JP4177221B2 - Copper alloy for electronic equipment - Google Patents

Copper alloy for electronic equipment Download PDF

Info

Publication number
JP4177221B2
JP4177221B2 JP2003346704A JP2003346704A JP4177221B2 JP 4177221 B2 JP4177221 B2 JP 4177221B2 JP 2003346704 A JP2003346704 A JP 2003346704A JP 2003346704 A JP2003346704 A JP 2003346704A JP 4177221 B2 JP4177221 B2 JP 4177221B2
Authority
JP
Japan
Prior art keywords
compound
crsi
etching
copper alloy
press punching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003346704A
Other languages
Japanese (ja)
Other versions
JP2005113180A (en
Inventor
立彦 江口
信行 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2003346704A priority Critical patent/JP4177221B2/en
Publication of JP2005113180A publication Critical patent/JP2005113180A/en
Application granted granted Critical
Publication of JP4177221B2 publication Critical patent/JP4177221B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lead Frames For Integrated Circuits (AREA)

Description

本発明は、エッチング、プレス加工により所望の形状に加工される銅合金、例えばリードフレーム材、端子・コネクター材、スイッチ材等に適用する電気電子機器用銅合金とその製造方法に関する。   The present invention relates to a copper alloy processed into a desired shape by etching and pressing, for example, a copper alloy for electrical and electronic equipment applied to a lead frame material, a terminal / connector material, a switch material, and the like, and a method for producing the same.

半導体のリードフレーム材や携帯電話等の電子機器の端子・コネクター材には、電気伝導性及び熱伝導性に優れた銅合金が多く用いられている。近年は半導体及び電子機器の高集積化や小型化が進み、これらに使用される銅合金も電気伝導性や熱伝導性ばかりでなく、強度、耐熱性、及び貴金属(Ag、Pd等)や半田とのめっき性が優れていることが求められている。このめっき性を確保するには優れた表面平滑性も必要となっている。更に前記要求特性が長期に保持されること、即ち経時的信頼性も重要である。
このような要求に応えるために、様々な銅合金が開発されたが、その多くは淘汰され現在では数種類が用いられているだけであり、その中でもCu−Cr系合金は高い導電性と強度を兼備する合金として、広く使用されている合金系の一つである(例えば、特許文献1、2、3参照)。
Copper alloys excellent in electrical conductivity and thermal conductivity are often used for terminals / connectors of semiconductor lead frame materials and electronic devices such as mobile phones. In recent years, semiconductors and electronic devices have been highly integrated and miniaturized, and copper alloys used for these have not only electrical and thermal conductivity, but also strength, heat resistance, precious metals (Ag, Pd, etc.) and solder. It is required to have excellent plating properties. Excellent surface smoothness is also required to ensure this plating property. Further, it is important that the required characteristics are maintained for a long time, that is, reliability over time.
In order to meet such demands, various copper alloys have been developed, but many of them have been rejected and only a few types are currently used. Among them, Cu-Cr alloys have high conductivity and strength. It is one of the alloy systems that are widely used as a combined alloy (see, for example, Patent Documents 1, 2, and 3).

特開昭62−86137号公報JP 62-86137 A 特開昭63−69933号公報JP 63-69933 A 特開平10−195562号公報JP-A-10-195562

リードフレーム等の成形加工には、通常エッチング加工法またはプレス打抜き加工法が用いられる。特にCu−Cr系合金はエッチング加工性に優れていることからエッチング加工法が有利な多ピンリードフレーム材料に広く用いられていたが、近年のプレス技術の革新により、プレス打抜き加工法でも多ピンリードフレームの製造が可能となってきており、生産性の面ではエッチング加工法より優れるプレス打抜き加工法が採用されてきている。   For forming a lead frame or the like, an etching method or a press punching method is usually used. In particular, Cu-Cr alloys have been widely used in multi-pin lead frame materials where etching is advantageous because of their excellent etching processability. However, due to recent innovations in press technology, multi-pins are also used in press punching. Lead frames can be manufactured, and a press punching method that is superior to an etching method in terms of productivity has been adopted.

しかしながら、従来のCu−Cr系合金のプレス打抜き加工性は必ずしも良好ではなく、加工の際にバリや加工粉が発生してリード間の短絡を起こしたり、またリードフレームの寸法精度が低下したりする不具合が発生していた。また、この様な不具合は金型のメンテナンスサイクルを短くするため、生産性を低下させ、製造コストを高くする一因ともなっている。   However, the press-punching processability of conventional Cu-Cr alloys is not always good, and burrs and processing powder are generated during processing, causing short circuit between leads, and dimensional accuracy of the lead frame is reduced. A problem occurred. In addition, such a defect shortens the maintenance cycle of the mold, and thus contributes to a decrease in productivity and an increase in manufacturing cost.

即ち、リードフレームを安価に早く提供するためには、如何にプレス加工設備の稼働率を上げるか、如何に不良品を減らして製造歩留まりを高めるかが重要な課題となり、特にCu−Cr系合金においてはプレス打抜き加工性の大幅な改善が強く望まれた。   That is, in order to provide a lead frame at a low cost and quickly, how to increase the operating rate of the press processing equipment and how to reduce defective products and increase the production yield are important issues, particularly Cu-Cr alloys. Therefore, a significant improvement in press punching workability was strongly desired.

このような要求に対して、Cu−Cr系合金に微量元素を添加し、Cuマトリックス中に添加元素によるCr化合物を析出させ、これを加工時の破壊の起点とし、プレス打抜き加工性を改善する方法が提案されている(例えば特許文献3参照)。
しかし、Cr化合物は粗大化し易いと共に、圧延加工により圧延方向に長く伸び易い性質があるため、ヒゲ状の形態となり、エッチング加工時に溶解されないヒゲ状のCr化合物がリード端面から突出し、リード間の短絡原因となると共にヒゲ状の化合物上のAgめっきがこぶ状になるめっき不良を発生させていた。
In response to such a demand, a trace element is added to the Cu-Cr alloy, and a Cr compound by the additive element is precipitated in the Cu matrix, which is used as a starting point of fracture during processing to improve press punching workability. A method has been proposed (see, for example, Patent Document 3).
However, the Cr compound is easy to coarsen and has the property of easily extending in the rolling direction due to the rolling process. Therefore, the bearded form is formed, and the bearded Cr compound that is not dissolved during the etching process protrudes from the end face of the lead, and the short circuit between the leads. In addition to this, plating defects in which the Ag plating on the beard-like compound became hump-like were generated.

そこで、本発明ではエッチング加工とプレス打抜き加工の双方に好適に使用できるCu−Cr系合金の提供を目的とする。   Therefore, an object of the present invention is to provide a Cu—Cr-based alloy that can be suitably used for both etching and press punching.

請求項1記載の発明は、Crを0.1〜0.25wt%、Siを0.005〜0.1wt%、Znを0.1〜0.5wt%、Snを0.05〜0.5wt%含み、CrとSiの重量比Cr/Siが3〜25の範囲で、残部銅及び不可避的不純物からなる銅合金において、銅母相中に、0.05μm〜10μmの大きさを有するCrSi化合物が1×10〜5×10個/mmの個数密度で存在し、且つ、CrSi化合物以外のCr化合物の大きさ10μm以下であることを特徴とするエッチング加工性及び打ち抜き加工性の両方に優れた電子機器用銅合金である。
According to the first aspect of the present invention, Cr is 0.1 to 0.25 wt%, Si is 0.005 to 0.1 wt%, Zn is 0.1 to 0.5 wt%, and Sn is 0.05 to 0.5 wt%. CrSi compound having a size of 0.05 μm to 10 μm in a copper matrix in a copper alloy comprising the balance copper and inevitable impurities in a Cr / Si weight ratio of Cr / Si in the range of 3 to 25 there exist in the number density of 1 × 10 3 ~5 × 10 5 cells / mm 2, and the etching workability and punching workability size of Cr compounds other than CrSi compound is characterized der Rukoto below 10μm It is an excellent copper alloy for electronic devices.

本発明に係る銅合金は、プレス打抜き加工性とエッチング加工性が共に優れ、また、強度や導電率、並びに半田付け性やめっき性等にも優れるもので、近年、微細加工性が要求される多ピン、狭ピッチのリードフレームを始め、端子、コネクター、スイッチ、リレー等の小型化する電子機器部品用として好適に使用できる。依って、本発明は産業上有用かつ顕著な効果を奏するものである。   The copper alloy according to the present invention is excellent in both press punching workability and etching workability, and is excellent in strength, electrical conductivity, solderability, plating ability, etc., and has recently required fine workability. It can be suitably used for electronic device parts such as multi-pin, narrow-pitch lead frames, terminals, connectors, switches, relays, and the like that are miniaturized. Therefore, the present invention has industrially useful and remarkable effects.

本発明の合金は、Cuマトリックス中に、プレス打抜き加工性を改善しながら、エッチング加工性を確保するために、所定の大きさ及び個数密度を有するCrSi化合物を微細に析出させること及びCrSi以外のCr化合物の大きさを制限することを骨子としている。
本発明者らはこのCrを含む銅合金系について研究を行い、CrSi化合物が打ち抜き加工性の改善に寄与しながら、展延性が低いために圧延加工時に圧延方向に伸び難く、ヒゲ状に変形しないことを新たに知見した。又、CrSi化合物以外のCr−Cu化合物、Cr−S化合物、Cr−P化合物などのCr化合物は、展延性が高く、圧延加工時に圧延方向に伸びてヒゲ状になることを見出した。即ち、このCrSi化合物を適正に生成させてプレス打抜き加工性を改善し、かつCrSi以外のCr化合物の大きさを制御することで、ヒゲ状化合物の生成を抑制し、エッチング加工性も満足する銅合金を見出したのである。
The alloy according to the present invention is a method in which a CrSi compound having a predetermined size and number density is finely precipitated and other than CrSi in order to ensure etching processability while improving press punching processability in a Cu matrix. The main point is to limit the size of the Cr compound.
The present inventors have studied the copper alloy system containing Cr, and while the CrSi compound contributes to the improvement of the punching workability, it is difficult to extend in the rolling direction at the time of rolling due to low ductility, and does not deform into a beard shape. I found out that. Moreover, it discovered that Cr compounds, such as Cr-Cu compound, Cr-S compound, Cr-P compound other than a CrSi compound, had high ductility, and extended in the rolling direction at the time of a rolling process, and became whisker-like. In other words, copper is produced by properly producing this CrSi compound to improve press punching workability, and by controlling the size of the Cr compound other than CrSi, thereby suppressing the production of mustache-like compounds and satisfying etching workability. I found an alloy.

本発明においては、成分の限定と製造条件を合わせて制御することにより、プレス打抜き加工性の改善に理想的なCrSi化合物の析出状態を達成しつつ、エッチング加工性の低下原因となるCrSi以外のCr化合物の大きさを制御することで、実用性に優れる本発明に係る銅合金を得たものである。
本発明に係る銅合金は、CrSi化合物を理想的に析出させ、且つ、CrSi以外のCr化合物の大きさを制御するために、熱間加工前に850℃から980℃の加熱処理を施し、又、リードフレーム材としてのバランスの取れた特性を満足させるために、熱間加工後に冷間加工と400℃から600℃の温度での熱処理の組み合わせによる工程を一回、若しくは、繰返し複数回施すことが必要である。
In the present invention, by controlling the combination of the component limitations and the manufacturing conditions, while achieving the precipitation state of the CrSi compound ideal for improving the press punching processability, other than CrSi that causes the etching processability to deteriorate By controlling the size of the Cr compound, a copper alloy according to the present invention having excellent practicality is obtained.
The copper alloy according to the present invention is subjected to heat treatment from 850 ° C. to 980 ° C. before hot working in order to ideally precipitate the CrSi compound and to control the size of the Cr compound other than CrSi. In order to satisfy the balanced characteristics as a lead frame material, a process by a combination of cold working and heat treatment at a temperature of 400 ° C. to 600 ° C. is performed once or repeatedly after hot working. is required.

次に本発明合金の成分限定理由を説明する。
Crを0.1〜0.25wt%としたのは、Cr量が0.1wt%未満では熱間加工前に850℃〜980℃の温度での加熱処理を施しても、CrSi化合物の生成量が少なく、プレス打抜き加工性の改善効果が不十分であるためである。逆に、Cr量が0.25wt%を超えると、CrSi以外のCr化合物が10μmより粗大化するため、圧延加工後にヒゲ状になり、エッチング加工後のリード短絡の原因となったり、めっき性を低下させるためである。
Next, the reasons for limiting the components of the alloy of the present invention will be described.
The reason why Cr is 0.1 to 0.25 wt% is that if the Cr amount is less than 0.1 wt%, the amount of CrSi compound produced even if heat treatment is performed at a temperature of 850 ° C. to 980 ° C. before hot working. This is because the effect of improving the press punching workability is insufficient. Conversely, if the Cr content exceeds 0.25 wt%, Cr compounds other than CrSi will become coarser than 10 μm, and thus will become whiskered after rolling, leading to lead shorts after etching, and plating properties. It is for lowering.

Si量を0.005〜0.1wt%とするのは、Si量が0.005wt%未満では、CrSi化合物のサイズ及び分散密度が小さくプレス打抜き加工性が改善されない。逆に、0.1wt%を超えると10μmを超える粗大なCrSi化合物が生成するため、エッチング加工後のリード短絡の原因となると共に、Cu中に固溶するSi量が多くなり、導電率が低下するためである。
更に、Cr/Siの成分比を3〜25とするのは、成分比が3未満では、Crが少ない場合にはCrSi化合物の生成量が少なくプレス打抜き加工性の改善効果が弱い。又、Si量が多い場合にはCrSi化合物が10μmを超えて粗大化するため、エッチング加工後のリード短絡の原因となると共に、導電率も低下するためである。成分比が25を超えるとCrSi化合物以外のCr化合物が10μmを超え粗大化するため、圧延加工により伸びてヒゲ状になり、エッチング加工後のリード短絡の原因となるためである。
The reason why the Si amount is 0.005 to 0.1 wt% is that when the Si amount is less than 0.005 wt%, the size and dispersion density of the CrSi compound are small and the press punching processability is not improved. On the other hand, if it exceeds 0.1 wt%, a coarse CrSi compound exceeding 10 μm is generated, causing lead short circuit after etching and increasing the amount of Si dissolved in Cu, resulting in a decrease in conductivity. It is to do.
Furthermore, the Cr / Si component ratio is set to 3 to 25. When the component ratio is less than 3, when the amount of Cr is small, the amount of CrSi compound produced is small and the effect of improving the press punching workability is weak. Further, when the amount of Si is large, the CrSi compound is coarsened to exceed 10 μm, which causes a lead short circuit after the etching process and also decreases the conductivity. When the component ratio exceeds 25, Cr compounds other than the CrSi compound become larger than 10 μm and become coarse, so that they become elongated due to the rolling process and become a beard shape, causing a lead short circuit after the etching process.

先に述べたように本発明は、CrSi化合物を打ち抜き加工時の破壊の起点とすることでプレス打抜き性を改善するものであるが、その最大径が0.05μmより小さいと打ち抜き性の改善に寄与せず、逆に最大径が10μmを超えるとエッチング加工時にリード短絡の原因となる。従って、各々の最大径が0.05〜10μmの化合物が適量分散している状態が理想的である。
更に、これらの化合物の分散密度が、1×10個/mm未満ではプレス打抜き加工性の改善効果が少なく、5×10個/mmを超えると打ち抜き加工性は良好であるが、強度特性および耐熱性が低下し、リードフレーム材としての機能を果たさない。
As described above, the present invention improves the press punchability by using a CrSi compound as a starting point of fracture at the time of punching. However, if the maximum diameter is smaller than 0.05 μm, the punchability is improved. Conversely, if the maximum diameter exceeds 10 μm without contributing, a lead short circuit may occur during etching. Therefore, it is ideal that each compound having a maximum diameter of 0.05 to 10 μm is dispersed in an appropriate amount.
Furthermore, when the dispersion density of these compounds is less than 1 × 10 3 pieces / mm 2 , the effect of improving the press punching workability is small, and when it exceeds 5 × 10 5 pieces / mm 2 , the punching workability is good. Strength characteristics and heat resistance are reduced, and it does not function as a lead frame material.

CrSi化合物以外のCr化合物の大きさを10μm以下とするのは、10μmを超えると前述のように、このCr化合物は圧延加工により圧延方向に長く伸びるため、エッチング加工時にヒゲ状に端面から突出し、リード短絡の原因となる。
なお、本発明においては、Cu−Cr合金における前記CrSi化合物とCrSi化合物以外のCr化合物の役割と影響を分離したことが最重要ポイントであり、これらのサイズと分散密度を個別に制御する成分と製造方法を見いだしたことで、エッチング加工性とプレス打抜き加工性の双方を良好に満足させることを可能としたものである。
The size of the Cr compound other than the CrSi compound is 10 μm or less, as described above when the Cr compound exceeds 10 μm, because this Cr compound extends long in the rolling direction by rolling, so that it protrudes from the end face in a beard shape during etching processing, It may cause lead short circuit.
In the present invention, it is the most important point that the role and influence of the Cr compound other than the CrSi compound and the CrSi compound in the Cu-Cr alloy are separated, and the components for individually controlling the size and the dispersion density By finding the manufacturing method, it is possible to satisfactorily satisfy both the etching processability and the press punching processability.

Snは、材料の強度を高める効果を有する。添加量が0.05wt%に満たない場合、所定の強度が達成できず、逆に添加量が多いと、導電性が低下する。従って、Snの添加範囲は0.05〜0.5wt%が最適である。   Sn has the effect of increasing the strength of the material. When the addition amount is less than 0.05 wt%, the predetermined strength cannot be achieved. Conversely, when the addition amount is large, the conductivity is lowered. Therefore, the addition range of Sn is optimally 0.05 to 0.5 wt%.

ZnはSnめっきやはんだの耐熱剥離性及び耐マイグレーション特性を改善する効果を有する。特に電子機器用のリードフレームやコネクターに使用される場合、実装後の半田付け部の経時劣化が重視されるため、Zn添加が不可欠である。その含有量が0.1wt%未満では充分な効果が得られず、0.5wt%を超えて添加しても、その効果は飽和し、逆に、導電性を低下させる。従って、Znの添加範囲は0.1〜0.5wt%とする。   Zn has the effect of improving the heat resistance peelability and migration resistance characteristics of Sn plating and solder. In particular, when used for lead frames and connectors for electronic equipment, Zn addition is indispensable because deterioration with time of the soldered portion after mounting is emphasized. If the content is less than 0.1 wt%, a sufficient effect cannot be obtained. Even if the content exceeds 0.5 wt%, the effect is saturated, and conversely, the conductivity is lowered. Therefore, the addition range of Zn shall be 0.1-0.5 wt%.

更に、強度、耐熱性、耐応力緩和特性等の電子機器用途としての要求特性を改善するために、必要に応じて、Mg、Ti、Mn、Fe、Co、Ni、Ag、Al、In、Pb、Bi、Te、Ca、B、C、Pなどの添加元素を導電率が阻害されない範囲として0.5wt%未満添加しても良い。   Furthermore, Mg, Ti, Mn, Fe, Co, Ni, Ag, Al, In, Pb may be used as necessary in order to improve the properties required for electronic equipment applications such as strength, heat resistance, and stress relaxation resistance. , Bi, Te, Ca, B, C, P and the like may be added in an amount that does not hinder the conductivity, and less than 0.5 wt%.

次に、前記本発明の構成を用いて良好な特性を実現するためには、その製造方法が重要である。
プレス打抜き加工性の改善にはCrSi化合物の生成が大きく寄与しているが、前記熱間加工前の加熱処理温度が980℃より高いと、最大径が0.05〜10μmのCrSi化合物の個数密度が低くなり、プレス打抜き加工性が改善されない。逆に加熱処理温度が850℃未満では、Cr化合物(CrSi化合物以外)の大きさが10μmを超えるか、その個数密度が1×10個/mm以上となり、Cr化合物が圧延加工により圧延方向に長く伸びるか、又は隣接した化合物同士が断続的につながり易いため、エッチング加工時にリード短絡の原因となる。このような観点から、熱間加工前の加熱処理温度は850℃〜980℃とする。特に、880℃〜950℃が好ましい範囲である。
Next, in order to achieve good characteristics using the configuration of the present invention, the manufacturing method is important.
The production of CrSi compounds greatly contributes to the improvement of press punching workability. However, when the heat treatment temperature before hot working is higher than 980 ° C., the number density of CrSi compounds having a maximum diameter of 0.05 to 10 μm. The press punching processability is not improved. Conversely, when the heat treatment temperature is less than 850 ° C., the size of the Cr compound (other than the CrSi compound) exceeds 10 μm, or the number density is 1 × 10 3 pieces / mm 2 or more, and the Cr compound is rolled in the rolling direction. In other words, the adjacent compounds are likely to be intermittently connected to each other. From such a viewpoint, the heat treatment temperature before hot working is set to 850 ° C to 980 ° C. In particular, 880 ° C. to 950 ° C. is a preferable range.

更にリードフレーム材としてのバランスの取れた強度と導電率を満足させるためには、熱間加工後に冷間加工と400℃から600℃の温度での熱処理との組み合わせによる工程を一回、若しくは、繰返し複数回施すことが必要である。なお、最終冷間加工後に比較的低温での熱処理を施して加工歪みを減じておくことが望ましく、バッチ式焼鈍方法では200℃〜450℃の温度で0.5〜5時間、走間式焼鈍方法では600℃〜800℃の温度で5〜120秒間施すことが好ましい。また、最終熱処理の前または後にテンションレベラーやローラーレベラーなどで矯正加工を行っても良い。   Furthermore, in order to satisfy the balanced strength and electrical conductivity as the lead frame material, a process by a combination of cold working and heat treatment at a temperature of 400 ° C. to 600 ° C. is performed once after hot working, or It is necessary to apply repeatedly several times. In addition, it is desirable to reduce the processing strain by applying a heat treatment at a relatively low temperature after the final cold working, and in the batch type annealing method, running annealing at a temperature of 200 ° C. to 450 ° C. for 0.5 to 5 hours. In the method, it is preferably applied at a temperature of 600 ° C. to 800 ° C. for 5 to 120 seconds. Further, straightening may be performed with a tension leveler or a roller leveler before or after the final heat treatment.

以下に本発明を実施例により詳細に説明する。
表1に示す本発明例合金を高周波溶解炉にて溶解し、厚さ30mm、幅100mm、長さ150mmの鋳塊を作製した。この鋳塊を940℃で2時間加熱後、厚さ11mmまで熱間圧延し、熱間圧延後、直ちに水中に浸漬して速やかに冷却した。次に両面を各1mmづつ面削した後、0.25mmまで冷間圧延し、この冷間圧延材を不活性ガス雰囲気中において530℃の温度で2時間の熱処理を施し、その後0.15mmまで仕上げ冷間圧延した後、350℃の温度で2時間の低温焼鈍処理を施し、表2に示す本発明例のNo.1からNo.9の銅合金板供試材を得た。
Hereinafter, the present invention will be described in detail with reference to examples.
Inventive alloys shown in Table 1 were melted in a high-frequency melting furnace to produce an ingot having a thickness of 30 mm, a width of 100 mm, and a length of 150 mm. The ingot was heated at 940 ° C. for 2 hours, and then hot-rolled to a thickness of 11 mm. After hot rolling, the ingot was immediately immersed in water and quickly cooled. Next, both sides of each side are chamfered by 1 mm, and then cold-rolled to 0.25 mm. The cold-rolled material is heat-treated at 530 ° C. for 2 hours in an inert gas atmosphere, and then to 0.15 mm. After the finish cold rolling, a low temperature annealing treatment was performed at a temperature of 350 ° C. for 2 hours. 1 to No. 9 copper alloy sheet test materials were obtained.

表1に示す比較例合金も本発明例合金と同じ方法により作製し、表2の比較例No.21からNo.26の銅合金板供試材を得た。   The comparative example alloys shown in Table 1 were also produced by the same method as the inventive example alloys. 21 to No. 26 copper alloy plate test materials were obtained.

作製した供試材から試験片を切り出して、化合物相の個数密度、引張強さ、伸び、導電率、プレス打抜き加工性、はんだ耐熱剥離性を評価した。結果を表2、表3に示す。
化合物の種類と大きさは、試験片を酸性水溶液(6体積%HSO+7体積%H)中に30秒間浸漬してエッチングし、走査型電子顕微鏡(1000倍)にて無作為に選んだ10視野に存在する化合物全てをX線マイクロアナライザーにて分析して、各々の化合物の種類(CrSi化合物又はCr化合物)を決定した後、視野を写真撮影して、化合物の大きさの平均値を算出した。ここで大きさとは最大径であり、化合物が球形の場合はその径、楕円状の場合は長径、棒状の場合は最大長さと定義する。
個数密度は、化合物の大きさの測定と同様に10視野内のおける各々の化合物の個数を数え、その密度の平均値を算出した。
Test pieces were cut out from the prepared test materials, and the number density, tensile strength, elongation, electrical conductivity, press punching workability, and solder heat release property of the compound phases were evaluated. The results are shown in Tables 2 and 3.
The type and size of the compound were determined by immersing the test piece in an acidic aqueous solution (6 volume% H 2 SO 4 +7 volume% H 2 O 2 ) for 30 seconds and etching it, and using a scanning electron microscope (1000 times). Analyze all the compounds present in the 10 fields of view selected for the purpose with an X-ray microanalyzer and determine the type of each compound (CrSi compound or Cr compound), then photograph the field of view to determine the size of the compound. The average value of was calculated. Here, the size is the maximum diameter, which is defined as the diameter when the compound is spherical, the long diameter when it is elliptical, and the maximum length when it is rod-shaped.
For the number density, the number of each compound in 10 fields of view was counted as in the measurement of the size of the compound, and the average value of the densities was calculated.

引張強さ(TS)及び伸び(El)はJIS Z2241に準じ、熱・電気の伝導性を示す導電率はJIS H0505に準じて各々測定した。   Tensile strength (TS) and elongation (El) were measured according to JIS Z2241, and conductivity indicating thermal and electrical conductivity was measured according to JIS H0505.

プレス打抜き加工性は、金型で角孔(1mm×5mm)を多数打ち抜いて、FAR(Fracture Area Ratio:せん断/破断面を示す打抜き面での板厚に対する破断部長さ比)、及びバリの高さを測定した。金型のダイ、パンチは超硬合金製のものを用い、両者のクリアランスは9μm(対板厚比6%)とした。
前記FARは角孔加工面を観察して破断部の厚さtを測定し、これをプレス打抜き加工前の試験片の厚さTで除した値(t/T)を各20箇所について求め、その平均値で評価した。FARは大きいほどプレス打抜き加工性に優れる。
バリ高さは、角孔縁部のバリ高さを接触式形状測定器で各20箇所測定し、その平均値で示した。
The press punching workability is such that a large number of square holes (1 mm × 5 mm) are punched with a mold, FAR (Fracture Area Ratio: the ratio of the fractured part length to the plate thickness at the punched surface showing the shear / fracture surface), and the high burr Was measured. The die and punch of the mold were made of cemented carbide, and the clearance between them was 9 μm (vs. thickness ratio 6%).
The FAR was measured for the thickness t of the fractured portion by observing the square hole processed surface, and the value (t / T) obtained by dividing this by the thickness T of the test piece before press punching was obtained for each of 20 locations. The average value was evaluated. The larger the FAR, the better the press punching processability.
The burr height was measured by measuring 20 burr heights at the edge of the square hole with a contact-type shape measuring device, and the average value was shown.

エッチング性は試験片を塩化第二鉄溶液にてエッチング加工し、圧延方向に対し垂直方向に幅0.5mmのリード部を形成した。このエッチング端面を顕微鏡観察(50倍)し、突起物の有無を調べた。この顕微鏡観察で明瞭に突起物が認められる場合は、不良とした。   The etching property was obtained by etching a test piece with a ferric chloride solution to form a lead portion having a width of 0.5 mm in a direction perpendicular to the rolling direction. The etching end face was observed with a microscope (50 times) to examine the presence or absence of protrusions. If the projections were clearly observed by microscopic observation, it was judged as defective.

はんだ耐熱剥離性は試験片にロジン系フラックスを塗布し、230℃の共晶半田(Pb−63wt%Sn合金)浴中に5秒間浸漬してはんだを付着させ、これを150℃で1000時間大気加熱した後、180度密着曲げを施し、次いで曲げ戻して、その曲げ戻し部分のはんだ剥離の有無を目視観察して評価した。この目視観察ではんだの剥離が観察された場合を不良として記した。   For heat-resistant peelability, rosin-based flux is applied to the test piece and immersed in a 230 ° C. eutectic solder (Pb-63 wt% Sn alloy) bath for 5 seconds to allow the solder to adhere, and this is at 150 ° C. for 1000 hours. After heating, 180 degree contact bending was performed, and then bent back, and the presence or absence of solder peeling at the bent back portion was visually observed and evaluated. The case where peeling of the solder was observed by this visual observation was marked as defective.

Figure 0004177221
Figure 0004177221

Figure 0004177221
Figure 0004177221

Figure 0004177221
Figure 0004177221

表1、表2,表3から明らかなように、本発明例のNo.1〜No.9は、いずれも優れたプレス打抜き加工性を示し、又はんだ耐熱剥離性も良好に維持された。
これに対し、Cr量が少なくCr/Siが小さい比較例のNo.21では、析出するCrSi化合物の個数密度が小さくプレス打抜き加工性に劣っている。又Si量が少なくCr/Siが大きい比較例のNo.22は、CrSi化合物が小さく、且つ個数密度も小さいためにプレス打抜き加工性に劣っている。Cr量の多い比較例のNo.23はCrSi化合物以外のCr化合物が粗大化しエッチング性に劣っている。Si量が多い比較例のNo.24はCr/Siが小さく、CrSi化合物が大きいためエッチング性に劣り、Sn量の多い比較例のNo.25は導電率が低く、Zn量の少ない比較例のNo.26ははんだ耐熱剥離性が劣った。
As is clear from Table 1, Table 2, and Table 3, No. of the present invention example. 1-No. No. 9 showed excellent press punching workability, or the heat resistant peelability was maintained well.
On the other hand, No. of the comparative example with small Cr amount and small Cr / Si. In No. 21, the number density of the precipitated CrSi compound is small and the press punching processability is poor. No. of the comparative example with a small amount of Si and a large Cr / Si. No. 22 is inferior in press punching workability because the CrSi compound is small and the number density is also small. Comparative Example No. with a large amount of Cr. In No. 23, the Cr compound other than the CrSi compound is coarsened and has poor etching properties. The comparative example No. with a large amount of Si. No. 24 has a small Cr / Si and a large CrSi compound, so that the etching property is inferior, and the comparative example No. 24 with a large amount of Sn. No. 25 is a comparative example having a low conductivity and a small amount of Zn. No. 26 was inferior in solder heat resistance.

表1の本発明合金a、b、dを用い、熱間圧延前の加熱処理条件および仕上げ冷間圧延前の熱処理条件を請求項3記載の本発明範囲内の条件で種々変化させて、本発明例のNo.10〜No.16の銅合金板供試材を作製した。なお、それ以外の条件は実施例1と同様に行っている。
比較例として表1の本発明合金a、bを用い、熱間圧延前の加熱処理条件および仕上げ冷間圧延前の熱処理条件を本発明範囲外とした比較例のNo.27〜No.31の銅合金板供試材を作製した。なお、それ以外の条件は実施例1と同様に行っている。
Using the alloys a, b and d of the present invention shown in Table 1, the heat treatment conditions before hot rolling and the heat treatment conditions before finish cold rolling were variously changed under the conditions within the scope of the present invention according to claim 3, Invention Example No. 10-No. Sixteen copper alloy plate specimens were prepared. The other conditions were the same as in Example 1.
As comparative examples, the alloys a and b of the present invention in Table 1 were used, and the heat treatment conditions before hot rolling and the heat treatment conditions before finish cold rolling were outside the scope of the present invention. 27 to No. 31 copper alloy plate specimens were prepared. The other conditions were the same as in Example 1.

作製した各々の銅合金板から試験片を切り出し、実施例1と同じ方法により種々特性を評価した。製造条件及び化合物相の状態を表4に示し、その他の評価結果を表5に示す。   Test pieces were cut out from each of the produced copper alloy plates, and various characteristics were evaluated by the same method as in Example 1. The production conditions and the state of the compound phase are shown in Table 4, and other evaluation results are shown in Table 5.

Figure 0004177221
Figure 0004177221

Figure 0004177221
Figure 0004177221

表4、5より明らかなように、本発明例のNo.10〜No.16は、いずれも優れたプレス打抜き加工性を示し、又はんだ耐熱剥離性も良好に維持されているのが判る。
これに対し、比較例のNo.27では、熱間圧延前の加熱温度が低いためにCrSi化合物が粗大化しエッチング性が劣った。一方、比較例のNo.28とNo.29は、熱間圧延前の加熱温度が高いために、CrSi化合物が小さく且つその個数密度が低いためにプレス打抜き加工性に劣っている。又、仕上げ圧延前の熱処理温度が低い比較例のNo.30及びNo.31では導電率が低下した。
As is clear from Tables 4 and 5, No. 10-No. It can be seen that No. 16 shows excellent press punching workability, or that the heat-resistant peelability is well maintained.
In contrast, No. of the comparative example. In No. 27, since the heating temperature before hot rolling was low, the CrSi compound was coarsened and the etching property was inferior. On the other hand, no. 28 and No. No. 29 is inferior in press punching workability because the CrSi compound is small and its number density is low because the heating temperature before hot rolling is high. In addition, the comparative example No. having a low heat treatment temperature before finish rolling. 30 and no. In 31, the conductivity decreased.

Claims (1)

Crを0.1〜0.25wt%、Siを0.005〜0.1wt%、Znを0.1〜0.5wt%、Snを0.05〜0.5wt%含み、CrとSiの重量比Cr/Siが3〜25の範囲で、残部銅及び不可避的不純物からなる銅合金において、銅母相中に、0.05μm〜10μmの大きさを有するCrSi化合物が1×10〜5×10個/mmの個数密度で存在し、且つ、CrSi化合物以外のCr化合物の大きさ10μm以下であることを特徴とするエッチング加工性及び打ち抜き加工性の両方に優れた電子機器用銅合金。 Cr 0.1 to 0.25 wt%, Si 0.005 to 0.1 wt%, Zn 0.1 to 0.5 wt%, Sn 0.05 to 0.5 wt%, Cr and Si weight When the ratio Cr / Si is in the range of 3 to 25, in the copper alloy composed of the remaining copper and inevitable impurities, the CrSi compound having a size of 0.05 μm to 10 μm is 1 × 10 3 to 5 × in the copper matrix. 10 5 present in a number density of / mm 2, and, for an electronic device the size of the Cr compounds other than CrSi compound excellent in both the etching workability and punching workability, characterized in der Rukoto below 10μm Copper alloy.
JP2003346704A 2003-10-06 2003-10-06 Copper alloy for electronic equipment Expired - Fee Related JP4177221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003346704A JP4177221B2 (en) 2003-10-06 2003-10-06 Copper alloy for electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003346704A JP4177221B2 (en) 2003-10-06 2003-10-06 Copper alloy for electronic equipment

Publications (2)

Publication Number Publication Date
JP2005113180A JP2005113180A (en) 2005-04-28
JP4177221B2 true JP4177221B2 (en) 2008-11-05

Family

ID=34539545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003346704A Expired - Fee Related JP4177221B2 (en) 2003-10-06 2003-10-06 Copper alloy for electronic equipment

Country Status (1)

Country Link
JP (1) JP4177221B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4916154B2 (en) * 2005-10-12 2012-04-11 Jx日鉱日石金属株式会社 Copper or copper alloy foil for circuit
JP4916206B2 (en) * 2006-03-31 2012-04-11 Jx日鉱日石金属株式会社 Cu-Cr-Si alloy and Cu-Cr-Si alloy foil for electric and electronic parts
JP4921016B2 (en) * 2006-03-31 2012-04-18 ルネサスエレクトロニクス株式会社 Lead cut device and method for manufacturing semiconductor device
CN101646792B (en) 2007-03-30 2012-02-22 Jx日矿日石金属株式会社 Cu-Ni-Si-based alloy for electronic material
JP4440313B2 (en) 2008-03-31 2010-03-24 日鉱金属株式会社 Cu-Ni-Si-Co-Cr alloy for electronic materials
KR101185548B1 (en) * 2010-02-24 2012-09-24 주식회사 풍산 Copper alloy having high strength and high conductivity, and method for manufacture the same
JP5668814B1 (en) * 2013-08-12 2015-02-12 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, parts for electronic and electrical equipment, terminals and bus bars
JP6133178B2 (en) * 2013-09-06 2017-05-24 古河電気工業株式会社 Copper alloy sheet and manufacturing method thereof
CN113913642B (en) * 2021-09-26 2022-07-05 宁波博威合金板带有限公司 Copper alloy strip and preparation method thereof

Also Published As

Publication number Publication date
JP2005113180A (en) 2005-04-28

Similar Documents

Publication Publication Date Title
EP1803829B1 (en) Copper alloy plate for electric and electronic parts having bendability
JP4729680B2 (en) Copper-based alloy with excellent press punchability
JP4984108B2 (en) Cu-Ni-Sn-P based copper alloy with good press punchability and method for producing the same
KR102327539B1 (en) Copper alloy for electronic and electric equipment, copper alloy plate for electronic and electric equipment, electronic and electric equipment parts, terminal, bus bar, and movable piece for relay
JP5117604B1 (en) Cu-Ni-Si alloy and method for producing the same
JP4117327B2 (en) Copper alloy sheet for electrical and electronic parts with excellent press punchability
JP3962751B2 (en) Copper alloy sheet for electric and electronic parts with bending workability
JP2003306732A (en) Copper alloy for electric and electronic parts
JP5039862B1 (en) Corson alloy and manufacturing method thereof
JP2004225060A (en) Copper alloy, and production method therefor
KR20130059412A (en) Copper-cobalt-silicon alloy for electrode material
JP4804266B2 (en) Cu-Zn-Sn alloy for electrical and electronic equipment and method for producing the same
JP2010031339A (en) COPPER ALLOY FOR ELECTRIC-ELECTRONIC COMPONENT HAVING EXCELLENT ELECTRIC CONDUCTIVITY AND STRENGTH, AND Sn-PLATED COPPER ALLOY MATERIAL
JP4177221B2 (en) Copper alloy for electronic equipment
JP5261691B2 (en) Copper-base alloy with excellent press punchability and method for producing the same
JP3904118B2 (en) Copper alloy for electric and electronic parts and manufacturing method thereof
JP5098096B2 (en) Copper alloy, terminal or bus bar, and method for producing copper alloy
JP3418301B2 (en) Copper alloy for electrical and electronic equipment with excellent punching workability
JP2006200014A (en) Copper alloy having high strength and high electric conductivity
JP3735005B2 (en) Copper alloy having excellent punchability and method for producing the same
JP5017719B2 (en) Copper-based alloy plate excellent in press workability and method for producing the same
JP2001152303A (en) Copper or copper-base alloy, excellent in press workability, and its manufacturing method
JP3807475B2 (en) Copper alloy plate for terminal and connector and manufacturing method thereof
JP5748945B2 (en) Copper alloy material manufacturing method and copper alloy material obtained thereby
JP3296709B2 (en) Thin copper alloy for electronic equipment and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080821

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees