積が0.5cc/gより大きいものは、触媒の圧縮強度が低く、実用上の問題がある。
【0041】
上記の比表面積と全細孔容積は、常用の表面積および細孔容積測定装置を使用して、窒素吸着法により測定・算出することができる。
【0042】
本発明の製造方法により得られた触媒は、焼成安定化させた後、0.3kg/2mm以上の圧縮強度を示すことを要する。圧縮強度が0.3kg/2mmより小さいと、実装置に触媒を充填したときに自重で破壊してしまい、事実上使用することができない。圧縮強度は、通常、0.5kg/2mm以上あることが望ましい。圧縮強度が5.0kg/2mmより大きい触媒は、比表面積や細孔容積が小さく、反応に必要な活性点の数が少ないものになりがちで、結果として活性の低い触媒であることが多い。
【0043】
[水素化脱硫異性化の方法]
本発明の触媒を使用して、炭化水素の脱硫と同時に異性化を行なう方法の対象とする原料油としては、原油の常圧蒸留装置から留出したライトナフサ、同じく原油の常圧蒸留装置から留出したホールナフサから分離したライトナフサ、またはライトナフサにマーロックス処理を施したマーロックスナフサなどの、有機イオウを含有する軽質炭化水素油が好適である。とくに好適な原料油は、ASTM蒸留温度が25〜130℃、好ましくは25〜110℃のライトナフサである。
【0044】
有機イオウの含有量についていえば、700質量ppm以下、好ましくは10〜500質量ppm、さらに好ましくは10〜200質量ppm程度のライトナフサが、有利に使用できる。イオウ分が数ppmまたはそれ以下の軽質炭化水素油も原料として使用できることは、いうまでもない。
【0045】
[有機イオウ化合物の例]
ライトナフサに含まれている有機イオウ化合物の代表例を挙げれば、チオール化合物(R−SH)として、2−プロパンチオール(CHCH−SH、エタンチオールC−SH、スルフィド化合物(R−S−R)としてメチルエチルスルフィドCH−S−C、ジスルフィド化合物(R−SS−R)としてエチルイソプロピルジスルフィドC−SS−CH(CHなどである。本発明の触媒を用いれば、これらの有機イオウ化合物を、原料油の異性化と同時に水素化脱硫することができ、脱硫が実現する。
【0046】
[原料油中の他の成分]
触媒活性をより長期にわたり維持するためには、原料とするライトナフサ中の芳香族、不飽和炭化水素および高級炭化水素の量は、少ない方がよい。ベンゼン量は5容量%以下、できれば3容量%以下に、ナフテン量は12容量%以下、できれば9容量%以下に、C7化合物は15容量%以下、できれば10容量%以下に、それぞれ抑えたい。
【0047】
[反応条件]
本発明の水素化脱硫異性化反応の条件は、つぎのとおりであって、
反応温度:160〜240℃、好ましくは180〜220℃
反応圧力:1.0〜4.5MPa、好ましくは1.4〜3.5MPa
LHSV:1.0〜10h−1、好ましくは1.0〜5h−1
水素/油比:100〜1000NL/L、好ましくは150〜800NL
/L
反応温度が160℃より低いと触媒の寿命が短くなり、一方、240℃以上では軽質炭化水素油の分解が進んで、生成油の収率が低下する。そのほかの条件すなわち反応圧力、LHSV、水素/油比は、従来行なわれている軽質炭化水素油の異性化反応条件と、ほぼ同様である。
【0048】
本発明の触媒は、従来の異性化反応の触媒と置き換えて使用することができ、それによって、単なる異性化でなく、水素化脱硫と異性化とが同時に行なえる。すなわち、軽質炭化水素油中の有機イオウ化合物を水素化脱硫して硫化水素に変換し、イオウ分を数ppm以下にすると同時に直接異性化することができ、イオウ分を含まない、オクタン価が向上した生成油を得ることができる。
【0049】
【実施例】
以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
【0050】
[実施例1] 触媒Aの製造
(1)SO/Zr(OH)の製造
水酸化ジルコニウムZr(OH)4400gを1N−硫酸4000g中に投入し、30分間攪拌した。攪拌後、濾過して得た固体分を110℃で一昼夜乾燥し、硫酸根を含有する水酸化ジルコニウムSO/Zr(OH)452gを得た。
(2)触媒の成形
上記の硫酸根含有水酸化ジルコニウム357gと市販の擬ベーマイト(触媒化成(株)製、以下同じ)47.5gをよく混合した後、混合物に、テトラアンミンジクロロパラジウム[Pd(NH3)4]Cl2・H2O4.74gを溶解した水溶液200gを添加して、混練した。混練物を直径1.8mmの孔から押し出し、110℃で2時間乾燥して、Pd/SO/Zr(OH)4−Al23の成形体420gを得た。
(3)成形体の焼成安定化
このようにして得た成形体をマッフル炉で、600℃に3時間焼成し、最終生成物である触媒A、すなわち、Pd/SO/ZrO−Al23335gを得た。
【0051】
[実施例2]
(1)SO/Zr(OH)の製造
水酸化ジルコニウムZr(OH)400gを1N−硫酸4000gに投入して、30分間攪拌した。攪拌後、濾過して得た固体分を110℃で一昼夜乾燥し、硫酸根含有水酸化ジルコニウムSO/Zr(OH)452gを得た。
(2)Pd/SO/Zr(OH)の製造
塩化パラジウム3.8gを塩酸に溶かした溶液に、上記の硫酸根含有水酸化ジルコニウム380gを入れ、Pd塩を含浸させた。その後、110℃で一昼夜乾燥し、パラジウム担持硫酸根含有水酸化ジルコニウムPd/SO/Zr(OH)382gを得た。
(3)触媒の成形
上記のパラジウム担持硫酸根含有水酸化ジルコニウム357gと市販の擬ベーマイト47.5gとをよく混合した後、混合物に水200gを添加して、混練した。混練物を直径1.8mmの孔から押し出し、110℃で2時間乾燥して、Pd/SO/Zr(OH)−Alの成型体420gを得た。
(4)成形体の焼成安定化
このようにして得た成形体を、マッフル炉で、600℃に3時間焼成し、最終生成物である触媒B、すなわちPd/SO/ZrO−Al23335gを得た。
【0052】
[実施例3]
(1)Pd・Pt/SO/Zr(OH)4の製造
テトラアンミンジクロロパラジウム[Pd(NH3)4]Cl2・H2Oの7.11g、テトラアンミンジクロロ白金[Pt(NH3)4]Cl2・H2Oの2.04gおよび硫酸アンモニウム(NH4)SOの60.2gを溶解した水溶液に、水酸化ジルコニウム450gを入れ、Pd塩とPt塩とイオウ分を含浸させた。その後、110℃で一昼夜乾燥し、パラジウム−白金担持硫酸根含有水酸化ジルコニウムPd・Pt/SO/Zr(OH)469gを得た。
(2)触媒の成形
上記のパラジウム−白金担持硫酸根含有水酸化ジルコニウムPd・Pt/SO/Zr(OH)の357gと市販の擬ベーマイト47.5gとをよく混合した後、水200gを添加して混練し、直径1.8mmの孔から押し出し、110℃で2時間乾燥することにより、Pd・Pt/SO/Zr(OH) −Alの成型体420gを得た。
(3)成形体の焼成安定化
このようにして得た成型体を、マッフル炉で600℃に3時間焼成し、最終生成物である触媒Cすなわち、Pd・Pt/SO/ZrO−Al23336gを得た。
【0053】
[実施例4]
実施例1の操作を繰り返した。ただし、触媒の成形工程において硫酸根含有水酸化ジルコニウムを377gとし、市販の擬ベーマイトの量を23.5gとし、成形体の焼成安定化工程において焼成温度を550℃にした。最終生成物である触媒Dすなわち、Pd/SO/ZrO−Al23335gを得た。
【0054】
[実施例5]
実施例1の操作を繰り返した。ただし、触媒の成形工程において硫酸根含有水酸化ジルコニウムを319gに、市販の擬ベーマイト94.0gに、成形体の焼成安定化工程において焼成温度を800℃に変更した。最終生成物である触媒Eすなわち、Pd/SO/ZrO−Al23337gを得た。
【0055】
[実施例6]
(1)SO/ZrO (OH)の製造
部分酸化水酸化ジルコニウムZrO(OH) の400gを1N−硫酸4000gに投入し、30分間攪拌した。攪拌後、濾過し、得られた固体分を110℃で一昼夜乾燥し、硫酸根含有部分酸化水酸化ジルコニウムSO/ZrO (OH)を435g得た。
(2)触媒の成形
上記の硫酸含有部分酸化水酸化ジルコニウム347gと市販の擬ベーマイト47.5gをよく混合した後、これにテトラアンミンジクロロパラジウム4.74gを溶解した水溶液200gを添加して混練し、混練物を直径1.8mmの孔から押し出して、110℃で2時間乾燥し、Pd/SO/ZrO (OH)−Alの成形体415gを得た。
(3)成形体の焼成安定化
このようにして得た成形体を、マッフル炉で600℃に3時間焼成し、最終生成物である触媒F、すなわち、Pd/SO/ZrO−Al23333gを得た。
【0056】
[比較例1]
硫酸根含有水酸化ジルコニウムを600℃で焼成し、硫酸根含有酸化ジルコニウムSO/ZrOとしたほかは、実施例1と同様にして触媒の成形工程を行ない、成形体の焼成安定化も600℃で3時間行なって、触媒Gすなわち、Pd/SO/ZrO−Al23350gを得た。
【0057】
[比較例2]
パラジウム担持硫酸根含有水酸化ジルコニウムを600℃で焼成し、パラジウム担持硫酸根含有酸化ジルコニウムPd/SO/ZrOとした以外は、実施例2と同様にして触媒の成形工程を行ない、成形体の焼成安定化も600℃で3時間行なって、触媒Hすなわち、Pd/SO/ZrO−Al23349gを得た。
【0058】
[比較例3]
(1)触媒の成形
酸化ジルコニウム310gと市販の擬ベーマイト47.5gとをよく混合した後、これにテトラアンミンジクロロパラジウム4.74gと硫酸アンモニウム(NH)SO40.1gとを溶解した水溶液を添加して混練した。混練物を直径1.8mmの孔から押し出して成形し、110℃で2時間乾燥することによって、Pd/SO/ZrO−Al23の成形体380gを得た。
(2)成形体の焼成安定化
このようにして得た成形体を、マッフル炉で600℃に3時間焼成し、最終生成物である触媒I、すなわち、Pd/SO/ZrO−Al23336gを得た。
【0059】
[比較例4]
成形体の焼成安定化工程において焼成温度を500℃としたほかは、実施例1と同様の方法で触媒を製造した。触媒Jすなわち、Pd/SO/ZrO−Al23の350gを得た。
【0060】
[比較例5]
成形体の焼成安定化工程において焼成温度を900℃としたほかは、実施例1と同様の方法で触媒を製造した。触媒Kすなわち、Pd/SO/ZrO−Al23の320gを得た。
【0061】
[比較例6]
触媒の成形工程において、擬ベーマイトに代えてγ−アルミナの微粉末33.3gを使用したほかは、実施例1と同様の方法で触媒を製造した。触媒Lすなわち、Pd/SO/ZrO−Al23333gを得た。
【0062】
[比較例7]
触媒の成形工程において擬ベーマイトに代えて市販のシリカゾル「SI−350」(触媒化成製)100gを使用したほかは、実施例1と同様の方法で触媒を製造した。触媒M、すなわち、Pd/SO/ZrO−SiO333gを得た。
【0063】
[触媒物性の試験]
上記の実施例1〜6および比較例1〜7で製造した触媒について、比表面積、細孔容積、イオウ含有量および圧縮強度を測定した。比表面積および細孔容積の測定には、日本ベル(株)製の高精度全自動ガス吸着装置「BELSORP 28」を使用した。イオウ分の含有量は、LECO社のイオウ分分析計「SC−132」を用いて測定した。触媒の圧縮強度は、木屋製作所製の木屋式硬度計で測定した。サンプルとして、2mm程度の長さを有する円柱状の成形触媒を20個選び、触媒の横方向の強度を測定し、その平均値を圧縮強度とした。
【0064】
実施例1〜6および比較例1〜7で製造した触媒の製造条件および物性を、表1(実施例)および表2(比較例)にまとめて示す。
【0065】
表 1

Figure 0004182663
【0066】
表 1 (続き)
Figure 0004182663
【0067】
表 2
Figure 0004182663
【0068】
表 2 (続き)
Figure 0004182663
【0069】
上記した触媒物性値のデータから、本発明から逸脱した製造方法で製造した触媒、すなわち比較例3,6および7の触媒は、圧縮強度が0.1kg/2mm程度と低く、実用上不適格であることがわかる。
【0070】
[触媒使用例]
触媒充填量が7mlの固定床流通式反応器に触媒を充填し、そこへ、原料炭化水素油として簡易脱硫装置(マーロックス)からのライトナフサを供給し、異性化反応を行なった。反応条件はつぎのとおりである。
ライトナフサ中のイオウ分:160質量ppm
ライトナフサ中のi−C5分:41%
反応温度:200℃ 反応水素圧力:3.0MPa
LHSV:1.5/h−1 水素/油比:350NL/L。
【0071】
通油開始150時間後に、反応管出口組成をガスクロマトグラフィーにより分析した。結果を表3に示す。表3における「C5異性体率」は、つぎの式で定義される:
C5異性体率(%)=(反応生成油に占めるi−C5成分の質量%/
反応生成油に占めるC5成分全量の質量%)×100
【0072】
表 3
Figure 0004182663
【0073】
表3のデータは、本発明の製造方法に従って製造した触媒、すなわち実施例1〜6の触媒を用いて固体酸触媒の代表的反応である異性化反応を行なえば、反応生成油中のC5異性体率が56%以上に達することを示しており、これらがすぐれた固体酸触媒であることがわかる。本発明の条件を逸脱した硫酸含有酸化ジルコニウムを用いた比較例1および2や、焼成条件を満たさない比較例4および5は、いすれもC5異性体率が50%以下であって、実施例に及ばない。
【0074】
実施例1〜6の触媒A〜Fを用いた反応においては、原料油中の有機イオウ化合物は、すべて水素化され硫化水素に変換された。生成した硫化水素は、生成油中に飽和量だけ溶け込んでいるが、反応生成油の成分中の有機イオウ化合物は、濃度0ppmであった。
【0075】
【発明の効果】
本発明に従う方法により製造した触媒は、結合材の配合量が少なくても、高い圧縮強度を有する。そのため、触媒が取り扱いやすく、固定床の反応器に充填しても自重で破壊する心配がなく、工業上の利用価値が高い。固体酸触媒として高い触媒活性を有するとともに、上記実施例で挙げたイオウを含有するナフサの異性化反応にも使用することができ、実使用上きわめて有効である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solid acid catalyst and a method for producing the same, and more particularly to a sulfate group-containing zirconia-alumina catalyst supporting a Group VIII metal suitable for industrial use and a method for producing the same. The invention also relates to a process for hydrodesulfurization isomerization of light hydrocarbon oils carried out using this catalyst.
[0002]
[Prior art]
Solid acid catalysts, particularly sulfate group-containing zirconia catalysts carrying a Group VIII metal, are used for hydrocarbon isomerization and alkylation. The solid acid catalyst used not only for this catalyst but also industrially needs not only to have high catalytic activity, but also to have a certain degree of strength so that the catalyst is not destroyed by its own weight when charged into the reactor. Therefore, conventionally, the solid acid catalyst that is a powder is pressed as it is to form a tablet, or using a suitable binder, a molded body having a columnar shape, a four-leaf shape, a spherical shape, a granular shape, and the like, In many cases, the reactor was used by filling it.
[0003]
However, since the tablet catalyst obtained by simply press-molding is just a powder compacted, it is easily destroyed during operation of the actual device and is not a porous material. Cannot be used as a reaction field, the contact area with the reactant is small, and the activity is low.
[0004]
If a molded body is formed using a binder, a porous catalyst with high contact efficiency can be obtained, but a certain amount of binder is required to ensure a certain strength, and a large amount of binder is required. If added, the solid acid concentration in the formed catalyst is reduced, and the catalytic activity is lowered. Furthermore, the binding material itself may destroy the active sites on the catalyst surface and reduce the performance of the catalyst.
[0005]
As an example of a technique using a binder, there has been proposed a method for producing a catalyst comprising mixing zirconium hydroxide or zirconia with boehmite-state alumina as a binder (Japanese Patent Laid-Open No. 9-38494 and JP-A-11-57478). According to these methods, a porous catalyst with high contact efficiency can be obtained, but since the binding force between alumina as a binder and zirconium hydroxide or zirconia as a raw material is weak, the compressive strength of the catalyst is reduced. Can't be too high. In order to increase the compressive strength, it is necessary to increase the mixing amount of alumina as a binder, but this increases the relative proportion of alumina in the formed catalyst, and thus the amount of solid acid is small. It becomes a catalyst with low activity.
[0006]
As another method, there is a method in which zirconium hydroxide or zirconia supporting sulfate radicals is calcined, and thereafter, alumina is added as a binder to form the catalyst. Since it is coated and the solid acidity is extremely low, it is not a practical catalyst.
[0007]
This is why it is necessary to produce a molded solid acid catalyst having a high compressive strength and a small amount of binder, and thus a strong solid acidity, from a solid acid catalyst which is a powder. This has continued to be a challenge in the field of technology.
[0008]
[Problems to be solved by the invention]
The present invention has been made in view of the shortcomings of known methods for producing solid acid catalysts, the purpose of which is that in the production of solid acid catalysts, the compressive strength of the catalyst is high, and also in molded catalysts. An object of the present invention is to provide a method for producing a catalyst in which the original solid acidity is maintained.
[0009]
It is also possible to provide a hydrodesulfurization isomerization method that can simultaneously achieve desulfurization and isomerization of a light hydrocarbon oil containing an organic sulfur compound by using a solid acid catalyst produced by the method. It is included in the object of the invention.
[0010]
[Means for Solving the Problems]
The method for producing a solid acid catalyst of the present invention that achieves this object has the following two aspects. One of them is a method for producing a solid acid catalyst comprising the following steps:
(A) adding a sulfate group-containing substance to zirconium hydroxide and subjecting it to sulfation treatment;
(B1) Add pseudo-might as a binder to sulfated zirconium hydroxideThe amount of zirconium oxide / alumina in the catalyst product is in the range of 97/3 to 80/20In addition, kneading with an aqueous solution containing one or more Group VIII metals,
(C) forming the kneaded material into the shape of a catalyst; and
(D) Firing the obtained molded product at a temperature of 550 to 800 ° C.
[0011]
The other is a method for producing a solid acid catalyst comprising the following steps:
(A) adding a sulfate group-containing substance to zirconium hydroxide and subjecting it to sulfation treatment;
(B2) After supporting one or more Group VIII metals on sulfated zirconium hydroxide, pseudo-mightite may be used as a binder.The amount of zirconium oxide / alumina in the catalyst product is in the range of 97/3 to 80/20In addition, kneading with water,
(C) forming the kneaded material into the shape of a catalyst; and
(D) Firing the obtained molded product at a temperature of 550 to 800 ° C.
[0012]
The hydrodesulfurization isomerization method for light hydrocarbon oils of the present invention uses a catalyst produced by any of the above methods to convert light hydrocarbons and hydrogen having a sulfur content of 700 mass ppm or less into temperatures of 160 to 240 ° C., pressure: 1.0 to 4.5 MPa, LHSV: 1.0 to 10 h-1The hydrogen / oil ratio is characterized by contacting the catalyst under reaction conditions of 100 to 1000 NL / L.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The inventors have conducted intensive research with the intention of overcoming the drawbacks of the known techniques described above. As a result, in the production of the solid acid catalyst, in order not to adversely affect the inherent catalytic activity of the catalyst, the catalyst production process is performed by first preparing zirconium hydroxide containing a sulfate group. It was found that starting from using as a raw material is an essential condition. Furthermore, by using this sulfate group-containing zirconium hydroxide as a raw material without firing, and then firing the kneaded material added with pseudoboehmite as a binder at 550 to 800 ° C., high compressive strength And the present invention has been completed by finding that a catalyst having both high hydrodesulfurization isomerization activity can be obtained.
[0014]
Hereinafter, each component of the present invention will be described.
[0015]
[Zirconium hydroxide]
The zirconium hydroxide used in the present invention may be not only zirconium hydroxide but also partially oxidized hydroxide. Therefore, in the following description, the terms “zirconium hydroxide” and “hydroxide of zirconium” are representative of both. Zirconium hydroxide contains Zr (OH)4, Zr (OH)2, Zr (OH)ThreeAnd ZrO (OH)2And any one of them can be used, but Zr (OH)FourAnd ZrO (OH)2Is preferred. These zirconium hydroxides may be hydrates. Since zirconium hydroxide is commercially available, it may be used. In some cases, zirconium hydroxide may be produced by a known method such as precipitation by making the water-soluble salt solution of zirconium alkaline.
[0016]
[Amount of sulfating agent and sulfate radical]
One feature of the present invention is to proceed with catalyst production after subjecting zirconium hydroxide to a sulfation treatment to contain a sulfate group. Examples of the treatment agent that gives a sulfate radical include sulfuric acid, ammonium sulfate, sulfurous acid, ammonium sulfite, hydrogen sulfide, and sulfurous acid gas, with sulfuric acid and ammonium sulfate being preferred. The amount of sulfate radical to be contained is 0.1 to 10% by mass, preferably 0.5 to 5% by mass, as sulfur (S). When the amount of the sulfate radical is less than 0.1% in terms of sulfur content, the amount of solid acid in the product catalyst is too small, and the catalyst does not exhibit sufficient activity. On the other hand, when the amount exceeds 10% by mass, the surface of zirconia is excessively covered with sulfur, and the catalytic activity is lowered. On the other hand, sulfuric acid flows out during the production of the catalyst, and the apparatus is corroded.
[0017]
[Method of sulfate treatment]
Various methods are possible for carrying out the sulfation treatment. Generally, the adsorption method, the impregnation method and the mixing method are used.
[0018]
The adsorption method is a method in which a sulfation treatment agent that is liquid or solid is dissolved in 1 to 10 times as much water, and the solution is adsorbed on zirconium hydroxide. For example, zirconium hydroxide is put in an aqueous solution of a treating agent and adsorbed by stirring. Thereafter, the excess treating agent aqueous solution can be removed by filtration. The zirconium hydroxide containing sulfate groups obtained by filtration may or may not be dried. The amount of sulfate radical to be contained can be controlled by adjusting the amount of the sulfation treatment agent dissolved in water, the time for adsorption, and the like.
[0019]
The impregnation method is a method of obtaining a zirconium hydroxide containing sulfate radicals by dissolving a solid or liquid sulfating agent in a solvent and impregnating the solution with zirconium hydroxide.
[0020]
The mixing method is a method employed when the sulfating agent is a solid and is contained in zirconium hydroxide.
[0021]
[Support of Group VIII metal]
As the Group VIII metal component, platinum, palladium, ruthenium, iridium, nickel, cobalt and the like are used, and platinum, palladium and ruthenium are preferable. These Group VIII metals may be supported in a mixture of two or more.
[0022]
In the method of supporting the Group VIII metal component on the catalyst, as described above, an aqueous solution containing one or more of these metals is added to the sulfated zirconium hydroxide and the binder. Kneading (B1), A technique that should be referred to as a simultaneous kneading method, and after supporting one or more of these metals on a sulfated zirconium hydroxide, a binder is added and kneaded with water (B2), A method that should be called a pre-kneading support method.
[0023]
In the case of the simultaneous kneading method, the Group VIII metal component is added in the form of various water-soluble salts such as chlorides, bromides, iodides, sulfates, nitrates, and ammine complexes. Taking into account the corrosion of the apparatus, ammine complex salts having no acidity are preferred.
[0024]
In the case of the supporting method before kneading, the method for supporting the Group VIII metal component is not particularly limited, but the impregnation method and ion exchange method well known to those skilled in the art are typical methods. In short, any method may be used as long as it can be highly dispersed and uniformly supported on the zirconium hydroxide supporting the sulfate radical. The metal compound used for supporting may be any of the various water-soluble salts described above.
[0025]
The amount of the Group VIII metal supported is 0.05 to 10% by mass, preferably 0. 0% by mass in the finally obtained solid acid catalyst, regardless of which of the above-described methods of supporting is selected. It is made to become 05-5 mass%. If it is less than 0.05% by mass, the performance as a solid acid catalyst having a noble metal component is insufficient. Conversely, if it exceeds 10% by mass, the dispersibility of the metal component is lowered and the performance of the catalyst is rather lowered. There is.
[0026]
[Binder]
As the binder used in the present invention, an alumina having a pseudo boehmite structure is optimal, and this is used. Pseudoboehmite is generally available in a powder state or in a sol state dispersed in a liquid, and has a structure in which aluminum hydroxide is polymerized (AlOOH).n(N is a number greater than 1). Pseudoboehmite is commercially available in a state in which the particle surface is stabilized with a monovalent negative charge such as acetate ion or chlorine ion and polymerization due to further polymerization is suppressed. In the present invention, the crystal form of pseudoboehmite is changed by firing in the subsequent step, and finally becomes γ-alumina or η-alumina. As the binder, for example, γ-alumina or α-alumina is used. When alumina is used from the beginning, the compressive strength of the catalyst does not increase and a practical catalyst cannot be obtained.
[0027]
This difference is because the alumina particles having a pseudo boehmite structure are positively charged and strongly bonded to sulfate group-containing zirconium hydroxide, which is a raw material for catalyst production. Since the sulfate radical-containing zirconium hydroxide has a negative charge due to sulfuric acid, it can be combined with the positive charge of alumina, and the bond is considered to bring about a strong compressive strength. On the other hand, since γ-alumina, α-alumina, etc. do not have enough positive charge on the surface, they do not bind firmly to sulfate group-containing zirconium hydroxide, and as a result, the practically necessary compressive strength of the catalyst is realized. It is understood that it cannot be done.
[0028]
[Catalyst Production-Procedure]
As described above, in the present invention, as a procedure for producing a solid acid catalyst, a sulfate group-containing zirconium hydroxide and a binder are kneaded with an aqueous solution containing one or more Group VIII metals (B1), Or a sulfate group-containing zirconium hydroxide that first supports one or more Group VIII metals and a binder are kneaded with water (B2). Following this, the kneaded product is formed into a catalyst shape and fired at a temperature of 550 to 800 ° C. to be stabilized.
[0029]
[Manufacture of catalyst-kneading]
In carrying out the present invention, any material may be used for kneading the catalyst raw material as long as it is a kneader generally used for the production of a catalyst. (B1In the embodiment of (2), the sulfate group-containing zirconium hydroxide and the binder are mixed and stirred, and then kneaded while adding an aqueous solution containing one or more Group VIII metals thereto. Above (B2), Sulfate group-containing zirconium hydroxide carrying one or more Group VIII metals is mixed with a binder and stirred, and then water is added thereto and kneaded.
[0030]
In kneading, various solvents such as alcohol-based organic solvents such as methanol and ethanol, and acidic solvents such as sulfuric acid, dilute sulfuric acid, nitric acid, hydrochloric acid and acetic acid may be used alone or in admixture of two or more. it can. However, water is usually sufficient and is preferred.
[0031]
The ratio of sulfate group-containing zirconium hydroxide and binder, or sulfate group-containing zirconium hydroxide supporting one or more Group VIII metals and binder accounts for the solid acid catalyst finally obtained. In terms of the ratio, it is preferable that zirconium oxide / alumina = 97/3 to 80/20 (unit: mass%) based on the oxide. If the amount of alumina is less than 3% by mass, the amount of the binder is too small and the bonding strength is weak, and the compressive strength necessary for the catalyst does not appear. On the other hand, when the amount of alumina exceeds 20% by mass, the compressive strength of the catalyst increases, but the relative amount of sulfate group-containing zirconium hydroxide decreases, and the required amount of solid acid cannot be secured. A range of 95/5 to 85/15 is particularly preferred.
[0032]
[Catalyst production-molding]
Sulfate-containing zirconium hydroxide and a binder mixed with an aqueous solution containing one or more group VIII metals, and sulfate group-containing water carrying one or more group VIII metals What knead | mixed the zirconium oxide and the binder with the aqueous medium can be shape | molded by the method known to those skilled in the art in a catalyst shape. Examples of the molding method include an extrusion molding method, a rolling granulation method, and a dropping method in oil, and the extrusion molding method is preferable. There are no particular restrictions on the size and shape of the molded body, but it is usually appropriate to mold the catalyst so that the catalyst has a cross-sectional diameter of 1 to 5 mm. In particular, when an extruded product having a cylindrical shape, a four-leaf shape, or the like is produced, a catalyst having a length of about 1 to 20 mm can be easily obtained, which is practically preferable.
[0033]
[Catalyst production-other possible catalyst production procedures]
As another catalyst molding method, a mixture of zirconium hydroxide containing zirconium hydroxide and a binder kneaded with water is extruded, dried, and then impregnated with an aqueous solution containing one or more Group VIII metals. Also, it is possible to obtain a precursor for calcination to be a catalyst. However, since the number of manufacturing steps increases, the catalyst manufacturing cost increases, resulting in disadvantages.
[0034]
[Production of catalyst-time of calcination]
In the catalyst production method of the present invention, it is important that the molded article obtained by molding a kneaded mixture of sulfate group-containing zirconium hydroxide carrying one or more Group VIII metals is finally calcined at an appropriate temperature. It is. The reason for this is that, by sintering and stabilizing the molded product as described above, zirconium hydroxide is converted to zirconium oxide (zirconia) and contains sulfate radicals carrying one or more Group VIII metals. This is because it becomes zirconia and exhibits high performance as a catalyst.
[0035]
Among the prior arts, there is a production method that uses zirconia that has been baked as a catalyst raw material, but as a result of the raw material already having a strong solid acidity due to calcination, a pseudo-boehmite gel that is a binder and The association with sulfate radicals on zirconia becomes too strong, and the sulfate radicals are all covered with aluminum. In this case, the catalyst does not function as a solid acid catalyst because the catalyst does not exhibit its solid acidity even though it contains a sulfate group.
[0036]
[Catalyst Production-Firing Conditions]
The catalyst precursor obtained by molding is dried and then calcined and stabilized as a solid acid. “Stabilization” means that the catalyst precursor is calcined to cause dehydration condensation of zirconium hydroxide and crystallize into zirconium oxide. Firing for stabilization is performed by heating in an oxidizing atmosphere at a temperature in the range of 550 to 800 ° C, preferably in the range of 600 to 750 ° C for 0.5 to 10 hours. When the calcination temperature is less than 550 ° C., the proportion of zirconium hydroxide remaining in the zirconium compound increases, the stabilization is insufficient, and solid acidity does not appear. When the temperature is higher than 800 ° C., the contained sulfate radicals are volatilized and the catalyst does not exhibit solid acidity.
[0037]
[Sulfur content in the catalyst]
The final sulfur concentration in the catalyst varies slightly depending on the calcination temperature and time, but needs to be in the range of 0.1 to 5% by mass. It is preferably in the range of 0.5 to 4% by mass. When the sulfur concentration is less than 0.1% by mass, the catalyst does not function sufficiently as a solid acid catalyst and the activity is insufficient. If it exceeds 5% by mass, the surface of zirconia is excessively covered with sulfate radicals, and is laminated on the surface to crush the active sites. In this case, the activity is reduced.
[0038]
For the measurement of sulfur content in the catalyst, the sample is burned in an oxygen stream, sulfur (S) contained in the sample is oxidized, and sulfurous acid gas (SO2), And after removing moisture and dust, using an infrared detector such as a solid state detector, SO2By detecting. According to this analysis method, the sulfur content in the sample can be determined in a concentration range of 0.001 to 99.99%.
[0039]
[Physical properties of catalyst]
The catalyst obtained by the production method of the present invention has a specific surface area of 50 to 200 m after calcination and stabilization.2/ G, especially 60-180m2/ G is preferable. Specific surface area is 50m2Those smaller than / g generally cannot be used as a solid acid catalyst because the dispersibility of the Group VIII metal is low and the area in contact with the reactant is narrow. 200m2Catalysts larger than / g have solid acidity but usually cannot be expected to have high strength.
[0040]
The catalyst obtained by the production method of the present invention preferably has a total pore volume of 0.05 to 0.5 cc / g after calcination and stabilization. A more preferable total pore volume is 0.1 to 0.4 cc / g. When the total pore volume is smaller than 0.05 cc / g, the reactant cannot diffuse into the catalyst, resulting in poor contact efficiency of the reactant and low catalytic activity. When the total pore volume is larger than 0.5 cc / g, the compressive strength of the catalyst is low, which causes a practical problem.
[0041]
The specific surface area and the total pore volume can be measured and calculated by a nitrogen adsorption method using a conventional surface area and pore volume measuring device.
[0042]
The catalyst obtained by the production method of the present invention is required to exhibit a compressive strength of 0.3 kg / 2 mm or more after calcination and stabilization. If the compressive strength is less than 0.3 kg / 2 mm, the catalyst is destroyed by its own weight when the catalyst is filled in the actual device, and cannot be used practically. In general, the compressive strength is desirably 0.5 kg / 2 mm or more. A catalyst having a compressive strength of more than 5.0 kg / 2 mm tends to have a small specific surface area and pore volume and a small number of active sites required for the reaction, and as a result is often a catalyst having low activity.
[0043]
[Method of hydrodesulfurization isomerization]
The feedstock used as a target for the method of isomerizing simultaneously with hydrocarbon desulfurization using the catalyst of the present invention is light naphtha distilled from a crude oil atmospheric distillation apparatus, and also from a crude oil atmospheric distillation apparatus. Light hydrocarbon oils containing organic sulfur, such as light naphtha separated from distilled hole naphtha, or Marlox naphtha obtained by subjecting light naphtha to Marlox treatment, are preferred. A particularly suitable feedstock is light naphtha having an ASTM distillation temperature of 25 to 130 ° C, preferably 25 to 110 ° C.
[0044]
With regard to the content of organic sulfur, light naphtha of about 700 ppm by mass or less, preferably 10 to 500 ppm by mass, and more preferably about 10 to 200 ppm by mass can be used advantageously. It goes without saying that light hydrocarbon oils having a sulfur content of several ppm or less can also be used as a raw material.
[0045]
[Examples of organic sulfur compounds]
A typical example of an organic sulfur compound contained in light naphtha is 2-propanethiol (CH) as a thiol compound (R-SH).3)2CH-SH, ethanethiol C2H5-SH, methyl ethyl sulfide CH as sulfide compound (R-S-R)3-S-C2H5, Ethyl isopropyl disulfide C as disulfide compound (R-SS-R)2H5-SS-CH (CH3)2Etc. If the catalyst of this invention is used, these organic sulfur compounds can be hydrodesulfurized simultaneously with the isomerization of feedstock, and desulfurization is implement | achieved.
[0046]
[Other ingredients in feed oil]
In order to maintain the catalytic activity for a longer period of time, the amount of aromatics, unsaturated hydrocarbons and higher hydrocarbons in the light naphtha used as a raw material should be small. The amount of benzene is 5% by volume or less, preferably 3% by volume or less, the amount of naphthene is 12% by volume or less, preferably 9% by volume or less, and the C7 compound is 15% by volume or less, preferably 10% by volume or less.
[0047]
[Reaction conditions]
The conditions for the hydrodesulfurization isomerization reaction of the present invention are as follows,
Reaction temperature: 160-240 ° C, preferably 180-220 ° C
Reaction pressure: 1.0 to 4.5 MPa, preferably 1.4 to 3.5 MPa
LHSV: 1.0-10h-1, Preferably 1.0-5h-1
Hydrogen / oil ratio: 100-1000 NL / L, preferably 150-800 NL
/ L
When the reaction temperature is lower than 160 ° C, the life of the catalyst is shortened. On the other hand, when the reaction temperature is 240 ° C or higher, the decomposition of light hydrocarbon oil proceeds and the yield of the produced oil decreases. Other conditions, that is, reaction pressure, LHSV, and hydrogen / oil ratio are almost the same as those of the conventional light hydrocarbon oil isomerization reaction conditions.
[0048]
The catalyst of the present invention can be used in place of a catalyst for a conventional isomerization reaction, whereby hydrodesulfurization and isomerization can be carried out simultaneously, not just isomerization. In other words, the organic sulfur compounds in light hydrocarbon oils are hydrodesulfurized and converted to hydrogen sulfide, and the sulfur content can be reduced to several ppm or less, and at the same time, direct isomerization can be achieved. A product oil can be obtained.
[0049]
【Example】
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
[0050]
[Example 1] Production of catalyst A
(1) SO4/ Zr (OH)4Manufacturing of
Zirconium hydroxide Zr (OH)Four400 g was put into 4000 g of 1N sulfuric acid and stirred for 30 minutes. After stirring, the solid content obtained by filtration was dried at 110 ° C. for a whole day and night, and the zirconium hydroxide SO containing sulfate radicals was obtained.4/ Zr (OH)4452 g was obtained.
(2) Molding of catalyst
After thoroughly mixing 357 g of the above sulfate group-containing zirconium hydroxide and 47.5 g of commercially available pseudo boehmite (catalyst chemicals Co., Ltd., the same shall apply hereinafter), the tetraamminedichloropalladium [Pd (NHThree)Four] Cl2・ H2200 g of an aqueous solution in which 4.74 g of O was dissolved was added and kneaded. The kneaded product was extruded from a hole with a diameter of 1.8 mm, dried at 110 ° C. for 2 hours, and then Pd / SO4/ Zr (OH)Four-Al2OThree420 g of a green body was obtained.
(3) Stabilization of fired compacts
The molded body thus obtained was calcined at 600 ° C. for 3 hours in a muffle furnace, and the final product, Catalyst A, that is, Pd / SO4/ ZrO2-Al2OThree335 g was obtained.
[0051]
[Example 2]
(1) SO4/ Zr (OH)4Manufacturing of
Zirconium hydroxide Zr (OH)4400 g was added to 4000 g of 1N sulfuric acid and stirred for 30 minutes. After stirring, the solid content obtained by filtration was dried at 110 ° C. for a whole day and night, and sulfate-containing zirconium hydroxide SO4/ Zr (OH)4452 g was obtained.
(2) Pd / SO4/ Zr (OH)4Manufacturing of
Into a solution obtained by dissolving 3.8 g of palladium chloride in hydrochloric acid, 380 g of the above-mentioned zirconium hydroxide containing sulfate radical was added and impregnated with a Pd salt. Thereafter, it was dried at 110 ° C. for a whole day and night, and palladium hydroxide-supported sulfate group-containing zirconium hydroxide Pd / SO4/ Zr (OH)4382 g was obtained.
(3) Molding of catalyst
After thoroughly mixing 357 g of the above palladium-supported sulfate group-containing zirconium hydroxide and 47.5 g of commercially available pseudoboehmite, 200 g of water was added to the mixture and kneaded. The kneaded product was extruded from a hole with a diameter of 1.8 mm, dried at 110 ° C. for 2 hours, and then Pd / SO4/ Zr (OH)4-Al2O3420 g of a molded product was obtained.
(4) Stabilization of fired compacts
The molded body thus obtained was calcined at 600 ° C. for 3 hours in a muffle furnace, and the final product, Catalyst B, that is, Pd / SO4/ ZrO2-Al2OThree335 g was obtained.
[0052]
[Example 3]
(1) Pd · Pt / SO4/ Zr (OH)FourManufacturing of
Tetraamminedichloropalladium [Pd (NHThree)Four] Cl2・ H27.11 g of O, tetraamminedichloroplatinum [Pt (NHThree)Four] Cl2・ H22.04 g of O and ammonium sulfate (NHFour)2SO4Into an aqueous solution in which 60.2 g of was dissolved, 450 g of zirconium hydroxide was added, and impregnated with Pd salt, Pt salt and sulfur content. Then, it was dried at 110 ° C. for a whole day and night, and the palladium-platinum-supported sulfate radical-containing zirconium hydroxide Pd · Pt / SO4/ Zr (OH)4469 g was obtained.
(2) Molding of catalyst
Palladium-platinum-supported sulfate radical-containing zirconium hydroxide Pd / Pt / SO4/ Zr (OH)4After mixing well 357 g of commercially available pseudo-boehmite and 47.5 g of commercially available pseudo boehmite, 200 g of water was added and kneaded, extruded from a hole with a diameter of 1.8 mm, and dried at 110 ° C. for 2 hours, whereby Pd · Pt / SO4/ Zr (OH)4-Al2O3420 g of a molded product was obtained.
(3) Stabilization of fired compacts
The molded body thus obtained was calcined at 600 ° C. for 3 hours in a muffle furnace, and the final product, Catalyst C, that is, Pd · Pt / SO4/ ZrO2-Al2OThree336 g was obtained.
[0053]
[Example 4]
The operation of Example 1 was repeated. However, in the catalyst molding step, 377 g of sulfate group-containing zirconium hydroxide was used, the amount of commercially available pseudoboehmite was 23.5 g, and the firing temperature was 550 ° C. in the firing stabilization step of the molded body. Catalyst D, the final product, ie Pd / SO4/ ZrO2-Al2OThree335 g was obtained.
[0054]
[Example 5]
The operation of Example 1 was repeated. However, in the catalyst molding step, 319 g of sulfate group-containing zirconium hydroxide was changed to 94.0 g of commercially available pseudoboehmite, and the firing temperature was changed to 800 ° C. in the firing stabilization step of the molded body. The final product, Catalyst E, ie Pd / SO4/ ZrO2-Al2OThree337 g was obtained.
[0055]
[Example 6]
(1) SO4/ ZrO (OH)2Manufacturing of
Partially oxidized zirconium hydroxide ZrO (OH)2Was added to 4000 g of 1N-sulfuric acid and stirred for 30 minutes. After stirring, the mixture was filtered, and the obtained solid was dried at 110 ° C. for a whole day and night.4/ ZrO (OH)2435g was obtained.
(2) Molding of catalyst
After thoroughly mixing 347 g of the above sulfuric acid-containing partially oxidized zirconium hydroxide and 47.5 g of commercially available pseudoboehmite, 200 g of an aqueous solution in which 4.74 g of tetraamminedichloropalladium was dissolved was added and kneaded. Extruded through 8mm hole, dried at 110 ° C for 2 hours, Pd / SO4/ ZrO (OH)2-Al2O3415 g of the molded product was obtained.
(3) Stabilization of fired compacts
The molded body thus obtained was calcined at 600 ° C. for 3 hours in a muffle furnace, and the final product, Catalyst F, that is, Pd / SO4/ ZrO2-Al2OThree333 g was obtained.
[0056]
[Comparative Example 1]
Sulfuric acid group-containing zirconium hydroxide was calcined at 600 ° C.4/ ZrO2In the same manner as in Example 1, the molding process of the catalyst was performed, and the compact was fired and stabilized at 600 ° C. for 3 hours, so that the catalyst G, that is, Pd / SO4/ ZrO2-Al2OThree350 g was obtained.
[0057]
[Comparative Example 2]
Palladium-supported sulfate radical-containing zirconium hydroxide was calcined at 600 ° C., and palladium-supported sulfate radical-containing zirconium oxide Pd / SO4/ ZrO2Except for the above, the catalyst molding step was performed in the same manner as in Example 2, and the molded article was also fired and stabilized at 600 ° C. for 3 hours to obtain catalyst H, that is, Pd / SO.4/ ZrO2-Al2OThree349 g was obtained.
[0058]
[Comparative Example 3]
(1) Molding of catalyst
After thoroughly mixing 310 g of zirconium oxide and 47.5 g of commercially available pseudoboehmite, 4.74 g of tetraamminedichloropalladium and ammonium sulfate (NH4)2SO4An aqueous solution in which 40.1 g was dissolved was added and kneaded. The kneaded product is extruded from a hole having a diameter of 1.8 mm, molded, and dried at 110 ° C. for 2 hours, whereby Pd / SO4/ ZrO2-Al2OThree380 g of a green body was obtained.
(2) Stabilization of fired compacts
The molded body thus obtained was calcined at 600 ° C. for 3 hours in a muffle furnace, and the final product, Catalyst I, that is, Pd / SO4/ ZrO2-Al2OThree336 g was obtained.
[0059]
[Comparative Example 4]
A catalyst was produced in the same manner as in Example 1 except that the firing temperature was 500 ° C. in the firing stabilization step of the molded body. Catalyst J, ie Pd / SO4/ ZrO2-Al2OThree350 g of was obtained.
[0060]
[Comparative Example 5]
A catalyst was produced in the same manner as in Example 1 except that the calcination temperature was 900 ° C. in the calcination stabilization step of the molded body. Catalyst K, ie Pd / SO4/ ZrO2-Al2OThree320 g of was obtained.
[0061]
[Comparative Example 6]
In the catalyst molding step, a catalyst was produced in the same manner as in Example 1 except that 33.3 g of γ-alumina fine powder was used instead of pseudoboehmite. Catalyst L, ie Pd / SO4/ ZrO2-Al2OThree333 g was obtained.
[0062]
[Comparative Example 7]
A catalyst was produced in the same manner as in Example 1 except that 100 g of commercially available silica sol “SI-350” (manufactured by Catalytic Chemical) was used instead of pseudoboehmite in the catalyst molding step. Catalyst M, ie Pd / SO4/ ZrO2-SiO2333 g was obtained.
[0063]
[Testing of catalyst properties]
About the catalyst manufactured by said Examples 1-6 and Comparative Examples 1-7, specific surface area, pore volume, sulfur content, and compressive strength were measured. For measurement of the specific surface area and pore volume, a highly accurate fully automatic gas adsorption device “BELSORP 28” manufactured by Nippon Bell Co., Ltd. was used. The sulfur content was measured using a LECO sulfur analyzer “SC-132”. The compressive strength of the catalyst was measured with a Kiyama hardness tester manufactured by Kiyama Seisakusho. Twenty cylindrical shaped catalysts having a length of about 2 mm were selected as samples, the strength in the transverse direction of the catalyst was measured, and the average value was taken as the compressive strength.
[0064]
The production conditions and physical properties of the catalysts produced in Examples 1 to 6 and Comparative Examples 1 to 7 are collectively shown in Table 1 (Examples) and Table 2 (Comparative Examples).
[0065]
Table 1
Figure 0004182663
[0066]
Table 1 (continued)
Figure 0004182663
[0067]
Table 2
Figure 0004182663
[0068]
Table 2 (continued)
Figure 0004182663
[0069]
From the above data of catalyst physical properties, the catalyst produced by the production method deviating from the present invention, that is, the catalyst of Comparative Examples 3, 6 and 7, has a low compressive strength of about 0.1 kg / 2 mm and is not practically suitable. I know that there is.
[0070]
[Examples of catalyst use]
The catalyst was charged into a fixed bed flow reactor having a catalyst charge amount of 7 ml, and light naphtha was supplied from a simple desulfurization unit (Marlox) as a raw material hydrocarbon oil to carry out an isomerization reaction. The reaction conditions are as follows.
Sulfur content in light naphtha: 160 ppm by mass
I-C5 minutes in light naphtha: 41%
Reaction temperature: 200 ° C. Reaction hydrogen pressure: 3.0 MPa
LHSV: 1.5 / h-1    Hydrogen / oil ratio: 350 NL / L.
[0071]
After 150 hours from the start of oil passage, the outlet composition of the reaction tube was analyzed by gas chromatography. The results are shown in Table 3. The “C5 isomer ratio” in Table 3 is defined by the following formula:
C5 isomer ratio (%) = (mass% of i-C5 component in reaction product oil /
(Mass% of total amount of C5 component in reaction product oil) × 100
[0072]
Table 3
Figure 0004182663
[0073]
The data in Table 3 shows that if an isomerization reaction, which is a typical reaction of a solid acid catalyst, is carried out using the catalyst produced according to the production method of the present invention, that is, the catalysts of Examples 1 to 6, the C5 isomerism in the reaction product oil is obtained. It shows that the volume ratio reaches 56% or more, and it can be seen that these are excellent solid acid catalysts. In Comparative Examples 1 and 2 using sulfuric acid-containing zirconium oxide that deviated from the conditions of the present invention, and Comparative Examples 4 and 5 not satisfying the firing conditions, the C5 isomer ratio was 50% or less. It is less than.
[0074]
In the reactions using the catalysts A to F of Examples 1 to 6, all of the organic sulfur compounds in the raw material oil were hydrogenated and converted to hydrogen sulfide. The produced hydrogen sulfide was dissolved in a saturated amount in the produced oil, but the organic sulfur compound in the components of the reaction produced oil had a concentration of 0 ppm.
[0075]
【The invention's effect】
The catalyst produced by the method according to the present invention has a high compressive strength even if the blending amount of the binder is small. For this reason, the catalyst is easy to handle, and even when packed in a fixed bed reactor, there is no fear of destruction due to its own weight, and the industrial utility value is high. In addition to having high catalytic activity as a solid acid catalyst, it can also be used in the isomerization reaction of naphtha containing sulfur mentioned in the above examples, and is extremely effective in practical use.

Claims (5)

下記の諸工程からなる固体酸触媒の製造方法:
(A)ジルコニウム水酸化物に硫酸根含有物質を添加し硫酸化処理をすること、
(B)硫酸化処理されたジルコニウム水酸化物に、結合材として擬べ一マイトを、触媒製品中の酸化ジルコニウム/アルミナの質量比が97/3〜80/20の範囲となる量加え、第VIII族金属の1種または2種以上を含む水溶液で混練すること、
(C)混練物を触媒の形状に成形すること、および
(D)得られた成形物を550〜800℃の温度で焼成すること。
A method for producing a solid acid catalyst comprising the following steps:
(A) adding a sulfate group-containing substance to zirconium hydroxide and subjecting it to sulfation treatment;
(B 1 ) Add quasi-mightite as a binder to sulfated zirconium hydroxide in an amount such that the mass ratio of zirconium oxide / alumina in the catalyst product is in the range of 97/3 to 80/20 , Kneading with an aqueous solution containing one or more group VIII metals,
(C) The kneaded product is molded into the shape of a catalyst, and (D) the obtained molded product is fired at a temperature of 550 to 800 ° C.
下記の諸工程からなる固体酸触媒の製造方法:
(A)ジルコニウム水酸化物に硫酸根含有物質を添加し硫酸化処理をすること、
(B)硫酸化処理されたジルコニウム水酸化物に第VIII族金属の1種または2種以上を担持させた後、結合材として擬べ一マイトを、触媒製品中の酸化ジルコニウム/アルミナの質量比が97/3〜80/20の範囲となる量加え、水で混練すること、
(C)混練物を触媒の形状に成形すること、および、
(D)得られた成形物を550〜800℃の温度で焼成すること。
A method for producing a solid acid catalyst comprising the following steps:
(A) adding a sulfate group-containing substance to zirconium hydroxide and subjecting it to sulfation treatment;
(B 2 ) After supporting one or more group VIII metals on the sulfated zirconium hydroxide, pseudo-mightite as a binder , and the mass of zirconium oxide / alumina in the catalyst product Adding an amount such that the ratio is in the range of 97/3 to 80/20 and kneading with water;
(C) forming the kneaded material into the shape of a catalyst; and
(D) Firing the obtained molded product at a temperature of 550 to 800 ° C.
請求項1または2に記載の方法によって製造された触媒であって、比表面積が50〜200m/g、全細孔容積が0.05〜0.5cc/g、圧縮強度が0.3kg/2mm以上である固体酸触媒。A catalyst produced by the method according to claim 1, wherein the specific surface area is 50 to 200 m 2 / g, the total pore volume is 0.05 to 0.5 cc / g, and the compressive strength is 0.3 kg / g. Solid acid catalyst that is 2 mm or more. 比表面積が60〜180m/g、全細孔容積が0.1〜0.4cc/g、圧縮強度が0.5kg/2mm以上である請求項3の固体酸触媒。The solid acid catalyst according to claim 3, which has a specific surface area of 60 to 180 m 2 / g, a total pore volume of 0.1 to 0.4 cc / g, and a compressive strength of 0.5 kg / 2 mm or more. 請求項3または4に記載の触媒に、イオウ分含有量700質量ppm以下の軽質炭化水素および水素を、温度:160〜240℃、圧力:1.0〜4.5MPa、LHSV:1.0〜10h−1、水素/油比:100〜1000NL/Lの反応条件下に接触させることを特徴とする軽質炭化水素油の水素化脱硫異性化方法。A light hydrocarbon having a sulfur content of 700 mass ppm or less and hydrogen are added to the catalyst according to claim 3 or 4 at a temperature of 160 to 240 ° C, a pressure of 1.0 to 4.5 MPa, and an LHSV of 1.0 to The hydrodesulfurization isomerization method of light hydrocarbon oil characterized by making it contact on the reaction conditions of 10 h < -1 >, hydrogen / oil ratio: 100-1000NL / L.
JP2002007718A 2001-02-05 2002-01-16 Solid acid catalyst, production method thereof, and hydrodesulfurization isomerization method of light hydrocarbon oil using the same Expired - Lifetime JP4182663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002007718A JP4182663B2 (en) 2001-02-05 2002-01-16 Solid acid catalyst, production method thereof, and hydrodesulfurization isomerization method of light hydrocarbon oil using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001027805 2001-02-05
JP2001-27805 2001-02-05
JP2002007718A JP4182663B2 (en) 2001-02-05 2002-01-16 Solid acid catalyst, production method thereof, and hydrodesulfurization isomerization method of light hydrocarbon oil using the same

Publications (2)

Publication Number Publication Date
JP2002301372A JP2002301372A (en) 2002-10-15
JP4182663B2 true JP4182663B2 (en) 2008-11-19

Family

ID=26608895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002007718A Expired - Lifetime JP4182663B2 (en) 2001-02-05 2002-01-16 Solid acid catalyst, production method thereof, and hydrodesulfurization isomerization method of light hydrocarbon oil using the same

Country Status (1)

Country Link
JP (1) JP4182663B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002070129A1 (en) * 2001-03-02 2002-09-12 Japan Energy Corporation Solid acid catalyst containing platinum group metal component and method for preparation thereof
JP4218250B2 (en) 2002-03-08 2009-02-04 財団法人石油産業活性化センター Hydrodesulfurization isomerization catalyst, process for producing the same, and process for desulfurization isomerization of sulfur-containing hydrocarbon oil
JP2010024187A (en) * 2008-07-22 2010-02-04 Mitsubishi Gas Chemical Co Inc Method for producing aromatic nitrile
KR102506775B1 (en) * 2018-04-27 2023-03-07 현대자동차주식회사 Method for manufacturing exhaust gas purifying catalyst and the exhaust gas purifying catalyst therefrom
KR102506776B1 (en) * 2018-04-27 2023-03-07 현대자동차주식회사 Method for manufacturing exhaust gas purifying catalyst and the exhaust gas purifying catalyst therefrom

Also Published As

Publication number Publication date
JP2002301372A (en) 2002-10-15

Similar Documents

Publication Publication Date Title
RU2139760C1 (en) Hydrodesulfurization catalyst carrier, method of preparation thereof, catalyst and method for hydrodesulfurization of heavy oils
WO2020175142A1 (en) Supported catalyst particles
RU2595341C1 (en) Catalyst for isomerisation of paraffin hydrocarbons and preparation method thereof
JPH0515500B2 (en)
KR100388310B1 (en) Solid acid catalyst, method for preparing the same and reaction using the same
JP3838660B2 (en) Residue conversion catalyst with low macroporosity
TWI553114B (en) Paraffin Hydrocarbon Selective Isomerization Catalyst and Its Preparation and Application
JP4182663B2 (en) Solid acid catalyst, production method thereof, and hydrodesulfurization isomerization method of light hydrocarbon oil using the same
JP3995241B2 (en) Solid acid catalyst containing platinum group metal component and method for producing the same
US6737380B2 (en) Solid acid catalyst, production method thereof, and method for hydrodesulfurizing and isomerizing light hydrocarbon oil using the same
JP7097174B2 (en) Selective hydrogenation catalyst for C3 hydrocarbon fractions from steam cracking and / or catalytic cracking
JP4218250B2 (en) Hydrodesulfurization isomerization catalyst, process for producing the same, and process for desulfurization isomerization of sulfur-containing hydrocarbon oil
JP3730792B2 (en) Hydrocarbon isomerization process
WO2002062469A1 (en) Solid acid catalyat, method for preparing the same and method for hydrogenation isomerization
RU2385764C2 (en) Method of preparing catalysts for deep hydrofining oil fractions
JP2001179105A (en) Catalyst for hydrodesulfurization and isomerization of light hydrocarbon oil and method of producing the same
JP2006500202A (en) Catalyst particles and their use for desulfurization
JP3922681B2 (en) Hydrocarbon isomerization process and solid acid catalyst for isomerization
JP2000233132A (en) Catalyst for hydrodesulfurization/isomerization of light hydrocarbon oil and production thereof
JP2001353444A (en) Hydrogenation desulfurization catalyst for hydrocarbon oil and method for manufacturing the same
US11731121B2 (en) Process for preparation of highly coordinated sulfated mixed metal oxide catalyst having high crushing strength
JP4191059B2 (en) Hydrocarbon isomerization process
JP3973176B2 (en) Acid-catalyzed reaction method
JPS63123447A (en) Manufacture of hydrogenating treating catalyst from hydrogel
WO2000056447A1 (en) Solid acid catalyst, method for preparing the same and reaction using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080825

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4182663

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term