JP2010024187A - Method for producing aromatic nitrile - Google Patents

Method for producing aromatic nitrile Download PDF

Info

Publication number
JP2010024187A
JP2010024187A JP2008188062A JP2008188062A JP2010024187A JP 2010024187 A JP2010024187 A JP 2010024187A JP 2008188062 A JP2008188062 A JP 2008188062A JP 2008188062 A JP2008188062 A JP 2008188062A JP 2010024187 A JP2010024187 A JP 2010024187A
Authority
JP
Japan
Prior art keywords
catalyst
oxide
producing
reaction
aromatic nitrile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008188062A
Other languages
Japanese (ja)
Inventor
Kazunari Yamamoto
一成 山元
Hideji Ebata
秀司 江端
Yoichi Kuko
陽一 久古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2008188062A priority Critical patent/JP2010024187A/en
Publication of JP2010024187A publication Critical patent/JP2010024187A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an aromatic nitrile in a high yield, stably with time and economically advantageously by performing the catalytic reaction of a mixed gas containing an alkyl-substituted aromatic hydrocarbon, ammonia and oxygen on a catalyst. <P>SOLUTION: This method for producing the corresponding aromatic nitrile by performing the catalytic reaction of the mixed gas containing the alkyl-substituted aromatic hydrocarbon, ammonia and oxygen on the catalyst is provided by using the catalyst constituted by the oxides of vanadium and chromium prepared by the mechanical compression-molding of powder of them, having a ≥10 and ≤100 m<SP>2</SP>/g specific surface area and further burning, and a carrier. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、アルキル置換芳香族炭化水素を、アンモニアおよび酸素を含む混合ガスと反応させ、芳香族ニトリルを製造する方法に関する。芳香族ニトリルは、合成樹脂、農薬等の製造原料およびアミン、イソシアネート等の中間原料として有用である。 The present invention relates to a method for producing an aromatic nitrile by reacting an alkyl-substituted aromatic hydrocarbon with a mixed gas containing ammonia and oxygen. Aromatic nitriles are useful as production raw materials for synthetic resins, agricultural chemicals, and the like, and as intermediate raw materials for amines, isocyanates and the like.

アルキル置換芳香族炭化水素に気相でアンモニアと酸素を反応させる反応は、アンモ酸化反応と呼ばれ種々提案されている。アンモ酸化反応の反応形式としては固定床、流動層等の形式が例示されている。アンモ酸化反応では、多量の反応熱が発生するために反応温度の制御が著しく困難であり、その解決策の一つとして流動層形式の反応が有効とされ、種々の方法が提示されており、例えば、触媒にシリカを担体に用いる方法(特許文献1)は、反応温度制御の点で優れた性能を示す。しかしながら、これらの触媒は何れも流動状態における触媒磨耗と微粉化が免れず、安定した反応を継続することが難しい。さらに、流動層形式では反応後のガスと触媒を分離する工程が必要となり経費が増大するため、好ましくない。   Various reactions for reacting ammonia and oxygen in the gas phase with alkyl-substituted aromatic hydrocarbons are called ammoxidation reactions and various proposals have been made. Examples of the reaction form of the ammoxidation reaction include fixed bed and fluidized bed forms. In the ammoxidation reaction, since a large amount of heat of reaction is generated, it is extremely difficult to control the reaction temperature. As one of the solutions, a fluidized bed type reaction is effective, and various methods have been proposed. For example, the method of using silica as a support for the catalyst (Patent Document 1) exhibits excellent performance in terms of reaction temperature control. However, all of these catalysts are subject to catalyst wear and pulverization in a fluid state, and it is difficult to continue a stable reaction. Furthermore, the fluidized bed format is not preferable because it requires a step of separating the gas after the reaction and the catalyst, which increases costs.

一方、固定床形式では多管式の反応器が用いられ、反応熱の除去効率の向上が求められる。一般的には、アルミナやチタニアに有効成分を担持した金属酸化物触媒が使用される。その際有効な触媒としてバナジウム、クロム、アンチモン、モリブデン、スズ、ホウ素等の酸化物又はそれらの複合酸化物が用いられている。しかしながら公知の触媒を用いた場合、局部的過熱による燃焼反応の進行、すなわち反応温度制御の困難から生じる二酸化炭素、シアン化水素等の副生成物の増大により、目的生成物である芳香族ニトリルの収率の低下などの問題が生じている。 On the other hand, in the fixed bed type, a multi-tubular reactor is used, and improvement in the removal efficiency of reaction heat is required. In general, a metal oxide catalyst in which an active ingredient is supported on alumina or titania is used. In that case, oxides such as vanadium, chromium, antimony, molybdenum, tin, and boron, or composite oxides thereof are used as effective catalysts. However, when a known catalyst is used, the yield of the target aromatic nitrile is increased due to the progress of the combustion reaction due to local overheating, that is, the increase of by-products such as carbon dioxide and hydrogen cyanide resulting from difficulty in controlling the reaction temperature. There are problems such as lowering.

さらに固定床形式で用いられる触媒は、対応する芳香族ニトリルを高収率で得ることと同時に、触媒充填の際や反応条件下において触媒粉化による反応器内の偏流を防止するために、実用上耐えうる強度を有することが重要とされている。例えば、クロム化合物を特定のクロム処理剤を用いて処理したものを、バナジウムなどの金属酸化物と混合させることによって高強度の触媒が得られることが開示されている(特許文献2)が、これらの触媒では、芳香族ニトリルの収率が必ずしも十分でなく、更なる改善が望まれている。
特開平11−209332号公報 特開2003−267942号公報
Furthermore, the catalyst used in the fixed bed format is practical in order to obtain the corresponding aromatic nitrile in a high yield, and at the same time, to prevent drift in the reactor due to catalyst dusting during catalyst filling and reaction conditions. It is important to have sufficient strength to withstand. For example, it is disclosed that a high-strength catalyst can be obtained by mixing a chromium compound treated with a specific chromium treating agent with a metal oxide such as vanadium (Patent Document 2). In this catalyst, the yield of aromatic nitrile is not always sufficient, and further improvement is desired.
Japanese Patent Application Laid-Open No. 11-209332 Japanese Patent Laid-Open No. 2003-267942

本発明の目的は、アルキル置換芳香族炭化水素とアンモニアおよび酸素を含む混合ガスを触媒上で接触反応させて、芳香族ニトリルを高収率で且つ経時的に安定して経済的に有利に製造する方法を提供することである。 It is an object of the present invention to produce an aromatic nitrile in a high yield and stably over time in an economically advantageous manner by catalytically reacting an alkyl-substituted aromatic hydrocarbon with a mixed gas containing ammonia and oxygen on a catalyst. Is to provide a way to do that.

本発明者は、上記目的を達成するために鋭意検討した結果、アルキル置換芳香族炭化水素をアンモ酸化反応によって芳香族ニトリルを得るにあたり、BET比表面積が10m/g以上100m/g以下の粉末を機械的に圧縮成形し、さらに焼成することによって調製したバナジウムとクロムの酸化物および担体酸化物から構成される触媒を用いることにより、芳香族ニトリルを高収率で製造することができることを見出し、本発明を完成させるに至った。 As a result of intensive studies to achieve the above object, the present inventor has obtained a BET specific surface area of 10 m 2 / g or more and 100 m 2 / g or less in obtaining an aromatic nitrile by ammoxidation reaction of an alkyl-substituted aromatic hydrocarbon. Aromatic nitriles can be produced in high yields by using a catalyst composed of vanadium and chromium oxides and carrier oxides prepared by mechanically compacting and then firing the powder. The headline and the present invention have been completed.

すなわち本発明は、下記の製造方法に関する。
(1)アルキル置換芳香族炭化水素と、アンモニアおよび酸素を含む混合ガスを触媒上で接触反応させて、対応する芳香族ニトリルを製造する方法であって、該触媒が、BET比表面積が10m/g以上100m/g以下の粉末を機械的に圧縮成形し、さらに焼成することによって調製した、バナジウムの酸化物及びクロムの酸化物並びにアルミナ、シリカアルミナ、ジルコニア及びチタニアから選ばれる1種以上の担体から構成される触媒であることを特徴とする芳香族ニトリルの製造方法。
(2)前記触媒が更にホウ素の酸化物を含有する(1)に記載の芳香族ニトリルの製造方法。
(3)前記のバナジウム、クロム及びホウ素の酸化物が下記の組成式で表される(2)に記載の芳香族ニトリルの製造方法。
組成式 VCrd
[式中のVはバナジウム、Crはクロム、Bはホウ素、Oは酸素を示す。添字のa,b,c,dは各元素の原子比率を表し、a=1、b=0.5〜2.0、c=0.01〜1.5であり、dは上記各元素が結合して生成する酸化物または複合酸化物に対応する酸素数を示す。]
(4)前記担体がチタニアである(1)〜(3)の何れかに記載の芳香族ニトリルの製造方法。
That is, this invention relates to the following manufacturing method.
(1) A method for producing a corresponding aromatic nitrile by reacting an alkyl-substituted aromatic hydrocarbon with a mixed gas containing ammonia and oxygen on a catalyst, the catalyst having a BET specific surface area of 10 m 2 One or more selected from vanadium oxide and chromium oxide, and alumina, silica alumina, zirconia and titania, prepared by mechanically compression-molding a powder having a particle size of not less than 100 g 2 / g and not more than 100 m 2 / g. A method for producing an aromatic nitrile, characterized in that the catalyst is composed of a carrier of the above.
(2) The method for producing an aromatic nitrile according to (1), wherein the catalyst further contains an oxide of boron.
(3) The method for producing an aromatic nitrile according to (2), wherein the oxides of vanadium, chromium, and boron are represented by the following composition formula.
Compositional formula V a Cr b B c O d
[V in the formula represents vanadium, Cr represents chromium, B represents boron, and O represents oxygen. The subscripts a, b, c, and d represent the atomic ratio of each element, a = 1, b = 0.5 to 2.0, and c = 0.01 to 1.5. The number of oxygen corresponding to the oxide or composite oxide formed by bonding is shown. ]
(4) The method for producing an aromatic nitrile according to any one of (1) to (3), wherein the carrier is titania.

本発明は、アルキル置換芳香族炭化水素のアンモ酸化反応において、対応する芳香族ニトリルを製造する方法を提供する。本発明で使用する触媒は、触媒の自重、触媒を反応装置に充填する際に受ける衝撃による破損、触媒の粒子どうしの衝突による磨耗等に耐えうる高い強度を有するため、触媒の機械的強度を必要とする固定床反応装置の場合でも、触媒の割れや粉状になることに起因する圧力損失の増加を抑制でき、長期の連続運転をすることができる。また、該触媒は高い強度を有するだけでなく、十分な活性を持ちつつ、副生物の生成が少ない。即ち本発明によれば、アルキル置換芳香族炭化水素をアンモ酸化して対応する芳香族ニトリルを工業的に極めて有利に製造することができる。 The present invention provides a method for producing a corresponding aromatic nitrile in an ammoxidation reaction of an alkyl-substituted aromatic hydrocarbon. The catalyst used in the present invention has a high strength capable of withstanding the dead weight of the catalyst, the damage caused by the impact received when the catalyst is charged into the reactor, the wear due to the collision of the catalyst particles, etc. Even in the case of a required fixed bed reactor, an increase in pressure loss due to cracking or powdering of the catalyst can be suppressed, and long-term continuous operation can be performed. In addition, the catalyst not only has high strength, but also has sufficient activity and produces little by-product. That is, according to the present invention, an alkyl-substituted aromatic hydrocarbon can be ammoxidized to produce a corresponding aromatic nitrile industrially very advantageously.

以下に、本発明を詳細に説明する。本発明における反応は、アルキル置換芳香族炭化水素と、酸素含有ガスおよびアンモニアとの反応(アンモ酸化反応)であり、触媒上で気相接触させることでなされる。   The present invention is described in detail below. The reaction in the present invention is a reaction (ammoxidation reaction) of an alkyl-substituted aromatic hydrocarbon, an oxygen-containing gas and ammonia, and is carried out by contacting in a gas phase on a catalyst.

本発明で原料として用いられるアルキル置換芳香族炭化水素としては、トルエン、エチルベンゼンなどのアルキルベンゼン;キシレン、メシチレン、シメン、ジュレン、ジエチルベンゼンなどのポリアルキルベンゼン;メチルナフタレン、エチルナフタレンなどのアルキルナフタレン;及びジメチルナフタレン、ジエチルナフタレンなどのポリアルキルナフタレン等が挙げられ、ベンゼン、ナフタレン等の炭素環を有し、結合したメチル基、エチル基、プロピル基、ホルミル基、アセチル基、ヒドロキシメチル基、メトキシカルボニル基等、アンモ酸化反応によりシアノ基を生成し得る側鎖(以下、置換基と称す)を少なくとも1つ有する炭化水素化合物である。また、この炭化水素化合物はハロゲン基、ヒドロキシ基、アルコキシル基、アミノ基、ニトロ基、ニトリル基等を含んでいても使用できる。これらの化合物は単独または混合物で使用できる。   Examples of the alkyl-substituted aromatic hydrocarbon used as a raw material in the present invention include alkylbenzenes such as toluene and ethylbenzene; polyalkylbenzenes such as xylene, mesitylene, cymene, durene and diethylbenzene; alkylnaphthalenes such as methylnaphthalene and ethylnaphthalene; and dimethylnaphthalene , Polyalkylnaphthalene such as diethyl naphthalene, etc., and having a carbon ring such as benzene and naphthalene, and bonded methyl group, ethyl group, propyl group, formyl group, acetyl group, hydroxymethyl group, methoxycarbonyl group, etc. It is a hydrocarbon compound having at least one side chain (hereinafter referred to as a substituent) capable of generating a cyano group by an ammoxidation reaction. Further, this hydrocarbon compound can be used even if it contains a halogen group, a hydroxy group, an alkoxyl group, an amino group, a nitro group, a nitrile group or the like. These compounds can be used alone or in a mixture.

本発明に用いられるアンモニアは工業用グレードで良い。アンモニアの使用量は、アルキル置換芳香族炭化水素1モルに含まれる置換基1個に対して1〜20倍モル、好ましくは3〜15倍モルの範囲である。これより使用量が少ないと目的生成物の収率は低下し、一方、これより多いと空時収率が小さくなる。本発明方法では、反応ガスに含まれる未反応アンモニアを回収し、反応系に戻し再使用できる。反応ガスから未反応アンモニアの回収方法は種々考えられるが、工業的には、未反応アンモニアを水に吸収させた後、それを蒸留操作でアンモニアを他の副生成物と分離するのが有利である。ここで回収されるアンモニア中の水分量は蒸留の操作条件によって異なるが、通常は5〜20容量%が含まれる。 The ammonia used in the present invention may be an industrial grade. The usage-amount of ammonia is 1-20 times mole with respect to 1 substituent contained in 1 mol of alkyl substituted aromatic hydrocarbons, Preferably it is the range of 3-15 times mole. If the amount used is less than this, the yield of the target product is lowered, while if it is more than this, the space-time yield is reduced. In the method of the present invention, unreacted ammonia contained in the reaction gas can be recovered and returned to the reaction system for reuse. There are various conceivable methods for recovering unreacted ammonia from the reaction gas, but industrially, it is advantageous to absorb unreacted ammonia in water and then separate the ammonia from other by-products by distillation. is there. The amount of water in the ammonia recovered here varies depending on the distillation operating conditions, but is usually 5 to 20% by volume.

本発明で使用される酸素は、酸素含有ガスの形で供給され、通常は空気が用いられる。別法として、空気または酸素を不活性ガス、例えば窒素、炭酸ガス、排ガス等で希釈して用いることもできる。酸素の使用量は、アルキル置換芳香族炭化水素1モルに含まれる置換基1個に対してOとして1.5倍モル以上、好ましくは2〜50倍モルの範囲である。これより使用量が少ないと目的生成物の収率が低下し、一方、これより多いと空時収率が小さくなる。 The oxygen used in the present invention is supplied in the form of an oxygen-containing gas, and usually air is used. Alternatively, air or oxygen can be diluted with an inert gas such as nitrogen, carbon dioxide, exhaust gas or the like. The amount of oxygen used is in the range of 1.5 times mol or more, preferably 2 to 50 times mol as O 2 with respect to one substituent contained in 1 mol of the alkyl-substituted aromatic hydrocarbon. If the amount used is less than this, the yield of the target product is lowered, while if it is more than this, the space-time yield is reduced.

本発明において用いられる触媒は、基本的にはバナジウムの酸化物及びクロムの酸化物(以下、総称して「金属酸化物」と称す)並びに後述する担体酸化物で構成され、更に金属酸化物がホウ素の酸化物を含有することが好ましく、金属酸化物が下記の組成式で表されることが特に好ましい。
組成式 VCrd
[式中のVはバナジウム、Crはクロム、Bはホウ素、Oは酸素を示す。添字のa,b,c,dは各元素の原子比率を表し、a=1、b=0.5〜2.0、c=0.01〜1.5であり、dは上記各元素が結合して生成する酸化物または複合酸化物に対応する酸素数を示す。]
The catalyst used in the present invention is basically composed of an oxide of vanadium and an oxide of chromium (hereinafter collectively referred to as “metal oxide”) and a carrier oxide described later. A boron oxide is preferably contained, and the metal oxide is particularly preferably represented by the following composition formula.
Compositional formula V a Cr b B c O d
[V in the formula represents vanadium, Cr represents chromium, B represents boron, and O represents oxygen. The subscripts a, b, c, and d represent the atomic ratio of each element, a = 1, b = 0.5 to 2.0, and c = 0.01 to 1.5. The number of oxygen corresponding to the oxide or composite oxide formed by bonding is shown. ]

前記担体としてはアルミナ、シリカアルミナ、ジルコニア及びチタニアが挙げられ、中でもチタニアが好ましい。
担体の量は、触媒中で50〜99重量%が好ましく、より好ましくは65〜97重量%である。
Examples of the carrier include alumina, silica alumina, zirconia, and titania. Among these, titania is preferable.
The amount of the carrier is preferably 50 to 99% by weight, more preferably 65 to 97% by weight in the catalyst.

本触媒におけるバナジウム源としては、メタバナジン酸アンモニウム、硫酸バナジル、およびシュウ酸、酒石酸などの有機酸のバナジウム塩類が使用されるが、その後の焼成操作で分解し、容易に酸化物となりうるメタバナジン酸アンモニウム、シュウ酸バナジル、酒石酸バナジルなどが好ましい。   As the vanadium source in this catalyst, ammonium metavanadate, vanadyl sulfate, and vanadium salts of organic acids such as oxalic acid and tartaric acid are used. , Vanadyl oxalate, vanadyl tartrate and the like are preferable.

クロム源としては、無水クロム酸、硝酸クロム、水酸化クロム、クロム酸アンモニウム、クロム酸ナトリウム、重クロム酸アンモニウム、重クロム酸カリウム、重クロム酸ナトリウムおよびシュウ酸、酒石酸などの有機酸のクロム塩類が使用されるが、その後の焼成操作で分解し、容易に酸化物となりうるシュウ酸クロム、酒石酸クロムなどが好ましい。 Chromium sources include chromic anhydride, chromium nitrate, chromium hydroxide, ammonium chromate, sodium chromate, ammonium dichromate, potassium dichromate, sodium dichromate and oxalic acid, tartaric acid and other organic acid chromium salts However, chromium oxalate, tartrate, etc., which can be decomposed by a subsequent baking operation and can easily become an oxide, are preferable.

ホウ素源としては、ホウ酸、ホウ酸アンモニウムなどが使用される。 As the boron source, boric acid, ammonium borate or the like is used.

触媒は以下の方法を用いて製造することができる。
前記バナジウム源、クロム源、ホウ素源となる化合物の水溶液を混合し、均一水溶液とした後に、担体を加え混合する。
例えば、酸化バナジウムをシュウ酸に溶かした水溶液に、無水クロム酸をシュウ酸に溶かした水溶液、ホウ酸水溶液を加え、均一水溶液とした後に担体であるアルミナまたはチタニアの粉末を加え混合する。その後、十分に触媒の均質化を図るため機械的な操作により混練する。
混練後、110℃〜150℃で乾燥し、その後、粉砕して粉末を得る。この粉末は、BET比表面積が10m/g以上100m/g以下であることが好ましく、20m/g以上 80m/g以下がより好ましい。BET比表面積をこの範囲とすることにより、十分な活性を持ちつつ、副生物の生成が少ない触媒が得られる。
ここで、粉砕前に、乾燥品を250℃〜500℃にて予備焼成を行うことが好ましく、270℃〜450℃がより好ましい。
The catalyst can be produced using the following method.
An aqueous solution of a compound serving as the vanadium source, chromium source, and boron source is mixed to obtain a uniform aqueous solution, and then a carrier is added and mixed.
For example, an aqueous solution in which chromic anhydride is dissolved in oxalic acid and an aqueous boric acid solution are added to an aqueous solution in which vanadium oxide is dissolved in oxalic acid, and the mixture is made into a uniform aqueous solution, and then the carrier alumina or titania powder is added and mixed. Thereafter, kneading is carried out by mechanical operation in order to sufficiently homogenize the catalyst.
After kneading, it is dried at 110 ° C. to 150 ° C. and then pulverized to obtain a powder. This powder preferably has a BET specific surface area of 10 m 2 / g or more and 100 m 2 / g or less, and more preferably 20 m 2 / g or more and 80 m 2 / g or less. By setting the BET specific surface area within this range, it is possible to obtain a catalyst that has sufficient activity and produces less by-products.
Here, before pulverization, the dried product is preferably pre-fired at 250 ° C. to 500 ° C., more preferably 270 ° C. to 450 ° C.

次いで粉末を機械的に圧縮成形し、さらに焼成することによって触媒を調製する。
まず、成形機により適当な形状に成形する。触媒の形状としては円柱、リング、球状、三つ葉、四つ葉などが好ましいが、特に円柱、リング状が好ましい。成形機には押し出し成形機、転動造粒機、打錠成形機等があるが、高い強度を有する触媒を得るために打錠成形機を使用するのが最も好ましい。打錠成形機を使用する場合、粉末を圧縮成形する際に黒鉛やエチルセルロースなどの成形助剤(バインダー)を添加する方が好ましい。添加量は1%〜10%が好ましい。成形後、焼成を350〜700℃、好ましくは400℃〜650℃で数時間以上、空気を流通しながら行う。
触媒のサイズは、外径3mm〜8mm、高さ3mm〜8mmとなるように成形するのが好ましい。
The catalyst is then prepared by mechanically compacting and then calcining the powder.
First, an appropriate shape is formed by a molding machine. As the shape of the catalyst, a cylinder, a ring, a sphere, a three-leaf, a four-leaf, and the like are preferable, and a cylinder and a ring are particularly preferable. Examples of the molding machine include an extrusion molding machine, a rolling granulator, a tableting molding machine and the like, and it is most preferable to use a tableting molding machine in order to obtain a catalyst having high strength. When a tableting machine is used, it is preferable to add a molding aid (binder) such as graphite or ethyl cellulose when the powder is compression molded. The addition amount is preferably 1% to 10%. After molding, firing is performed at 350 to 700 ° C., preferably 400 to 650 ° C. for several hours or more while circulating air.
The catalyst is preferably molded to have an outer diameter of 3 mm to 8 mm and a height of 3 mm to 8 mm.

上記BET比表面積を有する粒子から成る粉末を機械的に圧縮成形することにより、実用に耐えうる強度を有する触媒が得られる。該触媒は、触媒の自重、触媒を反応装置に充填する際に受ける衝撃による破損、触媒の粒子どうしの衝突による磨耗等に耐えうる高い強度を有するため、触媒の機械的強度を必要とする固定床反応装置の場合でも、触媒の割れや粉状になることに起因する圧力損失の増加を抑制でき、長期の連続運転をすることができる。 A catalyst having strength that can withstand practical use can be obtained by mechanically compression-molding a powder comprising particles having the BET specific surface area. The catalyst has a high strength capable of withstanding the dead weight of the catalyst, the damage caused by the impact received when the catalyst is charged into the reactor, the wear caused by the collision of the catalyst particles, and the like, which requires the mechanical strength of the catalyst. Even in the case of a bed reactor, an increase in pressure loss caused by cracking or powdering of the catalyst can be suppressed, and long-term continuous operation can be performed.

上記の方法により調製した触媒を用いた反応の形式は、通常は気相流通固定床形式である。反応装置としては、触媒粒子を反応器に充填し、原料のガス(アルキル置換芳香族炭化水素と、アンモニアおよび酸素を含む混合ガス)を連続的に反応させる充填層触媒反応器が一般的である。   The type of reaction using the catalyst prepared by the above method is usually a gas-phase flow fixed bed type. As a reaction apparatus, a packed bed catalytic reactor is generally used in which catalyst particles are charged into a reactor and a raw material gas (a mixed gas containing an alkyl-substituted aromatic hydrocarbon and ammonia and oxygen) is continuously reacted. .

充填層触媒反応器の伝熱方式は、断熱式と熱交換式に大別されるが、本発明での反応は、発熱反応であるため、熱交換式を用いるのが好ましい。特に反応管内に触媒を充填し、管外に熱媒体を通す単管あるいは多管の熱交換式が好ましい。 The heat transfer system of the packed bed catalyst reactor is roughly divided into an adiabatic type and a heat exchange type, but since the reaction in the present invention is an exothermic reaction, it is preferable to use the heat exchange type. In particular, a single-tube or multi-tube heat exchange type in which a catalyst is filled in a reaction tube and a heat medium is passed outside the tube is preferable.

反応器の材質は、原料の種類や反応条件によるが、一般にはステンレス鋼や炭素鋼などが好ましい。 The material of the reactor depends on the type of raw material and reaction conditions, but generally stainless steel or carbon steel is preferred.

反応管の管径は1cmから5cm、長さは10cm〜7mが好ましい。 The tube diameter of the reaction tube is preferably 1 cm to 5 cm and the length is preferably 10 cm to 7 m.

反応温度は300〜500℃の広い範囲で実施できるが、330〜470℃であることが好ましい。300℃より低い温度では原料化合物の転化率が小さく、500℃より高い温度では二酸化炭素、シアン化水素などの生成が増加しニトリル化合物の収率が低下する。
熱媒体としては、高温であるため、溶融塩が特に好ましい。最高の収率を示す反応温度は、原料の種類、原料濃度、接触時間、および触媒の焼成温度などにより変化するので、これらの条件に応じて適宜この範囲で選択することが好ましい。原料のガスと触媒の接触時間は一般にはかなり広い範囲に採ることができるが、0.5〜30秒であることが好ましい。
Although reaction temperature can be implemented in the wide range of 300-500 degreeC, it is preferable that it is 330-470 degreeC. When the temperature is lower than 300 ° C., the conversion rate of the raw material compound is small, and when the temperature is higher than 500 ° C., the production of carbon dioxide, hydrogen cyanide and the like increases and the yield of the nitrile compound decreases.
As a heat medium, since it is high temperature, molten salt is especially preferable. Since the reaction temperature showing the highest yield varies depending on the type of raw material, the raw material concentration, the contact time, the calcination temperature of the catalyst, and the like, it is preferably selected within this range depending on these conditions. In general, the contact time between the raw material gas and the catalyst can be set in a considerably wide range, but is preferably 0.5 to 30 seconds.

本発明の反応は通常、常圧にて行われるが、加圧下または減圧下にても行うことができる。反応生成物の捕集は、任意の適当な方法、例えば、生成物が析出するのに十分な温度まで冷却し捕集する方法、水その他適当な溶媒などで反応生成ガスを洗浄、捕集する方法などが使用される。 The reaction of the present invention is usually carried out at normal pressure, but can be carried out under pressure or under reduced pressure. The reaction product can be collected by any appropriate method, for example, a method of cooling and collecting the reaction product to a temperature sufficient to precipitate the product, and washing and collecting the reaction product gas with water or an appropriate solvent. Method etc. are used.

以下、実施例により本発明を具体的に説明するが、本発明はこれらの例によりその範囲を限定されるものではない。
尚、触媒強度については以下の方法で評価した。
(圧壊強度)
触媒1粒を強度測定装置(株式会社東洋精機製作所のストログラフEII‐S05)の測定台に横向きに載せ、横方向圧壊強度を測定した。
EXAMPLES The present invention will be specifically described below with reference to examples, but the scope of the present invention is not limited by these examples.
The catalyst strength was evaluated by the following method.
(Crushing strength)
One catalyst particle was placed horizontally on a measuring table of a strength measuring device (Strograph EII-S05 of Toyo Seiki Seisakusho Co., Ltd.), and the lateral crushing strength was measured.

実施例1
(触媒の調製)
無水クロム酸CrO19.6gを純水20mLに溶解し、シュウ酸75.3gに純水60mLを加え、50℃〜60℃に加熱した。この水溶液に攪拌下、上記クロム酸水溶液を徐々に加えシュウ酸クロム水溶液を作った。一方、シュウ酸44.4gを純水40mLに溶解し、80〜90℃に加熱後、よく攪拌しながら五酸化バナジウムV17.8gを徐々に加え、シュウ酸バナジル水溶液を作った。次に調製したシュウ酸バナジル水溶液に調製したシュウ酸クロム水溶液を70℃〜90℃で滴下、混合した。この混合水溶液にホウ酸1.21gを70℃〜90℃で添加し、混合した。調製した触媒溶液を85℃〜95℃にて加熱し、熟成した。その後100℃〜110℃にて濃縮した。濃縮した調合液に、アナターゼ型である酸化チタン133.3gを添加し、70℃で、均質となるまでニーダーを用いて混練すると共に水分を蒸発させた。その後、得られたケーキを乾燥機にて110℃の条件で乾燥した。
次に、乾燥品を焼成炉にて400℃の条件で2時間予備焼成し、その後、粉砕機にて粉砕した。
予備焼成後の粉末のBET比表面積は、20m/gであった。
粉砕した粉にグラファイトを4wt%添加し、混合した。次にこの原料粉を外径6mm、内径3mm、高さ6mmのリング状の形となるように、打錠成形機を用いて打錠成形した。成形後、焼成炉にて550℃で15時間焼成した。この触媒の原子比はCr:V:Bが1.0:1.0:0.1で、組成式はVCr0.14.15で表わされ、触媒中の担体チタニアの濃度は80wt%であった。
Example 1
(Preparation of catalyst)
19.6 g of CrO 3 chromic anhydride was dissolved in 20 mL of pure water, 60 mL of pure water was added to 75.3 g of oxalic acid, and heated to 50 ° C. to 60 ° C. The above chromic acid aqueous solution was gradually added to this aqueous solution with stirring to prepare a chromium oxalate aqueous solution. On the other hand, 44.4 g of oxalic acid was dissolved in 40 mL of pure water, heated to 80 to 90 ° C., and 17.8 g of vanadium pentoxide V 2 O 5 was gradually added while stirring well to prepare an aqueous vanadyl oxalate solution. Next, the prepared chromium oxalate aqueous solution was added dropwise to the prepared vanadyl oxalate aqueous solution at 70 ° C. to 90 ° C. and mixed. To this mixed aqueous solution, 1.21 g of boric acid was added at 70 ° C. to 90 ° C. and mixed. The prepared catalyst solution was heated at 85 ° C. to 95 ° C. and aged. Then, it concentrated at 100 to 110 degreeC. To the concentrated preparation, 133.3 g of anatase-type titanium oxide was added, and the mixture was kneaded at 70 ° C. using a kneader until uniform, and the water was evaporated. Then, the obtained cake was dried on 110 degreeC conditions with the dryer.
Next, the dried product was pre-baked in a baking furnace at 400 ° C. for 2 hours and then pulverized by a pulverizer.
The BET specific surface area of the powder after the preliminary firing was 20 m 2 / g.
4 wt% of graphite was added to the pulverized powder and mixed. Next, this raw material powder was tableted using a tableting machine so as to form a ring shape having an outer diameter of 6 mm, an inner diameter of 3 mm, and a height of 6 mm. After molding, it was fired at 550 ° C. for 15 hours in a firing furnace. This catalyst has an atomic ratio of Cr: V: B of 1.0: 1.0: 0.1, a composition formula represented by V 1 Cr 1 B 0.1 O 4.15 , and carrier titania in the catalyst. The concentration of was 80 wt%.

(触媒強度)
この触媒の圧壊強度を測定した結果、強度は110(N)であった。この触媒10個を高さ4mの反応管へ充填した結果、割れた触媒の個数は0個であり、この触媒は実用に耐える強度を有していた。
(Catalyst strength)
As a result of measuring the crushing strength of this catalyst, the strength was 110 (N). As a result of filling 10 of these catalysts into a reaction tube having a height of 4 m, the number of cracked catalysts was 0, and this catalyst had strength to withstand practical use.

(触媒の活性試験)
内径30mmの炭素鋼製反応管にこの触媒1.5kgを充填した。380℃に保持した溶融塩浴に反応管を設置し、反応管入口側と出口側の配管はヒーターで加熱保温した。原料を130℃に保温した蒸発器中でガス化させ、メタキシレン1.0容積%、アンモニア8.0容積%、酸素5.0容積%、窒素86.0容積%よりなるガスを、反応管中に導入し、空時速度SV2400Hr−1の条件で接触反応させた。反応生成物はガスクロマトグラフィーで分析した。この結果、メタキシレンに対するイソフタロニトリルの収率は90%であった。また、副生成物である3−シアノベンズアミドの生成率は0.9%であった。
(Catalyst activity test)
A carbon steel reaction tube having an inner diameter of 30 mm was charged with 1.5 kg of the catalyst. The reaction tube was installed in a molten salt bath maintained at 380 ° C., and the piping on the reaction tube inlet side and the outlet side was heated and kept warm by a heater. The raw material was gasified in an evaporator kept at 130 ° C., and a gas comprising 1.0% by volume of metaxylene, 8.0% by volume of ammonia, 5.0% by volume of oxygen, and 86.0% by volume of nitrogen was added to the reaction tube. The reaction was carried out under the conditions of a space time speed of SV2400Hr- 1 . The reaction product was analyzed by gas chromatography. As a result, the yield of isophthalonitrile with respect to metaxylene was 90%. The production rate of 3-cyanobenzamide as a by-product was 0.9%.

(触媒性能の経時変化)
同様の条件で、240日間連続して触媒の活性試験を行ったが、活性の変化は見られなかった。
実施例2
触媒の担体がアルミナである以外は、実施例1と同様にして触媒を調製し、触媒の活性試験を行った。予備焼成後の粉末のBET比表面積は、25m/gであった。また、触媒の圧壊強度は105(N)であった。メタキシレンに対するイソフタロニトリルの収率は88%であった。また、副生成物である3−シアノベンズアミドの生成率は0.8%であった。同様の条件で、220日間連続して触媒の活性試験を行ったが、活性の変化は見られなかった。
(Change in catalyst performance over time)
Under the same conditions, the activity of the catalyst was tested continuously for 240 days, but no change in activity was observed.
Example 2
A catalyst was prepared in the same manner as in Example 1 except that the catalyst support was alumina, and a catalyst activity test was performed. The BET specific surface area of the powder after pre-baking was 25 m 2 / g. The crushing strength of the catalyst was 105 (N). The yield of isophthalonitrile relative to metaxylene was 88%. The production rate of 3-cyanobenzamide as a by-product was 0.8%. Under the same conditions, the catalyst activity test was carried out continuously for 220 days, but no change in activity was observed.

実施例3
触媒の担体がシリカアルミナである以外は、実施例1と同様にして触媒を調製し、触媒の活性試験を行った。予備焼成後の粉末のBET比表面積は、23m/gであった。また、触媒の圧壊強度は108(N)であった。メタキシレンに対するイソフタロニトリルの収率は86%であった。また、副生成物である3−シアノベンズアミドの生成率は0.9%であった。同様の条件で、215日間連続して触媒の活性試験を行ったが、活性の変化は見られなかった。
Example 3
A catalyst was prepared in the same manner as in Example 1 except that the catalyst support was silica alumina, and a catalyst activity test was performed. The BET specific surface area of the powder after pre-baking was 23 m 2 / g. The crushing strength of the catalyst was 108 (N). The yield of isophthalonitrile with respect to metaxylene was 86%. The production rate of 3-cyanobenzamide as a by-product was 0.9%. Under the same conditions, the activity of the catalyst was continuously tested for 215 days, but no change in activity was observed.

実施例4
触媒の担体がジルコニアである以外は、実施例1と同様にして触媒を調製し、触媒の活性試験を行った。予備焼成後の粉末のBET比表面積は、30m/gであった。また、触媒の圧壊強度は112(N)であった。メタキシレンに対するイソフタロニトリルの収率は87%であった。また、副生成物である3−シアノベンズアミドの生成率は0.8%であった。同様の条件で、210日間連続して触媒の活性試験を行ったが、活性の変化は見られなかった。
Example 4
A catalyst was prepared in the same manner as in Example 1 except that the catalyst support was zirconia, and a catalyst activity test was performed. The BET specific surface area of the powder after the preliminary firing was 30 m 2 / g. The crushing strength of the catalyst was 112 (N). The yield of isophthalonitrile with respect to metaxylene was 87%. The production rate of 3-cyanobenzamide as a by-product was 0.8%. Under the same conditions, the catalyst activity was tested continuously for 210 days, but no change in activity was observed.

実施例5
メタキシレンに代えてパラキシレンを使用して、実施例1と同様に触媒の活性試験を行った。パラキシレンに対するテレフタロニトリルの収率は88%であった。また、副生成物である4−シアノベンズアミドの生成率は0.7%であった。同様の条件で、230日間連続して触媒の活性試験を行ったが、活性の変化は見られなかった。
Example 5
A catalyst activity test was conducted in the same manner as in Example 1 except that paraxylene was used instead of metaxylene. The yield of terephthalonitrile relative to paraxylene was 88%. The production rate of 4-cyanobenzamide as a by-product was 0.7%. Under the same conditions, the catalyst activity test was carried out continuously for 230 days, but no change in activity was observed.

実施例6
メタキシレンに代えてトルエンを使用して、実施例1と同様に触媒の活性試験を行った。トルエンに対するベンソニトリルの収率は87%であった。また、副生成物であるベンズアミドの生成率は0.9%であった。同様の条件で、235日間連続して触媒の活性試験を行ったが、活性の変化は見られなかった。
Example 6
A catalyst activity test was conducted in the same manner as in Example 1 except that toluene was used instead of meta-xylene. The yield of benzonitrile with respect to toluene was 87%. The production rate of benzamide as a by-product was 0.9%. Under the same conditions, the activity of the catalyst was continuously tested for 235 days, but no change in activity was observed.

比較例1
(触媒の調製)
無水クロム酸CrO19.6gを純水20mLに溶解し、シュウ酸75.3gに純水60mLを加え、50℃〜60℃に加熱した。この水溶液に攪拌下、上記クロム酸水溶液を徐々に加えシュウ酸クロム水溶液を作った。一方、シュウ酸44.4gを純水40mLに溶解し、80〜90℃に加熱後、よく攪拌しながら五酸化バナジウムV17.8gを徐々に加え、シュウ酸バナジル水溶液を作った。次に調製したシュウ酸バナジル水溶液に調製したシュウ酸クロム水溶液を70℃〜90℃で滴下、混合した。この混合水溶液にホウ酸1.21gを70℃〜90℃で添加し、混合した。調製した触媒溶液を85℃〜95℃にて加熱し、熟成した。その後100℃〜110℃にて濃縮した。濃縮した調合液にアナターゼ型である酸化チタン133.3gを添加し、70℃で、均質となるまでニーダーを用いて混練すると共に水分を蒸発させた。その後、得られたケーキを乾燥機にて110℃の条件で乾燥した。
次に、乾燥品を焼成炉にて600℃の条件で5時間予備焼成し、その後、粉砕機にて粉砕した。
予備焼成後の粉末のBET比表面積は、8m/gであった。
粉砕した粉にグラファイトを4wt%添加し、混合した。次にこの原料粉を外径6mm、内径3mm、高さ6mmのリング状の形となるように、打錠成形機を用いて打錠成形した。成形後、焼成炉にて550℃で15時間焼成した。この触媒の原子比はCr:V:Bが1.0:1.0:0.1の割合で含有され、触媒中の担体チタニアの濃度は80wt%であった。
Comparative Example 1
(Preparation of catalyst)
19.6 g of chromic anhydride CrO 3 was dissolved in 20 mL of pure water, 60 mL of pure water was added to 75.3 g of oxalic acid, and the mixture was heated to 50 ° C. to 60 ° C. The above chromic acid aqueous solution was gradually added to this aqueous solution with stirring to prepare a chromium oxalate aqueous solution. On the other hand, 44.4 g of oxalic acid was dissolved in 40 mL of pure water, heated to 80 to 90 ° C., and 17.8 g of vanadium pentoxide V 2 O 5 was gradually added while stirring well to prepare an aqueous vanadyl oxalate solution. Next, the prepared chromium oxalate aqueous solution was added dropwise to the prepared vanadyl oxalate aqueous solution at 70 ° C. to 90 ° C. and mixed. To this mixed aqueous solution, 1.21 g of boric acid was added at 70 ° C. to 90 ° C. and mixed. The prepared catalyst solution was heated at 85 ° C. to 95 ° C. and aged. Then, it concentrated at 100 to 110 degreeC. 133.3 g of anatase-type titanium oxide was added to the concentrated preparation and kneaded using a kneader at 70 ° C. until homogeneous, and water was evaporated. Then, the obtained cake was dried on 110 degreeC conditions with the dryer.
Next, the dried product was pre-fired for 5 hours in a baking furnace at 600 ° C., and then pulverized by a pulverizer.
The BET specific surface area of the powder after the preliminary firing was 8 m 2 / g.
4 wt% of graphite was added to the pulverized powder and mixed. Next, this raw material powder was subjected to tableting using a tableting machine so as to form a ring shape having an outer diameter of 6 mm, an inner diameter of 3 mm, and a height of 6 mm. After molding, it was fired at 550 ° C. for 15 hours in a firing furnace. The atomic ratio of this catalyst was such that Cr: V: B was contained at a ratio of 1.0: 1.0: 0.1, and the concentration of carrier titania in the catalyst was 80 wt%.

(触媒強度)
この触媒の圧壊強度を測定した結果、強度は14(N)であった。この触媒10個を高さ4mの反応管へ充填した結果、割れた触媒の個数は6個であり、この触媒の強度は実用に耐えなかった。
(Catalyst strength)
As a result of measuring the crushing strength of this catalyst, the strength was 14 (N). As a result of filling 10 of these catalysts into a 4 m high reaction tube, the number of cracked catalysts was 6, and the strength of this catalyst was not practical.

(触媒の活性試験)
内径30mmの炭素鋼製反応管にこの触媒1.5kgを充填した。380℃に保持した溶融塩浴に反応管を設置し、反応管入口側と出口側の配管はヒーターで加熱保温した。原料を130℃に保温した蒸発器中でガス化させ、メタキシレン1.0容積%、アンモニア8.0容積%、酸素5.0容積%、窒素86.0容積%よりなるガスを、反応管中に導入し、空時速度SV2400Hr−1の条件で接触反応させた。反応生成物はガスクロマトグラフィーで分析した。この結果、メタキシレンに対するイソフタロニトリルの収率は80%であった。また、副生成物である3−シアノベンズアミドの生成率は1.5%であった。
(Catalyst activity test)
A carbon steel reaction tube having an inner diameter of 30 mm was charged with 1.5 kg of the catalyst. The reaction tube was installed in a molten salt bath maintained at 380 ° C., and the piping on the reaction tube inlet side and the outlet side was heated and kept warm by a heater. The raw material was gasified in an evaporator kept at 130 ° C., and a gas comprising 1.0% by volume of metaxylene, 8.0% by volume of ammonia, 5.0% by volume of oxygen, and 86.0% by volume of nitrogen was added to the reaction tube. The reaction was carried out under the conditions of a space time speed of SV2400Hr- 1 . The reaction product was analyzed by gas chromatography. As a result, the yield of isophthalonitrile relative to metaxylene was 80%. The production rate of 3-cyanobenzamide as a by-product was 1.5%.

(触媒性能の経時変化)
同様の条件で、90日間連続して触媒の活性試験を行ったが、活性の変化は見られなかった。
(Change in catalyst performance over time)
Under the same conditions, the activity of the catalyst was continuously tested for 90 days, but no change in activity was observed.

比較例2
(触媒の調製)
無水クロム酸CrO19.6gを純水20mLに溶解し、シュウ酸75.3gに純水60mLを加え、50℃〜60℃に加熱した。この水溶液に攪拌下、上記クロム酸水溶液を徐々に加えシュウ酸クロム溶液を作った。一方、シュウ酸44.4gを水40mLに溶解し、80〜90℃に加熱後、よく攪拌しながら五酸化バナジウムV17.8gを徐々に加え、シュウ酸バナジル溶液を作った。次に調製したシュウ酸バナジル水溶液に調製したシュウ酸クロム水溶液を70℃〜90℃で滴下、混合した。この混合水溶液にホウ酸1.21gを70℃〜90℃で添加し、混合した。調製した触媒溶液を85℃〜95℃にて加熱し、熟成した。その後100℃〜110℃にて濃縮した。濃縮した調合液にアナターゼ型である酸化チタン133.3gを添加し、70℃で、均質となるまでニーダーを用いて混練すると共に水分を蒸発させた。その後、得られたケーキを乾燥機にて110℃の条件で乾燥した。
次に、乾燥品を焼成炉にて200℃の条件で2時間予備焼成し、その後、粉砕機にて粉砕した。
予備焼成後の粉末のBET比表面積は、120m/gであった。
粉砕した粉にグラファイトを4wt%添加し、混合した。次にこの原料粉を外径6mm、内径3mm、高さ6mmのリング状の形となるように、打錠成形機を用いて打錠成形した。成形後、焼成炉にて550℃で15時間焼成した。この触媒の原子比はCr:V:Bが1.0:1.0:0.1の割合で含有され、触媒中の担体チタニアの濃度は80wt%であった。
Comparative Example 2
(Preparation of catalyst)
19.6 g of chromic anhydride CrO 3 was dissolved in 20 mL of pure water, 60 mL of pure water was added to 75.3 g of oxalic acid, and the mixture was heated to 50 ° C. to 60 ° C. The chromic acid aqueous solution was gradually added to the aqueous solution with stirring to prepare a chromium oxalate solution. On the other hand, 44.4 g of oxalic acid was dissolved in 40 mL of water, heated to 80 to 90 ° C., and 17.8 g of vanadium pentoxide V 2 O 5 was gradually added while stirring well to prepare a vanadyl oxalate solution. Next, the prepared chromium oxalate aqueous solution was added dropwise to the prepared vanadyl oxalate aqueous solution at 70 ° C. to 90 ° C. and mixed. To this mixed aqueous solution, 1.21 g of boric acid was added at 70 ° C. to 90 ° C. and mixed. The prepared catalyst solution was heated at 85 ° C. to 95 ° C. and aged. Then, it concentrated at 100 to 110 degreeC. 133.3 g of anatase-type titanium oxide was added to the concentrated preparation and kneaded using a kneader at 70 ° C. until homogeneous, and water was evaporated. Then, the obtained cake was dried on 110 degreeC conditions with the dryer.
Next, the dried product was pre-baked for 2 hours in a baking furnace at 200 ° C., and then pulverized by a pulverizer.
The BET specific surface area of the powder after pre-baking was 120 m 2 / g.
4 wt% of graphite was added to the pulverized powder and mixed. Next, this raw material powder was subjected to tableting using a tableting machine so as to form a ring shape having an outer diameter of 6 mm, an inner diameter of 3 mm, and a height of 6 mm. After molding, it was fired at 550 ° C. for 15 hours in a firing furnace. The atomic ratio of this catalyst was such that Cr: V: B was contained at a ratio of 1.0: 1.0: 0.1, and the concentration of carrier titania in the catalyst was 80 wt%.

(触媒強度)
この触媒の圧壊強度を測定した結果、強度は15(N)であった。この触媒10個を高さ4mの反応管へ充填した結果、割れた触媒の個数は7個であり、この触媒の強度は実用に耐えなかった。
(Catalyst strength)
As a result of measuring the crushing strength of this catalyst, the strength was 15 (N). As a result of filling 10 of these catalysts into a 4 m high reaction tube, the number of cracked catalysts was 7, and the strength of this catalyst was not practical.

(触媒の活性試験)
内径30mmの炭素鋼製反応管にこの触媒1.5kgを充填した。380℃に保持した溶融塩浴に反応管を設置し、反応管入口側と出口側の配管はヒーターで加熱保温した。原料を130℃に保温した蒸発器中でガス化させ、メタキシレン1.0容積%、アンモニア8.0容積%、酸素5.0容積%、窒素86.0容積%よりなるガスを、反応管中に導入し、空時速度SV2400Hr−1の条件で接触反応させた。反応生成物はガスクロマトグラフィーで分析した。この結果、メタキシレンに対するイソフタロニトリルの収率は78%であった。また、副生成物である3−シアノベンズアミドの生成率は1.8%であった。同様の条件で、80日間連続して触媒の活性試験を行ったが、活性の変化は見られなかった。
(Catalyst activity test)
A carbon steel reaction tube having an inner diameter of 30 mm was charged with 1.5 kg of the catalyst. The reaction tube was installed in a molten salt bath maintained at 380 ° C., and the piping on the reaction tube inlet side and the outlet side was heated and kept warm by a heater. The raw material was gasified in an evaporator kept at 130 ° C., and a gas comprising 1.0% by volume of metaxylene, 8.0% by volume of ammonia, 5.0% by volume of oxygen, and 86.0% by volume of nitrogen was added to the reaction tube. The reaction was carried out under the conditions of a space time speed of SV2400Hr- 1 . The reaction product was analyzed by gas chromatography. As a result, the yield of isophthalonitrile relative to metaxylene was 78%. The production rate of 3-cyanobenzamide as a by-product was 1.8%. Under the same conditions, the activity of the catalyst was continuously tested for 80 days, but no change in activity was observed.

Claims (4)

アルキル置換芳香族炭化水素と、アンモニアおよび酸素を含む混合ガスを触媒上で接触反応させて、対応する芳香族ニトリルを製造する方法であって、該触媒が、BET比表面積が10m/g以上100m/g以下の粉末を機械的に圧縮成形し、さらに焼成することによって調製した、バナジウムの酸化物及びクロムの酸化物並びにアルミナ、シリカアルミナ、ジルコニア及びチタニアから選ばれる1種以上の担体から構成される触媒であることを特徴とする芳香族ニトリルの製造方法。 A method for producing a corresponding aromatic nitrile by reacting an alkyl-substituted aromatic hydrocarbon with a mixed gas containing ammonia and oxygen on a catalyst, wherein the catalyst has a BET specific surface area of 10 m 2 / g or more. From vanadium oxide and chromium oxide, and one or more carriers selected from alumina, silica alumina, zirconia and titania, prepared by mechanically compression-molding a powder of 100 m 2 / g or less and further firing. A method for producing an aromatic nitrile, which is a catalyst constituted. 前記触媒が更にホウ素の酸化物を含有する請求項1に記載の芳香族ニトリルの製造方法。 The method for producing an aromatic nitrile according to claim 1, wherein the catalyst further contains an oxide of boron. 前記のバナジウム、クロム及びホウ素の酸化物が下記の組成式で表される請求項2に記載の芳香族ニトリルの製造方法。
組成式 VCrd
[式中のVはバナジウム、Crはクロム、Bはホウ素、Oは酸素を示す。添字のa,b,c,dは各元素の原子比率を表し、a=1、b=0.5〜2.0、c=0.01〜1.5であり、dは上記各元素が結合して生成する酸化物または複合酸化物に対応する酸素数を示す。]
The method for producing an aromatic nitrile according to claim 2, wherein the oxide of vanadium, chromium, and boron is represented by the following composition formula.
Compositional formula V a Cr b B c O d
[V in the formula represents vanadium, Cr represents chromium, B represents boron, and O represents oxygen. The subscripts a, b, c, and d represent the atomic ratio of each element, a = 1, b = 0.5 to 2.0, and c = 0.01 to 1.5. The number of oxygen corresponding to the oxide or composite oxide formed by bonding is shown. ]
前記担体がチタニアである請求項1〜3の何れかに記載の芳香族ニトリルの製造方法。 The method for producing an aromatic nitrile according to any one of claims 1 to 3, wherein the carrier is titania.
JP2008188062A 2008-07-22 2008-07-22 Method for producing aromatic nitrile Withdrawn JP2010024187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008188062A JP2010024187A (en) 2008-07-22 2008-07-22 Method for producing aromatic nitrile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008188062A JP2010024187A (en) 2008-07-22 2008-07-22 Method for producing aromatic nitrile

Publications (1)

Publication Number Publication Date
JP2010024187A true JP2010024187A (en) 2010-02-04

Family

ID=41730331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008188062A Withdrawn JP2010024187A (en) 2008-07-22 2008-07-22 Method for producing aromatic nitrile

Country Status (1)

Country Link
JP (1) JP2010024187A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024188A (en) * 2008-07-22 2010-02-04 Mitsubishi Gas Chemical Co Inc Method for producing aromatic nitrile
EP2428267A1 (en) * 2010-09-08 2012-03-14 Leibniz-Institut für Katalyse e.V. an der Universität Rostock Catalyst, its preparation and use for the preparation of nitriles from alkyl aromatic or heteroaromatic compounds
US9831599B2 (en) 2011-08-26 2017-11-28 Littlebits Electronics Inc. Modular electronic building systems with magnetic interconnections and methods of using the same
US10155153B2 (en) 2009-08-06 2018-12-18 Littlebits Electronics, Inc. Puzzle with conductive path
US10244630B2 (en) 2011-08-26 2019-03-26 Littlebits Electronics Inc. Modular electronic building systems with magnetic interconnections and methods of using the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01317545A (en) * 1988-06-16 1989-12-22 Babcock Hitachi Kk Preparation of denitrification catalyst
JPH11246506A (en) * 1998-03-04 1999-09-14 Mitsubishi Gas Chem Co Inc Production of nitrile compound and catalyst for producing the same
JP2001198468A (en) * 2000-01-17 2001-07-24 Asahi Kasei Corp Catalyst for synthesis of acetic acid
JP2002301372A (en) * 2001-02-05 2002-10-15 Petroleum Energy Center Solid acid catalyst, method for producing the same and method for hydrodesulfurizing and isomerizing light hydrocarbon oil using the same
JP2003267942A (en) * 2002-03-11 2003-09-25 Mitsubishi Gas Chem Co Inc Method of production for aromatic nitrile and heterocyclic nitrile
JP2007061770A (en) * 2005-09-01 2007-03-15 Nippon Steel Corp Catalyst for manufacturing hydrocarbon from synthesis gas, method for manufacturing catalyst, and method for manufacturing hydrocarbon from synthesis gas using catalyst
JP2010024188A (en) * 2008-07-22 2010-02-04 Mitsubishi Gas Chemical Co Inc Method for producing aromatic nitrile

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01317545A (en) * 1988-06-16 1989-12-22 Babcock Hitachi Kk Preparation of denitrification catalyst
JPH11246506A (en) * 1998-03-04 1999-09-14 Mitsubishi Gas Chem Co Inc Production of nitrile compound and catalyst for producing the same
JP2001198468A (en) * 2000-01-17 2001-07-24 Asahi Kasei Corp Catalyst for synthesis of acetic acid
JP2002301372A (en) * 2001-02-05 2002-10-15 Petroleum Energy Center Solid acid catalyst, method for producing the same and method for hydrodesulfurizing and isomerizing light hydrocarbon oil using the same
JP2003267942A (en) * 2002-03-11 2003-09-25 Mitsubishi Gas Chem Co Inc Method of production for aromatic nitrile and heterocyclic nitrile
JP2007061770A (en) * 2005-09-01 2007-03-15 Nippon Steel Corp Catalyst for manufacturing hydrocarbon from synthesis gas, method for manufacturing catalyst, and method for manufacturing hydrocarbon from synthesis gas using catalyst
JP2010024188A (en) * 2008-07-22 2010-02-04 Mitsubishi Gas Chemical Co Inc Method for producing aromatic nitrile

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024188A (en) * 2008-07-22 2010-02-04 Mitsubishi Gas Chemical Co Inc Method for producing aromatic nitrile
US10155153B2 (en) 2009-08-06 2018-12-18 Littlebits Electronics, Inc. Puzzle with conductive path
US11896915B2 (en) 2009-08-06 2024-02-13 Sphero, Inc. Puzzle with conductive path
EP2428267A1 (en) * 2010-09-08 2012-03-14 Leibniz-Institut für Katalyse e.V. an der Universität Rostock Catalyst, its preparation and use for the preparation of nitriles from alkyl aromatic or heteroaromatic compounds
US9831599B2 (en) 2011-08-26 2017-11-28 Littlebits Electronics Inc. Modular electronic building systems with magnetic interconnections and methods of using the same
US10244630B2 (en) 2011-08-26 2019-03-26 Littlebits Electronics Inc. Modular electronic building systems with magnetic interconnections and methods of using the same
US10256568B2 (en) 2011-08-26 2019-04-09 Littlebits Electronics Inc. Modular electronic building systems with magnetic interconnections and methods of using the same

Similar Documents

Publication Publication Date Title
JPH0132820B2 (en)
JP2010024187A (en) Method for producing aromatic nitrile
US6284893B2 (en) Process for producing nitrile compounds
JP5626208B2 (en) Ammoxidation catalyst and method for producing nitrile compound using the same
JPH0623158B2 (en) Process for producing aromatic nitrile
JP5353095B2 (en) Method for producing aromatic nitrile
JP4386155B2 (en) Method for producing aromatic nitrile or heterocyclic nitrile
KR102080197B1 (en) Method for Producing Phthalonitriles
JP4240191B2 (en) Process for producing aromatic nitrile and heterocyclic nitrile
JPH11246506A (en) Production of nitrile compound and catalyst for producing the same
JP4747417B2 (en) Method for producing nitrile compound
JP4380866B2 (en) Method for producing nitrile compound
JP7420068B2 (en) Method for producing aromatic nitriles by ammoxidation reaction
WO2014024782A2 (en) Catalyst for production of acrylic acid from glycerin, and method for producing same
EP1518853B1 (en) Method for producing alkyl and/or cycloalkyl-substituted cyclic nitrile
JP4054959B2 (en) Method for producing nitrile compound
JPH11209332A (en) Production of nitrile compound and catalyst for production
JP2009007354A (en) Process for producing aromatic nitrile and heterocyclic nitrile
JP2005126416A (en) Method for producing alkyl and/or cycloalkyl-substituted cyclic nitrile
JP2002088043A (en) Method for producing nitrile compound
CN115490615A (en) Method for preparing isophthalonitrile
JP2001322973A (en) Method for producing aromatic compound having nitrile groups adjacent to each other
JP2001139538A (en) Method for production of naphthalene dinitrile compound
JPH07126239A (en) Production of naphthalene nitrile
JP2001335552A (en) Method of selective partial ammoxidation and catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110615

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20121203