JP4179778B2 - Non-aqueous electrolyte battery - Google Patents

Non-aqueous electrolyte battery Download PDF

Info

Publication number
JP4179778B2
JP4179778B2 JP2001398603A JP2001398603A JP4179778B2 JP 4179778 B2 JP4179778 B2 JP 4179778B2 JP 2001398603 A JP2001398603 A JP 2001398603A JP 2001398603 A JP2001398603 A JP 2001398603A JP 4179778 B2 JP4179778 B2 JP 4179778B2
Authority
JP
Japan
Prior art keywords
electrode
positive electrode
separator
electrolyte
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001398603A
Other languages
Japanese (ja)
Other versions
JP2003197265A (en
Inventor
雅統 大木
征人 岩永
友和 山中
雪尋 沖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001398603A priority Critical patent/JP4179778B2/en
Publication of JP2003197265A publication Critical patent/JP2003197265A/en
Application granted granted Critical
Publication of JP4179778B2 publication Critical patent/JP4179778B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リチウムイオン電池などの非水電解液電池において、電解液を短時間かつ豊富に外装体に入れる技術に関する。
【0002】
【従来の技術】
近年、携帯電話機や携帯情報端末(PDA)などの小型電子機器が急速に普及している。これらの小型電子機器には、長時間使用に耐えうる高エネルギー密度の電源としてリチウムイオン電池などの非水電解液電池が多用されている。
非水電解液電池は、外装体(外装缶)に発電素体が収納され、封口体により電池内部が密閉された構成を持つ。発電素体は、例えば帯状のセパレータ、正極、負極とを重ねてなる電極体に電解液を含浸したものである。電解液は、主として電極体を外装缶に入れたのち、電極体中の活物質に染み込ませるように注入される。外装缶内に注入された電解液は、注入してもすぐに活物質に含浸しにくいので、一般的には時間を掛けて徐々に電極体中の活物質に含浸させる工程を繰り返したり、外装缶内を減圧して電解液を注入する工程を経る必要がある。
【0003】
【発明が解決しようとする課題】
ところで、昨今の電池のさらなる高エネルギー密度化に伴い、電極体の容積や、活物質量を出来るだけ多く確保することが求められている。しかしながら、これによって外装缶内に収納する電極体の活物質充填密度が高まるので、電解液の注入がいっそう困難になり、作業効率が低下する。また、場合によっては電解液の注液が不十分になる恐れもある。
【0004】
このような問題は、非水電解液電池全般にわたって生じる可能性があるが、特に小型電子機器の電源として広く用いられるリチウムイオン電池の分野で顕著に生じており、早急な対策が望まれている。
このような問題を解決するため、特開平9-298057号公報に、極板表面を部分的に圧縮して溝を形成し、その溝に電解液を流通させることが開示されている。しかし、電池の高エネルギー密度化により、極板は限界に近いほど充填されるので、この方法によりさらに圧縮力をかけると極板の破損を招く。ましてや、リチウムイオン電池のような薄厚の極板を用いる電池ではなおさらである。また、溝を形成するために、極板の活物質層の一部を削り落として溝を形成することも考えられているが、電池容量の低下や、削り落とした際に発生する粉末の処理が問題となる。
【0005】
本発明はこのような課題に鑑みてなされたものであって、その目的は、従来より短時間で外装缶内に豊富な電解液を注液することが可能であり、良好な電池性能の発揮が期待できる非水電解液電池を提供することにある。
【0006】
【課題を解決するための手段】
上記課題を解決するために、本発明は、セパレータを介して正極板と負極板を重ね合わせてなる電極体を、電解液とともに外装体に収納してなる非水電解液電池において前記セパレータ、正極板、負極板の少なくとも一つには、幅方向の端部から中央部にかけて電解液が流通する撓みが形成されているものとした。
【0007】
この構成によれば、正極、セパレータ、負極の少なくともいずれかに形成された撓みが電極体内部に前記セパレータ、正極板、負極板の少なくとも一つ微小通路を形成する。このため、外装体に収納した電極体に電解液を注入する際には、この前記セパレータ、正極板、負極板の少なくとも一つ微小通路を電解液が流通し、迅速に電極活物質のすみずみにまで浸透し、結果として豊富な量の電解液が外装体内に注入されることとなる。したがって、従来のように電解液を電極体に染み込ませる工程を何度も繰り返す必要がなくなる。このようなことから本発明では、非常に簡単な構成でありながら電解液の注入工程にかかる時間が従来に比べて飛躍的に短時間で済み、作業効率が向上するので、製造工程が減少するといった効果が奏される。
【0008】
また、本発明では、上記のように発電要素以外のものを用いることなく電極、セパレータの表面自体を微小に加工するものであるため、電池のエネルギー密度の低下を招くおそれもない。
前記流通路は、具体的には前記セパレータ、正極、負極の少なくとも一つの表面を加工して、溝(撓み)として形成することができる。この加工により活物質量をそのまま維持しながら、極板を破損することなく溝を形成できる利点がある。この溝は、発明者らの実験により、深さが1μm以上1mm以下の範囲が望ましいことが分かっている。
【0009】
ただし深さが1μm程度の場合は、詳細を後述するように、溝の本数を増やすことが望ましい。
また本発明は、一般的にどのような形の外装体の非水電解液電池においても適用できるが、前記電極体を渦巻き状に巻き取り、これを円筒型外装缶に収納するタイプのように、電極体を比較的強い巻回力で捲回するものにおいて、特に効果が大きい。
【0010】
【発明の実施の形態】
1.実施の形態1
1-1.リチウムイオン電池の構成
図1は、本発明の一適用例である円筒型リチウムイオン電池の断面斜視図である。
【0011】
当該リチウムイオン電池(直径18mm、高さ65mm)は、円筒型外装缶6を有しており、これに正極1と負極2がセパレータ3を介して渦巻き状に巻かれてなる電極体4と、当該電極体4に含浸された電解液等が収納された構成を持つ。電解液には非水電解液が用いられるが、ここでは一例としてEC(エチレンカーボネート)とEMC(エチルメチルカーボネート)の混合溶媒にLiPF6(六フッ化リン酸リチウム)を電解質として溶解させた電解液を用いている。
【0012】
正極1は、アルミニウム製の帯状芯体表面に、正極活物質であるコバルト酸リチウムLiCoO2を主体として、導電剤(カーボンブラック)と結着剤(ポリフッ化ビニリデン)を混合した正極合剤を塗布してなるものであって、正極集電体11に接続されている。
負極2は、銅製の帯状芯体表面に、黒鉛を主体とする負極活物質と、結着剤を混合した負極合剤を塗布してなり、負極集電体(不図示)によって、負極端子を兼ねる円筒外装缶6の内底面に接続されている。
【0013】
セパレータ3は、ポリエチレン製の微多孔膜であって、正極1と負極2の絶縁に用いられる。
電極体4の中心には、電極体4の変形防止および異常状態(火中に投下されるなど)に発生するガス流通路確保のためにセンターピン5が配されている。
外装缶6に収められた電極体4の上には押さえ板7が配置され、この押さえ板7の中央開口部を通して正極集電体11が配置される。正極集電体11は、ラプチャディスク(薄膜弁板)8と正極端子10に接続されている。
【0014】
このような構成の電池1では、充放電時に次の反応が起こる。すなわち、充電時には正極1において、正極活物質であるコバルト酸リチウムの結晶格子中のコバルトが酸化され、これとともにリチウムイオンが放出される。放出されたリチウムイオンは、電解液を含浸したセパレータ3を通って、負極側へ移動する。負極側では、リチウムイオンは黒鉛の結晶格子中に取り込まれる。
【0015】
そして放電時においては、この充電時とは逆の反応が起こって、電気エネルギーを外部へ取り出すことができる。
ここにおいて本実施の形態1は、正極1の構造に特徴を有している。図2は、正極の部分斜視図である。当図に示されるように、本実施の形態1における正極1は、その表面に、幅方向端部から中央部にかけて、正極の幅方向に平行に、複数の半月状の溝(撓み)1aが一定間隔をおいて併設されている。当該溝1aは、一例として、極板厚み方向の深さが300μm、幅が1mmであり、正極1の幅方向にわたって4mmピッチで形成されている。
【0016】
このような正極1の溝1aは、電極体4が成形されたのち、セパレータ3との間に微小通路を形成する。この前記セパレータ、正極板、負極板の少なくとも一つ微小通路は、電池作製時に、電極の活物質中に電解液を迅速且つ良好に浸透させる(特に電極体中心付近において浸透させる)ものである。
なお、図1における正極1は、説明上の理由から溝のサイズを実際よりも大きくしている。
【0017】
1-2.実施の形態の効果
一般に、電池の作製工程では、正極、セパレータ、負極を重ねてなる電極体を外装体(外装缶)に収納したのち、外装缶内に電解液を注入する。注入された電解液は、主に電極体の上下端面から中央部に染み込んでいくが、この染み込みには長時間を要する。近年では、非水電解液電池では高エネルギー密度を実現するために、外装体容積に対して電極体が占める体積の割合(活物質の密度)を高めるといった工夫がなされている。したがって、このような電極体を外装缶に入れると、外装缶内部に残されるスペースはほとんど無いので、電解液の注入が従来にも増して非常に困難になる。
【0018】
電解液の注入方法としては、電解液を徐々に注入していく注入工程を繰り返す方法の他、遠心力で外装缶を回しながら、外装缶内を減圧して電解液を電極体に吸い込ませるといった方法があるが、前者は時間が長時間かかり、後者は手間がかかる。
このような問題に対し、本実施の形態1では、正極1の表面に複数の微小な溝1aが形成されているため、正極1、セパレータ3、負極2を巻き回して電極体4とし、これを外装缶6に収納すると、前記溝1aが、正極1とセパレータ3の間における微小通路となる。この微小通路の縞は、電極体4の端面に開口しているので、電極体4を収納した外装缶6内に電解液を注入すると、前記微小通路の開口部から電解液が電極体4の内部深くまで迅速に入ってゆき、正極1、負極2の活物質のすみずみにわたって浸透する。これにより、短時間で電解液を電極体4に染み込ませることが可能となり、豊富な電解液を外装缶6内に注入できる。本実施の形態1では、溝1aが電極幅方向にわたって形成されているので、特に電極体4の中心付近において、良好に電極の活物質に電解液を浸透させることができる。
【0019】
また、電極の活物質層を削り取ったり、圧縮することで溝を形成する方法では、1本の溝に対してはその溝1本分の電解液流通の効果しかないが、本実施の形態では、図5の電極体部分断面図に示すように、電極体巻回時に撓み近傍が撓んで巻回されるため、1本の撓みに対して数本分の電解液流通経路が形成され、より迅速な電解液含浸が可能になるという効果を奏する。
【0020】
なお、特願平11-228728には、電極とセパレータの間に糸状もしくは板状部材を挿入して、これによって電極体内部に間隙を形成し、外装缶内部を減圧しつつ前記間隙に電解液を注入する方法が開示されているが、このように発電要素以外の部材を外装缶に入れると、その分エネルギー密度が低下するものと考えられる。一方、本発明では電解液の流通路の確保のために正極、セパレータ、負極の少なくとも何れかの表面を押圧することによって直接溝を形成する構成のため、エネルギー密度の低下は基本的に低下しない。
【0021】
2.実施例
2-1.実施例と比較例の性能比較実験
次に、実施例の電池を作製し、性能測定実験を行った。
正極の作製にあたっては、長さ600mm、幅55mm、厚さ20μmのアルミニウム箔からなる導電芯体の表面に、コバルト酸リチウムを主体とし、その他導電剤として黒鉛と、結着剤としてポリフッ化ビニリデンを含む正極合剤スラリー(溶剤はN-メチル-2-ピロリドン)を塗布する。こののち溶剤を乾燥揮発させ、厚さ165μmにプレスして極板を作製する。
【0022】
そして、この極板表面に、図3の工程図に示すように凸部付きローラを用いて溝(撓み)を形成する。溝の形状およびピッチは、ローラの凸部の形状およびピッチを変更することで自由に設定することが可能である。この工程において、正極長さ200mm当たり0本以上110本以内の間で変化させた。また、溝の深さを0μm〜1500μmの間で変化させた。溝を形成しない正極は、従来例に相当する。なお溝の深さは、巻回された状態の電極体の深さであり、X線CT装置(例えば日鉄エレックス社製マイクロフォーカス3DX線CT装置ELESCANなど)で断面を透視して確認した。
【0023】
このように作製した正極を用い、セパレータ、負極を順に重ねて電極体を形成し、円筒型外装缶に収納した。電解液には、EC(エチレンカーボネート)とEMC(エチルメチルカーボネート)を体積比でEC:EMC=30:70で混合した混合溶媒に、LiPF6(六フッ化リン酸リチウム)を電解質として溶解させた溶液を用いた。これにより、設計容量1800mAhの円筒型リチウムイオン電池(直径18mm、高さ65mm)を作製した。
【0024】
次に、上記作製した円筒型リチウムイオン電池を、室温にて、充電電流1800mAで電池電圧が4.2Vになるまで定電流充電を行い、4.2Vで充電電流値が36mAになるまで低電圧充電を行った。その後電池を解体して、負極表面に析出したLiの量を観察した。
また、電極体の電解液の含浸しやすさを評価するために、ビーカーにプロピレンカーボネート(PC)を注ぎ、その中に電極体のみを5分間浸した後に引き上げ、含浸前後の質量差をもって電解液が含浸した量(吸液量)とした。
【0025】
これらの作製した電池について、電極体に電解液が含浸した量(吸液量)と、正極表面のLi析出量に関するデータを表1に示す。
【0026】
【表1】

Figure 0004179778
【0027】
2-2.実験結果の考察
当図から明らかなように、従来の正極(撓み0本)の電解液の吸液量が3.0gであるのに対し、溝(撓み)本数が1本/200mm〜5本/200mmの場合、撓み深さが3μm以上であれば、電解液の吸液量は3.2g以上で保たれる。
また、溝(撓み)本数が10本/200mm〜100本/200mmの場合は、撓み深さが1μm以上であれば、電解液の吸液量は少なくとも3.1g以上で保たれる。
【0028】
このように、従来の正極の電解液の吸液量に対し、本発明のように溝(撓み)を設けることによって、優れた電解液の吸液量が確保されることが分かる。
一方、上記正極の溝(撓み)が1本/200mm〜100本/200mmの本数範囲であれば、Li析出量も少量または無しといった優れた性能が呈される。ただし、撓み深さが1500μmに達すると、Li析出量が増えるという結果が得られた。これは、正極と負極の間で電極反応のバランスが崩れ、ここでLiが析出しやすくなるためであると考えられる。
【0029】
一般にリチウムイオン電池においては、電池を満充電すると、正極から脱離したLiイオンが負極の活物質中へインサートする。ここで、正極や負極に何らかの不具合があると(例えば負極が過度に圧縮されたり、電解液の含浸が不足している等があると)、Liイオンが負極中の活物質へインサートしにくくなり、負極表面にLiデンドライト(樹枝状析出物)が生じることになる。このLiデンドライトが発生すると、その析出部分に相当する活物質が失活してしまい、電極性能(電池性能)の損失を招く。また、負極のLiデンドライトがセパレータを突き破り、正極とショートする可能性もある。したがって、正極表面におけるLi析出量は、少ないほど電極性能(電池性能)が優れていると言える。
【0030】
このようなことから、Liデンドライトの析出を回避するために、撓み深さとしては、正極表面のLi析出量が少量以下である1μm以上1000μm(1mm)以内の範囲が好適と言える。このうち1μmの撓みを形成する場合には、撓みが比較的浅いので、これを補うために撓み本数を10本/200mm〜100本/200mmの高い密度にし、電解液の流通路を良好に確保するのが望ましい。
【0031】
なお、撓み本数が100本/200mmなど高密度の場合、撓みの深さによっては、電極体を外装体に収納するのが若干困難になる場合があるので考慮が必要である。
3.その他の事項
上記実施の形態では、正極表面に溝を形成する例を示したが、当然ながら本発明はこれに限定するものではなく、正極、負極、セパレータの少なくともいずれかの表面に形成すればよい。このうち、電極体として形成されたのちに、重なり合うものにそれぞれ溝を形成する場合には、溝が互いに重なり合って前記セパレータ、正極板、負極板の少なくとも一つ微小通路が無くならないように注意する必要がある。具体的には、例えば正極とセパレータのそれぞれに形成する溝のピッチを変える方法が挙げられる。
【0032】
また、上記実施の形態では、溝の形態として半月断面形状のものとしたが、本発明はこれに限定するものではなく、三角断面形状、直方断面形状など、他の形状であってもよい。
ここで、図4(a)〜(c)は、溝の形態バリエーションを示す正極正面図である。
【0033】
当図(a)では、複数本のまとまった溝の列(ここでは3列)が、一定間隔おきに繰り返し形成されているパターンを示している。
当図(b)では、電極表面中央部に達する短い溝が、電極幅方向両端から形成されているパターンを示している。
当図(c)では、複数本のまとまった溝の列(ここでは3列)が、一定間隔おきに、電極幅方向に沿って斜めに形成されているパターンを示している。
【0034】
このいずれの溝の形態バリエーションによっても、上記実施の形態とほぼ同様の効果が奏されるが、電極幅方向端部から、電極表面中央部に溝が達していると、電極体を外装缶に収納後、電解液の注液の際に、迅速に電解液が電極体中の活物質に浸透するので望ましい。
また、本発明は円筒型外装缶に限らず、角形外装缶など、他のタイプの外装缶(外装体)を持つ非水電解液電池に適用してもよい。
【0035】
【発明の効果】
以上のことから明らかなように、本発明は、セパレータを介して正極板と負極板を重ね合わせてなる電極体を、電解液とともに外装体に収納してなる非水電解液電池において前記セパレータ、正極板、負極板の少なくとも一つには、幅方向の端部から中央部にかけて電解液が流通する溝が形成されているので、電極体を収納した外装缶内に電解液を注入すると、前記溝を流通路として電解液が電極体内部に迅速に入り、正極、負極の活物質全体にわたって浸透する。したがって、従来より飛躍的に短時間で電解液を電極体に染み込ませることが可能となり、豊富な電解液を外装缶内に注入できるため、高い電池性能の発揮が実現される。
【図面の簡単な説明】
【図1】本発明の実施の形態1における円筒型リチウムイオン電池の断面斜視図である。
【図2】正極の部分断面斜視図である。
【図3】正極の製造工程を示す図である。
【図4】正極のバリエーションを示す図である。
【図5】電極体の部分断面図である。
【符号の説明】
1 正極
1a 溝(撓み)
2 負極
3 セパレータ
4 電極体
6 外装缶[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique for putting an electrolyte in an exterior body in a short time and abundantly in a non-aqueous electrolyte battery such as a lithium ion battery.
[0002]
[Prior art]
In recent years, small electronic devices such as mobile phones and personal digital assistants (PDAs) are rapidly spreading. In these small electronic devices, a non-aqueous electrolyte battery such as a lithium ion battery is frequently used as a high energy density power source that can withstand long-term use.
A non-aqueous electrolyte battery has a configuration in which a power generation element is housed in an exterior body (exterior can) and the inside of the battery is sealed by a sealing body. For example, the power generation element is obtained by impregnating an electrolytic solution in an electrode body formed by stacking a strip-shaped separator, a positive electrode, and a negative electrode. The electrolytic solution is injected so that the active material in the electrode body is soaked mainly after the electrode body is put in the outer can. Since the electrolyte injected into the outer can is difficult to impregnate the active material immediately after injection, generally, the process of gradually impregnating the active material in the electrode body over time is repeated, It is necessary to go through a step of reducing the pressure inside the can and injecting the electrolyte.
[0003]
[Problems to be solved by the invention]
By the way, with the recent increase in energy density of batteries, it is required to secure as much volume of the electrode body and the amount of active material as possible. However, this increases the active material filling density of the electrode body housed in the outer can, which makes it more difficult to inject the electrolyte solution and lowers the work efficiency. In some cases, electrolyte injection may be insufficient.
[0004]
Such a problem may occur over the entire non-aqueous electrolyte battery, but is particularly conspicuous in the field of lithium ion batteries widely used as a power source for small electronic devices, and an immediate countermeasure is desired. .
In order to solve such a problem, Japanese Patent Application Laid-Open No. 9-298057 discloses that the surface of the electrode plate is partially compressed to form a groove, and an electrolytic solution is circulated through the groove. However, as the energy density of the battery increases, the electrode plate is filled as close to the limit as possible, and if a further compressive force is applied by this method, the electrode plate is damaged. This is even more so with batteries using thin electrode plates such as lithium ion batteries. In addition, in order to form a groove, it is considered to form a groove by scraping off a part of the active material layer of the electrode plate. However, the battery capacity is reduced or the powder generated when scraped off is processed. Is a problem.
[0005]
The present invention has been made in view of such problems, and its purpose is to allow abundant electrolytes to be poured into the outer can in a shorter time than before, and to exhibit good battery performance. Is to provide a non-aqueous electrolyte battery that can be expected.
[0006]
[Means for Solving the Problems]
To solve the above problems, the present invention provides a positive electrode plate comprising a superposition of the negative plate electrode member through the separator, the nonaqueous electrolyte battery comprising housed in the exterior body together with an electrolyte, the separator, At least one of the positive electrode plate and the negative electrode plate is formed with a bend in which the electrolyte solution flows from the end in the width direction to the center.
[0007]
According to this configuration, the bending formed in at least one of the positive electrode, the separator, and the negative electrode forms at least one minute passage of the separator, the positive electrode plate, and the negative electrode plate inside the electrode body. For this reason, when injecting the electrolyte into the electrode body housed in the exterior body, the electrolyte circulates through at least one minute passage of the separator, the positive electrode plate, and the negative electrode plate, and the electrode active material is rapidly accumulated. As a result, an abundant amount of electrolyte solution is injected into the exterior body. Therefore, it is not necessary to repeat the process of immersing the electrolytic solution into the electrode body as in the prior art. For this reason, in the present invention, the time required for the electrolyte injection process can be drastically shortened compared with the prior art, although the structure is very simple, and the work efficiency is improved, so the manufacturing process is reduced. Such an effect is produced.
[0008]
Moreover, in this invention, since the surface itself of an electrode and a separator itself is processed minutely, without using anything other than an electric power generation element as mentioned above, there is no possibility of causing the fall of the energy density of a battery.
Specifically, the flow passage can be formed as a groove (deflection) by processing at least one surface of the separator, the positive electrode, and the negative electrode. This processing has an advantage that the groove can be formed without damaging the electrode plate while maintaining the amount of the active material as it is. According to experiments by the inventors, it has been found that the groove has a depth of 1 μm or more and 1 mm or less.
[0009]
However, when the depth is about 1 μm, it is desirable to increase the number of grooves as will be described in detail later.
The present invention is generally applicable to any form of non-aqueous electrolyte battery having an outer body, but the electrode body is wound in a spiral shape and stored in a cylindrical outer can. The effect is particularly great when the electrode body is wound with a relatively strong winding force.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
1. Embodiment 1
1-1. Configuration of Lithium Ion Battery FIG. 1 is a cross-sectional perspective view of a cylindrical lithium ion battery which is an application example of the present invention.
[0011]
The lithium ion battery (diameter 18 mm, height 65 mm) has a cylindrical outer can 6, and an electrode body 4 in which a positive electrode 1 and a negative electrode 2 are spirally wound via a separator 3, The electrode body 4 has a configuration in which an electrolytic solution impregnated or the like is stored. A non-aqueous electrolyte is used as the electrolyte. Here, as an example, electrolysis in which LiPF 6 (lithium hexafluorophosphate) is dissolved as an electrolyte in a mixed solvent of EC (ethylene carbonate) and EMC (ethyl methyl carbonate) Liquid is used.
[0012]
The positive electrode 1 is coated on the surface of an aluminum belt-like core with a positive electrode mixture consisting mainly of lithium cobaltate LiCoO 2 as the positive electrode active material, mixed with a conductive agent (carbon black) and a binder (polyvinylidene fluoride). And is connected to the positive electrode current collector 11.
The negative electrode 2 is formed by applying a negative electrode mixture in which a negative electrode active material mainly composed of graphite and a binder are mixed on the surface of a copper belt-like core body, and the negative electrode terminal is formed by a negative electrode current collector (not shown). It is connected to the inner bottom surface of the cylindrical outer can 6 that also serves as the same.
[0013]
The separator 3 is a polyethylene microporous film, and is used for insulating the positive electrode 1 and the negative electrode 2.
A center pin 5 is arranged at the center of the electrode body 4 in order to prevent deformation of the electrode body 4 and to secure a gas flow path that occurs in an abnormal state (such as being dropped in a fire).
A pressing plate 7 is disposed on the electrode body 4 housed in the outer can 6, and the positive electrode current collector 11 is disposed through the central opening of the pressing plate 7. The positive electrode current collector 11 is connected to a rupture disk (thin film valve plate) 8 and a positive electrode terminal 10.
[0014]
In the battery 1 having such a configuration, the following reaction occurs during charging and discharging. That is, at the time of charging, the positive electrode 1 oxidizes cobalt in the crystal lattice of lithium cobaltate, which is the positive electrode active material, and releases lithium ions along with this. The released lithium ions move to the negative electrode side through the separator 3 impregnated with the electrolytic solution. On the negative electrode side, lithium ions are incorporated into the crystal lattice of graphite.
[0015]
At the time of discharging, a reaction opposite to that at the time of charging occurs, and electric energy can be taken out to the outside.
Here, the first embodiment is characterized by the structure of the positive electrode 1. FIG. 2 is a partial perspective view of the positive electrode. As shown in the figure, the positive electrode 1 according to the first embodiment has a plurality of half-moon-shaped grooves (flexures) 1a formed on the surface thereof in parallel to the width direction of the positive electrode from the width direction end portion to the center portion. It is installed side by side at regular intervals. For example, the groove 1a has a depth of 300 μm in the electrode plate thickness direction and a width of 1 mm, and is formed at a pitch of 4 mm over the width direction of the positive electrode 1.
[0016]
Such a groove 1a of the positive electrode 1 forms a micro passage with the separator 3 after the electrode body 4 is formed. At least one minute passage of the separator, the positive electrode plate, and the negative electrode plate allows the electrolytic solution to penetrate into the active material of the electrode quickly and satisfactorily (especially in the vicinity of the center of the electrode body) during battery production.
Note that the positive electrode 1 in FIG. 1 has a groove size larger than the actual size for explanation reasons.
[0017]
1-2. Effects of Embodiments In general, in a battery manufacturing process, an electrode body formed by stacking a positive electrode, a separator, and a negative electrode is stored in an exterior body (exterior can), and then an electrolyte is injected into the exterior can. The injected electrolyte solution soaks into the central part mainly from the upper and lower end surfaces of the electrode body, but this soaking requires a long time. In recent years, in order to achieve a high energy density in a non-aqueous electrolyte battery, a contrivance has been made such as increasing the volume ratio (active material density) occupied by the electrode body with respect to the exterior body volume. Therefore, when such an electrode body is put in the outer can, there is almost no space left inside the outer can, and therefore, the injection of the electrolytic solution becomes very difficult as compared with the conventional case.
[0018]
As a method of injecting the electrolytic solution, in addition to a method of repeating the injection step of gradually injecting the electrolytic solution, the inside of the outer can is depressurized and the electrolytic solution is sucked into the electrode body while rotating the outer can with centrifugal force. There are methods, but the former takes a long time and the latter takes time.
In order to deal with such a problem, in Embodiment 1, since a plurality of minute grooves 1a are formed on the surface of the positive electrode 1, the positive electrode 1, the separator 3, and the negative electrode 2 are wound to form the electrode body 4, Is housed in the outer can 6, the groove 1 a becomes a minute passage between the positive electrode 1 and the separator 3. Since the stripes of the micro passages are open at the end face of the electrode body 4, when the electrolytic solution is injected into the outer can 6 containing the electrode body 4, the electrolytic solution flows from the opening of the micro passages to the electrode body 4. It quickly enters deep inside and penetrates through the active material of positive electrode 1 and negative electrode 2. Thereby, the electrolytic solution can be soaked into the electrode body 4 in a short time, and abundant electrolytic solution can be injected into the outer can 6. In the first embodiment, since the groove 1a is formed in the electrode width direction, the electrolytic solution can be satisfactorily penetrated into the active material of the electrode, particularly near the center of the electrode body 4.
[0019]
Further, in the method of forming a groove by scraping or compressing the active material layer of the electrode, there is only the effect of the electrolyte flow for one groove for one groove, but in this embodiment As shown in the partial sectional view of the electrode body in FIG. 5, when the electrode body is wound, the vicinity of the bend is bent and wound, so that several electrolyte flow paths are formed for one bend. There is an effect that rapid electrolyte solution impregnation becomes possible.
[0020]
In Japanese Patent Application No. 11-228728, a thread-like or plate-like member is inserted between the electrode and the separator, thereby forming a gap inside the electrode body. However, when a member other than the power generation element is put in the outer can, the energy density is considered to be reduced accordingly. On the other hand, in the present invention, since the groove is formed directly by pressing the surface of at least one of the positive electrode, the separator, and the negative electrode in order to secure the flow path for the electrolyte solution, the decrease in energy density is basically not decreased. .
[0021]
2.Example
2-1. Performance Comparison Experiment of Example and Comparative Example Next, a battery of the example was manufactured and a performance measurement experiment was performed.
In the production of the positive electrode, the surface of the conductive core made of an aluminum foil having a length of 600 mm, a width of 55 mm, and a thickness of 20 μm is mainly composed of lithium cobaltate, graphite as the other conductive agent, and polyvinylidene fluoride as the binder. Apply positive electrode mixture slurry (solvent is N-methyl-2-pyrrolidone). Thereafter, the solvent is dried and volatilized and pressed to a thickness of 165 μm to produce an electrode plate.
[0022]
Then, a groove (bending) is formed on the surface of the electrode plate using a roller with a convex portion as shown in the process diagram of FIG. The shape and pitch of the groove can be freely set by changing the shape and pitch of the convex portion of the roller. In this process, it was changed between 0 and 110 within a positive electrode length of 200 mm. The depth of the groove was changed between 0 μm and 1500 μm. A positive electrode without a groove corresponds to a conventional example. The depth of the groove is the depth of the wound electrode body, and was confirmed by seeing through the cross section with an X-ray CT apparatus (for example, Microfocus 3DX line CT apparatus ELESCAN manufactured by Nippon Steel Elex Co., Ltd.).
[0023]
Using the positive electrode produced in this way, an electrode body was formed by sequentially stacking a separator and a negative electrode and accommodated in a cylindrical outer can. In the electrolyte, LiPF 6 (lithium hexafluorophosphate) is dissolved as an electrolyte in a mixed solvent in which EC (ethylene carbonate) and EMC (ethyl methyl carbonate) are mixed at a volume ratio of EC: EMC = 30: 70. Solution was used. This produced a cylindrical lithium ion battery (diameter 18 mm, height 65 mm) with a design capacity of 1800 mAh.
[0024]
Next, the cylindrical lithium ion battery produced above is charged at a constant current until the battery voltage reaches 4.2 V at a charging current of 1800 mA at room temperature, and then charged at a low voltage until the charging current value reaches 36 mA at 4.2 V. went. Thereafter, the battery was disassembled, and the amount of Li deposited on the negative electrode surface was observed.
In addition, in order to evaluate the ease of impregnation of the electrolyte in the electrode body, propylene carbonate (PC) was poured into a beaker, and only the electrode body was immersed in the beaker for 5 minutes and then pulled up, and the electrolyte solution had a mass difference before and after the impregnation The amount impregnated with (liquid absorption amount).
[0025]
Table 1 shows data relating to the amount of the electrode body impregnated with the electrolytic solution (the amount of liquid absorption) and the amount of Li deposition on the positive electrode surface for these fabricated batteries.
[0026]
[Table 1]
Figure 0004179778
[0027]
2-2. Consideration of experimental results As is clear from this figure, the electrolyte capacity of the conventional positive electrode (0 deflection) is 3.0 g, whereas the number of grooves (flexure) is 1/200 mm. In the case of -5 pieces / 200 mm, if the bending depth is 3 μm or more, the liquid absorption amount of the electrolytic solution is maintained at 3.2 g or more.
Further, when the number of grooves (bending) is 10/200 mm to 100/200 mm, the amount of electrolyte absorbed is kept at least 3.1 g if the bending depth is 1 μm or more.
[0028]
Thus, it can be seen that by providing a groove (bending) as in the present invention with respect to the amount of electrolyte of the conventional positive electrode, an excellent amount of electrolyte can be secured.
On the other hand, when the number of grooves (deflection) of the positive electrode is in the range of 1/200 mm to 100/200 mm, excellent performance such as a small amount or no Li deposition is exhibited. However, when the deflection depth reached 1500 μm, the result was that the amount of Li precipitation increased. This is thought to be because the balance of the electrode reaction is lost between the positive electrode and the negative electrode, and Li is likely to precipitate here.
[0029]
In general, in a lithium ion battery, when the battery is fully charged, Li ions desorbed from the positive electrode are inserted into the active material of the negative electrode. Here, if there is any defect in the positive electrode or the negative electrode (for example, the negative electrode is excessively compressed or the electrolyte is not sufficiently impregnated), it becomes difficult for Li ions to be inserted into the active material in the negative electrode. Li dendrite (dendritic precipitate) is generated on the negative electrode surface. When this Li dendrite is generated, the active material corresponding to the deposited portion is deactivated, resulting in a loss of electrode performance (battery performance). In addition, the Li dendrite of the negative electrode may break through the separator and short-circuit with the positive electrode. Therefore, it can be said that the smaller the amount of Li deposition on the positive electrode surface, the better the electrode performance (battery performance).
[0030]
For this reason, in order to avoid the precipitation of Li dendrite, it can be said that the deflection depth is preferably in the range of 1 μm or more and 1000 μm (1 mm) where the amount of Li deposition on the positive electrode surface is a small amount or less. Of these, when forming a 1 μm bend, the bend is relatively shallow. To compensate for this, the number of bends is set to a high density of 10/200 mm to 100/200 mm to ensure a good electrolyte flow path. It is desirable to do.
[0031]
In the case of a high density such as the number of bends of 100/200 mm, it may be difficult to house the electrode body in the exterior body depending on the depth of the bend.
3. Other matters In the above embodiment, an example in which a groove is formed on the surface of the positive electrode has been shown, but the present invention is naturally not limited to this, and is formed on the surface of at least one of the positive electrode, the negative electrode, and the separator. do it. Among these, when forming grooves in the overlapping parts after being formed as electrode bodies, care should be taken not to lose at least one minute passage of the separator, the positive electrode plate, and the negative electrode plate by overlapping the grooves. There is a need. Specifically, for example, there is a method of changing the pitch of grooves formed in each of the positive electrode and the separator.
[0032]
Moreover, in the said embodiment, although it was set as the shape of a half-moon cross section as a form of a groove | channel, this invention is not limited to this, Other shapes, such as a triangular cross-sectional shape and a rectangular cross-sectional shape, may be sufficient.
Here, FIGS. 4A to 4C are positive electrode front views showing variations in the shape of the grooves.
[0033]
FIG. 4A shows a pattern in which a plurality of rows of grooves (here, three rows) are repeatedly formed at regular intervals.
FIG. 4B shows a pattern in which a short groove reaching the center of the electrode surface is formed from both ends in the electrode width direction.
FIG. 4C shows a pattern in which a plurality of rows of grooves (here, three rows) are formed obliquely along the electrode width direction at regular intervals.
[0034]
Any of the variations in the shape of the groove can provide substantially the same effect as the above embodiment, but when the groove reaches the electrode surface center from the end in the electrode width direction, the electrode body is turned into an outer can. It is desirable that the electrolytic solution quickly penetrates into the active material in the electrode body when the electrolytic solution is injected after storage.
The present invention is not limited to a cylindrical outer can, and may be applied to a nonaqueous electrolyte battery having other types of outer cans (exterior bodies) such as a rectangular outer can.
[0035]
【The invention's effect】
As apparent from the above, the present invention, the positive and negative electrode plates overlapped comprising electrode body through the separator, the non-aqueous electrolyte battery comprising housed in the exterior body together with an electrolyte, the separator At least one of the positive electrode plate and the negative electrode plate is formed with a groove through which the electrolyte solution flows from the end portion in the width direction to the center portion, so that when the electrolyte solution is injected into the outer can containing the electrode body, The electrolytic solution quickly enters the inside of the electrode body using the groove as a flow path, and permeates the entire active material of the positive electrode and the negative electrode. Therefore, the electrolyte solution can be soaked in the electrode body in a significantly shorter time than before, and abundant electrolyte solution can be injected into the outer can, thereby realizing high battery performance.
[Brief description of the drawings]
FIG. 1 is a cross-sectional perspective view of a cylindrical lithium ion battery according to Embodiment 1 of the present invention.
FIG. 2 is a partial cross-sectional perspective view of a positive electrode.
FIG. 3 is a diagram showing a manufacturing process of a positive electrode.
FIG. 4 is a diagram showing variations of the positive electrode.
FIG. 5 is a partial cross-sectional view of an electrode body.
[Explanation of symbols]
1 Positive electrode
1a Groove (flexure)
2 Negative electrode
3 Separator
4 Electrode body
6 Exterior can

Claims (4)

セパレータを介して正極と負極を重ね合わせてなる電極体を、電解液とともに外装体に収納してなる非水電解液電池において
前記セパレータ、正極板、負極板の少なくとも一つには、幅方向の端部から中央部にかけて電解液が流通する撓みが形成されていることを特徴とする非水電解液電池。
In a non-aqueous electrolyte battery in which an electrode body in which a positive electrode and a negative electrode are superimposed via a separator is housed in an exterior body together with an electrolytic solution ,
A non-aqueous electrolyte battery characterized in that at least one of the separator, the positive electrode plate, and the negative electrode plate is formed with a bend in which an electrolyte flows from an end portion in the width direction to a central portion.
前記電解液が流通する撓みは、前記セパレータ、正極、負極の少なくとも一つを厚み方向に曲げ加工をして形成された撓みであることを特徴とする請求項1に記載の非水電解液電池。  2. The nonaqueous electrolyte battery according to claim 1, wherein the bend through which the electrolyte flows is a bend formed by bending at least one of the separator, the positive electrode, and the negative electrode in the thickness direction. . 渦巻き状の前記電極体が円筒型外装缶の前記外装体に収納されていることを特徴とする請求項1または2に記載の非水電解液電池。  3. The nonaqueous electrolyte battery according to claim 1, wherein the spiral electrode body is accommodated in the outer casing of a cylindrical outer can. 前記撓みは1μm以上1mm以下の厚み方向深さで形成されていることを特徴とする請求項1〜3のいずれかに記載の非水電解液電池。  4. The nonaqueous electrolyte battery according to claim 1, wherein the deflection is formed with a depth in the thickness direction of 1 μm or more and 1 mm or less.
JP2001398603A 2001-12-27 2001-12-27 Non-aqueous electrolyte battery Expired - Fee Related JP4179778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001398603A JP4179778B2 (en) 2001-12-27 2001-12-27 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001398603A JP4179778B2 (en) 2001-12-27 2001-12-27 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JP2003197265A JP2003197265A (en) 2003-07-11
JP4179778B2 true JP4179778B2 (en) 2008-11-12

Family

ID=27603958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001398603A Expired - Fee Related JP4179778B2 (en) 2001-12-27 2001-12-27 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP4179778B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005285607A (en) * 2004-03-30 2005-10-13 Matsushita Electric Ind Co Ltd Nonaqueous secondary battery and manufacturing method thereof
JP5190746B2 (en) * 2005-11-17 2013-04-24 住友電気工業株式会社 Positive electrode of thin film lithium battery and thin film lithium battery
US7960050B2 (en) 2006-10-30 2011-06-14 Panasonic Corporation Secondary cell and its manufacturing method
JP2011204593A (en) * 2010-03-26 2011-10-13 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
KR101889730B1 (en) 2011-04-14 2018-08-20 칼스루헤 인스티투트 퓌어 테흐놀로기 On improvements in electrolyte batteries
WO2013084806A1 (en) * 2011-12-05 2013-06-13 日産自動車株式会社 Air battery and battery assembly using same
JP2018125272A (en) * 2016-03-24 2018-08-09 三菱製紙株式会社 Lithium ion battery separator
CN107591569A (en) * 2017-10-10 2018-01-16 合肥国轩高科动力能源有限公司 A kind of method for improving cylinder lithium titanate battery wetting property
WO2020184502A1 (en) * 2019-03-08 2020-09-17 積水化学工業株式会社 Non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery
JP7280232B2 (en) * 2020-11-12 2023-05-23 プライムアースEvエナジー株式会社 secondary battery
CN116417687A (en) * 2022-01-05 2023-07-11 宁德时代新能源科技股份有限公司 Winding type electrode assembly, battery cell, battery and electric equipment

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06333550A (en) * 1993-05-19 1994-12-02 Toshiba Corp Nonaqueous electrolytic battery
JPH09298057A (en) * 1996-04-30 1997-11-18 Sanyo Electric Co Ltd Lithium ion battery
ATE298932T1 (en) * 1997-04-23 2005-07-15 Japan Storage Battery Co Ltd ELECTRODE AND BATTERY
JP4149543B2 (en) * 1997-11-19 2008-09-10 株式会社東芝 Non-aqueous electrolyte battery
JP2001035484A (en) * 1999-05-19 2001-02-09 Nec Corp Nonaqueous electrolyte secondary battery
JP2001023612A (en) * 1999-07-09 2001-01-26 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2001176558A (en) * 1999-12-20 2001-06-29 Toshiba Corp Non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2003197265A (en) 2003-07-11

Similar Documents

Publication Publication Date Title
CN108539124B (en) Secondary battery with lithium-supplement electrode and preparation method thereof
JP5046352B2 (en) Method for producing lithium ion secondary battery
KR100963981B1 (en) Jelly-roll Having Active Material Layer with Different Loading Amount
KR100624971B1 (en) Electrode Plate of Secondary Battery and Method of fabricating the same
CN107658472B (en) Negative electrode comprising mesh-type current collector, lithium secondary battery comprising same, and method for manufacturing same
JP2001357892A (en) Electrochemical lithium-ion secondary battery having scallop electrode structure
CN103887471A (en) Electrode With Porous Protective Film, Nonaqueous Electrolyte Secondary Battery, And Method For Manufacturing Electrode With Porous Protective Film
CN110770944B (en) Porous etched ion track polymer membrane as separator for battery
WO2011155060A1 (en) Lithium secondary battery and production method for same
KR20070058484A (en) Improved lithium cell and method of forming same
KR102530157B1 (en) Pre-lithiation Method of Negative Electrode for secondary battery
JP5512057B2 (en) Cylindrical battery
KR101628888B1 (en) Lithium-ion battery precursor including a sacrificial lithium electrode and a positive textile conversion electrode
JP4179778B2 (en) Non-aqueous electrolyte battery
CN111602277A (en) Rechargeable metal halide battery
JP2011222388A (en) Laminated secondary battery
JP5110619B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof.
JP2001035484A (en) Nonaqueous electrolyte secondary battery
JP2002245998A (en) Battery pack and battery
KR20140142576A (en) Manufacturing method of electrode for secondary battery and secondary battery comprising electrode manufactured by the method
KR102279003B1 (en) Method of manufacturing negative electrode for lithium secondary battery
CN103181002A (en) Cathode for cable-type secondary battery and method for manufacturing same
JP2007335165A (en) Battery
TW201703334A (en) Stack-folding typed electrode assembly
JP2005243336A (en) Battery equipped with spiral electrode group

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080826

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees