JP4178901B2 - 半導体光デバイス、及び半導体光デバイスを製造する方法 - Google Patents

半導体光デバイス、及び半導体光デバイスを製造する方法 Download PDF

Info

Publication number
JP4178901B2
JP4178901B2 JP2002299326A JP2002299326A JP4178901B2 JP 4178901 B2 JP4178901 B2 JP 4178901B2 JP 2002299326 A JP2002299326 A JP 2002299326A JP 2002299326 A JP2002299326 A JP 2002299326A JP 4178901 B2 JP4178901 B2 JP 4178901B2
Authority
JP
Japan
Prior art keywords
semiconductor
layer
compound semiconductor
compound
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002299326A
Other languages
English (en)
Other versions
JP2004134663A (ja
Inventor
康博 猪口
成典 高岸
隆史 山田
昭浩 本
明賢 澤村
造 勝山
光男 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2002299326A priority Critical patent/JP4178901B2/ja
Publication of JP2004134663A publication Critical patent/JP2004134663A/ja
Application granted granted Critical
Publication of JP4178901B2 publication Critical patent/JP4178901B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体光デバイス、及び半導体光デバイスを製造する方法に関する。
【0002】
【従来の技術】
光通信及び光増幅器のための光源として、半導体発光素子が利用されている。光通信の分野では、半導体変調素子が、光源からの光を変調するために用いられている。半導体発光素子及び半導体変調素子は、複数の半導体層及び一対の電極を備えている。複数の半導体層の各々は、基板上に設けられており、III−V族化合物半導体から構成されている。一対の電極は、複数の半導体層にキャリアを与えるために利用される。
【0003】
【発明が解決しようとする課題】
発明者らは、III−V族化合物半導体から構成される半導体光素子を研究しており、特にガリウム元素、インジウム元素、砒素元素、及び窒素元素を含む4元III−V族化合物半導体(以下、GaInNAs半導体と呼ぶ)に着目している。しかしながら、この4元III−V族化合物半導体は非混和領域が相図に存在しており、非混和領域はGaInNAs半導体の成長を難しいものにしている。発明者らは、実験において、ガリウム元素、インジウム元素、砒素元素、燐元素、及び窒素元素を含む五元III−V族化合物半導体(以下、GaInNAsP半導体と呼ぶ)は、GaInNAs半導体に比べて成長が容易であることを発見している。
【0004】
発明者らは、GaInNAsP半導体を含む半導体光デバイスを作製していくための研究を進めている。具体的には、発明者らは、GaInNAsP半導体とGaAs半導体とを含む量子井戸構造を有する半導体光デバイスを作製する検討を行っている。この検討において、発明者らは、GaAs半導体とGaInNAsP半導体との接合を形成する際にGaAs半導体とGaInNAsP半導体との界面において燐原子(P)と砒素原子(As)との置換が生じる可能性があることを発見した。更なる検討の結果、この置換は、V族として砒素を含み燐を含まない半導体層と、V族として砒素及び燐を含む半導体層との界面においても生じる可能性があることを発見している。
【0005】
本発明の目的は、2つの半導体層の界面において燐原子(P)と砒素原子(As)との置換が生じ難い構造を有する半導体光デバイス、及び半導体光デバイスを製造する方法を提供することとする。
【0006】
【課題を解決するための手段】
本発明の一側面は、半導体光デバイスに関する。半導体光デバイスは、化合物半導体部と、GaAs基板とを含む。化合物半導体部は、第1〜第5の化合物半導体層を含む。第1の化合物半導体層は、第2の化合物半導体層上に設けられている。第1の化合物半導体層の各々は、一又は複数の種類のIII族元素、砒素元素、及び燐元素を含む。第2の化合物半導体層は、ガリウム元素、インジウム元素、窒素元素、砒素元素、燐元素を含む。第3の化合物半導体層は、一又は複数の種類のIII族元素、砒素元素、及び燐元素を含む。第4の化合物半導体層は、GaInP半導体から構成される。第5の化合物半導体層は、GaInP半導体から構成される。GaAs基板は、第1〜第5の化合物半導体層を搭載する。第4の化合物半導体層はクラッド層であり、第5の化合物半導体層はクラッド層であり、第2の化合物半導体層は、GaInNAsP半導体から構成されており、第1及び第3の化合物半導体層はGaNPAs半導体及びAlGaInAsP半導体のいずれかから構成されており、第1及び第3の化合物半導体層の各々のバンドギャップは、GaInNAsP半導体及びGaAs半導体のバンドギャップよりも大きく、第1〜第3の化合物半導体層は、第2の化合物半導体層が井戸層を構成すると共に第1及び第3の化合物半導体層が障壁層を構成する量子井戸構造を構成するように設けられており、第1〜第3の化合物半導体層は、第4の化合物半導体層と第5の化合物半導体層との間に設けられている。
【0007】
本発明の更なる別の側面によれば、半導体光デバイスは、第1導電型半導体部と、第2導電型半導体部と、化合物半導体部とを備える。化合物半導体部は、第1導電型半導体部と第2導電型半導体部との間に設けられている。化合物半導体部は、第1及び第2の化合物半導体層を含む。第1の化合物半導体層は、第2の化合物半導体層上に設けられている。第1の化合物半導体層の各々は、一又は複数の種類のIII族元素、砒素元素、及び燐元素を含む。第2の化合物半導体層は、ガリウム元素、インジウム元素、窒素元素、砒素元素、燐元素を含む。
【0008】
本発明の更なる別の側面によれば、半導体光デバイスは、第1導電型半導体部と、第2導電型半導体部と、第1及び第2の化合物半導体層と、第3の化合物半導体層とを備える。第1導電型半導体部は、多層反射膜を形成するように設けられた複数の第1導電型半導体層を含む。第2導電型半導体部は、多層反射膜を形成するように設けられた複数の第2導電型半導体層を含む。第1及び第2の化合物半導体層は、第1導電型半導体部と第2導電型半導体部との間に設けられている。第2の化合物半導体層は、第1の化合物半導体層上に設けられている。第1の化合物半導体層は、一又は複数の種類のIII族元素、砒素元素、及び燐元素を含んでいる。第2の化合物半導体層は、ガリウム元素、インジウム元素、窒素元素、砒素元素、燐元素を含んでいる。
【0009】
上記の半導体光デバイスでは、第1及び第2の化合物半導体層は砒素元素及び燐元素を含むので、第1の化合物半導体層と第2の化合物半導体層との間において燐原子(P)と砒素原子(As)との置換が生じ難い。
【0010】
本発明に係わる半導体光デバイスは、一又は複数の種類のIII族元素、砒素元素、及び燐元素を含む第3の化合物半導体層を更に備えることができる。第1〜第3の化合物半導体層は、量子井戸構造を構成する。この半導体光デバイスは、急峻な接合を有する量子井戸構造を備える。
【0011】
本発明に係わる半導体光デバイスにおいては、第3の化合物半導体層は、GaInNAsP半導体から構成されるようにできる。
【0012】
本発明に係わる半導体光デバイスにおいては、第1の化合物半導体層の各々はGaInAsP半導体から構成されており、また、第2の化合物半導体層はGaInNAsP半導体から構成されるようにできる。
【0013】
本発明に係わる半導体光デバイスは、一又は複数の種類のIII族元素、砒素元素、及び燐元素を含む第3の化合物半導体層と、第1導電型半導体部と、第2導電型半導体部とを更に備えることができる。第1導電型半導体部及び第2導電型半導体部は、GaAs半導体に格子整合する半導体材料から構成されている。第3の化合物半導体層は、一又は複数の種類のIII族元素、砒素元素、及び燐元素を含む。第1〜第3の化合物半導体層は、量子井戸構造を構成するように設けられている。量子井戸構造では、第2の化合物半導体層が井戸層を構成すると共に第1及び第3の化合物半導体層が障壁層を構成している。第1及び第3の化合物半導体層におけるIII族元素、砒素元素、及び燐元素の組成は、第1及び第3の化合物半導体層の各々が圧縮歪み及び引っ張り歪みの一方の歪みを有するように決定されている。第2の化合物半導体層におけるガリウム元素、インジウム元素、窒素元素、砒素元素、及び燐元素の組成は、第2の化合物半導体層が圧縮歪み及び引っ張り歪みの他方の歪みを有するように決定されている。
【0014】
第1及び第3の化合物半導体層と第2の化合物半導体層との間の半導体層の界面において組成の変化が急峻な半導体接合を得ることができるので、良好な歪み量子井戸構造を得ることができる。
【0015】
本発明に係わる半導体光デバイスにおいては、第1〜第3の化合物半導体層は、量子井戸構造を構成するように設けられている。量子井戸構造では、第2の化合物半導体層が井戸層を構成すると共に第1及び第3の化合物半導体層が障壁層を構成している。第1及び第3の化合物半導体層におけるIII族元素、砒素元素、及び燐元素の組成は、第1及び第3の化合物半導体層の各々を構成する半導体の格子定数がGaAs半導体に格子整合しないように決定されている。第2の化合物半導体層におけるガリウム元素、インジウム元素、窒素元素、砒素元素、及び燐元素の組成は、第2の化合物半導体層を構成する半導体の格子定数がGaAs半導体に格子整合しないように決定されている。障壁層を構成する半導体と井戸層を構成する半導体との平均的な格子定数は、GaAs半導体の格子定数と実質的に一致している。
【0016】
量子井戸構造部の全体として、歪み量は実質的に打ち消されており、井戸層及び障壁層の積層数は、量子井戸構造部における歪みに起因して制約されることがない。
【0017】
本発明に係わる半導体光デバイスにおいては、第1及び第3の化合物半導体層は、GaNPAs半導体から構成されている。第2の化合物半導体層は、GaInNAsP半導体から構成されている。
【0018】
GaNPAs半導体が引っ張り歪みを有するように構成される場合には、GaNPAs半導体のバンドギャップを小さくできる。このGaNPAs半導体は、量子井戸構造において量子効果を低減するように作用する。これにより、発生される光の波長を長波長にシフトさせることが可能になる。
【0019】
本発明に係わる半導体光デバイスにおいては、第1及び第2の化合物半導体層は、GaPAs半導体から構成されている。第3の化合物半導体層は、GaInNAsP半導体から構成されている。GaPAs半導体のバンドギャップは、GaAs半導体のバンドギャップに比べて大きい。GaPAs半導体では、量子井戸構造へのキャリアの閉じ込めが良好になる。故に、半導体光デバイスの温度特性が良好になる。
【0020】
本発明に係わる半導体光デバイスにおいては、第1〜第3の化合物半導体層は量子井戸構造を構成するように設けられていてもよい。井戸層は圧縮歪み及び引っ張り歪みの一方の歪みを備えている。障壁層は、圧縮歪み及び引っ張り歪みの他方の歪みを備えている。量子井戸構造は、井戸層における歪み量は、障壁層の各々には歪み量と実質的に等しくなるように構成されている。この半導体光デバイスでは、井戸層及び障壁層における歪み量は、実質的に打ち消し合っており、井戸層及び障壁層の数が歪み応力に起因して制限されることはない。
【0021】
本発明に係わる半導体光デバイスにおいては、第1及び第2の化合物半導体層の各々のバンドギャップは、GaInNAsP半導体及びGaAs半導体のバンドギャップよりも大きくすることが好ましい。より大きなバンドギャップにより、第1及び第2の化合物半導体層はキャリアを第3の化合物半導体層に閉じ込める能力が向上する。この結果、温度依存性のより小さい半導体光デバイスが得られる。また、第1及び第2の化合物半導体層の各々は、GaAs半導体に実質的に格子整合することが好ましい。この半導体光デバイスは、第1及び第2の化合物半導体層の各々として、例えば、AlGaInAsP半導体を用いることにより得ることができる。
【0022】
本発明に係わる半導体光デバイスでは、第1導電型半導体部は第4の化合物半導体層を含んでおり、第2導電型半導体部は第5の化合物半導体層を含んでいる。第4及び第5の化合物半導体層の各々は、GaInP半導体から構成されている。この半導体光デバイスでは、GaInP半導体のバンドギャップは第1及び第3の化合物半導体層のバンドギャップよりも大きくできる。また、GaInP半導体の屈折率は第1及び第3の化合物半導体層の屈折率よりも小さくできる。
【0023】
本発明に係わる半導体光デバイスは、第1〜第3の化合物半導体層とを搭載する基板を更に備えることができる。基板はGaAs基板又はSi基板であることができる。
【0024】
本発明に係わる半導体光デバイスは、第1導電型半導体部、第2導電型半導体部、一対の面を有する半導体基板と、第1の電極と、第2の電極と、第3の化合物半導体層を更に備えることができる。一対の面の一方の面上には、第1導電型半導体部、第2導電型半導体部と、第1〜第3の化合物半導体層とが設けられている。一対の面の他方の面上には、第2の電極が設けられている。本発明においては、当該半導体光デバイスは半導体光増幅素子を構成することができる。また、本発明においては、当該半導体光デバイスは半導体レーザを構成することができる。さらに、本発明においては、当該半導体光デバイスは半導体光変調素子を構成することができる。
【0025】
量子井戸構造は、MQW構造及びSQW構造のいずれかであってもよい。第1〜第3の化合物半導体層の組合せにより、急峻な半導体接合を備えた様々な量子井戸構造が実現できる。
【0026】
本発明の更なる別の側面は、半導体光デバイスを製造する方法に関しており、この方法は、(a)第1導電型のGaInPクラッド層を第1導電型のGaAs基板上に形成する工程と、(b)井戸層と障壁層とを含む量子井戸構造を前記GaInPクラッド層上に形成する工程と、(c)第2導電型のGaInPクラッド層を前記量子井戸構造上に形成する工程とを備える。井戸層は、GaInNAsP半導体から構成されており、障壁層はGaNPAs半導体及びAlGaInAsP半導体のいずれかから構成されている。これらの工程によれば、急峻な半導体接合を備えた量子井戸構造を作製できる。障壁層はGaNPAs半導体から構成されていることが好ましい。また、障壁層はGaPAs半導体から構成されていることが好ましい。さらに、前記障壁層はAlGaInAsP半導体から構成されていることが好ましい。
【0027】
本発明の上記の目的および他の目的、特徴、並びに利点は、添付図面を参照して進められる本発明の好適な実施の形態の以下の詳細な記述から、より容易に明らかになる。
【0028】
【発明の実施の形態】
本発明の知見は、例示として示された添付図面を参照して以下の詳細な記述を考慮することによって容易に理解できる。引き続いて、添付図面を参照しながら、本発明の半導体光デバイスに係わる実施の形態を説明する。可能な場合には、同一の部分には同一の符号を付する。
【0029】
引き続いて、半導体光デバイスの一例として、半導体発光素子を説明する。半導体発光素子としては、半導体レーザ素子及び半導体光増幅素子が例示される。この半導体発光素子と同様の構造は、電界吸収型変調素子といった半導体変調素子にも適用できる。
【0030】
(第1の実施の形態)
図1は、半導体発光素子を示す斜視図である。半導体発光素子1aは、基板3と、第1導電型半導体層5と、化合物半導体部7aと、第1の第2導電型半導体層9と、電流ブロック層11と、第2の第2導電型半導体層13と、第3の第2導電型半導体層15と、第1の電極17と、第2の電極19とを備える。基板3は、一対の面3a及び3bを有する。一方の面3aは他方の面3bに対向している。基板3の面3aは、第1導電型半導体層5と、化合物半導体部7aと、第1の第2導電型半導体層9と、電流ブロック層11と、第2の第2導電型半導体層13と、第3の第2導電型半導体層15と搭載している。化合物半導体部7aは、第1導電型半導体層5と第2導電型半導体層9との間に設けられている。第3の第2導電型半導体層15上には、第1の電極17が設けられている。基板3の面3b上には、第2の電極19が設けられている。
【0031】
電流ブロック層11は、第2導電型半導体層9上に設けられている。電流ブロック層11は、開口部11aを有する。化合物半導体部7aの発光領域は、開口部11aに現れている。図1に示された実施例では、半導体発光素子1aの一端面21aから他端面21bに伸びる軸に沿って設けられている。開口部11aには、化合物半導体部7aが現れている。電流ブロック層11は、第2導電型半導体層15からのキャリア(電子及び正孔のいずれか)に対して障壁として作用する。この障壁により、キャリアは、開口部11aを通過して化合物半導体部7aに到達する。つまり、開口部11aは、キャリアが注入される化合物半導体部7aの領域を規定している。
【0032】
第2導電型半導体層13は、化合物半導体部7aの発光領域上及び電流ブロック層11上に設けられている。故に、開口部11aは第2導電型半導体層13により埋め込まれており、第2導電型半導体層13は第2導電型半導体層15から化合物半導体部7aへの経路を提供する。
【0033】
第2導電型半導体層15は、相対的に高濃度の不純物が添加されバンドギャップが小さい半導体で形成されている。これにより、電極17に対してオーミック接触を得やすい。第2導電型半導体層15は、コンタクト層として作用する。
【0034】
電極17は、第2導電型半導体層15上に設けられている。電極17は、電流ブロック層11の開口部11aの領域にキャリアを提供できるように設けられている。つまり、電極17は、開口部11a上に位置しており、図1に示された実施例では、半導体発光素子1aの一端面21aから他端面21bに伸びる軸に沿って設けられている。電極19は、基板3の面3b上に設けられている。
【0035】
図2(a)は、化合物半導体部の構造を示す図面である。図2(b)は、化合物半導体部のバンドダイアグラムを示す図面である。図2(a)を参照すると、化合物半導体部7aは、化合物半導体層23a、23bと、化合物半導体層24a〜24cとを有する。化合物半導体層23aは、化合物半導体層24aと化合物半導体層24bとの間に設けられている。化合物半導体層23bは、化合物半導体層24aと化合物半導体層24cとの間に設けられている。化合物半導体層23a、23bは、GaInNAsP半導体といった、ガリウム元素、インジウム元素、窒素元素、砒素元素、燐元素を含む半導体から構成されている。化合物半導体層24a〜24cの各々は、GaInAsP半導体といった、一又は複数の種類のIII族元素、砒素元素、及び燐元素を含む半導体から構成されている。半導体光デバイス1aでは、化合物半導体層24a〜24c及び化合物半導体層23a、23bの両方は砒素元素及び燐元素を含むので、化合物半導体層24a〜24cと化合物半導体層23a、23bとの接合において、燐原子(P)と砒素原子(As)との置換が生じ難い。故に、これらの半導体層間の界面に遷移層が形成されにくい。したがって、この界面における組成変化が急峻な半導体接合を得ることができる。
【0036】
図2(b)を参照すると、化合物半導体部7aは、量子井戸構造27aを有する。量子井戸構造27aにおいて、化合物半導体層24bのバンドギャップ△EB1は、化合物半導体層23a、23bのバンドギャップ△EWより小さく、また、化合物半導体層24a、24cのバンドギャップ△EB2、△EB3は化合物半導体層23a、23bのバンドギャップ△EWより小さい。化合物半導体層23a、23bは井戸層として作用する。化合物半導体層24bは、障壁層として作用する。化合物半導体層24a、24cは、光閉じ込め層或いは障壁層として作用する。故に、第1導電型半導体層5及び第1の第2導電型半導体層9からのキャリア(電子及び正孔)は、量子井戸構造27aに閉じ込められる。
【0037】
また、図2(a)を参照すると、量子井戸構造27aは、第1導電型半導体層5と第1の第2導電型半導体層9との間に設けられている。図2(b)を参照すると、第1導電型半導体層5の屈折率nCL1及び第2導電型半導体層9の屈折率nCL2は、量子井戸構造27a内の半導体層の屈折率nB1、nW、nC2、nC3のいずれよりも小さい。故に、量子井戸構造27a内において発生された光は、量子井戸構造27に沿って伝搬するとき、第1導電型半導体層5と第1の第2導電型半導体層9との間の領域に閉じ込められる。このとき、第1導電型半導体層5と第2導電型半導体層9は、クラッド層として働くことができる。
【0038】
図2(a)は、特定の数の井戸層及び障壁層を有する量子井戸構造を例示的に示しているけれども、半導体光デバイス1aにおいては、量子井戸構造27aは、任意の数の井戸層及び障壁層を有するMQW構造、或いはSQW構造のいずれかであることができる。これらの量子井戸構造において、急峻な半導体接合が得られる。
【0039】
半導体発光素子1aに含まれる半導体材料の実施例を下記に示す。
基板3:n型GaAs基板
第1導電型半導体層5:
n型GaInP半導体、
厚さ1.5マイクロメートル、キャリア濃度7×1017cm-3
化合物半導体層23a、23b:
アンドープGa0.86In0.140.04As0.950.01半導体
厚さ10ナノメートル、
化合物半導体層24a〜24c:
アンドープGa0.78In0.22As0.550.45半導体
厚さ10ナノメートル、
第2導電型半導体層9:
p型GaInP半導体、
厚さ1.5マイクロメートル、キャリア濃度7×1017cm-3
電流ブロック層11:
p型AlGaInP半導体、
厚さ0.5マイクロメートル、キャリア濃度7×1017cm-3
第2導電型半導体層13:
p型GaInP半導体、
厚さ1.0マイクロメートル、キャリア濃度7×1017cm-3
第2導電型半導体層15:
p型GaAs半導体、
厚さ200ナノメートル、キャリア濃度1×1019cm-3
好適な実施の形態では、その主面上にGaAs半導体層を備えるシリコン基板、或いは、GaAs基板を基板3として用いることができる。この場合には、化合物半導体部7aの半導体層23a、23b、24a〜24cの組成は、GaAs半導体に格子整合するように決定される。ここで、半導体Aが半導体Bに格子整合することは、格子パラメータ(aA−aB)/aBが−0.5パーセント以上+0.5パーセント以下の範囲にあることを意味する。
【0040】
化合物半導体層23a、23bは、ガリウム元素、インジウム元素、窒素元素、砒素元素、燐元素を含む半導体から構成されるので、バンドギャップと格子定数とを独立して変更可能な範囲が広い。
【0041】
図1、図2(a)及び図2(b)を参照しながら、半導体発光素子を説明したけれども、半導体発光素子がファブリペロー型半導体レーザ素子であるときは、一端面21a及び他端面21bの反射率は、一端面21a及び他端面21bが当該半導体レーザ素子の光共振器を構成するように決定されている。半導体発光素子がDFB型半導体レーザ素子であるときは、化合物半導体部7aと光学的に結合するように設けられた回折格子53を基板3上に備えている。半導体発光素子が半導体光増幅素子であるときは、一端面21aの反射率は、例えば1パーセント以下になるように非常に小さな値に決定されており、他端面21bの反射率は、一端面21aの反射率より相対的に大きくなるように決定されている。これらの半導体発光素子では、化合物半導体部は、注入されたキャリアに応答して光を発生する活性層として作用する。半導体発光素子では、活性層の構造は、化合物半導体部のフォトルミネッセンススペクトルが所望の発光波長を含むように構成されている。
【0042】
図1、図2(a)及び図2(b)に示された半導体光デバイスの構造は、電界吸収型変調素子といった半導体変調素子としても利用できる。半導体変調素子は、一端面21aに光を受けて、変調された光を他端面から出射する。これらの半導体変調素子では、化合物半導体部は、印加された電界に応答して入射光を変調する活性層として作用する。半導体変調素子では、活性層の構造は、化合物半導体部のフォトルミネッセンス波長が入射光の波長とわずかに異なるように構成されている。
【0043】
これらの半導体光デバイスからは、図1に示されるような光Laが提供される。
【0044】
GaAs半導体から構成される光閉じ込め層(障壁層)と、光閉じ込め層に隣接するGaInP半導体層とを備える半導体光デバイスでは、GaInP半導体層とGaAs半導体層との界面において、砒素原子と燐原子の置換が生じる可能性がある。実施例では、第1導電型半導体層5としてn型GaInP半導体層が利用されており、第2導電型半導体層9としてp型GaInP半導体層が利用されている。第1導電型半導体層5は、燐元素を含む半導体層が利用されており、光閉じ込め層(障壁層)には燐元素及び砒素元素を含む半導体層が使用されている。発明者らが行った実験によれば、第1導電型半導体層5と光閉じ込め層との界面においても、砒素原子と燐原子の置換が抑制されて、良好な品質の界面が得られていることが明らかになっている。
【0045】
また、発明者の実験によれば、化合物半導体部7aを構成する半導体層の表面においてキャリア再結合が抑制されていることが明らかになっている。発明者らは、半導体光デバイス1aにおいては化合物半導体層23a、23b、24a〜24cが燐(P)元素を含むのでキャリア再結合が抑制されていると考えている。
【0046】
好適な半導体発光素子においては、第1及び第3の化合物半導体層の各々のバンドギャップは、GaInNAsP半導体及びGaAs半導体のバンドギャップよりも大きくすることが好ましい。より大きなバンドギャップにより、第1及び第3の化合物半導体層はキャリアを第2の化合物半導体層に閉じ込める能力が向上する。この結果、温度依存性のより小さい半導体光デバイスが得られる。また、第1及び第3の化合物半導体層の各々は、GaAs半導体に実質的に格子整合することが好ましい。この半導体光デバイスは、第1及び第3の化合物半導体層の各々として、例えば、AlGaInAsP半導体を用いることにより得ることができる。ここで、半導体Aが半導体Bに実質的に格子整合することは、格子パラメータ(aA−aB)/aBが−0.5パーセント以上+0.5パーセント以下の範囲にあることを意味する。
【0047】
(第2の実施の形態)
引き続いて、別の実施の形態に係わる半導体発光素子を説明する。 図3(a)〜図3(d)の各々は歪み量子井戸構造を示す図面である。これらの量子井戸構造は、歪みを内包している。図3(a)〜図3(d)において、矢印の先端が内向き(→←)は圧縮歪みを示しており、矢印の先端が外向き(←→)は引っ張り歪みを示している。矢印の長さは、歪みの大きさを示している。半導体光デバイス1b〜1eでは、第1導電型半導体層5及び第2導電型半導体層9は、GaAs半導体に格子整合している。
【0048】
図3(a)は、半導体光デバイス1bを示す図面である。半導体光デバイス1bでは、化合物半導体部7bは、化合物半導体層29a、29b、31a〜31cが量子井戸構造27bを構成するように設けられている。量子井戸構造7bでは、化合物半導体層29a、29bが井戸層を構成すると共に化合物半導体層31a〜31cが障壁層を構成している。化合物半導体層31a〜31cにおけるIII族元素、砒素元素、及び燐元素の組成は、化合物半導体層31a〜31cの各々が引っ張り歪みを有するように決定されている。化合物半導体層29a、29bにおけるガリウム元素、インジウム元素、窒素元素、砒素元素、及び燐元素の組成は、化合物半導体層29a、29bが圧縮歪みを有するように決定されている。量子井戸構造27bにおいては、圧縮歪みの大きさは、引っ張り歪みの大きさに比べて大きい。この量子井戸構造では、井戸層及び障壁層の層数及び厚みの歪み応力による制限を緩和できるという利点がある。また、量子井戸構造27bは、例えば、GaInNAsP半導体及びGaNPAs半導体の組合せにより実現できる。例えば、GaInNAsP半導体の組成は、Ga0.7In0.30.017As0.9820.001である。
【0049】
図3(b)は、半導体光デバイス1cを示す図面である。半導体光デバイス1cでは、化合物半導体部7cは、化合物半導体層33a、33b、35a〜35cが量子井戸構造27cを構成するように設けられている。量子井戸構造27cでは、化合物半導体層33a、33bが井戸層を構成すると共に化合物半導体層35a〜35cが障壁層を構成している。化合物半導体層35a〜35cにおけるIII族元素、砒素元素、及び燐元素の組成は、化合物半導体層35a〜35cの各々が引っ張り歪みを有するように決定されている。化合物半導体層33a、33bにおけるガリウム元素、インジウム元素、窒素元素、砒素元素、及び燐元素の組成は、化合物半導体層33a、33bが圧縮歪みを有するように決定されている。量子井戸構造27cにおいては、圧縮歪みの大きさは、引っ張り歪みの大きさに比べて小さい。この量子井戸構造では、井戸層及び障壁層の層数及び厚みの歪み応力による制限を緩和できるという利点がある。また、量子井戸構造27cは、GaInNAsP半導体及びGaNPAs半導体の組合せにより実現できる。例えば、GaInNAsP半導体の組成は、Ga0.7In0.30.017As0.9820.001である。
【0050】
図3(c)は、半導体光デバイス1dを示す図面である。半導体光デバイス1dでは、化合物半導体部7dは、化合物半導体層37a、37b、39a〜39cが量子井戸構造27dを構成するように設けられている。量子井戸構造7dでは、化合物半導体層37a、37bが井戸層を構成すると共に化合物半導体層39a〜39cが障壁層を構成している。化合物半導体層39a〜39cにおけるIII族元素、砒素元素、及び燐元素の組成は、化合物半導体層39a〜39cの各々が圧縮歪みを有するように決定されている。化合物半導体層37a、37bにおけるガリウム元素、インジウム元素、窒素元素、砒素元素、及び燐元素の組成は、化合物半導体層37a、37bが引っ張り歪みを有するように決定されている。量子井戸構造27dにおいては、圧縮歪みの大きさは、引っ張り歪みの大きさにほぼ等しくなるように両半導体層の組成が決定されている。量子井戸構造27dは、例えば、GaInNAsP半導体及びGaInAsP半導体の組合せにより実現できる。量子井戸構造27dでは、次のような利点がある。量子井戸活性層結晶全体の歪みが補償されているので、結晶品質の劣化が少なく、光デバイスの信頼性が向上する。また、井戸層に引っ張り歪みを有するので、長波長化しやすいく、発光効率が向上できる。さらに、量子井戸活性層結晶全体の歪みが補償されているので、井戸層及び障壁層の層数及び厚みの制約がない。
【0051】
図3(d)は、半導体光デバイス1eを示す図面である。半導体光デバイス1eでは、化合物半導体部7eは、化合物半導体層41a、41b、43a〜43cが量子井戸構造27eを構成するように設けられている。量子井戸構造7eでは、化合物半導体層41a、41bが井戸層を構成すると共に化合物半導体層43a〜43cが障壁層を構成している。化合物半導体層43a〜43cにおけるIII族元素、砒素元素、及び燐元素の組成は、化合物半導体層43a〜43cの各々が引っ張り歪みを有するように決定されている。化合物半導体層41a、41bにおけるガリウム元素、インジウム元素、窒素元素、砒素元素、及び燐元素の組成は、化合物半導体層41a、41bが圧縮歪みを有するように決定されている。量子井戸構造27dにおいては、圧縮歪みの大きさは、引っ張り歪みの大きさにほぼ等しくなるように両半導体層の組成が決定されている。量子井戸構造27eは、例えば、GaInNAsP半導体及びGaNPAs半導体の組合せにより実現できる。量子井戸構造27eでは、次のような利点がある。量子井戸活性層結晶全体の歪みが補償されているので、結晶品質の劣化が少なく、光デバイスの信頼性が向上する。また、井戸層に圧縮歪みを有するので、短波長化しやすいく、発光効率が向上できる。さらに、量子井戸活性層結晶全体の歪みが補償されているので、井戸層及び障壁層の層数及び厚みの制約がない。
【0052】
量子井戸構造7b及び7cでは、量子井戸構造において歪みが全体として打ち消されずに残っている。歪みに応じて、半導体レーザ素子の発振モードが異なる。例えば、圧縮歪みの量子井戸構造では、半導体レーザ素子はTEモードで発振する。引っ張り歪みの量子井戸構造では、半導体レーザ素子はTMモードで発振する。
【0053】
量子井戸構造27d及び27eでは、量子井戸構造全体として歪みが打ち消し合っているので、井戸層及び障壁層の数が歪み量子井戸構造であることに起因して制限されない。故に、半導体発光素子として、大きな利得が得られる。また、半導体発光素子の温度特性が良好になる。更に、半導体発光素子が、より高温において動作可能になると共に、より高出力が得られる。
【0054】
(第3の実施の形態)
引き続いて、更なる別の実施の形態に係わる半導体発光素子を説明する。図4(a)及び図4(b)は、半導体光デバイスを構成する主要な半導体層の結晶の格子を模式的に示す図面である。引き続く説明では、基板3が半導体基板である実施例を説明する。
【0055】
図4(a)は、GaAs半導体基板といった半導体基板のための半導体3cと、量子井戸構造の井戸層のための半導体材料45と、障壁層のための半導体材料47と示している。半導体材料3cは、格子定数d0を有している。半導体材料45は、格子定数d1を有している。半導体47は、格子定数d2を有している。格子定数d0は、格子定数d1より大きく、格子定数d2より小さい。
【0056】
図4(b)は、GaAs半導体基板といった半導体基板のための半導体3cと、量子井戸構造の井戸層のための半導体49と、障壁層のための半導体51と示している。半導体材料3cは、格子定数d0を有している。半導体材料49は、格子定数d3を有している。半導体材料51は、格子定数d4を有している。格子定数d0は、格子定数d4より大きく、格子定数d3より小さい。
【0057】
量子井戸構造は、半導体材料45(或いは、半導体材料49)から構成される井戸層(図2における化合物半導体層23a、23b)、半導体材料47(或いは、半導体材料51)からなる障壁層(図2における化合物半導体層24a〜24c)を含む。第1導電型半導体層(図1における参照番号5)及び第2導電型半導体層(図1における参照番号9)は、GaAs半導体に格子整合している。しかしながら、第1及び第2の化合物半導体層におけるIII族元素、砒素元素、及び燐元素の組成は、化合物半導体層(図2における化合物半導体層24a〜24c)の各々を構成する半導体がGaAs半導体に格子整合しないように決定されている。化合物半導体層(図2における化合物半導体層23a、23b)におけるガリウム元素、インジウム元素、窒素元素、砒素元素、及び燐元素の組成は、第3の化合物半導体層を構成する半導体がGaAs半導体に格子整合しないように決定されている。
【0058】
好ましい実施例では、障壁層及び井戸層がほぼ等しい厚さである場合、障壁層を構成する半導体材料の格子定数dAと井戸層を構成する半導体材料の格子定数dBとの算術平均dAV=(dA+dB)は、GaAs半導体の格子定数dGaAsの値と実質的に一致している。ここで、実質的に一致は、−0.005≦(dAV−dGaAs)/dGaAs≦+0.005を意味する。量子井戸構造部の全体として歪みは実質的に打ち消されており、井戸層及び障壁層の積層数は、量子井戸構造部における歪みに起因して制約されることがない。
【0059】
好適な半導体光デバイスにおいては、障壁層は、GaNPAs半導体から構成されている。井戸層は、GaInNAsP半導体から構成され、この組合では、障壁層がGaAs半導体から構成される量子井戸構造と比較して、GaInNAsP井戸層内の量子準位が低エネルギーでシフトするので、長波長化しやすく、またGaInNAsP井戸層/GaAs障壁層の量子井戸構造では実現できない1.5マイクロメートル波長帯が利用できるようになる。1.5マイクロメートル波長帯は光通信の分野において重要な帯域である。
【0060】
好適な別の半導体光デバイスにおいては、障壁層は、GaPAs半導体から構成されている。井戸層は、GaInNAsP半導体から構成されている。GaPAs半導体のバンドギャップは、GaAs半導体のバンドギャップに比べて大きい。GaPAs半導体では、量子井戸構造へのキャリアの閉じ込めが良好になる。故に、半導体光デバイスの温度特性が良好になる。
【0061】
(第4の実施の形態)
図5は、別の実施の形態に係わる半導体発光素子を示す斜視図である。半導体発光素子1fは、垂直光共振器面発光レーザ素子の構造を有する。半導体発光素子1fは、基板60と、第1の半導体部62と、第1導電型半導体層64と、化合物半導体部66と、第4の第2導電型半導体層68と、第5の第2導電型半導体層70と、電流ブロック層72と、第5の第2導電型半導体層74と、第2の半導体部76と、第6の第2導電型半導体層78と、第1の電極80と、第2の電極82とを備える。基板60としては、GaAs基板及びシリコン基板といった半導体基板が例示される。基板60は、一対の面60a及び60bを有する。一方の面60aは他方の面60bに対向している。基板60の面60aは、第1の半導体部62と、第1導電型半導体層64と、化合物半導体部66と、第4の第2導電型半導体層68と、第5の第2導電型半導体層70と、電流ブロック層72と、第5の第2導電型半導体層74と、第2の半導体部76と、第6の第2導電型半導体層78とを搭載している。第1の半導体部62及び第2の半導体部76は、光共振器を構成する。
【0062】
化合物半導体部66は、第1の半導体部62と第2の半導体部76との間に位置している。化合物半導体部66は、第1導電型半導体層64と第2導電型半導体層68との間に設けられている。化合物半導体部66は、図2(a)、図2(b)、図3(a)〜図3(d)、図4(a)及び図4(b)に示されるいずれかの形態を備えることができる。化合物半導体部66は、所定の波長帯域において光を発生できるように設けられる。
【0063】
第2導電型半導体層68の主面は、第1の領域68a及び第2の領域68bを有する。第1の領域68aは第2の領域68bの周囲を囲むように設けられている。第2の領域68b上には、第4の第2導電型半導体層70、電流ブロック層72、及び第5の第2導電型半導体層74が設けられている。
【0064】
第2導電型半導体層74の主面は、第1の領域74a及び第2の領域74bを有する。第1の領域74aは第2の領域74bの周囲を囲むように設けられている。第2の領域74b上には、第2の半導体部76が設けられている。第2の領域74bの面積は、第2の領域68bの面積より小さい。
【0065】
電流ブロック層72は、第5の第2導電型半導体層70上に設けられており、また、化合物半導体部66の発光領域上に開口部72aを有する。第2導電型半導体層70の主面は、第1の領域70a及び第2の領域70bを有する。第1の領域70aは第2の領域70bの周囲を囲むように設けられている。第1の領域70a上には、電流ブロック層72が設けられている。第2の領域70b上には、電流ブロック層72の開口部72aが設けられている。開口部72aには、第2導電型半導体層70が現れている。この第2導電型半導体層70上には、電流経路半導体層73が設けられている。電流経路半導体層73は開口部72a内に位置しており、電流ブロック層72及び電流経路半導体層73上には、第2導電型半導体層74が設けられている。電流ブロック層72は、第2導電型半導体層74からのキャリア(電子及び正孔のいずれか一方)に対して障壁として作用する。この障壁により、キャリアは、開口部72aを通過して化合物半導体部66に到達する。つまり、開口部72aは、キャリアが注入される化合物半導体部66の領域を規定している。電流ブロック層は、第2導電型を有するAlAs半導体層の一部をメサの周囲からメサ内部に向けて選択酸化し、Al23絶縁層をドーナツ状に形成することで形成される。この結果、電流ブロック層の開口部72aは、電気的に導通可能な第2導電型を有するAlAs半導体層として形成される。
【0066】
第2導電型半導体層74は、第2導電型半導体部70上及び電流ブロック層72上に設けられている。開口部72aは、第2導電型半導体層74により埋め込まれるようにしてもよく、このとき、第2導電型半導体層74は、第2の半導体部76から第2導電型半導体層70への経路を提供している。
【0067】
第2導電型半導体層78は、相対的に高濃度の不純物が添加されバンドギャップが小さい半導体で形成されている。故に、電極17に対するオーミック接触が得やすい。第2導電型半導体層78は、コンタクト層として作用する。
【0068】
電極80は、第2導電型半導体層78上に設けられている。電極80は、第2の半導体部76にキャリアを提供できるように設けられている。つまり、電極80は、開口部72a上に位置している。基板60の面60bには、第2の電極82が設けられている。
【0069】
図6(a)は、第1の半導体部の構造を示す図面である。第1の半導体部62は、複数の半導体層62a及び複数の半導体層62bを備える。半導体層62a及び半導体層62bは、交互に配置されている。半導体層62aの屈折率は、半導体層62bの屈折率と異なっている。したがって、半導体部62は、回折格子を構成する。
【0070】
図6(b)は、第2の半導体部の構造を示す図面である。第2の半導体部76は、複数の半導体層76a及び複数の半導体層76bを備える。半導体層76a及び半導体層76bは、交互に配置されている。半導体層76aの屈折率は、半導体層76bの屈折率と異なっている。したがって、半導体部76は、回折格子を構成する。
【0071】
半導体発光素子1fは、半導体部62の回折格子の反射スペクトル、半導体部76の回折格子の反射スペクトル、及び化合物半導体部66の発光スペクトルが重なる波長帯域内の所定の波長の光Lbを発生できる。
【0072】
半導体発光素子1fに含まれる半導体材料の実施例を下記に示す。
基板60:n型GaAs基板
第1の半導体部62;
n型AlAs半導体/n型GaAs半導体 22.5周期
厚さ115ナノメートル/90ナノメートル、
キャリア濃度1×1018cm-3/1×1018cm-3
半導体層64:
アンドープAl0.5Ga0.5As半導体、
厚さ175ナノメートル
化合物半導体部66:
アンドープGaInNAsP半導体/アンドープGaInAsP半導体
厚さ10ナノメートル/厚さ10ナノメートル
半導体層68:
アンドープAl0.5Ga0.5As半導体、
厚さ175ナノメートル
第2導電型半導体層70:
p型GaAs半導体、
厚さ30ナノメートル、キャリア濃度7×1017cm-3
電流ブロック層72:
p型Al23
厚さ30ナノメートル
電流経路半導体層73:
p型AlAs半導体、
厚さ30ナノメートル、
第2導電型半導体層74:
p型GaAs半導体、
厚さ30ナノメートル、キャリア濃度7×1017cm-3
第2の半導体部76:
p型Al0.1Ga0.9As半導体/n型GaAs半導体 20周期
厚さ110ナノメートル/90ナノメートル、
キャリア濃度7×1017cm-3/7×1017cm-3
コンタクト層78;
p型GaAs半導体
厚さ60ナノメートル、キャリア濃度1×1019cm-3
好適な実施の形態では、その主面上にGaAs半導体層を備えるシリコン基板、或いは、GaAs基板を基板3として用いることができる。
【0073】
(第5の実施の形態)
引き続いて、半導体光デバイスを製造する方法を説明する。図7(a)に示されるように、GaAs半導体基板90を準備する。GaAs半導体基板90は一対の面90a及び90bを有する。表面90aは背面90bに対向している。
【0074】
図7(b)を参照すると、n型GaAs半導体基板90の主面90a上に、n型III−V族化合物半導体層92を形成する。化合物半導体層92はGaAs半導体に格子整合するn型GaInP半導体層から構成される。次いで、n型化合物半導体層92上に化合物半導体部94を形成する。n型化合物半導体層92及び化合物半導体部94は、例えば、有機金属気相成長法(OMVPE法)又は分子線エピタキシ法(MBE法)でエピタキシャル成長される。
【0075】
図8(a)〜図8(d)を参照しながら、化合物半導体部94の形成を説明する。化合物半導体部94は、アンドープGaInNAsP半導体層及びアンドープGaInAsP半導体層から構成される。図8(a)に示されるように、n型GaInP半導体層92上にアンドープGaInAsP半導体層94aを成長する。GaInP半導体層92とGaInAsP半導体層94aとの界面においては隣(P)と砒素(As)との置換が抑制されるので、急峻な接合が得られる。次いで、図8(b)に示されるように、GaInAsP半導体層94a上にアンドープGaInNAsP半導体層94bを成長する。GaInAsP半導体層94aとGaInNAsP半導体層94bとの界面においては隣(P)と砒素(As)との置換が抑制されるので、急峻な接合が得られる。所望の半導体層の積層が得られるまで、この成長ステップを繰り返して行う。これにより、化合物半導体部94が得られる。
【0076】
しかしながら、化合物半導体部がアンドープGaInNAsP半導体層及びアンドープGaAs半導体層から構成される場合には、図8(c)に示されるように、n型GaInP半導体層92上にアンドープGaAs半導体層95aを成長する。GaInP半導体層92とGaAs半導体層95aとの界面においては燐(P)と砒素(As)との置換が生じるので、遷移層97aがGaInP半導体層92とGaAs半導体層95aとの間に形成される。次いで、図8(d)に示されるように、GaAs半導体層95a上にアンドープGaInNAsP半導体層95bを成長する。GaAs半導体層95aとGaInNAsP半導体層95bとの界面においては燐(P)と砒素(As)との置換が生じるので、遷移層97bがGaInP半導体層とGaInAsP半導体層との間に形成される。遷移層97a及び97bの組成及び厚さは制御されていない。
【0077】
続いて、図9(a)に示されるように、GaAs半導体に格子整合するp型GaInP半導体層から構成されるp型III−V族化合物半導体層96を化合物半導体部94上にエピタキシャル成長する。次いで、電流ブロック層のためのAlGaInP半導体層といったn型化合物半導体層98をp型化合物半導体層96上にエピタキシャル成長する。
【0078】
図9(b)に示されるように、p型化合物半導体層98上にマスク層100を形成する。マスク層100は、電流通過領域を規定するための開口部100aを備える。マスク層100を形成した後に、リン酸系エッチャントを用いて、p型化合物半導体層96に対してp型化合物半導体層98を選択的にエッチングして、開口部98bを有する電流ブロック層98aを形成する。開口部98bは、所定の軸に沿って伸びている。開口部98bにおいて、p型化合物半導体層96は露出している。
【0079】
図10(a)に示されるように、電流ブロック層98a及びp型化合物半導体層96上に、p型GaInP半導体層といったIII−V族化合物半導体層102をエピタキシャル成長する。次いで、III−V族化合物半導体層102上にコンタクト層104をエピタキシャル成長する。
【0080】
コンタクト層104上には、アノード電極106を形成する。アノード電極106は、電流ブロック層98aの開口部98bと同じ方向に伸びている。基板90の背面90b上には、カソード電極108が形成される。これらの工程を介して、半導体光デバイス1gが得られる。
【0081】
以上説明した半導体発光素子では、発明者の知見によれば、発光領域及びその近傍に燐が添加されているので、表面再結合電流が低減される。
【0082】
量子井戸構造に歪み(圧縮又は引っ張り歪み)が加わった半導体レーザ素子では、次のようなレーザ特性が向上する。半導体レーザ素子の利得及び微分利得を大きくでき、しきい値電流を小さくでき、発光効率を増大でき、高温動作が可能になり、発振モードの制御が可能になる。
【0083】
GaInNAsP半導体と他のIII−V族化合物半導体との組み合わせにより、多彩な半導体光デバイスが得られる。
【0084】
好適な実施の形態において本発明の原理を図示し説明してきたが、本発明は、そのような原理から逸脱することなく配置および詳細において変更され得ることができることは、当業者によって認識される。例えば、本実施の形態では、単一の半導体発光素子を説明したけれども、半導体光デバイスは複数の半導体発光素子を備えることもできる。半導体光デバイスは、光集積素子であることができる。光集積素子は、半導体変調素子と、半導体発光素子とを含むことができる。また、実施の形態では半導体基板を備える半導体光デバイスを説明したが、本発明は、これに限定されるものではない。更に、実施の形態では半導体基板を備える半導体発光素子及び半導体変調素子を説明したが、本発明は、導波路型半導体受光素子といった受光素子にも適用でき、これらに限定されるものではない。加えて、本発明は、上記の実施の形態に限定されることなく、例えば、他の半導体材料に対しても適用できる。したがって、本発明は、本実施の形態に開示された特定の構成に限定されるものではない。したがって、特許請求の範囲およびその精神の範囲から来る全ての修正および変更に権利を請求する。
【0085】
【発明の効果】
以上詳細に説明したように、本発明によれば2つの半導体層の界面において燐原子(P)と砒素原子(As)との置換が生じ難い構造を有する半導体光デバイス、及びその製造方法が提供される。
【図面の簡単な説明】
【図1】図1は、半導体発光素子を示す斜視図である。
【図2】図2(a)は、化合物半導体部の構造を示す図面である。図2(b)は、化合物半導体部のバンドダイアグラムを示す図面である。
【図3】図3(a)〜図3(d)の各々は歪み量子井戸構造を示す図面である。
【図4】図4(a)及び図4(b)は、半導体光デバイスを構成する主要な半導体層の結晶の格子を模式的に示す図面である。
【図5】図5は、別の実施の形態に係わる半導体発光素子を示す斜視図である。
【図6】図6(a)は、第1の半導体部の構造を示す図面である。図6(b)は、第2の半導体部の構造を示す図面である。
【図7】図7(a)及び図7(b)は、半導体光デバイスを製造する方法を示す図面である。
【図8】図8(a)及び図8(b)は、半導体光デバイスの化合物半導体部を成長する手順を示す図面である。図8(c)及び図8(d)は、半導体光デバイスの化合物半導体部を成長する手順を示す図面である。
【図9】図9(a)及び図9(b)は、半導体光デバイスを製造する方法を示す図面である。
【図10】図10(a)及び図10(b)は、半導体光デバイスを製造する方法を示す図面である。
【符号の説明】
1a、1b…半導体発光素子、3…基板、5…第1導電型半導体層、7a…化合物半導体部、9…第2導電型半導体層、11…電流ブロック層、11a…開口部、13…第2導電型半導体層、15…第2導電型半導体層、17…第1の電極、19…第2の電極、23a、23b、24a〜24c…化合物半導体層、60…基板、62…第1の半導体部、64…第1導電型半導体層、66…化合物半導体部、68…第4の第2導電型半導体層、70…第5の第2導電型半導体層、72…電流ブロック層、73…電流経路半導体層、74…第5の第2導電型半導体層、76…第2の半導体部、78…第6の第2導電型半導体層、80…第1の電極、82…第2の電極、

Claims (5)

  1. 一又は複数の種類のIII族元素、砒素元素、及び燐元素を含む第1の化合物半導体層と、
    ガリウム元素、インジウム元素、窒素元素、砒素元素、燐元素を含む第2の化合物半導体層と
    一又は複数の種類のIII族元素、砒素元素、及び燐元素を含む第3の化合物半導体層と、
    GaInP半導体から構成される第4の化合物半導体層と、
    GaInP半導体から構成される第5の化合物半導体層と、
    前記第1〜第5の化合物半導体層を搭載するGaAs基板と
    を備え、
    前記第4の化合物半導体層はクラッド層であり、
    前記第5の化合物半導体層はクラッド層であり、
    前記第2の化合物半導体層は、GaInNAsP半導体から構成されており、
    前記第1及び第3の化合物半導体層はGaNPAs半導体及びAlGaInAsP半導体のいずれかから構成されており、
    前記第1及び第3の化合物半導体層の各々のバンドギャップは、GaInNAsP半導体及びGaAs半導体のバンドギャップよりも大きく、
    前記第1〜第3の化合物半導体層は、前記第2の化合物半導体層が井戸層を構成すると共に前記第1及び第3の化合物半導体層が障壁層を構成する量子井戸構造を構成するように設けられており、
    前記第1〜第3の化合物半導体層は、前記第4の化合物半導体層と前記第5の化合物半導体層との間に設けられている、半導体光デバイス。
  2. 多層反射膜を形成するように設けられた複数の第1導電型半導体層を含む第1の半導体部と、
    多層反射膜を形成するように設けられた複数の第2導電型半導体層を含む第2の半導体部と
    を更に備え、
    前記第1〜第5の化合物半導体層は、前記第1の半導体部と前記第2の半導体部との間に設けられている、請求項1に記載の半導体光デバイス。
  3. 前記第1及び第3の化合物半導体層における前記III族元素、砒素元素、及び燐元素の組成は、前記第1及び第3の化合物半導体層の各々が圧縮歪み及び引っ張り歪みの一方の歪みを有するように決定されており、
    前記第2の化合物半導体層における前記ガリウム元素、インジウム元素、窒素元素、砒素元素、及び燐元素の組成は、前記第2の化合物半導体層が圧縮歪み及び引っ張り歪みの他方の歪みを有するように決定されている、請求項1または請求項2に記載の半導体光デバイス。
  4. 前記第1及び第3の化合物半導体層における前記III族元素、砒素元素、及び燐元素の組成は、前記第1及び第3の化合物半導体層の各々を構成する半導体がGaAs半導体の格子定数に格子整合しないように決定されており、
    前記第2の化合物半導体層における前記ガリウム元素、インジウム元素、窒素元素、砒素元素、及び燐元素の組成は、前記第2の化合物半導体層を構成する半導体の格子定数がGaAs半導体に格子整合しないように決定されており、
    前記障壁層を構成する半導体と前記井戸層を構成する半導体との平均的な格子定数は、GaAs半導体の格子定数と実質的に一致している、請求項1または請求項2に記載の半導体光デバイス。
  5. 第1導電型のGaInPクラッド層を第1導電型のGaAs基板上に形成する工程と、
    井戸層及び障壁層を含む量子井戸構造を前記GaInPクラッド層上に形成する工程と、
    第2導電型のGaInPクラッド層を前記量子井戸構造上に形成する工程と
    を備え、
    前記井戸層は、GaInNAsP半導体から構成され、
    前記障壁層はGaNPAs半導体及びAlGaInAsP半導体のいずれかから構成された、半導体光デバイスを製造する方法。
JP2002299326A 2002-10-11 2002-10-11 半導体光デバイス、及び半導体光デバイスを製造する方法 Expired - Fee Related JP4178901B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002299326A JP4178901B2 (ja) 2002-10-11 2002-10-11 半導体光デバイス、及び半導体光デバイスを製造する方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002299326A JP4178901B2 (ja) 2002-10-11 2002-10-11 半導体光デバイス、及び半導体光デバイスを製造する方法

Publications (2)

Publication Number Publication Date
JP2004134663A JP2004134663A (ja) 2004-04-30
JP4178901B2 true JP4178901B2 (ja) 2008-11-12

Family

ID=32288495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002299326A Expired - Fee Related JP4178901B2 (ja) 2002-10-11 2002-10-11 半導体光デバイス、及び半導体光デバイスを製造する方法

Country Status (1)

Country Link
JP (1) JP4178901B2 (ja)

Also Published As

Publication number Publication date
JP2004134663A (ja) 2004-04-30

Similar Documents

Publication Publication Date Title
US8906721B2 (en) Semiconductor light emitting device and method for manufacturing the same
JP2004336039A (ja) トンネル接合構造を組み込んだGaAsベースの長波長レーザ
JPH0738204A (ja) 半導体光デバイス及びその製造方法
JP2001308451A (ja) 半導体発光素子
US20070170441A1 (en) Nitride semiconductor device and method for manufacturing the same
US20080037607A1 (en) Semiconductor laser diode with a ridge structure buried by a current blocking layer made of un-doped semiconductor grown at a low temperature and a method for producing the same
US8003995B2 (en) Semiconductor optical device with suppressed double injection phenomenon
WO2005117217A1 (ja) 半導体光素子及びその製造方法
JP5463760B2 (ja) 光導波路集積型半導体光素子およびその製造方法
JP3189791B2 (ja) 半導体レーザ
JPS6180882A (ja) 半導体レ−ザ装置
JP2006165309A (ja) 半導体レーザ素子
US10020637B2 (en) Method for manufacturing semiconductor device and semiconductor device
JP2003332694A (ja) 半導体レーザ
US7573926B2 (en) Multiwavelength quantum dot laser element
JP2005286192A (ja) 光集積素子
JP2004253802A (ja) 改善された温度特性を有するGaAsSb/GaAs素子
JPH1022579A (ja) 光導波路構造とこの光導波路構造を用いた半導体レーザ、変調器及び集積型半導体レーザ装置
JP2010021430A (ja) 半導体光素子
JP4178901B2 (ja) 半導体光デバイス、及び半導体光デバイスを製造する方法
JP2002368342A (ja) 多重量子井戸半導体素子
EP1037342A2 (en) Semiconductor laser device and fabrication method thereof
KR100862925B1 (ko) 양자우물 구조를 갖는 반도체 레이저 다이오드
JP2019102581A (ja) 光半導体集積装置、光半導体集積装置の製造方法および光通信システム
JP6487236B2 (ja) 半導体光素子、及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080818

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees