JP2001176558A - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP2001176558A
JP2001176558A JP36159899A JP36159899A JP2001176558A JP 2001176558 A JP2001176558 A JP 2001176558A JP 36159899 A JP36159899 A JP 36159899A JP 36159899 A JP36159899 A JP 36159899A JP 2001176558 A JP2001176558 A JP 2001176558A
Authority
JP
Japan
Prior art keywords
electrode
aqueous electrolyte
active material
material layer
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36159899A
Other languages
Japanese (ja)
Inventor
Tomokazu Morita
朋和 森田
Hiroyuki Hasebe
裕之 長谷部
Jun Monma
旬 門馬
Kaoru Koiwa
馨 小岩
Asako Sato
麻子 佐藤
Norio Takami
則雄 高見
Takahisa Osaki
隆久 大崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP36159899A priority Critical patent/JP2001176558A/en
Publication of JP2001176558A publication Critical patent/JP2001176558A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a long-life non-aqueous electrolyte secondary battery preventing reduction of the capacity and battery voltage caused by repeated of charging/discharging. SOLUTION: The non-aqueous electrolyte secondary battery comprises an electrode group 9 composed of a positive electrode 6, a negative electrode 7 and a separator 8 between them which are layered and helically wound and a non-aqueous electrolyte stored in a container 10. At least either the positive electrode 6 or the negative electrode 7 has a groove 4 on an active material layer, and at least one end of the groove 4 ends on the longer side of the active material layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解液二次電
池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery.

【0002】[0002]

【従来の技術】非水電解液二次電池、例えば円筒形リチ
ウムイオン二次電池は、帯状の集電体の片面または両面
に正極活物質層が形成されてなる正極と、同じく帯状の
集電体の片面または両面に負極活物質層が形成されてな
る負極とをセパレータを介して積重し、この積重体を渦
巻状に巻いた電極群を円筒状の電池缶に収納した後、非
水電解液を注液し、封口することにより構成される。
2. Description of the Related Art A non-aqueous electrolyte secondary battery, for example, a cylindrical lithium ion secondary battery, has a positive electrode having a positive electrode active material layer formed on one or both sides of a band-like current collector, and a similar band-like current collector. A negative electrode having a negative electrode active material layer formed on one or both sides of the body is stacked via a separator, and the stacked body is spirally wound, and the electrode group is stored in a cylindrical battery can. It is constituted by injecting an electrolyte solution and sealing it.

【0003】前記円筒形リチウムイオン電池において
は、積重された電極群が渦巻状に密に巻かれた状態であ
り、かつ、非水電解液にはある程度の粘性があるため、
非水電解液は電極群内部へ浸透しにくい。さらに、充放
電により電池内ではリチウムイオン吸蔵・脱離に伴う活
物質の膨張・収縮により非水電解液の移動が起こるが、
充放電サイクルを繰り返すと前記非水電解液の移動に起
因して電極群の各部で非水電解液の分布の不均一が生じ
る。つまり円筒形リチウムイオン電池の底面または上底
面付近には非水電解液が集中し、中腹部においては液枯
れが生じやすくなる。この非水電解液の不均一な分布は
充放電サイクルの繰り返しによる電池容量の低下および
電池電圧の低下の原因となる。
[0003] In the cylindrical lithium ion battery, the stacked electrode group is in a spirally densely wound state, and the nonaqueous electrolyte has a certain degree of viscosity.
The non-aqueous electrolyte does not easily penetrate into the electrode group. In addition, the non-aqueous electrolyte moves due to expansion and contraction of the active material due to lithium ion occlusion and desorption in the battery due to charge and discharge.
When the charge / discharge cycle is repeated, the non-aqueous electrolyte is unevenly distributed in each part of the electrode group due to the movement of the non-aqueous electrolyte. That is, the non-aqueous electrolyte concentrates near the bottom or upper bottom of the cylindrical lithium ion battery, and the middle abdomen tends to wither. The non-uniform distribution of the non-aqueous electrolyte causes a reduction in battery capacity and a reduction in battery voltage due to repeated charge and discharge cycles.

【0004】さらに近年の高容量二次電池への需要の高
まりに基づいて、電池の高容量化のために電極サイズを
大型化したり、または、電極の密度が高くすると、前述
した非水電解液の分布の不均一およびそれに起因する電
池特性の低下はより顕著となるという問題が発生してい
る。
[0004] Further, in response to the recent increase in demand for high capacity secondary batteries, if the size of the electrodes is increased or the density of the electrodes is increased in order to increase the capacity of the batteries, the above-mentioned nonaqueous electrolytic solution is used. Has a problem that the distribution of non-uniformity and the deterioration of battery characteristics caused by the uneven distribution become more remarkable.

【0005】従来非水電解液の浸透性の向上のために、
帯状電極の長手方向に対して平行に連続的な浅い溝を形
成する方法(特開平10−270016号公報)等が提案
されているが、この技術は電池製造時の非水電解液を注
入工程において、非水電解液の電池内部への浸透性を良
くして電池の初期容量の向上を図ることを目的としたも
ので、充放電サイクルの繰り返しにより生じる非水電解
液の分布の不均一およびそれに起因する電池特性の低下
は十分に改善されない。
Conventionally, in order to improve the permeability of a non-aqueous electrolyte,
A method of forming a continuous shallow groove parallel to the longitudinal direction of the strip-shaped electrode (Japanese Patent Laid-Open No. Hei 10-270016) has been proposed, but this technique involves a process of injecting a non-aqueous electrolyte during battery production. In the purpose of improving the initial capacity of the battery by improving the permeability of the non-aqueous electrolyte into the battery, uneven distribution of the non-aqueous electrolyte caused by repeated charge and discharge cycles and Deterioration of the battery characteristics resulting therefrom is not sufficiently improved.

【0006】[0006]

【発明が解決しようとする課題】本発明の課題は、前述
した問題を解決するために、充放電サイクルの繰り返し
による容量の低下および電池電圧の低下が少ない長寿命
の非水電解液二次電池を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a long-life non-aqueous electrolyte secondary battery in which a decrease in capacity and a decrease in battery voltage due to repetition of charge / discharge cycles are small. It is to provide.

【0007】[0007]

【課題を解決するための手段】本発明は、集電体の表面
に帯状の正極活物質層が形成されてなる正極、集電体の
表面に負極活物質層が形成されてなる帯状の負極、及び
前記正極及び前記負極との間に介在するセパレータが積
層されて渦巻状に捲回されてなる電極群と、非水電解液
とが容器に収納されてなる非水電解液二次電池におい
て、前記正極及び前記負極の少なくとも一方は前記活物
質層に溝を有し、前記溝の少なくとも一端が前記活物質
層の長辺上で終止していることを特徴とする非水電解液
二次電池である。
SUMMARY OF THE INVENTION The present invention provides a positive electrode comprising a current collector having a band-shaped positive electrode active material layer formed thereon, and a band-shaped negative electrode comprising a current collector having a negative electrode active material layer formed thereon. And a non-aqueous electrolyte secondary battery in which a separator interposed between the positive electrode and the negative electrode is stacked and spirally wound, and a non-aqueous electrolyte is contained in a container. Wherein at least one of the positive electrode and the negative electrode has a groove in the active material layer, and at least one end of the groove terminates on a long side of the active material layer. Battery.

【0008】前記溝の幅は前記溝の長さの50%以下で
あり、前記溝の深さが前記活物質層の厚さ80%以下で
あることが望ましい。
The width of the groove is preferably 50% or less of the length of the groove, and the depth of the groove is preferably 80% or less of the thickness of the active material layer.

【0009】本発明において電極に設けられる溝は、非
水電解液が電極へ浸透する速度を増すとともに、溝の壁
面において電極活物質層の深部と非水電解液が接触する
ことにより電極の面方向および厚み方向の非水電解液の
分布の均一性を高めるように作用する。
In the present invention, the groove provided in the electrode increases the speed at which the non-aqueous electrolyte penetrates into the electrode, and the surface of the electrode is brought into contact with the deep portion of the electrode active material layer on the wall surface of the groove. It acts to increase the uniformity of distribution of the non-aqueous electrolyte in the direction and thickness direction.

【0010】また、非水電解液二次電池においては充放
電に伴い活物質が膨張・収縮するため、非水電解液が電
極中から電極群の外へ浸出し、また浸入するというサイ
クルが繰り返される。
In a non-aqueous electrolyte secondary battery, since the active material expands and contracts with charging and discharging, a cycle in which the non-aqueous electrolyte leaches from the inside of the electrode to the outside of the electrode group, and enters again is repeated. It is.

【0011】本発明の如く電極が積層されて捲回されて
なる電池において、溝の少なくとも一端が活物質層の長
辺上に達していることにより、この非水電解液の浸出・
浸入が電極群内で偏ることなく主に捲回軸方向において
スムーズかつ均一に行われ、非水電解液の分布の均一性
が保たれる。
In the battery in which the electrodes are stacked and wound as in the present invention, since at least one end of the groove reaches the long side of the active material layer, the leaching of the nonaqueous electrolyte is prevented.
Penetration is performed smoothly and uniformly mainly in the direction of the winding axis without unevenness in the electrode group, and the uniformity of the distribution of the non-aqueous electrolyte is maintained.

【0012】従って、本発明によれば、充放電サイクル
の繰り返しによる容量の低下および電池電圧の低下が少
ない長寿命の非水電解液二次電池を提供することができ
る。
Therefore, according to the present invention, it is possible to provide a long-life non-aqueous electrolyte secondary battery in which a decrease in capacity and a decrease in battery voltage due to repeated charge / discharge cycles are small.

【0013】[0013]

【発明の実施の形態】以下、本発明の望ましい実施の形
態について詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail.

【0014】図1は本発明に関わる非水電解液二次電池
の一構成例を示す斜視図である。
FIG. 1 is a perspective view showing an example of the configuration of a non-aqueous electrolyte secondary battery according to the present invention.

【0015】非水電解液二次電池は、正極6と、負極7
とがセパレータ8を介して積層され、前記積層体が渦巻
状に捲回され電極群9が形成されており、この電極群9
と、非水電解液とが缶からなる容器10に収納され密閉
された構造を有する。正極6および負極7のうち少なく
とも一方6には溝4が設けられている。本発明の電池に
おいて正極あるいは負極にかかる捲回圧力は0.2〜2
0kg/cmの範囲であることが望ましい。この範囲
にある電池に対し本発明の構成は特に有効である。
The non-aqueous electrolyte secondary battery comprises a positive electrode 6 and a negative electrode 7.
Are laminated with a separator 8 interposed therebetween, and the laminate is spirally wound to form an electrode group 9.
And a non-aqueous electrolyte are housed in a can 10 made of a can and hermetically sealed. A groove 4 is provided in at least one of the positive electrode 6 and the negative electrode 7. In the battery of the present invention, the winding pressure applied to the positive electrode or the negative electrode is 0.2 to 2
It is desirable to be in the range of 0 kg / cm 2 . The configuration of the present invention is particularly effective for batteries in this range.

【0016】次に上記正極6あるいは負極7の構造につ
いてさらに詳細に説明する。
Next, the structure of the positive electrode 6 or the negative electrode 7 will be described in more detail.

【0017】図2は本発明の正極または負極を示す斜視
図である。
FIG. 2 is a perspective view showing a positive electrode or a negative electrode of the present invention.

【0018】図2(a)は正極あるいは負極(以下電極
とする)を示す斜視図であり、図2(b)は電極の側面
(図2(a)の四角で囲った部分)を示す断面図であ
る。図2(a)、(b)において非水電解液二次電池用
の電極1は、活物質を含む活物質層2が集電体3の片面
もしくは両面(図2においては両面)に形成されて構成
されている。活物質層の平面の形状は帯状すなわち長方
形をなしている。活物質層2には溝4が設けられてい
る。溝4の少なくとも一端は帯状の活物質層の長辺上で
終止している。また、集電体3には集電用タブ5が接続
されている。
FIG. 2A is a perspective view showing a positive electrode or a negative electrode (hereinafter referred to as an electrode), and FIG. 2B is a cross-sectional view showing a side surface of the electrode (a portion surrounded by a square in FIG. 2A). FIG. 2 (a) and 2 (b), an electrode 1 for a non-aqueous electrolyte secondary battery has an active material layer 2 containing an active material formed on one or both sides of a current collector 3 (both sides in FIG. 2). It is configured. The planar shape of the active material layer has a band shape, that is, a rectangular shape. A groove 4 is provided in the active material layer 2. At least one end of the groove 4 terminates on the long side of the strip-shaped active material layer. Further, a current collecting tab 5 is connected to the current collector 3.

【0019】溝4は複数形成されていることが非水電解
液の分布の均一性を高めるために望ましい。活物質層に
占める全溝の比率は活物質層の面積に対して、溝部分の
合計の面積が1%以上15%以下の範囲であることが本
発明の効果を十分に得るために望ましい。
It is desirable that a plurality of grooves 4 be formed in order to improve the uniformity of distribution of the non-aqueous electrolyte. The ratio of the total groove to the active material layer is preferably such that the total area of the groove portions is in the range of 1% to 15% with respect to the area of the active material layer in order to sufficiently obtain the effects of the present invention.

【0020】また、複数の溝4を形成する場合は、溝と
溝の間隔は電極の幅方向の長さ以下とすることが電極全
体に均一な効果を及ぼすことができるため望ましい。こ
こで幅方向とは電極の捲回軸に平行な方向、すなわち捲
回した電極コイルの高さとなる方向とする。複数の溝4
は一点以上の箇所で互いに交差していてもよい。溝4は
直線でも曲線でもよい。溝4の配列は何らかの規則性を
有しているのが好ましいが、ランダムでもよい。
When a plurality of grooves 4 are formed, it is desirable that the distance between the grooves be equal to or less than the length in the width direction of the electrode because a uniform effect can be exerted on the entire electrode. Here, the width direction is a direction parallel to the winding axis of the electrode, that is, a direction that becomes the height of the wound electrode coil. Multiple grooves 4
May cross each other at one or more points. The groove 4 may be straight or curved. The arrangement of the grooves 4 preferably has some regularity, but may be random.

【0021】溝4の断面の形状は、V字形、U字形、半
円状、コの字形の他、どのような形状でもよい。
The cross-sectional shape of the groove 4 may be V-shaped, U-shaped, semicircular, U-shaped, or any other shape.

【0022】溝4の深さは活物質層3の厚さの5%以上
80%以下であることが電極の郷土を保つために望まし
い。また、溝4の幅は、電極の幅の0.1%以上2%以
下であることが好ましい。この範囲であると良好な改善
効果が得られるとともに、溝形成による容量の低下を最
小限に抑えることができる。
It is desirable that the depth of the groove 4 is not less than 5% and not more than 80% of the thickness of the active material layer 3 in order to maintain the locality of the electrode. The width of the groove 4 is preferably 0.1% or more and 2% or less of the width of the electrode. Within this range, a good improvement effect can be obtained, and a decrease in capacitance due to the formation of the groove can be minimized.

【0023】溝4の壁面の表面粗さは、電極表面に比較
して、より高くなっているものがよい。このような深さ
・壁面粗さの溝4を形成した電極では、非水電解液の浸
透性および均一性の保持力の改善効果がより大きくな
る。また、負極に溝を形成する場合においては、充電時
に溝4が形成された部分にリチウムが析出しやすくなる
恐れがあるが、溝の幅を極力小さくすることによりリチ
ウムの析出を抑えることができる。
The surface roughness of the wall surface of the groove 4 is preferably higher than that of the electrode surface. In the electrode in which the groove 4 having the depth and the wall surface roughness is formed, the effect of improving the permeability of the nonaqueous electrolyte and the holding power of the uniformity is further increased. Further, in the case where a groove is formed in the negative electrode, lithium may easily precipitate at a portion where the groove 4 is formed at the time of charging, but the precipitation of lithium can be suppressed by minimizing the width of the groove. .

【0024】本発明においては上記の如く活物質層に溝
を形成した電極を少なくとも正極あるいは負極の少なく
とも一方に使用する。特に電極の多孔度は正極の方が負
極に比べて低くなることが多いため、正極の前記活物質
層に溝を形成したものを用いることが特に有効である
が、負極を高密度化し負極の多孔度が低下した場合にお
いては、正極・負極の両方、または負極のみにおける溝
の形成も有効である。
In the present invention, an electrode having a groove formed in the active material layer as described above is used as at least one of a positive electrode and a negative electrode. In particular, since the porosity of the electrode is often lower in the positive electrode than in the negative electrode, it is particularly effective to use a material in which a groove is formed in the active material layer of the positive electrode. When the porosity is reduced, it is also effective to form a groove in both the positive electrode and the negative electrode or only the negative electrode.

【0025】また、活物質層における溝の形成は、例え
ば金属またはセラミックスなどを用いた活物質層の切除
または研磨、溶剤を用いた除去などの活物質層の掘削に
よるのが好ましい。溝の製造工程は、集電体上に活物質
層を形成した後、乾燥及び圧延後に行うのが好ましい
が、乾燥の前後、圧延の前後のいずれの段階で行っても
よい。
The formation of the groove in the active material layer is preferably performed by excavation or polishing of the active material layer using a metal or ceramics, or excavation of the active material layer such as removal using a solvent. The manufacturing process of the groove is preferably performed after forming the active material layer on the current collector and then drying and rolling, but may be performed before or after drying or before and after rolling.

【0026】次に前記正極、前記負極、前記セパレータ
及び、前記非水電解液について詳細に説明する。 1)正極 正極は、活物質を含む正極活物質層が正極集電体の片面
もしくは両面に担持された構造を有する。
Next, the positive electrode, the negative electrode, the separator, and the non-aqueous electrolyte will be described in detail. 1) Positive Electrode The positive electrode has a structure in which a positive electrode active material layer containing an active material is supported on one or both surfaces of a positive electrode current collector.

【0027】前記正極活物質層の片面の厚さは10〜1
50μmの範囲であることが望ましい。従って正極集電
体の両面に担持されている場合は正極活物質層の合計の
厚さは20〜300μmの範囲となることが望ましい。
片面のより好ましい範囲は30〜120μmである。こ
の範囲であると大電流放電特性とサイクル寿命は向上す
る。
The thickness of one side of the positive electrode active material layer is 10 to 1
It is desirable that the thickness be in the range of 50 μm. Therefore, when it is carried on both surfaces of the positive electrode current collector, the total thickness of the positive electrode active material layer is desirably in the range of 20 to 300 μm.
A more preferable range on one side is 30 to 120 μm. Within this range, large current discharge characteristics and cycle life are improved.

【0028】正極活物質層は、正極活物質の他に導電剤
を含んでいてもよい。
The positive electrode active material layer may include a conductive agent in addition to the positive electrode active material.

【0029】また、正極活物質層は正極材料同士を結着
する結着剤を含んでいてもよい。
Further, the positive electrode active material layer may contain a binder for binding the positive electrode materials to each other.

【0030】正極活物質としては、種々の酸化物、例え
ば二酸化マンガン、リチウムマンガン複合酸化物、リチ
ウム含有ニッケルコバルト酸化物(例えば、LiCoO
)、リチウム含有ニッケルコバルト酸化物(例えばL
iNi0.8Co0.2)、リチウムマンガン複合
酸化物(例えばLiMn、LiMnO)を用い
ると高電圧が得られるために好ましい。
As the positive electrode active material, various oxides, for example, manganese dioxide, lithium manganese composite oxide, lithium-containing nickel cobalt oxide (for example, LiCoO 2
2 ), lithium-containing nickel cobalt oxide (for example, L
It is preferable to use iNi 0.8 Co 0.2 O 2 ) or a lithium manganese composite oxide (eg, LiMn 2 O 4 or LiMnO 2 ) because a high voltage can be obtained.

【0031】導電剤としてはアセチレンブラック、カー
ボンブラック、黒鉛などを挙げることができる。
Examples of the conductive agent include acetylene black, carbon black, graphite and the like.

【0032】結着材の具体例としては例えばポリテトラ
フルオロエチレン(PTFE)、ポリ弗化ビニリデン
(PVdF)、エチレン−プロピレン−ジエン共重合体
(EPDM)、スチレン−ブタジエンゴム(SBR)等
を用いることができる。
Specific examples of the binder include, for example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), ethylene-propylene-diene copolymer (EPDM), and styrene-butadiene rubber (SBR). be able to.

【0033】正極活物質、導電剤および結着剤の配合割
合は、正極活物質80〜95重量%、導電剤3〜20
%、結着剤2〜7重量%の範囲にすることが好ましい。
The mixing ratio of the positive electrode active material, the conductive agent and the binder is 80 to 95% by weight of the positive electrode active material, 3 to 20% of the conductive agent.
%, And a binder in a range of 2 to 7% by weight.

【0034】集電体としては、多孔質構造の導電性基板
かあるいは無孔の導電性基板を用いることができる。集
電体の厚さは5〜20μmであることが望ましい。この
範囲であると電極強度と軽量化のバランスがとれるから
である。 2)負極 負極は、負極材料を含む負極活物質が負極集電体の片面
もしくは両面に担持された構造を有する。
As the current collector, a conductive substrate having a porous structure or a non-porous conductive substrate can be used. The current collector preferably has a thickness of 5 to 20 μm. This is because in this range, the balance between electrode strength and weight reduction can be achieved. 2) Negative electrode The negative electrode has a structure in which a negative electrode active material containing a negative electrode material is supported on one or both surfaces of a negative electrode current collector.

【0035】前記負極活物質層の厚さは10〜150μ
mの範囲であることが望ましい。従って負極集電体の両
面に担持されている場合は負極活物質層の合計の厚さは
20〜300μmの範囲となる。片面の厚さのより好ま
しい範囲は30〜100μmである。この範囲であると
大電流放電特性とサイクル寿命は大幅に向上する。
The thickness of the negative electrode active material layer is 10 to 150 μm.
m is desirable. Therefore, when it is carried on both surfaces of the negative electrode current collector, the total thickness of the negative electrode active material layer is in the range of 20 to 300 μm. The more preferable range of the thickness on one side is 30 to 100 μm. Within this range, large current discharge characteristics and cycle life are significantly improved.

【0036】また、負極活物質層は負極材料同士を結着
する結着剤を含んでいてもよい。
The negative electrode active material layer may contain a binder for binding the negative electrode materials to each other.

【0037】負極材料としてはリチウムイオンを吸蔵・
放出する炭素質物が挙げられる。炭素質物としては、黒
鉛、コークス、炭素繊維、球状炭素等の黒鉛質材料もし
くは炭素質材料、熱硬化性樹脂、等方性ピッチ、メソフ
ェーズピッチ、メソフェーズピッチ系炭素繊維、メソフ
ェーズ小球体など(特に、メソフェーズピッチ系炭素繊
維が好ましい)に500〜3000℃で熱処理を施すこ
とにより得られる黒鉛質材料または炭素質材料等を挙げ
ることができる。中でも、熱処理の温度を2000℃以
上にすることにより得られ、(002)面の面間隔d
002が0.340nm以下である黒鉛結晶を有する黒
鉛質材料を用いることが好ましい。このような黒鉛質材
料を炭素質物として含む負極を備えた非水電解液二次電
池は、電池容量及び大電流特性を大幅に向上することが
できる。面間隔d002は0.336nm以下であるこ
とがさらに好ましい。
As a negative electrode material, occludes lithium ions.
Emitted carbonaceous materials. Examples of the carbonaceous material include graphite, coke, carbon fiber, graphite material or carbonaceous material such as spherical carbon, thermosetting resin, isotropic pitch, mesophase pitch, mesophase pitch-based carbon fiber, mesophase sphere, etc. Graphite material or carbonaceous material obtained by subjecting mesophase pitch-based carbon fiber to heat treatment at 500 to 3000 ° C. can be used. Above all, it can be obtained by setting the temperature of the heat treatment to 2000 ° C. or higher, and the plane distance d of the (002) plane
It is preferable to use a graphitic material having graphite crystals whose 002 is 0.340 nm or less. A non-aqueous electrolyte secondary battery provided with a negative electrode containing such a graphite material as a carbonaceous material can significantly improve battery capacity and large current characteristics. More preferably, the plane distance d 002 is 0.336 nm or less.

【0038】また、前記炭素質物としては特に2000
℃以上で熱処理されたメソフェーズピッチ系炭素繊維が
好ましい。これを用いると電極密度を1.3g/cm
以上の高密度にしても負極とセパレータ間の界面インピ
ーダンスが小さいため、大電流放電特性、急速充放電サ
イクル性能に優れる。
Further, the carbonaceous material is particularly 2,000
Mesophase pitch-based carbon fibers heat-treated at a temperature of not less than ° C are preferred. When this is used, the electrode density is 1.3 g / cm 3
Even at the above-mentioned high density, the interface impedance between the negative electrode and the separator is small, so that it is excellent in large current discharge characteristics and rapid charge / discharge cycle performance.

【0039】結着剤としては、例えばポリテトラフルオ
ロエチレン(PTFE)、ポリ弗化ビニリデン(PVd
F)、エチレン−プロピレン−ジエン共重合体(EPD
M)、スチレン−ブタジエンゴム(SBR)等を用いる
ことができる。
Examples of the binder include polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVd).
F), ethylene-propylene-diene copolymer (EPD)
M), styrene-butadiene rubber (SBR) and the like can be used.

【0040】集電体としては、多孔質構造の導電性基板
か、あるいは無孔の導電性基板を用いることができる。
これら導電性基板は、例えば、銅、ステンレスまたはニ
ッケルから形成することができる。集電体の厚さは5〜
20μmであることが望ましい。この範囲であると電極
強度と軽量化のバランスがとれるからである。
As the current collector, a conductive substrate having a porous structure or a non-porous conductive substrate can be used.
These conductive substrates can be formed from, for example, copper, stainless steel, or nickel. The thickness of the current collector is 5
Preferably, it is 20 μm. This is because in this range, the balance between electrode strength and weight reduction can be achieved.

【0041】負極材料としては、前述したリチウムイオ
ンを吸蔵・放出する炭素質物の他に、金属酸化物をはじ
めとする金属カルコゲン化合物か、または金属窒化物
か、リチウム金属またはリチウム合金からなるものおよ
び、これらを炭素質物と複合させた材料などを用いるこ
とができる。
Examples of the negative electrode material include, in addition to the above-mentioned carbonaceous materials that occlude and release lithium ions, metal chalcogen compounds such as metal oxides, metal nitrides, lithium metal or lithium alloys, and the like. A material obtained by combining these with a carbonaceous material can be used.

【0042】金属カルコゲン化合物としては、例えばス
ズ酸化物、ケイ素酸化物、リチウムチタン酸化物、ニオ
ブ酸化物、タングステン酸化物、スズ硫化物、チタン硫
化物等を挙げることができる。
Examples of the metal chalcogen compound include tin oxide, silicon oxide, lithium titanium oxide, niobium oxide, tungsten oxide, tin sulfide, titanium sulfide and the like.

【0043】金属窒化物としては、例えば、リチウムコ
バルト窒化物、リチウム鉄窒化物、リチウムマンガン窒
化物等を挙げることができる。
Examples of the metal nitride include lithium cobalt nitride, lithium iron nitride, lithium manganese nitride and the like.

【0044】リチウム合金としては、例えば、リチウム
アルミニウム合金、リチウムスズ合金、リチウム鉛合
金、リチウムケイ素合金を挙げることができる。 3)セパレータ セパレータは多孔質セパレータを用いる。セパレータの
材料としては、例えば、ポリエチレン、ポリプロピレ
ン、またはポリ弗化ピニリデン(PVdF)を含む多孔
質フィルム、合成樹脂製不織布等を用いることができ
る。中でも、ポリエチレンか、あるいはポリプロピレ
ン、または両者からなる多孔質フィルムは、二次電池の
安全性を向上できるため好ましい。
Examples of the lithium alloy include a lithium aluminum alloy, a lithium tin alloy, a lithium lead alloy, and a lithium silicon alloy. 3) Separator A porous separator is used as the separator. As a material of the separator, for example, a porous film containing polyethylene, polypropylene, or poly (vinylidene fluoride) (PVdF), a synthetic resin nonwoven fabric, or the like can be used. Among them, a porous film made of polyethylene, polypropylene, or both is preferable because the safety of the secondary battery can be improved.

【0045】セパレータの厚さは、30μm以下にする
ことが好ましい。厚さが30μmを越えると、正負極間
の距離が大きくなって内部抵抗が大きくなる恐れがあ
る。また、厚さの下限値は、5μmにすることが好まし
い。厚さを5μm未満にすると、セパレータの強度が著
しく低下して内部ショートが生じやすくなる恐れがあ
る。厚さの上限値は、25μmにすることがより好まし
く、また、下限値は10μmにすることがより好まし
い。
The thickness of the separator is preferably 30 μm or less. If the thickness exceeds 30 μm, the distance between the positive electrode and the negative electrode may increase, and the internal resistance may increase. The lower limit of the thickness is preferably set to 5 μm. If the thickness is less than 5 μm, the strength of the separator may be significantly reduced and an internal short circuit may easily occur. The upper limit of the thickness is more preferably 25 μm, and the lower limit is more preferably 10 μm.

【0046】セパレータは、120℃の条件で1時間お
いたときの熱収縮率が20%以下であることが好まし
い。熱収縮率が20%を超えると、加熱により短絡が起
こる可能性が大きくなる。熱収縮率は、15%以下にす
ることがより好ましい。
The separator preferably has a heat shrinkage of 20% or less when left at 120 ° C. for one hour. If the heat shrinkage exceeds 20%, the possibility of short-circuiting due to heating increases. More preferably, the heat shrinkage is 15% or less.

【0047】セパレータは、多孔度が30〜70%の範
囲であることが好ましい。これは次のような理由による
ものである。多孔度を30%未満にすると、セパレータ
において高い電解質保持性を得ることが困難になる恐れ
がある。一方、多孔度が60%を超えると十分なセパレ
ータ強度を得られなくなる恐れがある。多孔度のより好
ましい範囲は、35〜70%である。
The porosity of the separator is preferably in the range of 30 to 70%. This is due to the following reasons. If the porosity is less than 30%, it may be difficult to obtain high electrolyte retention in the separator. On the other hand, if the porosity exceeds 60%, sufficient separator strength may not be obtained. A more preferred range of porosity is 35-70%.

【0048】セパレータは、空気透過率が500秒/1
00cm以下であると好ましい。空気透過率が500
秒/100cmを超えると、セパレータにおいて高い
リチウムイオン移動度を得ることが困難になる恐れがあ
る。また、空気透過率の下限値は、30秒/100cm
である。空気透過率を30秒/100cm未満にす
ると、十分なセパレータ強度を得られなくなる恐れがあ
るからである。
The separator has an air permeability of 500 seconds / 1.
It is preferably at most 00 cm 3 . Air permeability 500
If it exceeds sec / 100 cm 3 , it may be difficult to obtain high lithium ion mobility in the separator. The lower limit of the air permeability is 30 seconds / 100 cm.
3 . If the air permeability is less than 30 seconds / 100 cm 3 , sufficient separator strength may not be obtained.

【0049】空気透過率の上限値は300秒/100c
にすることがより好ましく、また、下限値は50秒
/100cmにするとより好ましい。 4)非水電解液 非水電解液は、非水溶媒に電解質を溶解することにより
調製される液体状非水電解液で、電極群中の空隙に保持
される。
The upper limit of the air permeability is 300 seconds / 100c.
m 3 is more preferable, and the lower limit is more preferably 50 seconds / 100 cm 3 . 4) Non-aqueous electrolyte The non-aqueous electrolyte is a liquid non-aqueous electrolyte prepared by dissolving an electrolyte in a non-aqueous solvent, and is held in a gap in the electrode group.

【0050】非水溶媒としては、プロピレンカーボネー
ト(PC)やエチレンカーボネート(EC)とPCやE
Cより低粘度である非水溶媒(以下第2溶媒と称す)と
の混合溶媒を主体とする非水溶媒を用いることが好まし
い。
As the non-aqueous solvent, propylene carbonate (PC) or ethylene carbonate (EC) and PC or E
It is preferable to use a non-aqueous solvent mainly composed of a mixed solvent with a non-aqueous solvent having a lower viscosity than C (hereinafter, referred to as a second solvent).

【0051】第2溶媒としては、例えば鎖状カーボンが
好ましく、中でもジメチルカーボネート(DMC)、メ
チルエチルカーボネート(MEC)、ジエチルカーボネ
ート(DEC)、プロピオン酸エチル、プロピオン酸メ
チル、γ−ブチロラクトン(BL)、アセトニトリル
(AN)、酢酸エチル(EA)、トルエン、キシレンま
たは、酢酸メチル(MA)等が挙げられる。これらの第
2溶媒は、単独または2種以上の混合物の形態で用いる
ことができる。特に、第2溶媒はドナー数が16.5以
下であることがより好ましい。
As the second solvent, for example, chain carbon is preferable. Among them, dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), diethyl carbonate (DEC), ethyl propionate, methyl propionate, γ-butyrolactone (BL) , Acetonitrile (AN), ethyl acetate (EA), toluene, xylene or methyl acetate (MA). These second solvents can be used alone or in the form of a mixture of two or more. In particular, the second solvent more preferably has a donor number of 16.5 or less.

【0052】第2溶媒の粘度は、25℃において2.8
cmp以下であることが好ましい。混合溶媒中のエチレ
ンカーボネートまたはプロピレンカーボネートの配合量
は、体積比率で10〜80%であることが好ましい。よ
り好ましいエチレンカーボネートまたはプロピレンカー
ボネートの配合量は体積比率で20〜75%である。
The viscosity of the second solvent is 2.8 at 25 ° C.
cmp or less. The blending amount of ethylene carbonate or propylene carbonate in the mixed solvent is preferably 10 to 80% by volume. A more preferred blending amount of ethylene carbonate or propylene carbonate is 20 to 75% by volume.

【0053】非水電解液に含まれる電解質としては、例
えば過塩素酸リチウム(LiClO )、六弗化リン酸
リチウム(LiPF)、ホウ弗化リチウム(LiBF
)、六弗化砒素リチウム(LiAsF)、トリフル
オロメタスルホン酸リチウム(LiCFSO)、ビ
ストリフルオロメチルスルホニルイミドリチウム[Li
N(CFSO]等のリチウム塩(電解質)が挙
げられる。中でもLiPF、LiBFを用いるのが
好ましい。
Examples of the electrolyte contained in the non-aqueous electrolyte include:
For example, lithium perchlorate (LiClO 4), Hexafluorophosphoric acid
Lithium (LiPF6), Lithium borofluoride (LiBF
4), Lithium arsenide hexafluoride (LiAsF)6), Trifle
Lithium olometasulfonate (LiCF3SO3), Bi
Lithium trifluoromethylsulfonylimide [Li
N (CF3SO2)2] And other lithium salts (electrolytes)
I can do it. Among them, LiPF6, LiBF4Is to use
preferable.

【0054】電解質の非水溶媒に対する溶解量は、0.
5〜2.0mol/lとすることが望ましい。
The amount of the electrolyte dissolved in the non-aqueous solvent is 0.1.
It is desirable to set it to 5 to 2.0 mol / l.

【0055】[0055]

【実施例】(実施例1) [正極の作製]リチウムコバルト酸化物(LiCoO
;ただしxは0≦x≦1である)粉末91重量%をア
チセレンブラック2.5重量%及びグラファイト粉末
2.5重量%及びポリ弗化ビニリデン粉末4重量%とN
−メチルピロリドンを混合し、厚さが20μmのアルミ
ニウム箔からなる集電体の両面に塗布した後、乾燥し、
プレスすることにより電極密度を3.3g/cmとし
た。さらに電極をスリットし、活物質層の厚さが両面と
も0.1mmあり、全長560mm、全幅55.25m
mの長方形形状とした。
EXAMPLES (Example 1) [Preparation of positive electrode] Lithium cobalt oxide (Li x CoO)
2 ; where x is 0 ≦ x ≦ 1) 91% by weight of the powder is mixed with 2.5% by weight of acetylene black, 2.5% by weight of graphite powder, 4% by weight of polyvinylidene fluoride powder and N
-Methylpyrrolidone was mixed, applied to both sides of a current collector made of aluminum foil having a thickness of 20 μm, and then dried,
The electrode density was adjusted to 3.3 g / cm 3 by pressing. The electrode is further slit, and the thickness of the active material layer is 0.1 mm on both sides, the total length is 560 mm, and the total width is 55.25 m.
m rectangular shape.

【0056】次に前記活物質層に所定のサイズの金属製
の刃で削ることにより溝を形成した。
Next, a groove was formed in the active material layer by shaving with a metal blade having a predetermined size.

【0057】図3に実施例1に係る活物質層2の平面図
を示す。正極の両面の活物質層2表面に、図3に示すよ
うな活物質層2の長手方向に対して直角を成す、直線状
の深さ約0.05mm、幅約0.5mmの溝4を、電極
幅方向に互いに平行になるように7mm間隔で形成し
た。溝4の断面の形状はV字状とした。
FIG. 3 is a plan view of the active material layer 2 according to the first embodiment. On the surface of the active material layer 2 on both surfaces of the positive electrode, a linear groove 4 having a depth of about 0.05 mm and a width of about 0.5 mm, which is perpendicular to the longitudinal direction of the active material layer 2 as shown in FIG. And formed at intervals of 7 mm so as to be parallel to each other in the electrode width direction. The cross section of the groove 4 was V-shaped.

【0058】また、電極の表と裏で形成した溝の配列を
半周期ずらし、溝の位置が表面と裏面で重ならないよう
にした。活物質層の面積に占める全溝の合計の面積の割
合は約7%であった。 [負極の作製]炭素質材料として3000℃で熱処理し
たメソフェーズピッチ系炭素繊維(繊維径が8μm、平
均繊維長が20μm、平均面間隔(d002)が0.3
360nm)の粉末を 78重量%及び、グラファイト粉
末19重量%、カルボキシメチルセルロース粉末を重量
1%、スチレンブタジエンゴムを重量2%と水を混合
し、厚さ15μmの銅箔からなる集電体の両面に塗付
し、乾燥し、プレスすることにより電極密度を1.37
g/cmとした。電極をスリットし、活物質層の厚さ
が両面とも0.08mm、全長が570mm、全幅が5
7.25mmとし、負極を作製した。 [セパレータ]厚さ25μmのポリエチレン製多孔性セ
パレータを使用した。セパレータの多孔度は40%、透
気度は150秒/100cmであった。 [非水電解液]非水電解液として、六弗化リン酸リチウ
ム(LiPF)をエチレンカーボネート(EC)とエ
チルメチルカーボネート(EMC)の混合溶媒(混合体
積比率1:2)に1mol/lの濃度に溶解して非水電
解液を調整した。 [電極群の作製]作製した正極及び負極とセパレータ
を、セパレータ、正極、セパレータ、負極の順に積層
し、渦巻状に捲回して電極群を作製した。 [電池の作製]電極群および非水電解液をニッケルメッ
キした軟鋼製の有底円筒状容器内にそれぞれ収納して前
述した図1に示す非水電解液二次電池(18650サイ
ズ)を組み立てた。電極にかかる捲回圧力は1kg/c
であった。 (実施例2) [正極の作製]正極は、プレスおよびスリットまでの工
程を実施例1と同様に行い、さらに金属製の刃で削るこ
とによって溝を形成した。図4に実施例2に係る活物質
層2の平面図を示す。正極の両面の活物質層2表面に、
図4に示すような直線状の深さ約0.05mm、幅約
0.5mmの溝を、電極の長手方向に対して電極の上端
および下端からそれぞれ−45°および45°の角度に
7mm間隔で平行に形成した。溝4の断面の形状はV字
状とした。
The arrangement of the grooves formed on the front and back of the electrode is shifted by a half cycle so that the positions of the grooves do not overlap on the front and back surfaces. The ratio of the total area of all the grooves to the area of the active material layer was about 7%. [Production of Negative Electrode] Mesophase pitch-based carbon fiber heat-treated at 3000 ° C. as a carbonaceous material (fiber diameter: 8 μm, average fiber length: 20 μm, average plane distance (d 002 ): 0.3
(360 nm) powder, 78% by weight of graphite powder, 19% by weight of graphite powder, 1% by weight of carboxymethylcellulose powder, 2% by weight of styrene-butadiene rubber and water, and both sides of a current collector made of copper foil having a thickness of 15 μm. , Dried and pressed to obtain an electrode density of 1.37.
g / cm 3 . The electrode is slit, the thickness of the active material layer is 0.08 mm on both sides, the total length is 570 mm, and the total width is 5
The thickness was set to 7.25 mm to produce a negative electrode. [Separator] A polyethylene porous separator having a thickness of 25 μm was used. The porosity of the separator was 40%, and the air permeability was 150 seconds / 100 cm 3 . [Non-aqueous electrolyte] As a non-aqueous electrolyte, 1 mol / l of lithium hexafluorophosphate (LiPF 6 ) was mixed in a mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) (mixing volume ratio 1: 2). To obtain a non-aqueous electrolyte solution. [Production of Electrode Group] The produced positive electrode, negative electrode and separator were laminated in the order of a separator, a positive electrode, a separator, and a negative electrode, and spirally wound to produce an electrode group. [Production of Battery] The non-aqueous electrolyte secondary battery (18650 size) shown in FIG. 1 described above was assembled by storing the electrode group and the non-aqueous electrolyte in nickel-plated mild steel bottomed cylindrical containers. . The winding pressure applied to the electrode is 1 kg / c
It was m 2. (Example 2) [Preparation of positive electrode] In the positive electrode, the steps up to pressing and slitting were performed in the same manner as in Example 1, and a groove was formed by shaving with a metal blade. FIG. 4 is a plan view of the active material layer 2 according to the second embodiment. On the surface of the active material layer 2 on both surfaces of the positive electrode,
Linear grooves having a depth of about 0.05 mm and a width of about 0.5 mm as shown in FIG. 4 are formed at intervals of 7 mm at angles of -45 ° and 45 ° from the upper and lower ends of the electrode with respect to the longitudinal direction of the electrode, respectively. And formed in parallel. The cross section of the groove 4 was V-shaped.

【0059】また、電極の表と裏で形成した溝の配列を
半周期ずらし、溝の位置が表面と裏面で重ならないよう
にした。活物質層の面積に占める全溝の合計の面積の割
合は約14%であった。 [負極の作製]負極は実施例1と同様に作製した。 [セパレータ]セパレータは実施例1と同様のものを使
用した。 [非水電解液]非水電解液は実施例1と同様のものを使
用した。 [電極群の作製]作製した正極及び負極とセパレータ
を、セパレータ、正極、セパレータ、負極の順に積層
し、渦巻状に捲回して電極群を作製した。 [電池の作製]電極群および非水電解液をニッケルメッ
キした軟鋼製の有底円筒状容器内にそれぞれ収納して前
述した図1に示す非水電解液二次電池(18650サイ
ズ)を組み立てた。電極にかかる捲回圧力は1kg/c
であった。 (実施例3) [正極の作製]正極は実施例1と同様に作製した。 [負極の作製]負極は、プレスおよびスリットまでの工
程を実施例1の負極と同様に行い、さらに金属製の刃に
よって削ることによって溝を形成した。図3に実施例3
に係る活物質層2の平面図を示す。負極の両面の活物質
層2表面に、図3に示すような活物質層2の長手方向に
対して直角を成す、直線状の深さ約0.05mm、幅約
0.5mmの溝4を、電極幅方向に互いに平行になるよ
うに7mm間隔で形成した。溝4の断面の形状はV字状
とした。
The arrangement of the grooves formed on the front and back of the electrode is shifted by half a cycle so that the positions of the grooves do not overlap on the front and back surfaces. The ratio of the total area of all the grooves to the area of the active material layer was about 14%. [Production of Negative Electrode] A negative electrode was produced in the same manner as in Example 1. [Separator] The same separator as in Example 1 was used. [Non-Aqueous Electrolyte] The same non-aqueous electrolyte as used in Example 1 was used. [Production of Electrode Group] The produced positive electrode, negative electrode and separator were laminated in the order of a separator, a positive electrode, a separator, and a negative electrode, and spirally wound to produce an electrode group. [Production of Battery] The non-aqueous electrolyte secondary battery (18650 size) shown in FIG. 1 described above was assembled by storing the electrode group and the non-aqueous electrolyte in nickel-plated mild steel bottomed cylindrical containers. . The winding pressure applied to the electrode is 1 kg / c
It was m 2. (Example 3) [Production of positive electrode] A positive electrode was produced in the same manner as in Example 1. [Preparation of Negative Electrode] In the negative electrode, steps up to pressing and slitting were performed in the same manner as in the negative electrode of Example 1, and a groove was formed by shaving with a metal blade. FIG. 3 shows a third embodiment.
1 is a plan view of an active material layer 2 according to the first embodiment. On the surface of the active material layer 2 on both surfaces of the negative electrode, a linear groove 4 having a depth of about 0.05 mm and a width of about 0.5 mm, which is perpendicular to the longitudinal direction of the active material layer 2 as shown in FIG. And formed at intervals of 7 mm so as to be parallel to each other in the electrode width direction. The cross section of the groove 4 was V-shaped.

【0060】また、電極の表と裏で形成した溝の配列を
半周期ずらし、溝の位置が表面と裏面で重ならないよう
にした。活物質層の面積に占める全溝の合計の面積の割
合は約7%であった。 [セパレータ]セパレータは実施例1と同様のものを使
用した。 [非水電解液]非水電解液は実施例1と同様のものを使
用した。 [電極群の作製]作製した正極及び負極とセパレータ
を、セパレータ、正極、セパレータ、負極の順に積層
し、渦巻状に捲回して電極群を作製した。 [電池の作製]電極群および非水電解液をニッケルメッ
キした軟鋼製の有底円筒状容器内にそれぞれ収納して前
述した図1に示す非水電解液二次電池(18650サイ
ズ)を組み立てた。電極にかかる捲回圧力は1kg/c
であった。 (比較例1)正極に圧延およびスリット後に溝の形成を
行わず、正極・負極ともに溝が形成されていない電極を
用いて、実施例1と同様にして円筒型非水電解液二次電
池を組み立てた。
The arrangement of the grooves formed on the front and back of the electrode is shifted by half a cycle so that the positions of the grooves do not overlap on the front and back surfaces. The ratio of the total area of all the grooves to the area of the active material layer was about 7%. [Separator] The same separator as in Example 1 was used. [Non-Aqueous Electrolyte] The same non-aqueous electrolyte as used in Example 1 was used. [Production of Electrode Group] The produced positive electrode, negative electrode and separator were laminated in the order of a separator, a positive electrode, a separator, and a negative electrode, and spirally wound to produce an electrode group. [Production of Battery] The non-aqueous electrolyte secondary battery (18650 size) shown in FIG. 1 described above was assembled by storing the electrode group and the non-aqueous electrolyte in nickel-plated mild steel bottomed cylindrical containers. . The winding pressure applied to the electrode is 1 kg / c
It was m 2. (Comparative Example 1) A cylindrical non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 except that no groove was formed on the positive electrode after rolling and slitting, and an electrode having no groove was formed on both the positive electrode and the negative electrode. Assembled.

【0061】得られた実施例1〜3、比較例1の二次電
池について、20℃の環境下で充電電流1.8Aで4.
2Vまで3時間充電し、2.7Vまで1.8Aで放電
し、充放電サイクル試験を行い比較した。それぞれの電
池の初期容量を表1に示す。
The obtained secondary batteries of Examples 1 to 3 and Comparative Example 1 were charged at a charging current of 1.8 A under an environment of 20 ° C.
The battery was charged to 2 V for 3 hours, discharged to 2.7 V at 1.8 A, subjected to a charge / discharge cycle test, and compared. Table 1 shows the initial capacity of each battery.

【表1】 活物質量から計算した理論容量は各電池とも1.8Ah
である。また、充放電サイクル試験の結果を図5に示
す。
[Table 1] The theoretical capacity calculated from the amount of active material is 1.8 Ah for each battery.
It is. FIG. 5 shows the results of the charge / discharge cycle test.

【0062】表1から明らかなように、実施例1〜3と
比較例1の非水電解液二次電池との間で、電池の初期容
量に有意な差は見られない。また、図5から明らかなよ
うに、実施例1〜3の非水電解液二次電池は500サイ
クルで初期容量の80%以上の容量を維持しており、非
常に優れた特性を示す。一方、比較例1の非水電解液二
次電池は500サイクルで初期容量の60%程度まで容
量が低下する。従って、実施例1〜3の非水電解液二次
電池は、サイクル特性が比較例1に比べて大幅に向上
し、かつ容量は維持したままである。
As is evident from Table 1, there is no significant difference in the initial capacity of the battery between the non-aqueous electrolyte secondary batteries of Examples 1 to 3 and Comparative Example 1. Further, as is apparent from FIG. 5, the nonaqueous electrolyte secondary batteries of Examples 1 to 3 maintain a capacity of 80% or more of the initial capacity in 500 cycles, and exhibit extremely excellent characteristics. On the other hand, the capacity of the non-aqueous electrolyte secondary battery of Comparative Example 1 is reduced to about 60% of the initial capacity in 500 cycles. Therefore, in the nonaqueous electrolyte secondary batteries of Examples 1 to 3, the cycle characteristics are significantly improved as compared with Comparative Example 1, and the capacity is maintained.

【0063】[0063]

【発明の効果】本発明によれば、電池容量を低下させる
ことなく非水電解液の浸透性および非水電解液の均一な
保持に優れた電極を提供し、さらにこの電極を使用する
ことにより充放電の繰り返しによる容量の低下および、
電池電圧の低下が少ない非水電解液二次電池を提供する
ことができる。
According to the present invention, it is possible to provide an electrode having excellent permeability of a non-aqueous electrolyte and uniform holding of the non-aqueous electrolyte without lowering the battery capacity. Decrease in capacity due to repeated charge and discharge, and
It is possible to provide a non-aqueous electrolyte secondary battery in which a decrease in battery voltage is small.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の非水電解液二次電池の斜視図。FIG. 1 is a perspective view of a non-aqueous electrolyte secondary battery of the present invention.

【図2】 本発明の非水電解液二次電池の正極あるいは
負極を示す斜視図及び断面図。
FIG. 2 is a perspective view and a sectional view showing a positive electrode or a negative electrode of the nonaqueous electrolyte secondary battery of the present invention.

【図3】 実施例1、3に係る電極の平面図。FIG. 3 is a plan view of an electrode according to the first and third embodiments.

【図4】 実施例2に係る電極の平面図。FIG. 4 is a plan view of an electrode according to a second embodiment.

【図5】 本発明の実施例および比較例のリチウム二次
電池のサイクル寿命を示す特性図。
FIG. 5 is a characteristic diagram showing the cycle life of lithium secondary batteries of Examples and Comparative Examples of the present invention.

【符号の説明】[Explanation of symbols]

1…電極 2…活物質層 3…集電体 4…溝 5…集電用タブ 6…正極 7…負極 8…セパレータ 9…電極群 10…電池缶 DESCRIPTION OF SYMBOLS 1 ... Electrode 2 ... Active material layer 3 ... Current collector 4 ... Groove 5 ... Current collecting tab 6 ... Positive electrode 7 ... Negative electrode 8 ... Separator 9 ... Electrode group 10 ... Battery can

───────────────────────────────────────────────────── フロントページの続き (72)発明者 門馬 旬 神奈川県川崎市幸区堀川町72番地 株式会 社東芝川崎事業所内 (72)発明者 小岩 馨 神奈川県川崎市幸区堀川町72番地 株式会 社東芝川崎事業所内 (72)発明者 佐藤 麻子 神奈川県川崎市幸区堀川町72番地 株式会 社東芝川崎事業所内 (72)発明者 高見 則雄 神奈川県川崎市幸区堀川町72番地 株式会 社東芝川崎事業所内 (72)発明者 大崎 隆久 神奈川県川崎市幸区堀川町72番地 株式会 社東芝川崎事業所内 Fターム(参考) 5H014 AA02 AA04 BB04 CC04 CC07 EE08 EE10 HH06 5H029 AJ02 AJ03 AJ05 AJ14 AK03 AL02 AL04 AL07 AL12 AL18 AM03 AM04 AM05 AM07 BJ02 BJ14 CJ02 CJ03 CJ04 CJ07 CJ08 CJ22 DJ12 DJ14 HJ04 HJ12  ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Shun Kadoma 72, Horikawa-cho, Saiwai-ku, Kawasaki-shi, Kanagawa Pref. Inside the Toshiba Kawasaki Office (72) Inventor Asako Sato 72 Horikawa-cho, Saiwai-ku, Kawasaki-shi, Kanagawa Pref. Inside the Kawasaki Plant (72) Inventor Takahisa Osaki 72 Horikawa-cho, Saiwai-ku, Kawasaki City, Kanagawa Prefecture F-term in the Toshiba Kawasaki Plant (Reference) 5H014 AA02 AA04 BB04 CC04 CC07 EE08 EE10 HH06 5H029 AJ02 AJ03 AJ05 AJ14 AK03 AL02 AL04 AL04 AL12 AL18 AM03 AM04 AM05 AM07 BJ02 BJ14 CJ02 CJ03 CJ04 CJ07 CJ08 CJ22 DJ12 DJ14 HJ04 HJ12

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】集電体の表面に帯状の正極活物質層が形成
されてなる正極、集電体の表面に負極活物質層が形成さ
れてなる帯状の負極、及び前記正極及び前記負極との間
に介在するセパレータが積層されて渦巻状に捲回されて
なる電極群と、非水電解液とが容器に収納されてなる非
水電解液二次電池において、前記正極及び前記負極の少
なくとも一方は前記活物質層に溝を有し、前記溝の少な
くとも一端が前記活物質層の長辺上で終止していること
を特徴とする非水電解液二次電池。
1. A positive electrode comprising a current collector with a band-shaped positive electrode active material layer formed on a surface thereof, a band-shaped negative electrode comprising a current collector having a negative electrode active material layer formed on a surface thereof, and the positive electrode and the negative electrode. In a non-aqueous electrolyte secondary battery in which a separator interposed therebetween is laminated and spirally wound, and a non-aqueous electrolyte is contained in a container, at least the positive electrode and the negative electrode One has a groove in the active material layer, and at least one end of the groove terminates on a long side of the active material layer.
【請求項2】前記溝の幅は前記溝の長さの50%以下で
あり、前記溝の深さが前記活物質層の厚さ80%以下で
あることを特徴とする請求項1記載の非水電解液二次電
池。
2. The method according to claim 1, wherein the width of the groove is not more than 50% of the length of the groove, and the depth of the groove is not more than 80% of the thickness of the active material layer. Non-aqueous electrolyte secondary battery.
JP36159899A 1999-12-20 1999-12-20 Non-aqueous electrolyte secondary battery Pending JP2001176558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36159899A JP2001176558A (en) 1999-12-20 1999-12-20 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36159899A JP2001176558A (en) 1999-12-20 1999-12-20 Non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2001176558A true JP2001176558A (en) 2001-06-29

Family

ID=18474239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36159899A Pending JP2001176558A (en) 1999-12-20 1999-12-20 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2001176558A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003197265A (en) * 2001-12-27 2003-07-11 Sanyo Electric Co Ltd Nonaqueous electrolytic solution battery
WO2003088404A1 (en) * 2002-04-12 2003-10-23 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery
WO2004036670A1 (en) * 2002-10-15 2004-04-29 Kabushiki Kaisha Toshiba Nonacqueous electrolyte secondary cell
JP2004303754A (en) * 2003-03-28 2004-10-28 Nissan Diesel Motor Co Ltd Method and apparatus for manufacturing electric double layer capacitor
JP2005285607A (en) * 2004-03-30 2005-10-13 Matsushita Electric Ind Co Ltd Nonaqueous secondary battery and manufacturing method thereof
JP2007066665A (en) * 2005-08-30 2007-03-15 Nissan Motor Co Ltd Electrode structure, its manufacturing method, secondary battery, battery pack, composite battery pack and vehicle with these batteries mounted thereon
JP2007141622A (en) * 2005-11-17 2007-06-07 Sumitomo Electric Ind Ltd Positive electrode for thin film battery and thin film battery
JP2007173178A (en) * 2005-12-26 2007-07-05 Sony Corp Battery
JP2008243656A (en) * 2007-03-28 2008-10-09 Matsushita Electric Ind Co Ltd Electrode for electrochemical element, and manufacturing method therefor
JP2008277242A (en) * 2007-03-30 2008-11-13 Sanyo Electric Co Ltd Electrode for lithium secondary battery and lithium secondary battery
WO2009011123A1 (en) * 2007-07-17 2009-01-22 Panasonic Corporation Secondary cell and secondary cell manufacturing method
WO2009157158A1 (en) * 2008-06-23 2009-12-30 パナソニック株式会社 Nonaqueous electrolyte secondary battery
US7695864B2 (en) 2007-07-20 2010-04-13 Panasonic Corporation Electrode plate for battery, electrode group for battery, lithium secondary battery, and method for producing electrode plate for battery
WO2010082257A1 (en) * 2009-01-14 2010-07-22 パナソニック株式会社 Negative electrode plate for nonaqueous battery, electrode group for nonaqueous battery and method for producing same, and tubular nonaqueous secondary battery and method for manufacturing same
WO2010082258A1 (en) * 2009-01-16 2010-07-22 パナソニック株式会社 Electrode group for nonaqueous battery and method for producing same, and tubular nonaqueous secondary battery and method for manufacturing same
WO2010082256A1 (en) * 2009-01-13 2010-07-22 パナソニック株式会社 Negative electrode plate for nonaqueous battery, electrode group for nonaqueous battery and method for producing same, and tubular nonaqueous secondary battery and method for manufacturing same
US7806943B2 (en) 2007-07-17 2010-10-05 Panasonic Corporation Secondary battery and method for producing the same
US7854773B2 (en) 2003-09-30 2010-12-21 Dai Nippon Printing Co., Ltd. Method of producing an electrode plate for a nonaqueous electrolyte secondary battery
US7951487B2 (en) 2009-01-16 2011-05-31 Panasonic Corporation Electrode group for nonaqueous battery and method for producing the same, and cylindrical nonaqueous secondary battery and method for producing the same
JP2011233357A (en) * 2010-04-27 2011-11-17 Nissan Motor Co Ltd Method of manufacturing bipolar electrode for secondary battery and bipolar secondary battery
WO2018110655A1 (en) 2016-12-15 2018-06-21 日産自動車株式会社 Secondary battery electrode, and secondary battery
WO2020194376A1 (en) * 2019-03-22 2020-10-01 株式会社 東芝 Electrode, cell, and cell pack
JPWO2021038851A1 (en) * 2019-08-30 2021-03-04
WO2021106593A1 (en) 2019-11-29 2021-06-03 三洋電機株式会社 Non-aqueous electrolyte secondary cell and method for manufacturing non-aqueous electrolyte secondary cell
WO2023045418A1 (en) * 2021-09-27 2023-03-30 宁德时代新能源科技股份有限公司 Electrode assembly, battery cell, battery, and electric apparatus
CN116830282A (en) * 2022-09-30 2023-09-29 宁德时代新能源科技股份有限公司 Negative electrode plate, preparation method thereof, secondary battery and power utilization device
WO2023226671A1 (en) * 2022-05-21 2023-11-30 宁德时代新能源科技股份有限公司 Negative electrode sheet, electrode assembly, battery cell, battery and electrical device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09298057A (en) * 1996-04-30 1997-11-18 Sanyo Electric Co Ltd Lithium ion battery
WO1998048466A1 (en) * 1997-04-23 1998-10-29 Japan Storage Battery Co., Ltd. Electrode and battery
JPH11154508A (en) * 1997-11-19 1999-06-08 Toshiba Corp Nonaqueous electrolyte battery
JP2000195525A (en) * 1998-12-28 2000-07-14 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JP2001023612A (en) * 1999-07-09 2001-01-26 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2001035484A (en) * 1999-05-19 2001-02-09 Nec Corp Nonaqueous electrolyte secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09298057A (en) * 1996-04-30 1997-11-18 Sanyo Electric Co Ltd Lithium ion battery
WO1998048466A1 (en) * 1997-04-23 1998-10-29 Japan Storage Battery Co., Ltd. Electrode and battery
JPH11154508A (en) * 1997-11-19 1999-06-08 Toshiba Corp Nonaqueous electrolyte battery
JP2000195525A (en) * 1998-12-28 2000-07-14 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JP2001035484A (en) * 1999-05-19 2001-02-09 Nec Corp Nonaqueous electrolyte secondary battery
JP2001023612A (en) * 1999-07-09 2001-01-26 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003197265A (en) * 2001-12-27 2003-07-11 Sanyo Electric Co Ltd Nonaqueous electrolytic solution battery
WO2003088404A1 (en) * 2002-04-12 2003-10-23 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery
US8530081B2 (en) 2002-04-12 2013-09-10 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery including positive electrode active material layers having parallel grooves
WO2004036670A1 (en) * 2002-10-15 2004-04-29 Kabushiki Kaisha Toshiba Nonacqueous electrolyte secondary cell
JP2004303754A (en) * 2003-03-28 2004-10-28 Nissan Diesel Motor Co Ltd Method and apparatus for manufacturing electric double layer capacitor
US7854773B2 (en) 2003-09-30 2010-12-21 Dai Nippon Printing Co., Ltd. Method of producing an electrode plate for a nonaqueous electrolyte secondary battery
JP2005285607A (en) * 2004-03-30 2005-10-13 Matsushita Electric Ind Co Ltd Nonaqueous secondary battery and manufacturing method thereof
JP2007066665A (en) * 2005-08-30 2007-03-15 Nissan Motor Co Ltd Electrode structure, its manufacturing method, secondary battery, battery pack, composite battery pack and vehicle with these batteries mounted thereon
JP2007141622A (en) * 2005-11-17 2007-06-07 Sumitomo Electric Ind Ltd Positive electrode for thin film battery and thin film battery
JP2007173178A (en) * 2005-12-26 2007-07-05 Sony Corp Battery
JP2008243656A (en) * 2007-03-28 2008-10-09 Matsushita Electric Ind Co Ltd Electrode for electrochemical element, and manufacturing method therefor
JP2008277242A (en) * 2007-03-30 2008-11-13 Sanyo Electric Co Ltd Electrode for lithium secondary battery and lithium secondary battery
US7806943B2 (en) 2007-07-17 2010-10-05 Panasonic Corporation Secondary battery and method for producing the same
WO2009011123A1 (en) * 2007-07-17 2009-01-22 Panasonic Corporation Secondary cell and secondary cell manufacturing method
US7695864B2 (en) 2007-07-20 2010-04-13 Panasonic Corporation Electrode plate for battery, electrode group for battery, lithium secondary battery, and method for producing electrode plate for battery
WO2009157158A1 (en) * 2008-06-23 2009-12-30 パナソニック株式会社 Nonaqueous electrolyte secondary battery
WO2010082256A1 (en) * 2009-01-13 2010-07-22 パナソニック株式会社 Negative electrode plate for nonaqueous battery, electrode group for nonaqueous battery and method for producing same, and tubular nonaqueous secondary battery and method for manufacturing same
JP2010186736A (en) * 2009-01-13 2010-08-26 Panasonic Corp Anode plate for nonaqueous battery, electrode group for nonaqueous battery and its manufacturing method, and cylindrical nonaqueous secondary battery and its manufacturing method
JP4672079B2 (en) * 2009-01-14 2011-04-20 パナソニック株式会社 Non-aqueous battery negative electrode plate, non-aqueous battery electrode group and manufacturing method thereof, cylindrical non-aqueous secondary battery and manufacturing method thereof
WO2010082257A1 (en) * 2009-01-14 2010-07-22 パナソニック株式会社 Negative electrode plate for nonaqueous battery, electrode group for nonaqueous battery and method for producing same, and tubular nonaqueous secondary battery and method for manufacturing same
JP2010186738A (en) * 2009-01-14 2010-08-26 Panasonic Corp Anode plate for nonaqueous battery, electrode group for nonaqueous battery and its manufacturing method, and cylindrical nonaqueous secondary battery and its manufacturing method
WO2010082258A1 (en) * 2009-01-16 2010-07-22 パナソニック株式会社 Electrode group for nonaqueous battery and method for producing same, and tubular nonaqueous secondary battery and method for manufacturing same
US7951487B2 (en) 2009-01-16 2011-05-31 Panasonic Corporation Electrode group for nonaqueous battery and method for producing the same, and cylindrical nonaqueous secondary battery and method for producing the same
JP2010186740A (en) * 2009-01-16 2010-08-26 Panasonic Corp Electrode group for nonaqueous battery, its manufacturing method, cylindrical nonaqueous secondary battery and its manufacturing method
JP2011233357A (en) * 2010-04-27 2011-11-17 Nissan Motor Co Ltd Method of manufacturing bipolar electrode for secondary battery and bipolar secondary battery
WO2018110655A1 (en) 2016-12-15 2018-06-21 日産自動車株式会社 Secondary battery electrode, and secondary battery
US10790535B2 (en) 2016-12-15 2020-09-29 Nissan Motor Co., Ltd. Electrode for secondary cell, and secondary cell
WO2020194376A1 (en) * 2019-03-22 2020-10-01 株式会社 東芝 Electrode, cell, and cell pack
JPWO2021038851A1 (en) * 2019-08-30 2021-03-04
JP7247353B2 (en) 2019-08-30 2023-03-28 株式会社東芝 Electrodes, batteries and battery packs
WO2021106593A1 (en) 2019-11-29 2021-06-03 三洋電機株式会社 Non-aqueous electrolyte secondary cell and method for manufacturing non-aqueous electrolyte secondary cell
WO2023045418A1 (en) * 2021-09-27 2023-03-30 宁德时代新能源科技股份有限公司 Electrode assembly, battery cell, battery, and electric apparatus
WO2023226671A1 (en) * 2022-05-21 2023-11-30 宁德时代新能源科技股份有限公司 Negative electrode sheet, electrode assembly, battery cell, battery and electrical device
CN116830282A (en) * 2022-09-30 2023-09-29 宁德时代新能源科技股份有限公司 Negative electrode plate, preparation method thereof, secondary battery and power utilization device
WO2024065764A1 (en) * 2022-09-30 2024-04-04 宁德时代新能源科技股份有限公司 Negative electrode sheet and preparation method therefor, and secondary battery and electric device

Similar Documents

Publication Publication Date Title
JP2001176558A (en) Non-aqueous electrolyte secondary battery
KR100629545B1 (en) Nonaqueous electrolyte secondary battery
EP0991132B1 (en) Nonaqueous electrolyte secondary battery and method of manufacturing nonaqueous electrolyte secondary battery
JP3702318B2 (en) Non-aqueous electrolyte battery electrode and non-aqueous electrolyte battery using the electrode
JP2007329077A (en) Nonaqueous electrolyte secondary battery and its manufacturing method
JP2003282148A (en) Thin lithium ion secondary battery
JP2000149997A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP3990107B2 (en) Non-aqueous electrolyte secondary battery charging method
JP2016157609A (en) Power storage device
JP2000082498A (en) Nonaqueous electrolyte secondary battery
JP2002367602A (en) Nonaqueous electrolyte secondary cell
JP2003115324A (en) Nonaqueous electrolyte battery
JP2007172879A (en) Battery and its manufacturing method
JP2004158441A (en) Nonaqueous electrolyte secondary battery
JP2004158213A (en) Manufacturing method of nonaqueous electrolyte secondary battery
JP2000048862A (en) Charging method for nonaqueous secondary battery
JPH10255818A (en) Wound battery
JP2007172878A (en) Battery and its manufacturing method
JP4240960B2 (en) Lithium secondary battery and manufacturing method thereof
JP4161396B2 (en) Non-aqueous electrolyte secondary battery
JP4560851B2 (en) Method for producing solid electrolyte battery
JP2002203606A (en) Nonaqueous electrolyte solution battery
JP2007172881A (en) Battery and its manufacturing method
JP2004200122A (en) Manufacturing method of non-aqueous electrolyte secondary battery
JPH05283107A (en) Laminated battery and its manufacture

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040330

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040401

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20080416

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100416

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20110416

LAPS Cancellation because of no payment of annual fees