JP4117327B2 - Copper alloy sheet for electrical and electronic parts with excellent press punchability - Google Patents

Copper alloy sheet for electrical and electronic parts with excellent press punchability Download PDF

Info

Publication number
JP4117327B2
JP4117327B2 JP2006199777A JP2006199777A JP4117327B2 JP 4117327 B2 JP4117327 B2 JP 4117327B2 JP 2006199777 A JP2006199777 A JP 2006199777A JP 2006199777 A JP2006199777 A JP 2006199777A JP 4117327 B2 JP4117327 B2 JP 4117327B2
Authority
JP
Japan
Prior art keywords
copper alloy
alloy plate
ray diffraction
electrical
diffraction intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006199777A
Other languages
Japanese (ja)
Other versions
JP2008024994A (en
Inventor
康博 有賀
良一 尾▲崎▼
洋介 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2006199777A priority Critical patent/JP4117327B2/en
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to EP11000124.5A priority patent/EP2339038B8/en
Priority to PCT/JP2007/062395 priority patent/WO2008010378A1/en
Priority to US12/374,154 priority patent/US9631260B2/en
Priority to EP11000125.2A priority patent/EP2339039B8/en
Priority to CN200780021714.9A priority patent/CN101466856B/en
Priority to EP07767234A priority patent/EP2045344B1/en
Priority to CN2010102638841A priority patent/CN101899587B/en
Priority to KR1020087031900A priority patent/KR101136265B1/en
Publication of JP2008024994A publication Critical patent/JP2008024994A/en
Application granted granted Critical
Publication of JP4117327B2 publication Critical patent/JP4117327B2/en
Priority to US13/585,076 priority patent/US9644250B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Description

本発明は、高強度で、かつ、スタンピング加工の際のプレス打ち抜き性に優れたCu−Fe−P系の銅合金板に関し、例えば、半導体装置用リードフレームの素材として好適な銅合金板に関する。本発明の銅合金板は、半導体装置用リードフレーム以外にも、その他の半導体部品、プリント配線板等の電気・電子部品材料、開閉器部品、ブスバー、端子・コネクタ等の機構部品など様々な電気電子部品用として好適に使用される。ただ、以下の説明では、代表的な用途例として、半導体部品であるリードフレームに使用する場合を中心に説明を進める。   The present invention relates to a Cu-Fe-P-based copper alloy plate having high strength and excellent press punchability during stamping, for example, a copper alloy plate suitable as a material for a lead frame for a semiconductor device. In addition to lead frames for semiconductor devices, the copper alloy plate of the present invention can be used for various electrical components such as other semiconductor components, electrical / electronic component materials such as printed wiring boards, switchgear components, bus bars, mechanical components such as terminals / connectors. It is suitably used for electronic parts. However, in the following description, as a typical application example, the description will be focused on the case where it is used for a lead frame which is a semiconductor component.

半導体リードフレーム用銅合金としては、従来よりFeとPとを含有する、Cu−Fe−P系の銅合金が一般に用いられている。これらCu−Fe−P系の銅合金としては、例えば、Fe:0.05〜0.15%、P:0.025〜0.040%を含有する銅合金(C19210合金)や、Fe:2.1〜2.6%、P:0.015〜0.15%、Zn:0.05〜0.20%を含有する銅合金(CDA194合金)が例示される。これらのCu−Fe−P系の銅合金は、銅母相中にFe又はFe−P等の金属間化合物を析出させると、銅合金の中でも、強度、導電性および熱伝導性に優れていることから、国際標準合金として汎用されている。   As a copper alloy for a semiconductor lead frame, a Cu—Fe—P based copper alloy containing Fe and P has been generally used. Examples of these Cu-Fe-P-based copper alloys include, for example, a copper alloy containing Fe: 0.05 to 0.15% and P: 0.025 to 0.040% (C19210 alloy), Fe: 2 An example is a copper alloy (CDA194 alloy) containing 0.1 to 2.6%, P: 0.015 to 0.15%, and Zn: 0.05 to 0.20%. These Cu-Fe-P-based copper alloys are excellent in strength, conductivity and thermal conductivity among copper alloys when an intermetallic compound such as Fe or Fe-P is precipitated in the copper matrix. Therefore, it is widely used as an international standard alloy.

近年、電子機器に用いられる半導体装置の大容量化、小型化、高機能化に伴い、半導体装置に使用されるリードフレームの小断面積化が進み、より一層の強度、導電性、熱伝導性が要求されている。これに伴い、これら半導体装置に使用されるリードフレームに用いられる銅合金板にも、より一層の高強度化、熱伝導性が求められている。   In recent years, along with the increase in capacity, size, and functionality of semiconductor devices used in electronic devices, lead frames used in semiconductor devices have become smaller in cross-sectional area, resulting in greater strength, conductivity, and thermal conductivity. Is required. Accordingly, copper alloy plates used for lead frames used in these semiconductor devices are required to have higher strength and thermal conductivity.

その一方で、これら高強度化した銅合金板には、前記小断面積化したリードフレームへの加工性も求められる。具体的には、銅合金板はリードフレームへスタンピング加工されるために、銅合金板には、優れたプレス打ち抜き性が求められる。この要求は、リードフレーム以外の用途でも、銅合金板がプレス打ち抜きされて加工される用途では同じである。   On the other hand, these high-strength copper alloy plates are also required to be workable into the lead frame having a small cross-sectional area. Specifically, since the copper alloy plate is stamped into a lead frame, the copper alloy plate is required to have excellent press punchability. This requirement is the same in applications other than lead frames in which a copper alloy plate is processed by stamping.

Cu−Fe−P系銅合金板において、プレス打ち抜き性を向上させる手段は、従来から、Pb、Caなどの微量添加や、破断の起点となる化合物を分散させるなどの化学成分を制御する手段や、結晶粒径などを制御する手段が汎用されてきた。   In the Cu-Fe-P-based copper alloy sheet, conventionally, means for improving the press punchability are conventionally means for controlling a chemical component such as addition of a small amount of Pb, Ca or the like, or dispersing a compound that is a starting point of fracture, Means for controlling the crystal grain size and the like have been widely used.

しかし、これらの手段は、制御自体が困難であったり、他の特性を劣化させたり、また、それゆえに製造コストの上昇につながるなどの問題を有していた。   However, these means have problems such as difficulty in control itself, deterioration of other characteristics, and hence an increase in manufacturing cost.

これに対して、Cu−Fe−P系銅合金板の組織に着目して、プレス打ち抜き性や曲げ加工性を向上させることが提案されている。例えば、特許文献1では、Fe:0.005〜0.5wt%、P:0.005〜0.2wt%を含み、必要に応じてさらにZn:0.01〜10wt%、Sn:0.01〜5wt%のいずれか一方又は双方を含み、残部Cuと不可避不純物からなるCu−Fe−P系銅合金板が開示されている。そして、特許文献1では、この銅合金板の結晶方位の集積度を制御することにより、プレス打抜き性を向上させている(特許文献1参照)。   On the other hand, focusing on the structure of the Cu—Fe—P-based copper alloy plate, it has been proposed to improve press punchability and bending workability. For example, Patent Document 1 includes Fe: 0.005 to 0.5 wt%, P: 0.005 to 0.2 wt%, and further Zn: 0.01 to 10 wt%, Sn: 0.01 as necessary. A Cu—Fe—P-based copper alloy plate comprising any one or both of ˜5 wt% and comprising the remaining Cu and inevitable impurities is disclosed. And in patent document 1, the press punching property is improved by controlling the accumulation degree of the crystal orientation of this copper alloy plate (refer patent document 1).

より具体的に、特許文献1では、この集積度制御を、銅合金板が再結晶し、組織の結晶粒径が大きくなるにしたがって、板表面への{200}、{311}面の集積割合が増し、圧延すると{220}面の集積割合が増してくることを利用して行なっている。そして、特徴的には、{200}、{311}面に対して、板表面への{220}面の集積割合を増してプレス打抜き性を向上させようとしている。より具体的には、この板表面における{200}面からのX線回折強度をI[200] 、{311}面からのX線回折強度をI[311] 、{220}面からのX線回折強度をI[220] としたとき、[I[200] +I[311] ]/I[220] <0.4の式を満たすこととしている。   More specifically, in Patent Document 1, the degree of integration is controlled by reintegrating the copper alloy plate and increasing the crystal grain size of the structure to increase the integration ratio of {200} and {311} planes on the plate surface. Is increased by increasing the accumulation ratio of {220} planes when rolled. Characteristically, with respect to the {200} and {311} planes, the stamping performance is improved by increasing the accumulation ratio of {220} planes on the plate surface. More specifically, the X-ray diffraction intensity from the {200} plane on this plate surface is I [200], the X-ray diffraction intensity from the {311} plane is I [311], and the X-ray from the {220} plane. When the diffraction intensity is I [220], the equation [I [200] + I [311]] / I [220] <0.4 is satisfied.

特許文献2では、プレス打ち抜き性を向上させるために、銅合金板の(200)面のX線回折強度I(200)と、(220)面のX線回折強度I(220)との比、I(200)/I(220)が0.5以上10以下であるか、または、Cube方位の方位密度:D(Cube方位)が1以上50以下であること、あるいは、Cube方位の方位密度:D(Cube方位)とS方位の方位密度:D(S方位)との比:D(Cube方位)/D(S方位)が0.1以上5以下であることが提案されている(特許文献2参照)。   In Patent Document 2, in order to improve press punchability, the ratio of the X-ray diffraction intensity I (200) of the (200) plane of the copper alloy plate to the X-ray diffraction intensity I (220) of the (220) plane, I (200) / I (220) is 0.5 or more and 10 or less, or orientation density of Cube orientation: D (Cube orientation) is 1 or more and 50 or less, or orientation density of Cube orientation: It has been proposed that the ratio of D (Cube orientation) to S orientation: D (S orientation): D (Cube orientation) / D (S orientation) is 0.1 or more and 5 or less (Patent Literature) 2).

また、特許文献3では、Cu−Fe−P系銅合金板の曲げ加工性を向上させるために、(200)面のX線回折強度と(311)面のX線回折強度との和と、(220)面のX線回折強度との比、〔I(200)+I(311)〕/I(220)を0.4以上とすることが提案されている(特許文献3参照)。   Moreover, in patent document 3, in order to improve the bending workability of a Cu-Fe-P type copper alloy plate, the sum of (200) plane X-ray diffraction intensity and (311) plane X-ray diffraction intensity, It has been proposed that the ratio [I (200) + I (311)] / I (220) to the (220) plane X-ray diffraction intensity is 0.4 or more (see Patent Document 3).

更に、特許文献4では、Cu−Fe−P系銅合金板の屈曲性を向上させるために、I(200)/I(110)を1.5以下とすることが提案されている(特許文献4参照)。
特開平2000−328158号公報 (全文) 特開2002−339028号公報 (全文) 特開2000−328157号公報 (特許請求の範囲) 特開2006−63431号公報 (特許請求の範囲)
Further, Patent Document 4 proposes that I (200) / I (110) be 1.5 or less in order to improve the flexibility of the Cu-Fe-P-based copper alloy plate (Patent Document). 4).
JP 2000-328158 A (full text) JP 2002-339028 A (full text) JP 2000-328157 A (Claims) JP 2006-63431 A (Claims)

前記した特許文献1や2では、板表面への{220}面や{200}面の集積割合を増して、プレス打ち抜き性を向上させている。これらの特定面の集積割合を増すことによって、確かに、Cu−Fe−P系銅合金板のプレス打ち抜き性は向上する。   In Patent Documents 1 and 2 described above, the stamping performance is improved by increasing the accumulation ratio of {220} planes and {200} planes on the plate surface. By increasing the accumulation ratio of these specific surfaces, the press punchability of the Cu—Fe—P based copper alloy plate is certainly improved.

しかし、前記リードフレームの小断面積化は、益々進み、リード幅(0.5mm→0.3mm)や板厚(0.25mm→0.15mm)も益々小さくなって、高強度化したCu−Fe−P系銅合金板への、スタンピング加工時のプレス打ち抜き性向上の要求はより厳しくなっている。   However, the reduction of the cross-sectional area of the lead frame has progressed further, and the lead width (0.5 mm → 0.3 mm) and plate thickness (0.25 mm → 0.15 mm) have become smaller and higher in strength. The demand for improving the press punchability at the time of stamping to an Fe-P based copper alloy plate is becoming more severe.

このため、前記した特許文献1や2のような組織の集積割合制御によるプレス打ち抜き性向上効果では、この要求されるプレス打ち抜き性を満たさなくなっている。また、前記した特許文献1や2で行なっている、銅合金板にリードを打抜き、その際のばり高さをSEM観察にて測定するプレス打ち抜き性の試験条件では、高強度化したCu−Fe−P系銅合金板の前記要求されるプレス打ち抜き性を正確に評価できなくなっている。   For this reason, the press punchability improvement effect by the structure accumulation ratio control as described in Patent Documents 1 and 2 does not satisfy the required press punchability. Moreover, in the test conditions of the press punching property in which the lead is punched into the copper alloy plate and the flash height at that time is measured by SEM observation, which is performed in the above-described Patent Documents 1 and 2, the Cu-Fe having increased strength is used. -The required press punchability of the P-based copper alloy sheet cannot be accurately evaluated.

本発明はこのような課題を解決するためになされたものであって、高強度化と、優れたプレス打ち抜き性とを両立させたCu−Fe−P系銅合金板を提供することである。   The present invention has been made to solve such problems, and it is an object of the present invention to provide a Cu—Fe—P-based copper alloy plate that achieves both high strength and excellent press punchability.

この目的を達成するために、プレス打ち抜き性に優れた本発明電気電子部品用銅合金板の要旨は、質量%で、Fe:0.01〜0.50%、P:0.01〜0.15%を各々含有し、残部Cuおよび不可避的不純物からなる銅合金板であって、板表面の{311}面からのX線回折強度ピークの半価幅をそのピーク高さで割った値が0.015以上であることとする。 In order to achieve this object, the summary of the copper alloy sheet for electrical and electronic parts of the present invention excellent in press punchability is mass%, Fe: 0.01 to 0.50%, P: 0.01 to 0.00. A copper alloy plate containing 15% each and comprising the balance Cu and inevitable impurities , the value obtained by dividing the half width of the X-ray diffraction intensity peak from the {311} plane of the plate surface by the peak height It shall be 0.015 or more.

本発明銅合金板は、高強度を達成するために、更に、質量%で0.005〜5.0%のSnを、あるいは、はんだ及びSnめっきの耐熱剥離性改善のために、更に、質量%で0.005〜3.0%のZnを、各々含有しても良い。   In order to achieve high strength, the copper alloy plate of the present invention further contains 0.005 to 5.0% Sn by mass, or further improves the heat-resistant peelability of solder and Sn plating. % 0.005 to 3.0% Zn may be contained.

本発明銅合金板は、高強度の目安として、引張強度が500MPa以上、硬さが150Hv以上であることが好ましい。なお、導電率は板の強度に相関するものであり、本発明でいう高導電率とは、高強度な割りには導電率が比較的高いという意味である。   The copper alloy sheet of the present invention preferably has a tensile strength of 500 MPa or more and a hardness of 150 Hv or more as a measure of high strength. The electrical conductivity correlates with the strength of the plate, and the high electrical conductivity referred to in the present invention means that the electrical conductivity is relatively high for high strength.

本発明銅合金板は、更に、質量%で、Mn、Mg、Caのうち1種又は2種以上を合計で0.0001〜1.0%含有しても良い。   The copper alloy sheet of the present invention may further contain 0.0001 to 1.0% of one or more of Mn, Mg, and Ca in total by mass%.

本発明銅合金板は、更に、質量%で、Zr、Ag、Cr、Cd、Be、Ti、Co、Ni、Au、Ptのうち1種又は2種以上を合計で0.001〜1.0%含有しても良い。   The copper alloy sheet of the present invention is further in mass%, and one or more of Zr, Ag, Cr, Cd, Be, Ti, Co, Ni, Au, and Pt are added in a total amount of 0.001 to 1.0. % May be contained.

本発明銅合金板は、更に、質量%で、Mn、Mg、Caのうち1種又は2種以上を合計で0.0001〜1.0%と、Zr、Ag、Cr、Cd、Be、Ti、Co、Ni、Au、Ptのうち1種又は2種以上を合計で0.001〜1.0%とを各々含有するとともに、これら含有する元素の合計含有量を1.0%以下として、含有しても良い。   The copper alloy sheet of the present invention is further in mass%, and 0.001 to 1.0% in total of one or more of Mn, Mg, and Ca, Zr, Ag, Cr, Cd, Be, Ti In addition, 0.001 to 1.0% in total of one or more of Co, Ni, Au, and Pt, respectively, and the total content of these elements as 1.0% or less, It may be contained.

本発明銅合金板は、更に、Hf、Th、Li、Na、K、Sr、Pd、W、S、Si、C、Nb、Al、V、Y、Mo、Pb、In、Ga、Ge、As、Sb、Bi、Te、B、ミッシュメタルの含有量を、これらの元素全体の合計で0.1質量%以下とすることが好ましい。   The copper alloy plate of the present invention further includes Hf, Th, Li, Na, K, Sr, Pd, W, S, Si, C, Nb, Al, V, Y, Mo, Pb, In, Ga, Ge, As. , Sb, Bi, Te, B, misch metal content is preferably 0.1% by mass or less in total of these elements.

本発明の銅合金板は、様々な電気電子部品用に適用可能であるが、特に、半導体部品である半導体リードフレーム用途に使用されることが好ましい。   The copper alloy plate of the present invention can be applied to various electric and electronic parts, but is particularly preferably used for a semiconductor lead frame which is a semiconductor part.

本発明では、前記した特許文献1や2などと同様に、板表面の特定結晶方位からのX線回折強度を規定して、集合組織を制御しているように見える。しかし、特許文献1や2は、実質的には、結晶の配向性を規定するものであって、銅合金板にリードを打抜く際のばり高さを小さく(低く)するために{220}面の集積割合を高めようとするものである。   In the present invention, like the above-described Patent Documents 1 and 2, it seems that the texture is controlled by defining the X-ray diffraction intensity from the specific crystal orientation of the plate surface. However, Patent Documents 1 and 2 substantially define the crystal orientation, and {220} in order to reduce (lower) the height of the flash when a lead is punched into a copper alloy plate. It is intended to increase the surface accumulation ratio.

ただ、もともとランダムな方位を有している銅合金において、特定の方位の集積割合だけを増加させるには大きな限界がある。これは、特許文献1や2などの{220}面や、本発明で規定する{311}面などの結晶方位を選択しようと同じである。これが、前記した特許文献1や2のような組織の集積割合制御によるプレス打ち抜き性向上効果では、Cu−Fe−P系銅合金板に要求されるプレス打ち抜き性を満たさなくなっている原因でもある。   However, there is a big limit to increase only the accumulation ratio of a specific orientation in a copper alloy that originally has a random orientation. This is the same as selecting a crystal orientation such as the {220} plane of Patent Documents 1 and 2 or the {311} plane defined in the present invention. This is also the cause of the fact that the press punchability improvement effect by the structure accumulation ratio control as described in Patent Documents 1 and 2 does not satisfy the press punchability required for the Cu—Fe—P based copper alloy sheet.

これに対して、本発明では、従来のような特定の方位(結晶方位)の集積割合ではなく、Cu−Fe−P系銅合金板組織の転位密度を制御する。即ち、Cu−Fe−P系銅合金板組織の転位密度を高くして、プレス打ち抜き性を向上させる。本発明者らの知見によれば、この転位密度は、Cu−Fe−P系銅合金板の圧延条件によって、その導入量を制御することが可能で、かつ、この転位密度制御によるプレス打ち抜き性の向上効果が大きい。   In contrast, in the present invention, the dislocation density of the Cu—Fe—P-based copper alloy sheet structure is controlled rather than the accumulation ratio of a specific orientation (crystal orientation) as in the prior art. That is, the dislocation density of the Cu—Fe—P-based copper alloy sheet structure is increased to improve press punchability. According to the knowledge of the present inventors, this dislocation density can be controlled by the rolling condition of the Cu—Fe—P-based copper alloy sheet, and the press punchability by this dislocation density control. The improvement effect is great.

ただ、この転位密度は、非常にミクロな問題であるので、Cu−Fe−P系銅合金板組織に導入された転位密度を直接観察、あるいは定量化することは非常に困難である。しかし、本発明者らの知見によれば、Cu−Fe−P系銅合金板組織に導入されたこの転位密度は、X線回折強度ピークの半価幅、それも、半価幅をX線回折強度ピーク高さで割った値と非常に良く相関する。この場合、どのX線回折強度ピークでも、等しくこの転位密度とは相関する。ただ、本発明で規定している板表面の{311}面からのX線回折強度ピークが、他の面からのX線回折強度ピークに比べて、半価幅を割るべきX線回折強度ピークがあまり大きく(高く)なく、半価幅もそれなりにあるため、X線回折強度ピークの半価幅を高さで割った値の信頼性が高い。したがって、本発明では、板表面の{311}面からのX線回折強度ピークによって、この転位密度を、間接的にではあるが、正確かつ再現性あるかたちで規定、定量化する。   However, since this dislocation density is a very microscopic problem, it is very difficult to directly observe or quantify the dislocation density introduced into the Cu—Fe—P copper alloy sheet structure. However, according to the knowledge of the present inventors, this dislocation density introduced into the Cu—Fe—P-based copper alloy sheet structure is the half-value width of the X-ray diffraction intensity peak, which is also the X-ray width. Correlate very well with the value divided by the diffraction intensity peak height. In this case, any X-ray diffraction intensity peak is equally correlated with this dislocation density. However, the X-ray diffraction intensity peak from the {311} plane of the plate surface defined in the present invention should divide the half-value width from the X-ray diffraction intensity peak from other planes. Is not so large (high), and the half width is appropriate. Therefore, the reliability of the value obtained by dividing the half width of the X-ray diffraction intensity peak by the height is high. Therefore, in the present invention, the dislocation density is defined and quantified in an accurate and reproducible manner, though indirectly, by the X-ray diffraction intensity peak from the {311} plane of the plate surface.

このように、本発明では、転位密度量と密接に相関する、板表面の{311}面からのX線回折強度ピークの半価幅で、この転位密度量を規定し、プレス打ち抜き性を向上させ、Cu−Fe−P系銅合金板に要求されるプレス打ち抜き性を満足する。そして、好ましくは、引張強度が500MPa以上、硬さが150Hv以上である、高強度なCu−Fe−P系銅合金板のプレス打ち抜き性を向上させる。   As described above, in the present invention, the dislocation density amount is defined by the half width of the X-ray diffraction intensity peak from the {311} plane of the plate surface, which correlates closely with the dislocation density amount, and the press punching property is improved. And the press punchability required for the Cu-Fe-P-based copper alloy plate is satisfied. And preferably, the press punching property of the high-strength Cu—Fe—P-based copper alloy plate having a tensile strength of 500 MPa or more and a hardness of 150 Hv or more is improved.

以下に、半導体リードフレーム用などとして、必要な特性を満たすための、本発明Cu−Fe−P系銅合金板における各要件の意義や実施態様を具体的に説明する。 In the following, the significance and embodiments of each requirement in the Cu—Fe—P based copper alloy sheet of the present invention for satisfying the required characteristics, such as for semiconductor lead frames, will be specifically described.

(半価幅)
本発明では、プレス打ち抜き性を向上させ、要求されるプレス打ち抜き性を満足するために、Cu−Fe−P系銅合金板表面の{311}面からのX線回折強度ピークの半価幅をそのピーク高さで割った値が0.015以上であるような、一定量以上の転位密度を有することとする。これによって、より具体的には、引張強度が500MPa以上、硬さが150Hv以上である高強度のCu−Fe−P系銅合金板のプレス打ち抜き性を向上させることができる。
(Half price)
In the present invention, in order to improve the press punchability and satisfy the required press punchability, the half width of the X-ray diffraction intensity peak from the {311} plane of the Cu—Fe—P-based copper alloy sheet surface is set. The dislocation density is a certain amount or more, such that the value divided by the peak height is 0.015 or more. More specifically, this can improve the press punchability of a high-strength Cu—Fe—P-based copper alloy plate having a tensile strength of 500 MPa or more and a hardness of 150 Hv or more.

このX線回折強度ピークの半価幅をそのピーク高さで割った値が0.015未満では、板に導入されている転位密度が少なくなり、従来の転位密度が少なくいCu−Fe−P系銅合金板と大差がなくなり、プレス打ち抜き性が低下するか、向上しない。   When the value obtained by dividing the half width of the X-ray diffraction intensity peak by the peak height is less than 0.015, the dislocation density introduced into the plate is reduced, and Cu—Fe—P having a low dislocation density in the related art. There is no significant difference from the copper alloy sheet, and the press punching performance is reduced or not improved.

この半価幅は、周知の通り、図1に模式的に示すように、縦軸:X線回折強度、横軸:角度(2θ)で表されるX線回折強度ピーク(高さH)の、半分の位置(高さH/2)におけるX線回折強度ピークの幅(β)として定義される。因みに、この半価幅は、通常は、金属表面の結晶性や非結晶性、結晶子サイズ、格子歪みを判別、定量化するために用いられる。これに対して本発明では、前記した通り、直接観察あるいは定量化することができない転位密度を、この転位密度と非常に良く相関する、板表面の{311}面からのX線回折強度ピークの半価幅βをそのピーク高さHで割った値によって規定する。なお、Cu−Fe−P系銅合金板表面のX線回折強度ピークとしては、他の{220}面からのX線回折強度ピークの半価幅(β)やそのピーク高さ(H)が最も大きい。しかし、X線回折強度ピークの高さが大きい(高い)と、半価幅を割るそのピーク高さも大きくなり、X線回折強度ピークの半価幅をそのピーク高さで割った値として小さくなり過ぎ、値自体の誤差が多くなり再現性に乏しくなる。このため、本発明では、X線回折強度ピークの半価幅をそのピーク高さで割った値が大きい(ピーク高さが大きくなく、半価幅がそれなりに大きい)、{311}面からのX線回折強度ピークを採用した。   As is well known, this half width is, as schematically shown in FIG. 1, a vertical axis: X-ray diffraction intensity, a horizontal axis: an X-ray diffraction intensity peak (height H) represented by an angle (2θ). , Defined as the width (β) of the X-ray diffraction intensity peak at half position (height H / 2). Incidentally, this half-value width is normally used for discriminating and quantifying the crystallinity and non-crystallinity of the metal surface, crystallite size, and lattice distortion. On the other hand, in the present invention, as described above, the dislocation density that cannot be directly observed or quantified is an X-ray diffraction intensity peak from the {311} plane of the plate surface that correlates very well with the dislocation density. It is defined by the value obtained by dividing the half-value width β by its peak height H. As the X-ray diffraction intensity peak on the Cu—Fe—P-based copper alloy plate surface, the half-value width (β) and the peak height (H) of the X-ray diffraction intensity peak from the other {220} plane are The biggest. However, if the height of the X-ray diffraction intensity peak is large (high), the peak height that divides the half-value width also increases, and the half-value width of the X-ray diffraction intensity peak decreases as the value divided by the peak height. The error of the value itself increases and the reproducibility becomes poor. For this reason, in the present invention, the value obtained by dividing the half width of the X-ray diffraction intensity peak by the peak height is large (the peak height is not large and the half width is reasonably large). An X-ray diffraction intensity peak was employed.

したがって、本発明では、あくまで板への転位密度の導入状態を問題にするのであって、前記した特許文献1や2のような、板表面の特定結晶面のX線回折強度ピークで、組織の集積割合、板表面の結晶粒径、あるいは圧延集合組織を制御するものではない。言い換えると、これらの板表面の特定結晶面のX線回折強度ピークでは、あるいは、組織の集積割合、板表面の結晶粒径、あるいは圧延集合組織などの制御では、板への転位密度の導入状態を規定も制御もできない。   Therefore, in the present invention, the state of introduction of dislocation density into the plate is only a problem, and the X-ray diffraction intensity peak of the specific crystal plane on the plate surface as in Patent Documents 1 and 2 described above, It does not control the accumulation ratio, the crystal grain size on the plate surface, or the rolling texture. In other words, in the X-ray diffraction intensity peak of a specific crystal plane of these plate surfaces, or in the control of the accumulation ratio of the structure, the crystal grain size of the plate surface, or the rolling texture, the dislocation density is introduced into the plate. Cannot be regulated or controlled.

(転位密度の導入)
Cu−Fe−P系銅合金板表面の{311}面からのX線回折強度ピークの半価幅をそのピーク高さで割った値が0.015以上であるような転位密度を導入するためには、後述する通り、最終冷間圧延での導入歪み量を大きくする。即ち、最終冷間圧延における、ロール径を80mmφ未満の小径ロールとするとともに1パス当たりの圧下率を20%以上とするか、ロール長さ(ロール幅)を500mm以上とする、などの手段を選択して使用するか、組み合わせて使用する。
(Introduction of dislocation density)
In order to introduce a dislocation density such that a value obtained by dividing the half width of the X-ray diffraction intensity peak from the {311} plane of the Cu—Fe—P based copper alloy plate surface by the peak height is 0.015 or more. As described later, the amount of strain introduced in the final cold rolling is increased. That is, in the final cold rolling, or rolling reduction per pass with a roll diameter and small diameter roll than 80mmφ is 20% or more, the unit of the roll length (roll width) and more 500 mm, etc. Select and use or use in combination.

(せん断面率)
前記した通り、特許文献1や2で行なっている、銅合金板にリードを打抜き、その際のばり高さを測定するプレス打ち抜き性の試験条件では、この要求されるプレス打ち抜き性を正確に評価できなくなっている。
(Shear area ratio)
As described above, this required press punchability is accurately evaluated under the test conditions of press punchability, which is performed in Patent Documents 1 and 2, in which a lead is punched into a copper alloy plate and the flash height at that time is measured. I can't.

このため、本発明では、銅合金板のリード打ち抜きを模擬したプレス打ち抜きによって設けたリード断面のせん断面率(せん断面比率)によって、プレス打ち抜き性をより正確に評価する。このせん断面率が75%以下であれば、プレス打ち抜き性が良いと評価できる。勿論、これに、前記ばり高さの測定を加味して、このせん断面率によるプレス打ち抜き性評価を裏付けても良い。   For this reason, in this invention, press punching property is more accurately evaluated by the shear surface ratio (shear surface ratio) of the lead cross section provided by press punching that simulates lead punching of a copper alloy plate. If this shearing area ratio is 75% or less, it can be evaluated that the press punchability is good. Of course, it may be possible to support the evaluation of the press punching property based on the shear surface ratio by taking into account the measurement of the flash height.

この際、プレス打ち抜き試験におけるせん断面率測定に再現性を持たせるために、再現性を保証できるだけの試験条件を具体的に規定する。即ち、プレス打ち抜き試験は、打ち抜きプレス(クリアランス:5%)により、図2に示すように、幅1mm×長さ10mmのリードを、日本工作油製G−6316の潤滑油を用いて、長さ方向が銅合金板1の圧延方向に対し垂直に向くように打抜く。   At this time, in order to give reproducibility to the shear surface ratio measurement in the press punching test, test conditions that can guarantee reproducibility are specifically defined. That is, in the press punching test, as shown in FIG. 2, a lead having a width of 1 mm × a length of 10 mm was used by using a lubricating oil of G-6316 made by Nippon Kogyo Oil. Punching is performed so that the direction is perpendicular to the rolling direction of the copper alloy sheet 1.

これによって、打抜き穴2の中心を長さ方向に沿って切断し(切断箇所を破線3で示す)、打抜き穴2の切断面を矢印4の方向から観察し、光学式マイクロスコープを用いた切断面の表面写真から画像解析で求めた。せん断率は切断面におけるせん断面の面積比率(せん断面の面積/切断面の面積)であり、切断面の面積は銅合金板の板厚0.15mm×測定幅0.5mmとし、せん断面の面積は測定幅0.5mmの範囲内のせん断面の面積とした。1試料につき穴を3箇所打ち抜き、各穴で3箇所ずつ測定し(合計9箇所)、その平均値を求めた。   As a result, the center of the punched hole 2 is cut along the length direction (the cut portion is indicated by a broken line 3), the cut surface of the punched hole 2 is observed from the direction of the arrow 4 and cut using an optical microscope. It was obtained by image analysis from the surface photograph of the surface. The shear rate is the area ratio of the shear plane in the cut plane (the area of the shear plane / the area of the cut plane). The area of the cut plane is the thickness of the copper alloy sheet 0.15 mm × measured width 0.5 mm, The area was the area of the shear plane within the measurement width of 0.5 mm. Three holes were punched out for each sample, and three holes were measured for each hole (total of 9 points), and the average value was obtained.

(銅合金板の成分組成)
本発明では、半導体リードフレーム用などとして、引張強度が500MPa以上、硬さが150Hv以上である高強度と、前記したプレス打ち抜き性とを併せて達成する。このために、Cu−Fe−P系銅合金板として、質量%で、Feの含有量が0.01〜0.50%の範囲、前記Pの含有量が0.01〜0.15%の範囲とした、残部Cuおよび不可避的不純物からなる基本組成とする。
(Component composition of copper alloy sheet)
In the present invention, for a semiconductor lead frame or the like, a high strength having a tensile strength of 500 MPa or more and a hardness of 150 Hv or more and the above-described press punchability are achieved. For this reason, as a Cu-Fe-P-based copper alloy plate, in mass%, the Fe content is in the range of 0.01 to 0.50%, and the P content is 0.01 to 0.15%. It is set as the basic composition which consists of remainder Cu and an inevitable impurity made into the range.

この基本組成に対し、Zn、Snの一種または二種を、更に下記範囲で含有する態様でも良い。また、その他の選択的添加元素および不純物元素も、これら特性を阻害しない範囲での含有を許容する。なお、合金元素や不純物元素の含有量の表示%は全て質量%の意味である。   With respect to this basic composition, one or two of Zn and Sn may be further contained within the following range. Further, other selectively added elements and impurity elements are allowed to be contained within a range that does not impair these characteristics. In addition, the display% of content of an alloy element and an impurity element all means the mass%.

(Fe)
Feは、Fe又はFe基金属間化合物として析出し、銅合金の強度や耐熱性を向上させる主要元素である。Feの含有量が0.01%未満では、製造条件によっては、上記析出粒子の生成量が少なく、導電率の向上は満たされるものの、強度向上への寄与が不足し、強度が不足する。一方、Feの含有量が0.50%を超えると、導電率やAgメッキ性が低下する。そこで、導電率を無理に増加させるために、上記析出粒子の析出量を増やそうとすると、逆に、析出粒子の成長・粗大化を招く。このため強度とプレス打ち抜き性が低下する。したがって、Feの含有量は0.01〜0.50%の範囲とする。
(Fe)
Fe is a main element that precipitates as Fe or an Fe-based intermetallic compound and improves the strength and heat resistance of the copper alloy. If the Fe content is less than 0.01%, depending on the production conditions, the amount of the precipitated particles produced is small and the improvement in conductivity is satisfied, but the contribution to strength improvement is insufficient and the strength is insufficient. On the other hand, if the Fe content exceeds 0.50%, the electrical conductivity and Ag plating properties decrease. Therefore, if the amount of precipitation of the precipitated particles is increased in order to forcibly increase the conductivity, conversely, growth and coarsening of the precipitated particles are caused. For this reason, strength and press punchability are reduced. Therefore, the Fe content is in the range of 0.01 to 0.50%.

(P)
Pは、脱酸作用がある他、Feと化合物を形成して、銅合金の高強度化させる主要元素である。P含有量が0.01%未満では、製造条件によっては、化合物の析出が不十分であるため、所望の強度が得られない。一方、P含有量が0.15%を超えると、導電性が低下するだけでなく、熱間加工性やプレス打ち抜き性が低下する。したがって、Pの含有量は0.01〜0.15%の範囲とする。
(P)
In addition to deoxidizing action, P is a main element that forms a compound with Fe to increase the strength of the copper alloy. If the P content is less than 0.01%, depending on the production conditions, precipitation of the compound is insufficient, so that the desired strength cannot be obtained. On the other hand, when the P content exceeds 0.15%, not only the conductivity is lowered, but also the hot workability and the press punchability are lowered. Therefore, the P content is in the range of 0.01 to 0.15%.

(Zn)
Znは、リードフレームなどに必要な、銅合金のはんだ及びSnめっきの耐熱剥離性を改善する。Znの含有量が0.005%未満の場合は所望の効果が得られない。一方、3.0%を超えるとはんだ濡れ性が低下するだけでなく、導電率の低下も大きくなる。したがって、選択的に含有させる場合のZnの含有量は、用途に要求される導電率とはんだ及びSnめっきの耐熱剥離性とのバランスに応じて(バランスを考慮して)、0.005〜3.0%の範囲から選択する。
(Zn)
Zn improves the heat-resistant peelability of copper alloy solder and Sn plating required for lead frames and the like. If the Zn content is less than 0.005%, the desired effect cannot be obtained. On the other hand, if it exceeds 3.0%, not only the solder wettability is lowered but also the conductivity is greatly lowered. Therefore, the Zn content in the case of selective inclusion is 0.005 to 3 depending on the balance between the electrical conductivity required for the application and the heat resistance peelability of the solder and Sn plating (in consideration of the balance). Select from a range of 0%.

(Sn)
Snは、銅合金の強度向上に寄与する。Snの含有量が0.001%未満の場合は高強度化に寄与しない。一方、Snの含有量が多くなると、その効果が飽和し、逆に、導電率の低下を招く。したがって、選択的に含有させる場合のSn含有量は、用途に要求される強度(硬さ)と導電率のバランスに応じて(バランスを考慮して)、0.001〜5.0%の範囲から選択して含有させることとする。
(Sn)
Sn contributes to improving the strength of the copper alloy. When the Sn content is less than 0.001%, it does not contribute to high strength. On the other hand, when the Sn content is increased, the effect is saturated, and conversely, the conductivity is lowered. Accordingly, the Sn content in the case of selective inclusion is in the range of 0.001 to 5.0% depending on the balance between strength (hardness) and conductivity required for the application (in consideration of the balance). It is supposed to be selected and contained.

(Mn、Mg、Ca量)
Mn、Mg、Caは、銅合金の熱間加工性の向上に寄与するので、これらの効果が必要な場合に選択的に含有される。Mn、Mg、Caの1種又は2種以上の含有量が合計で0.0001%未満の場合、所望の効果が得られない。一方、その含有量が合計で1.0%を越えると、粗大な晶出物や酸化物が生成して強度や耐熱性を低下させるだけでなく、導電率の低下も激しくなる。従って、これらの元素の含有量は総量で0.0001〜1.0%の範囲で選択的に含有させる。
(Mn, Mg, Ca content)
Since Mn, Mg and Ca contribute to the improvement of hot workability of the copper alloy, they are selectively contained when these effects are required. When the content of one or more of Mn, Mg, and Ca is less than 0.0001% in total, a desired effect cannot be obtained. On the other hand, if the total content exceeds 1.0%, coarse crystals or oxides are generated, not only reducing the strength and heat resistance, but also reducing the conductivity. Therefore, the content of these elements is selectively contained in the range of 0.0001 to 1.0% in total.

(Zr、Ag、Cr、Cd、Be、Ti、Co、Ni、Au、Pt量)
これらの成分は銅合金の強度を向上させる効果があるので、これらの効果が必要な場合に選択的に含有される。これらの成分の1種又は2種以上の含有量が合計で0.001%未満の場合、所望の効果か得られない。一方、その含有量が合計で1.0%を越えると、粗大な晶出物や酸化物が生成して、強度や耐熱性を低下させるだけでなく、導電率の低下も激しく、好ましくない。従って、これらの元素の含有量は合計で0.001〜1.0%の範囲で選択的に含有させる。なお、これらの成分を、上記Mn、Mg、Caと共に含有する場合、これら含有する元素の合計含有量は1.0%以下とする。
(Zr, Ag, Cr, Cd, Be, Ti, Co, Ni, Au, Pt amount)
Since these components have an effect of improving the strength of the copper alloy, they are selectively contained when these effects are required. When the content of one or more of these components is less than 0.001% in total, the desired effect cannot be obtained. On the other hand, if the total content exceeds 1.0%, coarse crystallized substances and oxides are generated, which not only lowers the strength and heat resistance, but also causes a significant decrease in conductivity, which is not preferable. Therefore, the content of these elements is selectively contained in the range of 0.001 to 1.0% in total. In addition, when these components are contained with the said Mn, Mg, and Ca, the total content of these contained elements shall be 1.0% or less.

(Hf、Th、Li、Na、K、Sr、Pd、W、S、Si、C、Nb、Al、V、Y、Mo、Pb、In、Ga、Ge、As、Sb、Bi、Te、B、ミッシュメタル量)
これらの成分は不純物元素であり、これらの元素の含有量の合計が0.1%を越えた場合、粗大な晶出物や酸化物が生成して強度や耐熱性を低下させる。従って、これらの元素の含有量は合計で0.1%以下とすることが好ましい。
(Hf, Th, Li, Na, K, Sr, Pd, W, S, Si, C, Nb, Al, V, Y, Mo, Pb, In, Ga, Ge, As, Sb, Bi, Te, B , Misch metal amount)
These components are impurity elements, and when the total content of these elements exceeds 0.1%, coarse crystallized products and oxides are formed, and the strength and heat resistance are lowered. Therefore, the total content of these elements is preferably 0.1% or less.

(製造条件)
次に、銅合金板組織を上記本発明規定の組織とするための、好ましい製造条件について以下に説明する。本発明銅合金板は、上記転位密度を導入した本発明規定の組織とするための、最終冷間圧延条件などの好ましい条件を除き、通常の製造工程自体を大きく変えることは不要で、常法と同じ工程で製造できる。
(Production conditions)
Next, preferable manufacturing conditions for making the copper alloy sheet structure the structure defined in the present invention will be described below. The copper alloy sheet of the present invention is not required to greatly change the normal manufacturing process itself, except for preferable conditions such as final cold rolling conditions, etc., in order to obtain the structure defined by the present invention in which the above dislocation density is introduced. Can be manufactured in the same process.

即ち、先ず、上記好ましい成分組成に調整した銅合金溶湯を鋳造する。そして、鋳塊を面削後、加熱または均質化熱処理した後に熱間圧延し、熱延後の板を水冷する。   That is, first, a molten copper alloy adjusted to the preferred component composition is cast. Then, after chamfering the ingot, it is heated or homogenized and then hot-rolled, and the hot-rolled plate is water-cooled.

その後、中延べと言われる一次冷間圧延して、焼鈍、洗浄後、更に仕上げ(最終)冷間圧延、低温焼鈍(最終焼鈍、仕上げ焼鈍)して、製品板厚の銅合金板などとする。これら焼鈍と冷間圧延を繰返し行ってもよい。例えば、リードフレーム等の半導体用材料に用いられる銅合金板の場合は、製品板厚が0.1〜0.4mm程度である。   After that, the first cold rolling, which is said to be intermediate, is annealed, washed, and then finished (final) cold rolled and low-temperature annealed (final annealing, final annealing) to obtain a copper alloy sheet having a product thickness. . These annealing and cold rolling may be repeated. For example, in the case of a copper alloy plate used for a semiconductor material such as a lead frame, the product plate thickness is about 0.1 to 0.4 mm.

なお、一次冷間圧延の前に銅合金板の溶体化処理および水冷による焼き入れ処理を行なっても良い。この際、溶体化処理温度は、例えば750 〜1000℃の範囲から選択される。   In addition, you may perform the solution treatment of a copper alloy plate, and the quenching process by water cooling before primary cold rolling. At this time, the solution treatment temperature is selected from a range of 750 to 1000 ° C., for example.

(最終冷間圧延)
Cu−Fe−P系銅合金板表面の{311}面からのX線回折強度ピークの半価幅をそのピーク高さで割った値が0.015以上であるような転位密度を導入するためには、後述する通り、最終冷間圧延での導入歪み量を大きくする。即ち、最終冷間圧延における、ロール径を80mmφ未満の小径ロールとするとともに1パス当たりの最小圧下率(冷延率、加工率)を20%以上とするか、ロール長さ(ロール幅)を500mm以上とする、などの手段を選択して使用するか、組み合わせて使用する。
(Final cold rolling)
In order to introduce a dislocation density such that a value obtained by dividing the half width of the X-ray diffraction intensity peak from the {311} plane of the Cu—Fe—P based copper alloy plate surface by the peak height is 0.015 or more. As described later, the amount of strain introduced in the final cold rolling is increased. That is, in the final cold rolling, the minimum rolling reduction per pass with a roll diameter and small diameter roll of less than 80 mm (cold rolling ratio, working ratio) or a 20% or more, the roll length (roll width) A means such as 500 mm or more is selected and used, or used in combination.

最終冷間圧延におけるロール径が小さ過ぎる、1パス当たりの最小圧下率が小さ過ぎる、ロール長さが短過ぎると、Cu−Fe−P系銅合金板に導入される転位密度が不足する可能性が高い。このため、板表面の{311}面からのX線回折強度ピークの半価幅をそのピーク高さで割った値が0.015未満となり、従来の転位密度が少なくいCu−Fe−P系銅合金板と大差がなくなり、プレス打ち抜き性が低下するか、向上しない。   If the roll diameter in the final cold rolling is too small, the minimum rolling reduction per pass is too small, and if the roll length is too short, the dislocation density introduced into the Cu-Fe-P copper alloy sheet may be insufficient. Is expensive. Therefore, the value obtained by dividing the half width of the X-ray diffraction intensity peak from the {311} plane of the plate surface by the peak height is less than 0.015, and the conventional Cu—Fe—P system having a low dislocation density. There is no big difference from copper alloy sheet, and press punching performance is reduced or not improved.

最終冷間圧延のパス数は、過少や過多のパス数を避けて、通常の3〜4回のパス数で行なうことが好ましい。また、1パス当たりの圧下率は50%を超える必要は無く、1パス当たりの各圧下率は、元の板厚、冷延後の最終板厚、パス数、前記1パス当たりの最小圧下率およびこの最大圧下率を考慮して決定される。   The number of final cold rolling passes is preferably 3 to 4 times as usual, avoiding too few or too many passes. The rolling reduction per pass does not need to exceed 50%, and each rolling reduction per pass is the original plate thickness, the final plate thickness after cold rolling, the number of passes, and the minimum rolling reduction per pass. It is determined in consideration of this maximum reduction ratio.

(最終焼鈍)
本発明では、最終冷間圧延後に、低温での最終焼鈍を行なうことが好ましい。この最終焼鈍条件は、100〜400℃で0.2分以上300分以下の低温条件とすることが好ましい。通常のリードフレームに用いられる銅合金板の製造方法では、強度が低下するため、歪み取りのための焼鈍(350℃×20秒程度)を除き、最終冷間圧延後に最終焼鈍はしない。しかし、本発明では、前記冷間圧延条件によって、また、最終焼鈍の低温化によって、この強度低下が抑制される。そして、最終焼鈍を低温で行なうことにより、プレス打ち抜き性が向上する。
(Final annealing)
In the present invention, it is preferable to perform final annealing at a low temperature after the final cold rolling. This final annealing condition is preferably a low-temperature condition of 0.2 to 300 minutes at 100 to 400 ° C. In the manufacturing method of the copper alloy plate used for a normal lead frame, since the strength is lowered, the final annealing is not performed after the final cold rolling except for annealing for removing strain (about 350 ° C. × 20 seconds). However, in the present invention, this strength reduction is suppressed by the cold rolling conditions and by lowering the final annealing. And press punching property improves by performing final annealing at low temperature.

焼鈍温度が100℃よりも低い温度や、焼鈍時間が0.2分未満の時間条件、あるいは、この低温焼鈍をしない条件では、銅合金板の組織・特性は、最終冷延後の状態からほとんど変化しない可能性が高い。逆に、焼鈍温度が400℃を超える温度や、焼鈍時間が300分を超える時間で焼鈍を行うと、再結晶が生じ、転位の再配列や回復現象が過度に生じ、析出物も粗大化するため、プレス打ち抜き性や強度が低下する可能性が高い。   Under conditions where the annealing temperature is lower than 100 ° C, the annealing time is less than 0.2 minutes, or the conditions where this annealing is not performed, the structure and properties of the copper alloy sheet are almost the same as those after the final cold rolling. It is likely that it will not change. Conversely, if annealing is performed at a temperature exceeding 400 ° C. or annealing time exceeding 300 minutes, recrystallization occurs, rearrangement of dislocations and recovery phenomenon occur excessively, and precipitates also become coarse. For this reason, there is a high possibility that the press punchability and the strength are lowered.

以下に本発明の実施例を説明する。最終冷間圧延におけるロール径と1パス当たりの最小圧下率を変えて、種々の板表面の{311}面からのX線回折強度ピークの半価幅(転位密度)を有する銅合金薄板を製造した。そして、これら各銅合金薄板の引張強さ、硬さ、導電率、せん断面率などの特性を評価した。これらの結果を表1に示す。   Examples of the present invention will be described below. Manufacture copper alloy sheets with half width (dislocation density) of X-ray diffraction intensity peaks from the {311} plane of various sheet surfaces by changing the roll diameter and the minimum rolling reduction per pass in the final cold rolling. did. And characteristics, such as the tensile strength of each of these copper alloy thin plates, hardness, electrical conductivity, and a shear surface rate, were evaluated. These results are shown in Table 1.

具体的には、表1に示す各化学成分組成の銅合金をそれぞれコアレス炉にて溶製した後、半連続鋳造法で造塊して、厚さ70mm×幅200mm×長さ500mmの鋳塊を得た。各鋳塊を表面を面削して加熱後、950℃の温度で熱間圧延を行って厚さ16mmの板とし、750℃以上の温度から水中に急冷した。次に、酸化スケールを除去した後、一次冷間圧延(中延べ)を行った。この板を面削後、中間焼鈍を入れながら冷間圧延を4パス行なう最終冷間圧延を行い、次いで350℃で20秒の低温条件で最終焼鈍を行って、リードフレームの薄板化に対応した厚さ0.15mmの銅合金板を得た。   Specifically, after each copper alloy having the chemical composition shown in Table 1 was melted in a coreless furnace, it was ingoted by a semi-continuous casting method, and the ingot was 70 mm thick × 200 mm wide × 500 mm long. Got. Each ingot was chamfered on the surface and heated, and then hot rolled at a temperature of 950 ° C. to form a plate having a thickness of 16 mm, and rapidly cooled into water from a temperature of 750 ° C. or higher. Next, after removing the oxide scale, primary cold rolling (intermediate rolling) was performed. After this face was cut, final cold rolling was performed in which four passes of cold rolling were performed while intermediate annealing was performed, and then final annealing was performed at a low temperature of 350 ° C. for 20 seconds to cope with the thinning of the lead frame. A copper alloy plate having a thickness of 0.15 mm was obtained.

最終冷間圧延のロール径(mm)と1パス当たりの最小圧下率(%)を表1に各々示す。なお、最終冷間圧延では4パスとも同じロール径のロールを使用した。また、ロール径を変えても各ロール長さは500mmと一定にした。   Table 1 shows the roll diameter (mm) of the final cold rolling and the minimum rolling reduction (%) per pass. In the final cold rolling, rolls having the same roll diameter were used for all four passes. Moreover, even if the roll diameter was changed, each roll length was kept constant at 500 mm.

なお、表1に示す各銅合金とも、記載元素量を除いた残部組成はCuであり、その他の不純物元素として、Hf、Th、Li、Na、K、Sr、Pd、W、S、Si、C、Nb、Al、V、Y、Mo、Pb、In、Ga、Ge、As、Sb、Bi、Te、B、ミッシュメタルの含有量は、表1に記載の元素を含めて、これらの元素全体の合計で0.1質量%以下であった。   In each of the copper alloys shown in Table 1, the remaining composition excluding the described element amount is Cu, and other impurity elements are Hf, Th, Li, Na, K, Sr, Pd, W, S, Si, The contents of C, Nb, Al, V, Y, Mo, Pb, In, Ga, Ge, As, Sb, Bi, Te, B, and misch metal are those elements including those shown in Table 1. The total amount was 0.1% by mass or less.

また、Mn、Mg、Caのうち1種又は2種以上を含む場合は、合計量を0.0001〜1.0質量%の範囲とし、Zr、Ag、Cr、Cd、Be、Ti、Co、Ni、Au、Ptのうち1種又は2種以上を場合は、合計量を0.001〜1.0質量%の範囲とし、更に、これらの元素全体の合計量も1.0質量%以下とした。   Further, when one or more of Mn, Mg, and Ca are included, the total amount is in the range of 0.0001 to 1.0 mass%, and Zr, Ag, Cr, Cd, Be, Ti, Co, In the case of one or more of Ni, Au, and Pt, the total amount is in the range of 0.001 to 1.0% by mass, and the total amount of these elements is also 1.0% by mass or less. did.

このようにして得た銅合金板に対して、各例とも、銅合金板から試料を切り出し、各試料の転位密度(集合組織)、引張強さ、硬さ、導電率、せん断面率などの特性を評価した。これらの結果を表1に各々示す。   With respect to the copper alloy plate thus obtained, in each example, a sample was cut out from the copper alloy plate, and the dislocation density (texture), tensile strength, hardness, conductivity, shear surface ratio, etc. of each sample Characteristics were evaluated. These results are shown in Table 1, respectively.

(半価幅の測定)
銅合金板試料について、通常のX線回折法により、ターゲットにCoを用い、管電圧50kV、管電流200mA 、走査速度2°/min、サンプリング幅0.02°、測定範囲(2θ)30°〜115°の条件で、リガク製X線回折装置を用いてX線回折パターンを取得した。ここから、板表面の{311}面からのX線回折強度ピークの半価幅を前記した方法により求めた。測定は2箇所行い、半価幅はそれらの平均値とした。
(Measurement of half width)
For a copper alloy plate sample, using a normal X-ray diffraction method, using Co as a target, tube voltage 50 kV, tube current 200 mA, scanning speed 2 ° / min, sampling width 0.02 °, measurement range (2θ) 30 ° to 115 ° Under the conditions, an X-ray diffraction pattern was obtained using a Rigaku X-ray diffractometer. From this, the half width of the X-ray diffraction intensity peak from the {311} plane of the plate surface was determined by the method described above. The measurement was performed at two locations, and the half width was the average value thereof.

(硬さ測定)
銅合金板試料の硬さ測定は、マイクロビッカース硬度計にて、0.5kg の荷重を加えて3箇所行い、硬さはそれらの平均値とした。
(Hardness measurement)
The hardness of the copper alloy plate sample was measured with a micro-Vickers hardness tester under a load of 0.5 kg at three locations, and the hardness was an average value thereof.

(導電率測定)
銅合金板試料の導電率は、ミーリングにより、幅10mm×長さ300mm の短冊状の試験片を加工し、ダブルブリッジ式抵抗測定装置により電気抵抗を測定して、平均断面積法により算出した。
(Conductivity measurement)
The electrical conductivity of the copper alloy sheet sample was calculated by an average cross-sectional area method by processing a strip-shaped test piece having a width of 10 mm and a length of 300 mm by milling, measuring the electric resistance with a double bridge type resistance measuring device.

(せん断面率測定)
前記した試験条件により銅合金板試料のせん断面率(せん断面比率)を測定した。光学式マイクロスコープを用いた切断面の表面写真からの画像解析の際に、設けたリードの最大のばり高さも参考までに測定した。
(Shear area ratio measurement)
The shear surface ratio (shear surface ratio) of the copper alloy sheet sample was measured under the test conditions described above. When analyzing the image from the surface photograph of the cut surface using an optical microscope, the maximum flash height of the provided lead was also measured for reference.

表1から明らかな通り、本発明組成内の銅合金である発明例1〜14は、最終冷間圧延におけるロール径と1パス当たりの最小圧下率などの製造方法も好ましい条件内で製造されている。このため、発明例1〜14は、板表面の{311}面からのX線回折強度ピークの半価幅をそのピーク高さで割った値が0.015以上となるような転位密度を有する。   As is apparent from Table 1, Invention Examples 1 to 14, which are copper alloys within the composition of the present invention, are manufactured within preferable conditions such as the roll diameter and the minimum reduction rate per pass in the final cold rolling. Yes. For this reason, Invention Examples 1 to 14 have a dislocation density such that a value obtained by dividing the half width of the X-ray diffraction intensity peak from the {311} plane of the plate surface by the peak height is 0.015 or more. .

この結果、発明例1〜14は、引張強さが500MPa以上、硬さが150Hv以上の高強度な割りには、比較的高導電率であって、また、せん断面率が75%以下であり、プレス打ち抜き性にも優れている。   As a result, the inventive examples 1 to 14 have a relatively high electrical conductivity for a high strength of 500 MPa or more and a hardness of 150 Hv or more, and a shear surface ratio of 75% or less. Also, it has excellent press punchability.

これに対して、比較例15〜17は、本発明組成内の銅合金であるものの、最終冷間圧延におけるロール径や1パス当たりの最小圧下率が小さ過ぎる。このため、比較例15〜17は、板表面の{311}面からのX線回折強度ピークの半価幅をそのピーク高さで割った値が0.015未満であり、転位密度が低過ぎる。この結果、強度レベルが低い割には、せん断面率が78%以上で、プレス打ち抜き性が著しく劣る。   On the other hand, Comparative Examples 15 to 17 are copper alloys within the composition of the present invention, but the roll diameter and the minimum reduction rate per pass in the final cold rolling are too small. For this reason, in Comparative Examples 15 to 17, the value obtained by dividing the half width of the X-ray diffraction intensity peak from the {311} plane of the plate surface by the peak height is less than 0.015, and the dislocation density is too low. . As a result, although the strength level is low, the shear surface ratio is 78% or more and the press punchability is remarkably inferior.

比較例18の銅合金はFeの含有量が0.006%と、下限0.01%を低めに外れている。一方、最終冷間圧延におけるロール径と1パス当たりの最小圧下率などの製造方法も好ましい条件内で製造されている。このため、板表面の{311}面からのX線回折強度ピークの半価幅をそのピーク高さで割った値が0.015以上となる転位密度を有するものの、強度や硬さが低い割りには、せん断面率が高く、プレス打ち抜き性が劣り、また高強度化も達成できていない。   The copper alloy of Comparative Example 18 has an Fe content of 0.006%, which is lower than the lower limit of 0.01%. On the other hand, manufacturing methods such as the roll diameter and the minimum reduction rate per pass in the final cold rolling are also manufactured within preferable conditions. For this reason, although it has a dislocation density in which the value obtained by dividing the half-value width of the X-ray diffraction intensity peak from the {311} plane of the plate surface by the peak height is 0.015 or more, the strength and hardness are low. However, it has a high shear surface ratio, inferior press punchability, and has not achieved high strength.

比較例19の銅合金は、Feの含有量が0.55%と、上限5.0%を高めに外れているが、最終冷間圧延などの製造方法は好ましい条件内で製造されている。このため、板表面の{311}面からのX線回折強度ピークの半価幅をそのピーク高さで割った値が0.015以上となる転位密度を有するものの、せん断面率が高く、プレス打ち抜き性が劣り、導電率が著しく低い。   The copper alloy of Comparative Example 19 has an Fe content of 0.55%, which is higher than the upper limit of 5.0%, but the manufacturing method such as final cold rolling is manufactured within preferable conditions. For this reason, although it has a dislocation density in which the value obtained by dividing the half width of the X-ray diffraction intensity peak from the {311} plane of the plate surface by the peak height is 0.015 or more, the shear surface ratio is high, and the press Punchability is inferior and conductivity is extremely low.

比較例20の銅合金は、Pの含有量が0.007%と、下限0.01%を低めに外れているが、最終冷間圧延などの製造方法は好ましい条件内で製造されている。このため、板表面の{311}面からのX線回折強度ピークの半価幅をそのピーク高さで割った値が0.015以上となる転位密度を有するものの、強度や硬さが低い割には、せん断面率が高く、プレス打ち抜き性が劣り、また高強度化も達成できていない。   The copper alloy of Comparative Example 20 has a P content of 0.007%, which is slightly lower than the lower limit of 0.01%, but the manufacturing method such as final cold rolling is manufactured within preferable conditions. For this reason, although it has a dislocation density in which the value obtained by dividing the half-value width of the X-ray diffraction intensity peak from the {311} plane of the plate surface by the peak height is 0.015 or more, the strength and hardness are low. However, it has a high shear surface ratio, inferior press punchability, and has not achieved high strength.

比較例21の銅合金は、Pの含有量が0.16%と、上限0.15%を高めに外れているため、熱延中に板端部に割れが生じた。ただし、最終冷間圧延などの製造方法は好ましい条件内で製造されている。このため、板表面の{311}面からのX線回折強度ピークの半価幅をそのピーク高さで割った値が0.015以上となる転位密度を有するものの、せん断面率が高く、プレス打ち抜き性が劣り、また導電率が著しく低い。   In the copper alloy of Comparative Example 21, since the P content was 0.16%, which was higher than the upper limit of 0.15%, cracks occurred at the end of the plate during hot rolling. However, the manufacturing method such as final cold rolling is manufactured within preferable conditions. For this reason, although it has a dislocation density in which the value obtained by dividing the half width of the X-ray diffraction intensity peak from the {311} plane of the plate surface by the peak height is 0.015 or more, the shear surface ratio is high, and the press The punchability is inferior and the conductivity is extremely low.

(ばり高さ)
前記発明例1〜14は、上記プレス打ち抜き試験において観察されたばり高さ(最大)は、いずれも5μm以下であった。また、前記比較例15〜17も、プレス打ち抜き試験におけるばり高さは、いずれも5μm以下であり、発明例と遜色は無かった。一方、前記比較例18〜21は、プレス打ち抜き試験におけるばり高さは、いずれも6μmを超えており、上記発明例よりも劣っていた。
(Ball height)
In each of Invention Examples 1 to 14, the flash height (maximum) observed in the press punching test was 5 μm or less. Also, in Comparative Examples 15 to 17, the flash height in the press punching test was 5 μm or less, which was not inferior to the invention example. On the other hand, in Comparative Examples 18 to 21, the flash height in the press punching test exceeded 6 μm, which was inferior to the above invention examples.

したがって、プレス打ち抜き試験におけるばり高さの評価は、極端にプレス打ち抜き性が異なるもの同士(発明例1〜14と比較例18〜21)の比較、識別には使用できる。しかし、発明例1〜14と比較例15〜17では、ばり高さにはあまり有意差がつかず、良否の識別ができていないことが分かる。即ち、本発明で問題とするようなレベル、即ち、前記したリードフレームの小断面積化に伴い、小さくなったリード幅や板厚に対応して高強度化されたCu−Fe−P系銅合金板のスタンピング加工時のプレス打ち抜き性評価には不十分であることが分かる。   Therefore, the evaluation of the flash height in the press punching test can be used for comparison and identification of those having extremely different press punching properties (Invention Examples 1 to 14 and Comparative Examples 18 to 21). However, in the inventive examples 1 to 14 and the comparative examples 15 to 17, it is understood that there is no significant difference in the flash height, and it is not possible to identify the quality. That is, the Cu-Fe-P-based copper is strengthened in accordance with the level of the problem of the present invention, that is, with the reduction in the lead width and the thickness of the lead frame as the lead frame is reduced in cross-sectional area. It turns out that it is inadequate for the press punching evaluation at the time of the stamping process of an alloy plate.

以上の結果から、高強度化させた上で、プレス打ち抜き性にも優れさせるための、本発明銅合金板の成分組成、板表面の{311}面からのX線回折強度ピークの半価幅をそのピーク高さで割った値の臨界的な意義および、このような組織を得るための好ましい製造条件の意義が裏付けられる。   From the above results, the component composition of the copper alloy plate of the present invention, the half width of the X-ray diffraction intensity peak from the {311} plane of the plate surface, in order to improve the press punchability after increasing the strength. The critical significance of the value divided by the peak height and the significance of preferred production conditions for obtaining such a structure are supported.

Figure 0004117327
Figure 0004117327

以上説明したように、本発明によれば、高強度化させた上で、プレス打ち抜き性にも優れ、これら特性を両立(兼備)させたCu−Fe−P系銅合金板を提供することができる。この結果、小型化及び軽量化した電気電子部品用として、半導体装置用リードフレーム以外にも、リードフレーム、コネクタ、端子、スイッチ、リレーなどの、高強度化と、厳しい曲げ加工性が要求される用途に適用することができる。   As described above, according to the present invention, it is possible to provide a Cu—Fe—P-based copper alloy sheet that is excellent in press punchability and has both of these characteristics (combined), while having high strength. it can. As a result, high-strength and severe bending workability is required for lead frames, connectors, terminals, switches, relays, etc., in addition to semiconductor device lead frames, for miniaturized and lightweight electrical and electronic components. It can be applied for use.

X線回折強度ピークの半価幅を示す模式図である。It is a schematic diagram which shows the half width of an X-ray diffraction intensity peak. せん断面率の測定方法を示す説明図である。It is explanatory drawing which shows the measuring method of a shearing area rate.

符号の説明Explanation of symbols

1:銅合金板、2:打ち抜き穴、3:切断箇所 1: Copper alloy plate, 2: Punched hole, 3: Cut part

Claims (9)

質量%で、Fe:0.01〜0.50%、P:0.01〜0.15%を各々含有し、残部Cuおよび不可避的不純物からなる銅合金板であって、板表面の{311}面からのX線回折強度ピークの半価幅をそのピーク高さで割った値が0.015以上であることを特徴とするプレス打ち抜き性に優れた電気電子部品用銅合金板。 A copper alloy plate containing, by mass%, Fe: 0.01 to 0.50%, P: 0.01 to 0.15%, and the balance Cu and unavoidable impurities , {311 } A copper alloy sheet for electrical and electronic parts having excellent press punching characteristics, wherein a value obtained by dividing the half width of the X-ray diffraction intensity peak from the plane by the peak height is 0.015 or more. 前記銅合金板が、更に、質量%で、Sn:0.005〜5.0%を含有する請求項1に記載の電気電子部品用銅合金板。   The copper alloy plate according to claim 1, wherein the copper alloy plate further contains Sn: 0.005 to 5.0% by mass. 前記銅合金板が、更に、質量%で、Zn:0.005〜3.0%を含有する請求項1または2に記載の電気電子部品用銅合金板。   The copper alloy plate according to claim 1 or 2, wherein the copper alloy plate further contains Zn: 0.005 to 3.0% by mass. 前記銅合金板の引張強度が500MPa以上、硬さが150Hv以上である請求項1乃至3のいずれか1項に記載の電気電子部品用銅合金板。   The copper alloy plate according to any one of claims 1 to 3, wherein the copper alloy plate has a tensile strength of 500 MPa or more and a hardness of 150 Hv or more. 前記銅合金板が、更に、質量%で、Mn、Mg、Caのうち1種又は2種以上を合計で0.0001〜1.0%含有する請求項1乃至4のいずれか1項に記載の電気電子部品用銅合金板。   5. The copper alloy sheet according to claim 1, further comprising 0.0001 to 1.0% of one or more of Mn, Mg, and Ca in total by mass%. Copper alloy plate for electrical and electronic parts. 前記銅合金板が、更に、質量%で、Zr、Ag、Ti、Niのうち1種又は2種以上を合計で0.001〜1.0%含有する請求項1乃至5のいずれか1項に記載の電気電子部品用銅合金板。 6. The copper alloy sheet according to claim 1, further comprising 0.001 to 1.0% in total of one or more of Zr, Ag, Ti, and Ni in mass%. A copper alloy plate for electrical and electronic parts as described in 1. 前記銅合金板が、更に、質量%で、Mn、Mg、Caのうち1種又は2種以上を合計で0.0001〜1.0%と、Zr、Ag、Ti、Niのうち1種又は2種以上を合計で0.001〜1.0%とを各々含有するとともに、これら含有する元素の合計含有量を1.0%以下とした請求項1乃至6のいずれか1項に記載の電気電子部品用銅合金板。 The copper alloy plate is further, by mass%, one or more of Mn, Mg, and Ca in a total of 0.0001 to 1.0%, and one of Zr, Ag, Ti, and Ni , or The total content of these elements is 0.001% or less while containing two or more kinds in total of 0.001 to 1.0%, respectively. Copper alloy plate for electrical and electronic parts. 前記銅合金板が、Hf、Th、Li、Na、K、Sr、Pd、W、S、Si、C、Nb、Al、V、Y、Mo、Pb、In、Ga、Ge、As、Sb、Bi、Te、B、ミッシュメタルの含有量を、これらの元素全体の合計で0.1質量%以下とした請求項1乃至7のいずれか1項に記載の電気電子部品用銅合金板。   The copper alloy plate is Hf, Th, Li, Na, K, Sr, Pd, W, S, Si, C, Nb, Al, V, Y, Mo, Pb, In, Ga, Ge, As, Sb, The copper alloy plate for electrical and electronic parts according to any one of claims 1 to 7, wherein the content of Bi, Te, B, and Misch metal is 0.1% by mass or less in total of these elements. 前記銅合金板が半導体リードフレーム用である請求項1乃至8のいずれか1項に記載の電気電子部品用銅合金板。   The copper alloy plate for electrical and electronic parts according to claim 1, wherein the copper alloy plate is for a semiconductor lead frame.
JP2006199777A 2006-07-21 2006-07-21 Copper alloy sheet for electrical and electronic parts with excellent press punchability Expired - Fee Related JP4117327B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2006199777A JP4117327B2 (en) 2006-07-21 2006-07-21 Copper alloy sheet for electrical and electronic parts with excellent press punchability
KR1020087031900A KR101136265B1 (en) 2006-07-21 2007-06-20 Copper alloy sheets for electrical/electronic part
US12/374,154 US9631260B2 (en) 2006-07-21 2007-06-20 Copper alloy sheets for electrical/electronic part
EP11000125.2A EP2339039B8 (en) 2006-07-21 2007-06-20 Copper alloy sheet for electric and electronic part
CN200780021714.9A CN101466856B (en) 2006-07-21 2007-06-20 Copper alloy sheets for electrical/electronic part
EP07767234A EP2045344B1 (en) 2006-07-21 2007-06-20 Process for producing copper alloy sheets for electrical/electronic part
EP11000124.5A EP2339038B8 (en) 2006-07-21 2007-06-20 Copper alloy sheet for electric and electronic part
PCT/JP2007/062395 WO2008010378A1 (en) 2006-07-21 2007-06-20 Copper alloy sheets for electrical/electronic part
CN2010102638841A CN101899587B (en) 2006-07-21 2007-06-20 Copper alloy sheets for electrical/electronic part
US13/585,076 US9644250B2 (en) 2006-07-21 2012-08-14 Copper alloy sheet for electric and electronic part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006199777A JP4117327B2 (en) 2006-07-21 2006-07-21 Copper alloy sheet for electrical and electronic parts with excellent press punchability

Publications (2)

Publication Number Publication Date
JP2008024994A JP2008024994A (en) 2008-02-07
JP4117327B2 true JP4117327B2 (en) 2008-07-16

Family

ID=39115944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006199777A Expired - Fee Related JP4117327B2 (en) 2006-07-21 2006-07-21 Copper alloy sheet for electrical and electronic parts with excellent press punchability

Country Status (2)

Country Link
JP (1) JP4117327B2 (en)
CN (1) CN101466856B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11342690B2 (en) 2018-08-01 2022-05-24 Autonetworks Technologies, Ltd. Fixing structure of splice part

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2695958B1 (en) * 2007-08-07 2018-12-26 Kabushiki Kaisha Kobe Seiko Sho Copper alloy sheet
JP5319590B2 (en) * 2010-03-30 2013-10-16 Jx日鉱日石金属株式会社 Copper alloy, copper alloy manufacturing method and electronic component manufacturing method
US9845521B2 (en) * 2010-12-13 2017-12-19 Kobe Steel, Ltd. Copper alloy
EP2835433B1 (en) * 2012-04-04 2018-08-08 Mitsubishi Shindoh Co., Ltd. Cu-mg-p-based copper alloy plate having excellent fatigue resistance, and method for manufacturing same
CN103849793B (en) * 2012-11-30 2016-03-23 倪立俊 One electrically uses copper alloy composite sheet
JP5851000B1 (en) * 2014-08-22 2016-02-03 株式会社神戸製鋼所 Copper alloy strip for LED lead frame
CN104152742B (en) * 2014-09-04 2016-04-20 安徽鑫科新材料股份有限公司 A kind of high-performance tin-phosphor bronze line and production method thereof
CN104513912A (en) * 2014-11-13 2015-04-15 无锡信大气象传感网科技有限公司 Corrosion resistant copper alloy material for sensor chip
CN104928527A (en) * 2015-07-13 2015-09-23 苏州科茂电子材料科技有限公司 Conductive copper material for cable and preparing method thereof
CN108754218B (en) * 2018-09-10 2019-09-10 江西理工大学 A kind of high-strength highly-conductive Cu-Cr-Fe-Mg-P alloy wire and preparation method thereof
CN111809079B (en) * 2020-07-23 2021-12-17 郑州恒天铜业有限公司 High-strength high-conductivity copper alloy wire material and preparation method thereof
CN117403095A (en) * 2023-11-15 2024-01-16 铜陵学院 Copper alloy material containing rare earth Y and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4524471B2 (en) * 2004-08-30 2010-08-18 Dowaメタルテック株式会社 Copper alloy foil and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11342690B2 (en) 2018-08-01 2022-05-24 Autonetworks Technologies, Ltd. Fixing structure of splice part

Also Published As

Publication number Publication date
CN101466856B (en) 2010-10-06
JP2008024994A (en) 2008-02-07
CN101466856A (en) 2009-06-24

Similar Documents

Publication Publication Date Title
JP4117327B2 (en) Copper alloy sheet for electrical and electronic parts with excellent press punchability
JP4157898B2 (en) Copper alloy sheet for electrical and electronic parts with excellent press punchability
JP3962751B2 (en) Copper alloy sheet for electric and electronic parts with bending workability
EP1803829B1 (en) Copper alloy plate for electric and electronic parts having bendability
KR101136265B1 (en) Copper alloy sheets for electrical/electronic part
KR101027840B1 (en) Copper alloy plate material for electrical/electronic equipment and process for producing the same
EP3040430B1 (en) Copper alloy sheet material and method for producing same, and current-carrying component
JP4418028B2 (en) Cu-Ni-Si alloy for electronic materials
JP4041803B2 (en) High strength and high conductivity copper alloy
JP5075447B2 (en) Cu-Fe-P-Mg based copper alloy, manufacturing method, and current-carrying component
JP4157899B2 (en) High strength copper alloy sheet with excellent bending workability
JP4168077B2 (en) Copper alloy sheet for electrical and electronic parts with excellent oxide film adhesion
JP2008031525A (en) Copper alloy having high strength and high softening resistance
TW201945553A (en) Copper alloy for electronic and electrical device, copper alloy sheet strip for electronic and electrical device, part for electronic and electrical device, terminal, and bus bar
JP4459067B2 (en) High strength and high conductivity copper alloy
JP5098096B2 (en) Copper alloy, terminal or bus bar, and method for producing copper alloy
JP2008024995A (en) Copper alloy plate for electrical/electronic component having excellent heat resistance
JP4177221B2 (en) Copper alloy for electronic equipment
JP2010106355A (en) High strength high heat resistance copper alloy sheet
JP4197717B2 (en) Copper alloy plate for electrical and electronic parts with excellent plating properties
JP4684787B2 (en) High strength copper alloy
JP5748945B2 (en) Copper alloy material manufacturing method and copper alloy material obtained thereby
US20170096725A1 (en) Cu-Co-Ni-Si Alloy for Electronic Components
JP2000080426A (en) Copper alloy for electronic equipment
JP4210705B1 (en) Copper alloy sheet with excellent stress relaxation resistance and press punchability

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080421

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4117327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees