JP4175484B2 - Friction stir welding method and its joining apparatus and friction joined body - Google Patents

Friction stir welding method and its joining apparatus and friction joined body Download PDF

Info

Publication number
JP4175484B2
JP4175484B2 JP2005231414A JP2005231414A JP4175484B2 JP 4175484 B2 JP4175484 B2 JP 4175484B2 JP 2005231414 A JP2005231414 A JP 2005231414A JP 2005231414 A JP2005231414 A JP 2005231414A JP 4175484 B2 JP4175484 B2 JP 4175484B2
Authority
JP
Japan
Prior art keywords
joining
tool
shoulder
load
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005231414A
Other languages
Japanese (ja)
Other versions
JP2006007327A (en
Inventor
広明 佐藤
信介 平塚
慶訓 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2005231414A priority Critical patent/JP4175484B2/en
Publication of JP2006007327A publication Critical patent/JP2006007327A/en
Application granted granted Critical
Publication of JP4175484B2 publication Critical patent/JP4175484B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Description

本発明は、車両、航空機、建物、若しくは宇宙機器の構体、具体的には曲面若しくは直面状もしくは円周面状のシングルスキンやダブルスキンパネル等の摩擦接合体等を製造するための摩擦攪拌接合装置とその接合方法に係り、特にボビンツールを用いた摩擦攪拌接合装置とその接合方法に関する。   The present invention relates to a friction stir welding for manufacturing a vehicle, an aircraft, a building, or a structure of a space device, specifically, a friction bonded body such as a curved or confronted or circumferential single skin or a double skin panel. More particularly, the present invention relates to a friction stir welding apparatus using a bobbin tool and a joining method thereof.

従来より、摩擦攪拌による固相接合方法は公知であり、かかる接合方法は、加工物より実質的に硬い材質からなる回転ツ−ルを加工物の接合部に挿入し、回転ツ−ルを回転させながら移動することにより、回転ツ−ルと加工物との間に生じる摩擦熱による塑性流動によって加工物を接合する接合方法で、回転ツ−ルと接合部材との摩擦熱による金属の塑性流動を利用した固相接合のため、接合部を溶融させることなく接合でき、接合後の変形が少ない。接合部は溶融されないため、欠陥が少ないなどの多くの利点がある。   Conventionally, solid-phase joining methods by friction stirrer are well known, and such joining methods involve inserting a rotating tool made of a material substantially harder than the workpiece into the workpiece joint and rotating the rotating tool. This is a joining method in which workpieces are joined by plastic flow due to frictional heat generated between the rotating tool and the workpiece by moving the workpiece, and the plastic flow of metal due to frictional heat between the rotating tool and the joining member. Can be joined without melting the joint, and deformation after joining is small. Since the joint is not melted, there are many advantages such as fewer defects.

かかる摩擦撹拌接合に使用される回転工具には、プローブ型とボビンツール型の回転工具が存在し、プローブ型工具は回転工具を接合線側に押しつける必要があり、従ってこの反力に対処するために、高い剛性の裏当金が使用され、この裏当金は被加工物の面板の裏面に密着させて設置するものであり、高い剛性を必要とする。   The rotary tools used for such friction stir welding include probe type and bobbin tool type rotary tools, and it is necessary for the probe type tool to press the rotary tool against the joining line side, and thus to counter this reaction force. In addition, a high-stiffness backing metal is used, and this backing metal is placed in close contact with the back surface of the face plate of the workpiece, and requires high rigidity.

一方ボビンツール型の回転工具は接合する母材の表裏両面を挟持するように一定間隔を設けた一対のショルダ(母材押圧部材)が設けられているとともに、該上下一対のショルダ間にねじ軸状の攪拌軸(ピン軸)を設け、前記一対のショルダにより入熱された接合部を攪拌しながら摩擦接合を行うものである。
かかる工具によれば、接合面の両面において摩擦発熱させることが出来、裏面側の接合不良が生じないのみならず、裏当金が不要になるが、一方ではピン軸と上下一対のショルダ間隔が固定されているために、被接合部材の変形や肉厚の変動があると、これを吸収することができず、円滑な摩擦攪拌接合ができない。
On the other hand, a bobbin tool type rotary tool is provided with a pair of shoulders (base material pressing members) spaced apart so as to sandwich both the front and back surfaces of the base materials to be joined, and a screw shaft between the pair of upper and lower shoulders. A stirrer shaft (pin shaft) is provided, and friction welding is performed while stirring the joint portion heat input by the pair of shoulders.
According to such a tool, frictional heat can be generated on both sides of the joining surface, and not only a backside joining failure does not occur, but also a backing metal becomes unnecessary, but on the other hand, there is a gap between the pin shaft and a pair of upper and lower shoulders. If the member to be joined is deformed or has a variation in thickness because it is fixed, it cannot be absorbed and smooth friction stir welding cannot be performed.

このような不具合に対処するため、例えば、特開2002−18580公報(特許文献1)に記載されたものでは、上下ショルダ部の間に挟まれる接合材の接合部厚さを、上ショルダ部と下ショルダ部との間隔よりも大きくして、具体的には、従来例では、互いに対向する二つの接合材の接合部をはめ込み構造として、接合の厚さを接合部以外の厚さよりも局部的に厚くして、摩擦熱によって接合部のギャップが変化することを防止するとともに、接合後の接合部の厚さが他の部分よりも薄くなることを防止している。   In order to cope with such a problem, for example, in what is described in Japanese Patent Application Laid-Open No. 2002-18580 (Patent Document 1), the joint thickness of the joining material sandwiched between the upper and lower shoulder portions is set to the upper shoulder portion. More specifically, in the conventional example, the joining portion of two joining materials facing each other is fitted into the structure, and the joining thickness is more localized than the thickness other than the joining portion. The thickness of the bonded portion is prevented from changing due to frictional heat, and the thickness of the bonded portion after bonding is prevented from becoming thinner than other portions.

しかしながらかかる従来技術においても上下ショルダとピン軸は一体ものとして工具間隔を調整できず、入熱量に応じてショルダ間隔を調整して加重制御を行うことができない。
又工具間隔が一定の場合母材表面に凹凸を有する場合にこれに追従させるために、表面倣いを行うことができない。
又工具が一体ものの場合にピン軸の上下両側にショルダが位置するために、ショルダ径より大きな穴を接合終端に設けねば、工具を取り外しが出来ない。
However, even in such a prior art, the upper and lower shoulders and the pin shaft cannot be adjusted as a single unit, and the load cannot be controlled by adjusting the shoulder distance according to the heat input.
In addition, when the tool interval is constant, surface imitation cannot be performed in order to follow the unevenness on the surface of the base material.
In addition, since the shoulder is positioned on both the upper and lower sides of the pin shaft when the tool is an integral one, the tool cannot be removed unless a hole larger than the shoulder diameter is provided at the joining end.

かかる欠点を解消するために、例えば特開2000−33484(特許文献2)において、コイルスプリングを用いて下面押圧部を軸方向に可変にした技術が存在する。
かかる技術は、上側ショルダとして機能する回転筒に攪拌ピン軸を固設し、その先端にストッパ部を固設するとともに、該ストッパ部を介して短円柱状の下側ショルダ部材を設け、この下側ショルダと前記ストッパ部との間にコイルスプリングが配設されている。つまり、このコイルスプリングが、下面ショルダを常時被接合部材の下面側に付勢し、下面ショルダは、攪拌ピンの軸線に沿って移動可能に構成されているものである。
In order to eliminate such drawbacks, for example, in Japanese Patent Laid-Open No. 2000-33484 (Patent Document 2), there is a technique in which the lower surface pressing portion is variable in the axial direction using a coil spring.
In such a technique, a stirring pin shaft is fixed to a rotating cylinder that functions as an upper shoulder, a stopper portion is fixed to the tip of the rotating pin, and a lower columnar lower shoulder member is provided via the stopper portion. A coil spring is disposed between the side shoulder and the stopper portion. That is, the coil spring constantly urges the lower shoulder toward the lower surface side of the member to be joined, and the lower shoulder is configured to be movable along the axis of the stirring pin.

従ってかかる従来技術においては、下側ショルダの回転は、コイルスプリングを介して下側ショルダに伝えられるものであるために、コイルスプリングの押し付け力によってその荷重が規定され、下面ショルダの押し付け力を制御できない。
しかもコイルスプリングの押し付け力には上限があり、基本的に上側ショルダとして機能する回転筒の押し付け力より大きくすることができない。
Therefore, in such a conventional technique, the rotation of the lower shoulder is transmitted to the lower shoulder via the coil spring. Therefore, the load is defined by the pressing force of the coil spring, and the pressing force of the lower shoulder is controlled. Can not.
Moreover, there is an upper limit to the pressing force of the coil spring, and it cannot be made larger than the pressing force of the rotating cylinder that basically functions as the upper shoulder.

とくにボビンツ−ルの場合は、表裏両面側の一対のショルダはいずれも母材接合部に接触し食い込まなければなければ、接合部と工具の間に摩擦入熱が生じないため、工具セット時、工具間で材料を強く押さえるためにバネ定数を大きくする必要がある。しかしながら挟み込む荷重が高すぎると、工具を回転させると同時にねじ部がねじ切れてしまい接合できないし、一方荷重が低いと工具のならい回転はできるが、摩擦入熱が足らず接合ができなかったり、接合できても欠陥が生じてしまい、良好な接合部が得られないという課題がある。   In particular, in the case of a bobbin tool, if the shoulders on both sides of the front and back sides do not touch and bite into the base material joint, friction heat does not occur between the joint and the tool. It is necessary to increase the spring constant in order to strongly hold the material between the tools. However, if the load to be sandwiched is too high, the screw part will be cut off at the same time as the tool is rotated, and joining will not be possible. On the other hand, if the load is low, the tool will be able to rotate, but there will be insufficient frictional heat input and joining will not be possible. Even if it can, a defect will arise and there exists a subject that a favorable junction part cannot be obtained.

より具体的に説明するに、かかる摩擦攪拌接合に基づく加工方法は、接合初期においては回転工具を押圧状態で回転させて、母材を軟化領域に温度上昇させた後、工具を接合線に沿って移動させて接合するものであるために、接合開始初期において、接合ショルダの摩擦回転による摩擦入熱により接合物の温度が上昇していないと、ピン軸により接合部位を攪拌しても材料の流動が悪いため円滑に接合できない。
一方前記摩擦入熱が過大すぎて接合物の温度が軟化温度以上に上がりすぎると、材料の強度が低くなり、工具を挟み込むことで発生するせん断力に耐え切れず、材料がねじ切られてしまう恐れもあった。
More specifically, in the processing method based on the friction stir welding, in the initial stage of joining, the rotating tool is rotated in a pressed state to raise the temperature of the base material to the softened region, and then the tool is moved along the joining line. Therefore, if the temperature of the joint does not rise due to frictional heat input due to the frictional rotation of the joint shoulder at the beginning of the joint, even if the joint part is stirred by the pin shaft, the material Smooth flow cannot be achieved due to poor flow.
On the other hand, if the frictional heat input is excessively high and the temperature of the joint is too high above the softening temperature, the strength of the material will be low, the material will not be able to withstand the shearing force generated by pinching the tool, and the material may be threaded. There was also.

又ショルダ間隔が固定されているボビンツール型回転工具では、被接合部材の変形や肉厚の変動があると、これを吸収するために、1のショルダを表面倣いしても他側ショルダが母材から離間してしまうために、円滑な摩擦攪拌接合ができない。
特に、接合過程(製造過程)において、母材は長尺ものの型板を接合する場合に、型板同士の熱膨脹やクランプ治具による変形等により、接合部に生じるギャップ(隙間)が異なることを考慮すると、ギャップに変動があると、搬送速度が一定でもギャップや接合部の厚さの変動により負荷の変動も生じやすく、円滑な接合加工が出来ないのみならず、負荷が課題になると工具破損が生じる恐れがある。
Also, in the case of a bobbin tool type rotary tool with a fixed shoulder interval, in order to absorb any deformation or thickness variation of the member to be joined, the shoulder on the other side is the mother even if the surface of one shoulder is copied. Since it is separated from the material, smooth friction stir welding cannot be performed.
In particular, in the joining process (manufacturing process), when joining a long stencil, the base material has different gaps (gap) generated at the joint due to thermal expansion between the stencils or deformation by a clamping jig. Considering this, if there is a change in the gap, even if the conveyance speed is constant, the load may change due to the change in the gap and thickness of the joint, and not only smooth joining processing is possible, but if the load becomes an issue, the tool will break. May occur.

又、従来の摩擦攪拌接合技術分野では、特許3274453公報(特許文献3)に示すように、接合線を監視する技術としてCCDカメラによる画像監視装置が開示されている。
かかる技術は、摩擦撹拌接合装置の接合工具よりも進行方向前方に設けたCCDカメラで、接合される隙間を常時撮影し、摩擦撹拌接合開始点からの前進距離を常時計測し、上記CCDカメラで撮影した隙間(ギャップ)映像を画像処理し、画像中の隙間(ギャップ)の中心線の基準線に対する横方向へのずれ量を演算し、当該演算値を基準値と比較する、摩擦撹拌接合における継ぎ手不良検知方法である。
しかしながら、接合線上方よりCCDカメラより接合線を撮像する方法では、接合線金傍のクランプ冶具等の存在故にカメラ等では監視は難しく、開先幅(ギャップ)や接合部側近を精度よく検出出来ない。
特にボビンツールを用いた接合方法においては、ボビンツールの下部ショルダ側は、接合中外部からは監視できないし、又ピン軸においても接合部内に埋没した状態では仮にピンが折れても表面上は同じような状態である。このため工具の破損を検出し、破損時には接合を停止する必要があるが、現状の技術ではその課題を解決するものは少ない。
In the conventional friction stir welding technology field, as shown in Japanese Patent No. 3274453 (Patent Document 3), an image monitoring device using a CCD camera is disclosed as a technique for monitoring a joining line.
Such a technique uses a CCD camera provided in front of the welding direction of the friction stir welding apparatus to always photograph the gap to be joined, constantly measure the forward distance from the friction stir welding start point, and use the CCD camera. In the friction stir welding, the captured gap (gap) image is image-processed, the amount of deviation of the center line of the gap (gap) in the image from the reference line is calculated, and the calculated value is compared with the reference value. This is a joint defect detection method.
However, in the method of imaging the joint line from above the joint line with the CCD camera, it is difficult to monitor with a camera etc. due to the presence of a clamp jig near the joint wire, and the groove width (gap) and the vicinity of the joint can be detected accurately. Absent.
In particular, in the joining method using the bobbin tool, the lower shoulder side of the bobbin tool cannot be monitored from the outside during the joining, and even if the pin is bent in the jointed part even in the pin shaft, the surface is the same. It is in such a state. For this reason, it is necessary to detect the breakage of the tool and stop the joining at the time of breakage. However, there are few techniques that solve the problem with the current technology.

さて接合終了後、下側ショルダのないプラグ型回転工具の場合は、取り出しが容易であるが、ボビンツールの場合は、下側工具を取り外さなければ接合部よりの工具取り出しが不可能である。
しかしながら接合終端部で、工具間隔が一定のボビンツール型工具で、回転をとめた場合、まだ軟化領域にある接合部とねじ溝を有するピン軸との間にが固着、言い換えればねじ溝に材料軟化部が侵入した状態で固着して両者を分離することができなくなる。
このため、ボビンツールを用いた回転工具においては接合終端位置で、接合材料の一部を切断して、切削加工や化学的な方法で回転工具と接合母材を分離する必要があった。
In the case of a plug-type rotary tool having no lower shoulder after joining, removal is easy, but in the case of a bobbin tool, removal of the tool from the joint is impossible unless the lower tool is removed.
However, when the rotation is stopped with a bobbin tool type tool with a constant tool spacing at the joint end, the joint that is still in the softened region and the pin shaft having the thread groove are fixed, in other words, the material in the thread groove The softened portion is stuck in the invading state and cannot be separated.
For this reason, in the rotary tool using the bobbin tool, it is necessary to cut a part of the joining material at the joining end position and to separate the rotary tool and the joining base material by a cutting process or a chemical method.

又摩擦攪拌接合の終端では回転工具を抜出した後の接合部には工具取り出し穴が開口しているために、その部分を切断するか若しくはプラグ材で封入して穴をふさぐ必要がある。
そしてこのプラグを用いた摩擦攪拌接合法による閉塞方法は、Welding & Metal Fabrication、September 2000P7-8(非特許文献1)に開示されているように、図11(b)に示すように、30〜50°とテーパ角度の大きいプラグ穴70とテーパプラグ60の組み合わせにより接合しているが、ジュラルミンのように接合材がアルミ合金の場合は、プラグ側ではなく、接合材の板側終端側が変形しやすいために、テーパ穴終端に凹部を持たせた密閉式の裏当て板750を当てている。
At the end of the friction stir welding, since the tool extraction hole is opened in the joint after the rotary tool is extracted, it is necessary to cut the part or enclose it with a plug material to close the hole.
As shown in FIG. 11 (b), the plugging method using the friction stir welding method using a plug is disclosed in Welding & Metal Fabrication, September 2000P7-8 (Non-patent Document 1). Joining is performed by a combination of a plug hole 70 having a large taper angle of 50 ° and a taper plug 60. However, when the joining material is an aluminum alloy such as duralumin, the plate side end side of the joining material is deformed instead of the plug side. For the sake of simplicity, a sealed backing plate 750 having a recessed portion at the end of the tapered hole is applied.

しかしながら接合材のプラグ穴のテーパ角度が大きいとこれに対応して必然的に接合板65材表面側のプラグ径が大きくなり、接合板65材表面側の熱的影響が広がるとともに、接合時の荷重が高くなり、摩擦攪拌入熱によるアルミ合金の摩擦面の軟化量が広がり、プラグ穴終端(底部)の接合が安定しない。
この安定性を高めるために接合面における接触厚を多くすると接合時に排出される余肉量が多くなり、特に密閉型の裏当てで接合を行うとその余肉量が裏当て凹部にたまってプラグの押圧を妨げ、結果的に余肉により接合部に荷重がかからず未接合となるためにプラグ形状の管理が難しい。
特開2002−18580公報 特開2000−33484公報 特許3274453公報 Welding & Metal Fabrication、September 2000P7-8
However, when the taper angle of the plug hole of the joining material is large, the plug diameter on the surface side of the joining plate 65 inevitably increases correspondingly, and the thermal influence on the surface side of the joining plate 65 material spreads. The load becomes high, the amount of softening of the friction surface of the aluminum alloy due to friction stir heat input increases, and the plug hole end (bottom) joint is not stable.
Increasing the contact thickness at the joint surface to increase the stability increases the amount of surplus material discharged during joining. Especially when joining with a sealed backing, the surplus amount accumulates in the backing recess and plugs. As a result, it is difficult to manage the shape of the plug, because no load is applied to the joint portion due to the extra space and the joint portion is not joined.
JP 2002-18580 A JP 2000-33484 A Japanese Patent No. 3274453 Welding & Metal Fabrication, September 2000P7-8

本発明の目的は、かかる従来技術の課題に鑑み、ボビンツール型回転工具に関する種々の欠点の解消を図った摩擦攪拌接合方法とその装置を提供することにある。
具体的には本発明の目的は、接合完了時に、回転工具と材料の溶着や固着を防止する摩擦攪拌接合方法とその装置を提供することにある。
An object of the present invention is to provide a friction stir welding method and an apparatus therefor in which various drawbacks related to the bobbin tool type rotary tool are solved in view of the problems of the prior art.
Specifically, an object of the present invention is to provide a friction stir welding method and apparatus for preventing welding and adhesion between a rotary tool and a material when the joining is completed.

更に本発明の目的は、直線状の接合線を有するスキンパネル同士の接合の際に接合終端部における接合の乱れをなくし、高品質の摩擦攪拌接合方法とその装置を提供することにある。   A further object of the present invention is to provide a high-quality friction stir welding method and apparatus that eliminates the disturbance of joining at the joining end portion when joining skin panels having straight joining lines.

更に本発明の目的は摩擦攪拌接合の終端において形成されるプラグ穴をプラグにて封止する際にプラグ穴のプラグ径が大きくなることなく、しかもその周囲の熱的影響が広がることなくプラグ穴終端(底部)の接合が安定しうる高品質の摩擦攪拌接合方法とその装置を提供することにある。   Furthermore, the object of the present invention is to prevent the plug diameter of the plug hole from increasing when the plug hole formed at the end of the friction stir welding is sealed with the plug, and to prevent the surrounding thermal effect from spreading. An object of the present invention is to provide a high quality friction stir welding method and apparatus capable of stabilizing the end (bottom) joining.

本発明はかかる課題を解決するために、母材接合部の表裏両面側より夫々裏面押圧部材(以下裏面ショルダという)と表面押圧部材(以下表面ショルダという)を摺動回転させながら摩擦入熱を行うとともに、該入熱された接合部を、前記少なくとも一のショルダとともに回転するピン軸(以下ピン軸という)により攪拌させながら前記両ショルダとピン軸からなる回転工具を所定方向に移動させて接合部の固相接合を行う摩擦攪拌接合方法に関するもので、本発明は、前記両押圧部材との間隔を可変に構成された裏面押圧部材と表面押圧部材により母材接合部の表裏両面に倣いながら摩擦荷重制御を行うとともに、接合完了時に、前記攪拌部材の移動に同期して裏面押圧部材と表面押圧部材が母材押圧面より母材反押圧方向に離間させることを特徴とし、具体的には前記両押圧部材との間隔を可変に構成された裏面押圧部材と表面押圧部材により母材接合部の表裏両面に倣いながら摩擦荷重制御を行うとともに、接合完了時に、工具荷重制御から工具位置制御に切り替えて、前記裏面押圧部材と表面押圧部材とを母材押圧面より離間させるとともに、前記攪拌部材の回転を接合部の温度が軟化点以下に低下するまで継続させて、攪拌部材と接合部との溶着を防止することを特徴とする。 In order to solve such a problem, the present invention applies frictional heat input while sliding and rotating a back surface pressing member (hereinafter referred to as a back surface shoulder) and a surface pressing member (hereinafter referred to as a surface shoulder) from the front and back both sides of the base material joint. In addition, the rotating tool composed of both the shoulder and the pin shaft is moved in a predetermined direction while the heat input joint is agitated by a pin shaft rotating with the at least one shoulder (hereinafter referred to as a pin shaft). The present invention relates to a friction stir welding method for performing solid phase bonding of a part, and the present invention follows a front surface and a back surface of a base material bonding portion by using a back surface pressing member and a surface pressing member that are configured so that a distance between both the pressing members is variable. performs frictional force control, at the time of completion of joining, this the back side press member and the surface pressing member in synchronization with the movement of the agitating member is separated from the base material pressing surface on the base material anti pressing direction With the features, specifically performing the interval friction force control while scanning the front and back surfaces of the base material joint by back side press member and the surface pressing member is variably configure the two pressing members, upon completion of bonding Then, switching from the tool load control to the tool position control, the back surface pressing member and the front surface pressing member are separated from the base material pressing surface, and the rotation of the stirring member is continued until the temperature of the joint portion falls below the softening point. It is made to prevent welding with a stirring member and a junction part.

かかる発明は、前記ピン軸を回転軸方向に移動させた後若しくは移動途中に前記ピン軸を回転させれば遠心力によりピン軸に残存付着して接合残も除去できる。
そして前記ピン軸の回転を接合部の温度が軟化点以下に低下するまで継続させれば、ピン軸と接合部との溶着が完全に防止出来る。
According to this invention , after the pin shaft is moved in the rotation axis direction or when the pin shaft is rotated in the middle of the movement, it remains attached to the pin shaft by centrifugal force, and the bonding residue can be removed.
If the rotation of the pin shaft is continued until the temperature of the joint portion falls below the softening point, welding between the pin shaft and the joint portion can be completely prevented.

そしてかかる発明を具体化する装置として母材接合部の表裏両面側より夫々摺動回転させながら摩擦入熱を行う裏面押圧部材と表面押圧部材と、前記入熱された接合部を攪拌する攪拌部材を備えた回転工具を有してなる摩擦攪拌接合装置において、
前記攪拌部材を回転軸方向に移動可能に構成するとともに、該移動ストロークが攪拌部材と接合部位間が離脱可能なストローク量であることを要旨とする。
この場合前記ピン軸に、該ピン軸最大径より小なる移動軸が連接され、前記ピン軸の移動により接合部内に移動軸が位置可能に構成されているのがよく、具体的には前記ピン軸をネジ状軸で形成されている場合に、該ネジ状軸に、ネジ外径より小なる移動軸が連接され、前記ピン軸の移動により接合部内に移動軸が位置可能に構成されていることを特徴とする。そして更に具体的には前記ピン軸と裏面ショルダが一体的に連接されているとともに、前記移動軸が表面ショルダの軸穴内に挿設され、前記軸穴径(a1’)とピン軸の最大径(a1)と移動軸径(b1)の関係が下記式の関係にあるのがよい。
(a1’)≧(a1)>(b1)
And as a device embodying this invention, a back surface pressing member and a surface pressing member that perform frictional heat input while sliding and rotating from the front and back both sides of the base material joint, and a stirring member that stirs the heat-joined joint In a friction stir welding apparatus having a rotary tool with
The gist of the present invention is that the stirring member is configured to be movable in the direction of the rotation axis, and that the moving stroke is a stroke amount that allows separation between the stirring member and the joint portion.
In this case, it is preferable that a moving shaft smaller than the pin shaft maximum diameter is connected to the pin shaft, and the moving shaft can be positioned in the joint portion by the movement of the pin shaft. When the shaft is formed as a screw-shaped shaft, a moving shaft smaller than the outer diameter of the screw is connected to the screw-shaped shaft, and the moving shaft can be positioned in the joint portion by moving the pin shaft. It is characterized by that. More specifically, the pin shaft and the rear shoulder are integrally connected, and the moving shaft is inserted into the shaft hole of the front shoulder, so that the shaft hole diameter (a1 ′) and the maximum diameter of the pin shaft are increased. The relationship between (a1) and the moving shaft diameter (b1) is preferably in the relationship of the following formula.
(A1 ′) ≧ (a1)> (b1)

かかる発明によれば、回転工具による接合が完了した時点で、工具間隔を広げて、工具のショルダ面が材料と触れない状態にしておき、工具を回転することでピン部の回転を利用して、ピン部に固着している材料を遠心力で穴部から排除することができる。
上記の処置で穴は広がるが、アルミの熱膨張係数が工具の材質である工具鋼よりも大きいため、温度が下がった後、アルミが収縮し焼きばめのようになる可能性があるため、接合後板の温度が下がるまで、工具の回転を保持し、収縮した穴をねじ軸状ピンで削り取ることができる。
さらに確実に工具を抜くため、ピン軸部に径の細い移動軸部分を軸端に連接しておき、接合完了後、ピン軸をその移動軸位置まで移動させることで、容易にピン軸部を抜くことができる。
According to this invention, when the joining with the rotary tool is completed, the tool interval is widened so that the shoulder surface of the tool is not in contact with the material, and the rotation of the pin portion is utilized by rotating the tool. The material adhering to the pin portion can be removed from the hole portion by centrifugal force.
Although the hole expands with the above treatment, since the thermal expansion coefficient of aluminum is larger than the tool steel that is the material of the tool, after the temperature drops, there is a possibility that the aluminum shrinks and looks like a shrink fit, The rotation of the tool can be held until the temperature of the plates after joining is lowered, and the contracted hole can be scraped off with a screw shaft pin.
In order to remove the tool more reliably, the pin shaft part is connected to the shaft end of the pin shaft part with a small diameter, and after the joining is completed, the pin shaft part is moved to the position of the movement axis so that the pin shaft part can be easily moved. Can be removed.

そしてこの発明は母材接合部の表裏両面側より夫々裏面押圧部材と表面押圧部材を摺動回転させながら摩擦入熱を行うとともに、該入熱された接合部を、前記少なくとも一の押圧部材とともに回転する攪拌部材により攪拌させながら前記両押圧部材と攪拌部材からなる回転工具を所定方向に移動させて接合部の固相接合を行って形成された曲面若しくは直面状もしくは円周面状のシングルスキンやダブルスキンパネルからなる摩擦接合体において、
前記両押圧部材との間隔を可変に構成された裏面押圧部材と表面押圧部材により母材接合部の表裏両面に倣いながら摩擦荷重制御を行うとともに、接合完了時に、工具荷重制御から工具位置制御に切り替えて、前記攪拌部材を回転軸方向に移動させ、攪拌部材と接合部との溶着を防止して形成された摩擦接合体が得られ、更に具体的には前記両押圧部材との間隔を可変に構成された裏面押圧部材と表面押圧部材により母材接合部の表裏両面に倣いながら摩擦荷重制御を行うとともに、接合完了時に、工具荷重制御から工具位置制御に切り替えて、前記裏面押圧部材と表面押圧部材とを母材押圧面より離間させるとともに、前記攪拌部材の回転を接合部の温度が軟化点以下に低下するまで継続させて、攪拌部材と接合部との溶着を防止して形成された摩擦接合体が得られる。
The present invention performs frictional heat input while sliding and rotating the back surface pressing member and the surface pressing member from the front and back side surfaces of the base material joint portion, and the heat input joint portion together with the at least one pressing member. A curved or face-shaped or circumferentially-shaped single skin formed by moving the rotary tool composed of both the pressing member and the stirring member in a predetermined direction while stirring with a rotating stirring member to perform solid-phase bonding of the joint. And friction joints consisting of double skin panels,
Friction load control is performed while following both the front and back surfaces of the base material joining portion by using a back surface pressing member and a front surface pressing member that are configured so that the distance between both the pressing members is variable, and when the joining is completed, the tool load control is changed to the tool position control. By switching, the stirring member is moved in the direction of the rotation axis, and a friction bonded body formed by preventing welding between the stirring member and the joint portion is obtained. More specifically, the distance between the pressing members is variable. Friction load control is performed while following both the front and back surfaces of the base material joint portion by the back surface pressing member and the front surface pressing member, and when the joining is completed, the tool load control is switched to the tool position control, and the back surface pressing member and the front surface The pressing member is separated from the base material pressing surface, and the rotation of the stirring member is continued until the temperature of the joint portion decreases below the softening point to prevent welding between the stirring member and the joint portion. Friction assembly is obtained.

そしてかかる摩擦接合体を得るための装置として、母材接合部の表裏両面側より夫々摺動回転させながら摩擦入熱を行う裏面ショルダと表面ショルダと、前記入熱された接合部を攪拌する攪拌軸を備えた回転工具を有してなる摩擦攪拌接合装置において前記摩擦攪拌接合開始時に、前記回転工具の移動を停止した状態で前記少なくとも一のショルダの接合部への荷重を増加させて入熱温度を上昇させるスローアップ用時間を設定した制御手段が存在するのがよい。
そしてかかる技術(以下第1の技術という)は、前記両ショルダ間間隔変位を可変に構成している装置に適用するのが好ましく、この場合は接合開始位置で、前記ショルダ間間隔を接合部への摩擦荷重が少なくとも増加する方向に変位させるアクチュエータと前記ショルダと接合部間の荷重を検知する手段とが存在していることが必要である。
更に前記荷重増加後回転工具を接合線に沿って移動させる前に、その接合開始位置で前記荷重検知手段に基づいて、荷重一定で所定時間保持して接合開始部の均熱化を図るように前記アクチュエータを制御する制御手段が存在することも有効である。
Then, as an apparatus for obtaining such a friction bonded body, a back shoulder and a front shoulder that perform frictional heat input while sliding and rotating from the front and back both sides of the base material joint, and stirring for stirring the heat input joint In a friction stir welding apparatus having a rotary tool provided with a shaft, at the start of the friction stir welding, the load applied to the joint portion of the at least one shoulder is increased while the movement of the rotary tool is stopped. There should be a control means for setting a slow-up time for raising the temperature.
Such a technique (hereinafter referred to as the first technique) is preferably applied to an apparatus in which the displacement between the shoulders is variably configured. In this case, the distance between the shoulders is transferred to the joint at the joining start position. It is necessary that an actuator for displacing the frictional load at least in the direction of increasing and a means for detecting the load between the shoulder and the joint are present.
Further, before the rotary tool is moved along the joining line after increasing the load, based on the load detecting means at the joining start position, the load is kept constant for a predetermined time so as to equalize the joining start portion. It is also effective to have a control means for controlling the actuator.

かかる第1の技術によれば、接合部表面側と裏面側に位置する両ショルダ間距離(工具間隔)および摩擦入熱荷重(工具間荷重)を調整できる装置を用いて、接合開始の初期は攪拌部材であるピン軸がねじ切れない程度の低荷重で接合部材を挟み込み、その状態で回転工具を回転させて、摩擦入熱で材料表面を軟化させながら、接合に必要な荷重まで荷重を増加させた後、接合することで、ピン軸の破損が生じることなく接合できるようになる。また、荷重を徐々に上げていくのは、ピンに過大なトルクがかかりねじ切れるのを防止するためであるから、工具ショルダ間隔が固定の装置においても工具ショルダ間隔を母材接合部肉厚より小にして工具を回転駆動する駆動モータのトルクをピン軸の破損が生じることのない低トルク(低回転)で回転させ、徐々に回転を増加させてその増加程度がピン軸の破損トルクより超えないように制御しながら、接合荷重まで回転速度(トルク)上昇させることでも課題は解決される。   According to the first technique, the initial stage of joining is performed using an apparatus that can adjust the distance between the shoulders (tool spacing) and the frictional heat input load (tool spacing load) located on the front and back sides of the joint. Inserting the joining member with a low load that does not break the pin shaft, which is a stirring member, and rotating the rotary tool in that state, softening the material surface with frictional heat input, increasing the load to the load required for joining Then, joining can be performed without causing damage to the pin shaft. In addition, the load is gradually increased to prevent excessive pin torque and torsion. Therefore, even in a device with a fixed tool shoulder distance, the tool shoulder distance should be greater than the base metal joint thickness. Reduce the torque of the drive motor that rotates the tool at a low torque (low rotation) that does not cause damage to the pin shaft, and gradually increase the rotation to exceed the pin shaft damage torque. The problem can also be solved by increasing the rotational speed (torque) up to the joint load while controlling so as not to occur.

さて本発明が適用される装置は、図1(A)に示すように前記両ショルダ間間隔変位を可変に構成し、前記両ショルダが1の機械主軸よりの回転を受けて駆動している装置構成を有する。
このような装置の場合に前記ショルダ間間隔変位を可変としながら荷重増加をさせる制御手段を、前記両ショルダの回転駆動を行う前記機械主軸のトルク値及びその回転数を入力一定条件として、前記間隔変位を可変とし、荷重制御が行われるように構成することにより安定した制御が可能となる。
すなわち摩擦入熱による熱エネルギは、ショルダの回転数、回転トルク、挟持荷重(間隔変位)の3つの変数により制御可能であるが、回転数と回転トルクを変数とすると、変動時に生じるバイブレーションによりリニアな制御が困難であり、又ショルダの回転数、回転トルクは機械主軸側に設けたモータに依存し、且つ一定に制御することも容易である。
このため前記間隔変位を一の変数として可変に構成すればリニアな制御が容易である。
An apparatus to which the present invention is applied is an apparatus in which the displacement between the shoulders is variably configured as shown in FIG. 1A, and the shoulders are driven by rotation from one mechanical spindle. It has a configuration.
In the case of such a device, the control means for increasing the load while making the displacement between the shoulders variable, the torque value of the mechanical spindle for rotating the shoulders and the rotational speed thereof as input constant conditions, the interval By making the displacement variable and performing load control, stable control becomes possible.
In other words, the heat energy by frictional heat input can be controlled by three variables: shoulder rotation speed, rotation torque, and pinching load (interval displacement). Such control is difficult, and the rotation speed and rotation torque of the shoulder depend on the motor provided on the machine spindle side and can be easily controlled to be constant.
Therefore, linear control is easy if the interval displacement is variably configured as one variable.

又前記制御手段は、両ショルダの回転数を一定に維持し且つ前記アクチュエータによりショルダ間間隔変位を可変として荷重制御を行う油圧若しくは送りねじによる制御手段であるのがよい。
即ちコイルバネを用いたのでは、コイルスプリングの押し付け力によってその荷重が規定され、その押付力を制御できないのみならず、コイルスプリングの押し付け力には上限があり、リニアな制御が困難である。
又空圧力を用いても緩衝作用が働き、同様にセンシングがよいリニアな制御が困難である。
Preferably, the control means is a control means using hydraulic pressure or a feed screw that performs load control while keeping the rotation speed of both shoulders constant and making the displacement between the shoulders variable by the actuator.
That is, when a coil spring is used, the load is defined by the pressing force of the coil spring, and not only the pressing force cannot be controlled, but also the pressing force of the coil spring has an upper limit, and linear control is difficult.
Further, even if air pressure is used, a buffering action works, and similarly linear control with good sensing is difficult.

又前記アクチュエータが裏面側ショルダを軸変位させる第一のアクチュエータと、表面側ショルダを軸変位させる第二のアクチュエータとを具え、それぞれのアクチュエータに荷重検知手段が設けられ、他側のアクチュエータの変位と無関係に夫々のアクチュエータの変位により表面側と裏面側の荷重制御が独立して行われるように構成してもよく、この場合は表面側と裏面側の荷重制御が独立して行われるために、表面側のショルダで表面倣いに好ましい荷重に、又裏面側のショルダで摩擦入熱用の荷重を付加でき、個別の制御が可能である。   The actuator includes a first actuator for axially displacing the back side shoulder and a second actuator for axially displacing the front side shoulder. Each actuator is provided with load detection means, and the displacement of the other side actuator Irrespective of the displacement of each actuator, the load control on the front side and the back side may be performed independently. In this case, the load control on the front side and the back side is performed independently. A load for frictional heat input can be added to the load preferable for surface copying with the shoulder on the front surface side, and a load for frictional heat input with the shoulder on the back surface side, and individual control is possible.

又前記アクチュエータが裏面側ショルダを軸変位させる第一のアクチュエータと、裏面側ショルダと表面側ショルダを一体的に軸変位させる第二のアクチュエータとを具え、それぞれのアクチュエータに荷重検知手段を設けてもよい。
この場合は、両アクチュエータの荷重偏差に基づいて裏面側ショルダの荷重制御が行われ精度よい制御が可能となる。
The actuator may include a first actuator for axially displacing the back side shoulder and a second actuator for axially displacing the back side shoulder and the front side shoulder, and each actuator may be provided with load detection means. Good.
In this case, load control of the back side shoulder is performed based on the load deviation of both actuators, and control with high accuracy becomes possible.

そしてかかる技術は本発明以外にも適用でき、具体的には、
前記ショルダ間間隔変位を可変としながら接合部への摩擦荷重を変化させるアクチュエータと前記ショルダと接合部間の荷重を検知する手段とが存在し、前記アクチュエータが裏面側ショルダを軸変位させる第一のアクチュエータと、表面側ショルダを軸変位させる第二のアクチュエータとであって、それぞれのアクチュエータが同一ベース上に設けられ、両アクチュエータの荷重偏差に基づいて裏面側ショルダの荷重制御が行われることを第2の技術とし、又前記ショルダ間間隔変位を可変としながら接合部への摩擦荷重を変化させるアクチュエータと前記ショルダと接合部間の荷重を検知する手段とが存在し、前記アクチュエータが裏面側ショルダを軸変位させる第一のアクチュエータであって該アクチュータが、表面側ショルダを軸変位させる移動ベース上に搭載され、前記第一のアクチュエータの荷重検知手段に基づいて荷重制御を行うことを第3の技術とする。
Such technology can be applied to other than the present invention, specifically,
There is an actuator for changing the friction load on the joint while making the displacement between the shoulders variable, and a means for detecting the load between the shoulder and the joint, and the actuator causes the back side shoulder to be axially displaced. An actuator and a second actuator for axially displacing the front shoulder, wherein each actuator is provided on the same base, and load control of the rear shoulder is performed based on a load deviation of both actuators. And a means for detecting the load between the shoulder and the joint, and the actuator detects the back side shoulder. A first actuator that displaces the shaft, the actuator changing the surface of the shoulder Mounted on a moving base to be, a third technique to perform a load control on the basis of the load-sensing unit of the first actuator.

即ち、本発明の摩擦接合体を得るための第3の技術を具体的に説明するに、接合加工においては、上側ショルダ接合部に押し付け、一方下側ショルダを接合部裏面側に引張って接合しており、この場合に板厚変化に対応するため、そのときの荷重を一定値に制御しているが、前記した従来技術のように一つのコイルバネというアクチュエータで制御することはその荷重制御が困難である。
そこで本第3の技術は、この接合部に印加するショルダの荷重を、接合部を挟み込む入熱用荷重Pcと材料表面を押さえつける倣い用荷重Psに分離して、夫々独立のアクチュエータで制御することで、工具の接合部表面倣い、接合部にかかる入熱量を精度よく制御して安定した品質を得ることが可能である。
この場合に図1(A)に示すように、表面側ショルダのベース上に、裏面側ショルダを駆動するアクチュエータを設けた場合には表面側の第二のアクチュエータの荷重P1は倣い用荷重Psに、裏面側の第1のアクチュエータの荷重P2は入熱用荷重Pcに対応する。これに対して、図1(B)のように同一ベース上に第1及び第二のアクチュエータを設けた場合は、倣い用荷重Psは第1のアクチュエータの荷重P1と第二のアクチュエータP2の偏差量が、入熱用荷重PcはP1より偏差成分を取り除いた値が対応する。
That is, the third technique for obtaining the friction bonded body of the present invention will be specifically described. In the joining process, the upper shoulder joint is pressed against the lower shoulder while the lower shoulder is pulled to the joint back side. In this case, the load at that time is controlled to a constant value in order to cope with the change in plate thickness. However, it is difficult to control the load with an actuator called a single coil spring as in the prior art described above. It is.
Therefore, in the third technique, the shoulder load applied to the joint is separated into a heat input load Pc that sandwiches the joint and a copying load Ps that holds down the material surface, and each is controlled by an independent actuator. Thus, it is possible to obtain a stable quality by accurately controlling the surface area of the joint of the tool and the heat input applied to the joint.
In this case, as shown in FIG. 1A, when an actuator for driving the back side shoulder is provided on the base of the front side shoulder, the load P1 of the second actuator on the front side is equal to the copying load Ps. The load P2 of the first actuator on the back side corresponds to the heat input load Pc. On the other hand, when the first and second actuators are provided on the same base as shown in FIG. 1B, the copying load Ps is a deviation between the load P1 of the first actuator and the second actuator P2. The amount corresponds to the heat input load Pc obtained by removing the deviation component from P1.

そして母材接合部の板厚がほぼ一定の材料を接合する場合には、接合速度、工具回転数が一定の場合、工具荷重を一定値にすることで、接合部に一定量の熱を与えることが可能となるため、安定した接合を行うことが可能で、例えば6mm厚の材料で10%程度板厚が変化した場合でも、板厚変動に応じて工具間距離が開き、荷重が一定になり、入熱を制御できる。
一方工具間距離を接合部板厚に追従させない場合は、板厚の0.1mm程度の変動でも、約5%の荷重が変化し、板厚変化以上に入熱が変化する。特に、工具間距離よりも板厚が薄くなった場合には、工具と材料がまったく接触しなくなるため、発熱がまったくなくなり、欠陥が生じたり、工具の破損が起こる。
従ってショルダ間間隔を可変にして荷重制御により接合加工を安定して行うことが理解できる。
一方、テーパ形状の板厚を持った部材の接合では、入熱一定の条件では、板厚が厚いときには、入熱不足になりやすい。荷重一定に制御した場合、上下の工具の位置から板厚を知ることが可能で、板厚変化に応じて、荷重一定のまま、接合速度や回転数を変化させればよい。たとえば、2219-T87材の6mm材の適正な接合条件は、荷重8kN、回転数400rpm、送り速度400mm/minであり、8mm材では接合速度が300mm/minであるから、6mmから8mmに変化するテーパー部では工具位置から算出した板厚変化に応じて、接合速度を変化させることで健全な接合部を得ることが可能である。
When joining materials with almost constant plate thickness at the base material joint, if the joining speed and tool rotation speed are constant, a constant amount of heat is applied to the joint by making the tool load constant. Therefore, stable joining is possible. For example, even when the plate thickness changes by about 10% with a 6 mm thick material, the distance between the tools increases according to the plate thickness variation, and the load is constant. And heat input can be controlled.
On the other hand, when the inter-tool distance is not made to follow the joint plate thickness, even if the plate thickness fluctuates by about 0.1 mm, the load changes by about 5%, and the heat input changes more than the plate thickness change. In particular, when the plate thickness is thinner than the distance between the tools, the tool and the material do not come into contact at all, so heat is not generated at all and a defect occurs or the tool is damaged.
Therefore, it can be understood that the joining process is stably performed by changing the distance between the shoulders and controlling the load.
On the other hand, in joining of members having a taper-shaped plate thickness, heat input is likely to be insufficient when the plate thickness is large under the constant heat input condition. When the load is controlled to be constant, it is possible to know the plate thickness from the positions of the upper and lower tools, and it is sufficient to change the joining speed and the number of rotations while keeping the load constant according to the plate thickness change. For example, the proper joining conditions for a 6mm material of 2219-T87 are a load of 8 kN, a rotation speed of 400 rpm, and a feed rate of 400 mm / min. With an 8 mm material, the joining speed is 300 mm / min, and therefore changes from 6 mm to 8 mm. In the taper portion, it is possible to obtain a sound joint portion by changing the joining speed in accordance with the plate thickness change calculated from the tool position.

本発明の摩擦接合体を得るための第4の技術は、前記摩擦攪拌接合開始時に、前記回転工具の接合線方向への移動を停止した状態で前記ショルダの接合部への摩擦入熱を行う均熱用保持時間が存在することを特徴とし、具体的には前記摩擦入熱保持時間が、接合部の軟化温度以上であって部分溶融温度以下の温度域の範囲に設定されていることを特徴とする。
そして前記摩擦入熱保持時間の制御は、ショルダ間間隔変位を可変としながら荷重一定に制御しつつ予め設定した固定時間に基づいて行う第1の時間制御、接合部の温度検知信号に基づいて行われる第2の時間制御、若しくはショルダ間間隔変位の間隔変位量に基づいて行われる第3の制御のいずれか1若しくは複数の組み合わせで構成するのがよい。
According to a fourth technique for obtaining the friction bonded body of the present invention, at the start of the friction stir welding, the heat input to the shoulder joint is performed while the movement of the rotary tool in the welding line direction is stopped. The holding time for soaking is present, specifically, the frictional heat input holding time is set in a temperature range not less than the softening temperature of the joint and not more than the partial melting temperature. Features.
The frictional heat input holding time is controlled based on a first time control performed based on a fixed time set in advance while controlling the load to be constant while varying the displacement between the shoulders, and based on a temperature detection signal of the joint. The second time control or the third control performed based on the interval displacement amount of the inter-shoulder interval displacement is preferably configured by one or a combination of a plurality of them.

この場合、前記摩擦入熱保持時間の制御が、ショルダ間間隔変位の間隔変位量に基づいて行われる場合に、荷重一定に制御しながら摩擦入熱を行いつつ前記ショルダ間隔が一定値以下になった場合に軟化温度領域に達したと判断して接合線に沿う工具の移動を行うのがよい。   In this case, when the control of the frictional heat input holding time is performed based on the interval displacement amount of the inter-shoulder interval displacement, the shoulder interval becomes a predetermined value or less while performing the frictional heat input while controlling the load constant. In this case, it is preferable to move the tool along the joining line by determining that the softening temperature range has been reached.

そして本技術が接合開始前の均熱を目的とするものである以上、前記摩擦入熱保持時間の前に、常温より軟化温度域若しくはその近傍温度域まで予熱する予熱工程が存在することも必要である。
そして前記予熱工程は、前記両ショルダ間間隔変位を可変として接合部への荷重増加を行う工程であるのがよい。
And since this technology is aimed at soaking before joining starts, it is also necessary to have a preheating step for preheating from normal temperature to the softening temperature range or the vicinity temperature range before the friction heat input holding time. It is.
The preheating step may be a step of increasing the load on the joint portion with the displacement between the shoulders being variable.

従って本技術は、工具を移動して接合開始時に材料を均熱状態で軟化させるため、均熱用の適切な保持時間を設けるものである。
攪拌部材として機能するピン軸によって攪拌される接合部全体の温度が均熱に軟化温度領域まで上昇していないと、材料の流動が悪いため接合できないのみならず、ピン軸の破損につながる。
即ち接合開始位置で工具回転後、荷重を増加させて予熱し軟化温度領域に到達後、直ちに接合線に沿って工具を移動させると、接合部全体が均等に軟化していないため、ピンが破損して、材料が接合できない。
一方予熱時間や保持時間が無用に長く、接合部が、軟化温度領域を超え部分溶融点以上になると、材料の強度が低くなり、工具を挟み込むことで発生するせん断力に耐え切れず、材料がねじ切られて穴があいてしまう恐れがある。
Therefore, the present technology provides an appropriate holding time for soaking in order to move the tool and soften the material in a soaking state at the start of joining.
If the temperature of the entire joining portion stirred by the pin shaft functioning as the stirring member does not rise uniformly to the softening temperature region, the material flow is bad and not only the joining cannot be performed, but also the pin shaft is damaged.
That is, after rotating the tool at the welding start position, increasing the load, preheating and reaching the softening temperature range, and then immediately moving the tool along the welding line causes the pin to break because the entire joint is not softened evenly. Thus, the materials cannot be joined.
On the other hand, if the preheating time and holding time are unnecessarily long, and the joint exceeds the softening temperature region and exceeds the partial melting point, the strength of the material decreases, and the material cannot withstand the shearing force generated by pinching the tool. There is a risk of being threaded and having holes.

そこで前記摩擦入熱保持時間が、接合部の軟化温度以上であって部分溶融温度以下の温度域の範囲に設定することにより前記課題が解決される。
前記保持時間による入熱の制御方法としては、時間による制御も可能であるが、材料の軟化に伴い、荷重一定の制御を行った場合、材料が軟化するため、工具間距離が短くなる。従って材料の軟化の具合を、工具間距離の減少量で把握して、予熱が完了したと判断することも可能である。
時間による制御では、工具や材料の表面状況が異なり、摩擦係数が変化した場合には、発熱量が変化して、材料の軟化の程度が時間だけでは制御できないが、工具間距離の変化を含めて、均熱の完了を判断することでより、安定した施工が可能となり、そしてこの技術も曲面若しくは直面状もしくは円周面状のシングルスキンやダブルスキンパネル等の摩擦接合体に適用するのがよい。
Therefore, the above-mentioned problem is solved by setting the frictional heat input holding time to a temperature range not less than the softening temperature of the joint and not more than the partial melting temperature.
As a method for controlling the heat input by the holding time, control by time is possible, but when the constant load control is performed with the softening of the material, the material softens and the distance between the tools becomes short. Accordingly, it is possible to determine that the preheating has been completed by grasping the degree of softening of the material by the amount of decrease in the distance between the tools.
In time-based control, when the surface conditions of tools and materials are different and the friction coefficient changes, the amount of heat generation changes, and the degree of softening of the material cannot be controlled by time alone, but includes changes in the distance between tools. By judging the completion of soaking, stable construction becomes possible, and this technology can also be applied to friction bonded bodies such as curved skins, face-faced or circumferential face-shaped single skins and double skin panels. Good.

又前記保持時間の制御、即ち工具の移動による接合の開始を工具または材料の温度を非接触の温度計を用いて測定して行ってもよい。   The holding time may be controlled, that is, the start of joining by moving the tool may be performed by measuring the temperature of the tool or material using a non-contact thermometer.

そしてかかる技術の具体的な装置構成として、前記摩擦攪拌接合開始時に、前記回転工具の接合線方向への移動を停止した状態で前記ショルダの接合部への摩擦入熱による均熱作用を行う保持時間を設定した時間制御手段が存在することを特徴とし、具体的には前記時間制御手段が、摩擦入熱保持時間を固定若しくは可変に設定し、接合部の軟化温度以上であって部分溶融温度以下の範囲に時間制御可能に構成されている制御回路であることを特徴とする。
この場合前記制御回路は、摩擦入熱保持時間を固定若しくは可変に設定し、接合部の軟化温度以上であって部分溶融温度以下の範囲に時間制御可能に構成されているのがよく、更に前記摩擦入熱保持時間の制御が、ショルダの回転トルク信号、接合部への温度検知信号、若しくはショルダ間間隔変位の間隔変位量検知信号の少なくとも一の検知信号に基づいて行われることも有効である。
And as a specific apparatus configuration of such a technique, at the start of the friction stir welding, holding that performs a soaking action by frictional heat input to the joint portion of the shoulder while the movement of the rotary tool in the joining line direction is stopped There is a time control means for setting a time, specifically, the time control means sets the frictional heat input holding time to be fixed or variable, and is equal to or higher than the softening temperature of the joint and has a partial melting temperature. The control circuit is configured to be capable of time control within the following range.
In this case, the control circuit is preferably configured so that the frictional heat input holding time is set to be fixed or variable, and the time can be controlled in a range not lower than the softening temperature of the joint and not higher than the partial melting temperature. It is also effective to control the frictional heat input holding time based on at least one detection signal of a rotational torque signal of the shoulder, a temperature detection signal to the joint, or an interval displacement amount detection signal of the interval displacement between shoulders. .

更に前記制御回路は、前記ショルダ間間隔変位を可変とする手段と前記ショルダと接合部間の荷重を検知する手段とを具え、該可変手段により荷重を増加させながら常温より軟化温度域若しくはその近傍温度域まで予熱する第一の荷重制御時間と、該荷重をほぼ一定に制御しつつ接合部位の加熱制御を行う第二の荷重制御時間を有し、前記第一及び第二の加熱制御終了後工具移動開始を許容する時間制御手段を有することにより、予熱工程、均熱工程及び接合開始工程を明瞭に区別できる。   The control circuit further comprises means for varying the displacement between the shoulders and means for detecting the load between the shoulder and the joint, and increasing the load by the variable means while softening temperature range from room temperature or its vicinity. A first load control time for preheating up to a temperature range, and a second load control time for controlling the heating of the joint part while controlling the load substantially constant, after the first and second heating control ends. By having the time control means that allows the tool movement start, the preheating process, the soaking process, and the joining start process can be clearly distinguished.

又本技術は、接合部の軟化を確認するため、荷重制御で工具間距離が一定値以下になった場合に軟化したと判断できるように、ショルダ間間隔変位の間隔変位の減少量(凹陥量)を検知する凹陥量検知手段と、該凹陥量が許容値以下になる前に前記工具の移動開始信号を出力する判断手段とにより前記摩擦入熱保持時間の制御が行われるのがよい。
この場合、接合部もしくはその周囲温度が、軟化温度以上であって部分溶融温度以下の範囲にあることを検知する非接触温度センサを設け、該センサの検知信号に基づいて摩擦入熱保持時間を可変に構成してもよい。
In addition, this technology confirms the softening of the joint, so that it can be judged that the load has been softened when the distance between the tools becomes a certain value or less in load control. It is preferable that the friction heat input holding time is controlled by a depression amount detecting means for detecting the movement amount) and a judgment means for outputting a movement start signal of the tool before the depression amount becomes an allowable value or less.
In this case, a non-contact temperature sensor is provided for detecting that the joint or its ambient temperature is in the range of the softening temperature or higher and the partial melting temperature or lower, and the frictional heat input holding time is determined based on the detection signal of the sensor. It may be configured to be variable.

本発明の摩擦接合体を得るための第5の技術は、前記接合部の板厚変化を裏面ショルダと表面ショルダ間の間隔変位量で検出して、その検出値に応じて、裏面ショルダと表面ショルダの回転数、接合方向への工具送り速度を変化させて、入熱量を制御することを特徴とする。
そしてかかる技術を効果的に達成する装置として、裏面ショルダと表面ショルダ間の間隔変位が変位可能な一または複数のアクチュエータを設け、該アクチュエータに基づいて前記接合部の板厚変化に追従させて裏面ショルダと表面ショルダ間の間隔変位させるとともに、その変位検出値に応じて、裏面ショルダと表面ショルダの回転数、接合方向への工具送り速度を変化させて、接合部の入熱量を制御する制御回路を具えたことを特徴とする摩擦攪拌接合装置を提案する。
According to a fifth technique for obtaining the friction bonded body of the present invention, a change in the plate thickness of the joint portion is detected by a distance displacement amount between the back shoulder and the front shoulder, and the back shoulder and the front surface are detected according to the detected value. The amount of heat input is controlled by changing the rotation speed of the shoulder and the tool feed speed in the joining direction.
As an apparatus for effectively achieving such a technique, one or a plurality of actuators capable of displacing the distance between the rear shoulder and the front shoulder are provided, and the rear surface is caused to follow the thickness change of the joint based on the actuator. A control circuit that controls the amount of heat input at the joint by changing the distance between the shoulder and the front shoulder, and changing the rotation speed of the back shoulder and the front shoulder and the tool feed speed in the joining direction according to the detected displacement. A friction stir welding apparatus characterized by comprising:

かかる技術によれば、間隔変位に対応してショルダの回転数、接合方向への工具送り速度を変化させればより好ましい荷重制御が可能である。   According to this technique, more preferable load control is possible if the rotation speed of the shoulder and the tool feed speed in the joining direction are changed corresponding to the distance displacement.

この場合も前記アクチュエータが裏面側ショルダを軸変位させる第一のアクチュエータと、表面側ショルダを軸変位させる第二のアクチュエータとであって、母材の接合部の表面倣いに追従して第二のアクチュエータを変位させつつ、該変位に同期させて第一のアクチュエータが変位するように、第一のアクチュエータが送りねじ若しくは油圧により駆動されているのがよく、又第1及び第二のアクチュエータが、表面倣いと摩擦入熱の両者で個別に制御するのが好ましいことであり、更に入熱の荷重制御はリニアで精度よく行わなければならないために、入熱用の第一のアクチュエータが微細な荷重制御が可能な送りねじ若しくは油圧により駆動されているのがよい。
勿論第一のアクチュエータ及び第二のアクチュエータがいずれも送りねじ若しくは油圧により駆動されている方がより好ましいことは言うまでもない。
Also in this case, the actuator is a first actuator that axially displaces the back side shoulder, and a second actuator that axially displaces the front side shoulder, and follows the surface copying of the joint portion of the base material. The first actuator may be driven by a feed screw or hydraulic pressure so that the first actuator is displaced in synchronization with the displacement while displacing the actuator, and the first and second actuators are It is preferable to individually control both surface imitation and frictional heat input. Furthermore, since the load control of heat input must be linear and accurate, the first actuator for heat input has a fine load. It may be driven by a feed screw or hydraulic pressure that can be controlled.
Needless to say, it is more preferable that both the first actuator and the second actuator are driven by a feed screw or hydraulic pressure.

本発明の摩擦接合体を得るための第6の技術は、前記接合部の板厚変化に追従して機械主軸側に位置する表面ショルダと、ピン軸に連結し機械主軸に対して離間している裏面ショルダ間の間隔変位を可変させながら摩擦攪拌接合を行うとともに、前記両ショルダの接合部挟持による接合荷重に対し、表面ショルダによる押圧荷重を接合荷重の1/10程度以下の圧縮荷重になるように、前記表面ショルダを位置制御して表面倣いを行うことを特徴とするものである。そしてこの技術も曲面若しくは直面状もしくは円周面状のシングルスキンやダブルスキンパネル等の摩擦接合体に適用できる。   A sixth technique for obtaining the friction bonded body of the present invention includes a surface shoulder positioned on the machine spindle side following the change in the plate thickness of the joint, and a pin shaft connected to the machine spindle. Friction stir welding is performed while varying the gap displacement between the back shoulders, and the pressing load by the front shoulder is a compressive load of about 1/10 or less of the joining load with respect to the joining load by holding the joint portion of both shoulders. As described above, the surface copying is performed by controlling the position of the surface shoulder. This technique can also be applied to a friction bonded body such as a single skin or a double skin panel having a curved surface, a face shape, or a circumferential surface shape.

本技術を説明する。
表面倣いを行うには、倣い用荷重Psが無負荷となることで、接合する材料を表裏の工具でバランス良く挟むことが可能であり、材料にうねりがある場合でも基本的には安定して接合することが可能である。
ボビンツールからなる回転工具を用いた摩擦攪拌接合の場合に、表面側ショルダは機械主軸側に連結されているために熱容量が大きく言い換えれば奪熱量が大きく、一方、裏面側ショルダ機械首位軸と離れているために、熱容量が少ないこともあり奪熱量が小さい。
このため、両ショルダの押圧荷重の制御でその荷重がゼロとなるようにバランスさせて摩擦入熱を行った場合に、接合部裏面側の入熱が多いため、工具のあたり面の温度が表面よりも高くなるため、僅かに裏面側ショルダが接合部下面側に食い込んだ状態になる。
表面側ショルダと接合部との押圧関係を示す表面荷重を接合荷重の1/10程度若しくはそれ以下の圧縮荷重になるように制御することで、食い込み量がほぼ上下で同じ接合部を得ることが可能である。
The present technology will be described.
For surface copying, the copying load Ps is unloaded, so that the materials to be joined can be sandwiched between the front and back tools in a well-balanced manner. It is possible to join.
In the case of friction stir welding using a rotary tool consisting of a bobbin tool, the front side shoulder is connected to the machine spindle side, so the heat capacity is large.In other words, the heat absorption is large, while the back side shoulder machine is separated from the top axis of the machine. Therefore, the heat capacity is small and the heat loss is small.
For this reason, when the frictional heat input is performed by balancing the pressing load of both shoulders so that the load becomes zero, the heat on the back side of the joint is large, so the temperature of the contact surface of the tool is the surface Therefore, the back side shoulder slightly bites into the joint lower surface side.
By controlling the surface load indicating the pressing relationship between the surface side shoulder and the joint so as to be a compressive load of about 1/10 of the joint load or less, it is possible to obtain the same joint with the amount of biting almost up and down. Is possible.

本発明の摩擦接合体を得るための第7の技術は、前記両ショルダとの間隔を可変に構成された裏面ショルダと表面ショルダにより母材接合部の表裏両面に倣いながら摩擦荷重制御を行うとともに、該ショルダ間の間隔変位に基づいて接合部のギャップ増大に起因する接合不良を判別することを特徴とする。
そして前記判別手段は、ショルダ間の間隔変位が所定値以下になるごとに警報を出すとともに記録する第一の判別手段と接合動作を停止する第二の判別手段のいずれか一若しくは両者の組み合わせで構成されるのが好ましい。
The seventh technique for obtaining the friction bonded body of the present invention is to control the friction load while imitating both the front and back surfaces of the base material bonded portion by the back shoulder and the front shoulder configured to be variable in distance from the both shoulders. Further, it is characterized in that a bonding failure caused by an increase in the gap of the bonded portion is determined based on a displacement between the shoulders.
The discriminating means is one or a combination of either the first discriminating means for issuing an alarm and recording and the second discriminating means for stopping the joining operation each time the interval displacement between the shoulders becomes a predetermined value or less. Preferably it is configured.

さてボビンツールで均一板厚の部材を接合する場合、表面ショルダと下面ショルダ間隔が可変なボビンツールで荷重制御すると、ギャップ量が拡大すると材料を隙間に埋める必要が生じるためその溶け込みにより接合部が薄肉化し、表面側と裏面側のショルダ間隔(工具間距離)が狭くなる。この工具間距離をもとに、下限値を設定し、その値以下になった場合、アラームを表示したり接合を停止することで、接合品質を確保する。そしてこの板厚間隔の減少を、表裏両面側のショルダ変位を制御するアクチュエータの位置から求まるショルダ間間隔でもとめることは可能であり、ショルダ間間隔の絶対値および変動をもとにギャップの変化を検出することができる。   Now, when joining members with a uniform plate thickness with a bobbin tool, if the load control is performed with a bobbin tool with a variable distance between the front shoulder and the lower shoulder, it is necessary to bury the material in the gap as the gap amount increases. The thickness is reduced, and the shoulder interval (distance between tools) between the front surface side and the back surface side is reduced. Based on the distance between the tools, a lower limit value is set. When the lower limit value is reached, an alarm is displayed or the joining is stopped to ensure the joining quality. It is possible to stop this reduction in the thickness gap even with the distance between the shoulders determined from the position of the actuator that controls the shoulder displacement on both the front and back sides, and change the gap based on the absolute value and fluctuation of the distance between the shoulders. Can be detected.

本発明の摩擦接合体を得るための第8の技術は、前記両ショルダとの間隔を可変に構成された裏面ショルダと表面ショルダのいずれか一若しくは両者より得られる検知信号に基づいて工具破損を判別するとともに、該判別信号に基づいて少なくとも表面ショルダを母材より離間させることを特徴とする。そしてこの技術も曲面若しくは直面状もしくは円周面状のシングルスキンやダブルスキンパネル等の摩擦接合体に適用できる。
この場合工具の破損は、前記ショルダの駆動トルク、前記裏面ショルダの荷重変動、前記ショルダ間の間隔変位、接合線上の工具送り負荷の変動をもとに検出するのが好ましい。
In an eighth technique for obtaining the friction bonded body of the present invention, tool breakage is caused based on a detection signal obtained from either one or both of a back shoulder and a front shoulder that are configured to have a variable interval between the shoulders. In addition, it is characterized in that at least the surface shoulder is separated from the base material based on the determination signal. This technique can also be applied to a friction bonded body such as a single skin or a double skin panel having a curved surface, a face shape, or a circumferential surface shape.
In this case, the breakage of the tool is preferably detected based on the driving torque of the shoulder, the load fluctuation of the back shoulder, the displacement between the shoulders, and the fluctuation of the tool feed load on the joining line.

本技術を具体的に説明する。
ボビンツールはプローブ型の回転工具と異なり、上下のショルダで接合部を挟んで接合を行うため、工具を回転する主軸に高いトルク(2219-T87材6mmの場合、約60Nm)が発生する。(プローブ型工具ではトルク変化は小さい)回転工具のピン軸が折れた場合には、材料が挟まれなくなるため、主軸のトルクは急激に減少する。また、前記ピン軸の破損にともない、下側ショルダを引っ張り一定荷重に制御使用としたアクチュエータは、荷重がなくなるため、ショルダ間隔が短くなるように動作する。この二つの物理現象でピン軸の破損を検出できる。
ピン軸等の工具破損を検知した際には、該破損したピン軸等の工具で、未接合部を傷つけることがないように、接合方向への移動を停止するとともに、少なくとも表面ショルダを駆動している駆動軸を接合部から離れる方向に移動させることで、接合できていない部分の表面を表面ショルダがでこすったりして、傷つけることを防止出来る。
The present technology will be specifically described.
Unlike the probe-type rotary tool, the bobbin tool is joined by sandwiching the joint between the upper and lower shoulders. Therefore, a high torque (about 60 Nm in the case of 2219-T87 material 6 mm) is generated on the main spindle that rotates the tool. (Torque change is small in the probe type tool) When the pin shaft of the rotary tool is broken, the material is not pinched, so that the torque of the main shaft decreases rapidly. In addition, as the pin shaft breaks, the actuator that pulls the lower shoulder and uses it to control a constant load operates so that the shoulder interval is shortened because the load disappears. Breakage of the pin shaft can be detected by these two physical phenomena.
When a broken tool such as a pin shaft is detected, stop the movement in the joining direction and drive at least the surface shoulder so that the damaged tool such as the pin shaft does not damage the unjoined part. By moving the driving shaft away from the joint portion, it is possible to prevent the surface shoulder from rubbing the surface of the portion that has not been joined and damaging it.

本発明の摩擦接合体を得るための第9の技術は、接合開始部若しくは終端部の品質確保するためのものである。
即ち、摩擦攪拌接合開始時には接合開始位置で工具を停止させた状態で回転させて予熱する必要があるため、その後の接合線と比較して入熱が多めになり、接合開始部は欠陥を生じやすい。
また母材の縁部に近いところで接合を開始すると端部が変形するとともに、その変形が原因で欠陥が生じやすいため、接合開始位置より内側に寄せて大きく取る必要があるがこのことは接合の無駄が出やすい。
このため、本技術は、直線状の接合線を有する場合に接合開始位置を母材縁部より工具半径(A/2)より大なる距離(B>(A/2))だけ内側に設定し、接合開始後前記接合開始位置より縁部側に逆接合した後反転して順接合を行うことを特徴とする。
かかる技術によれば、接合開始点は反転した際の接合路途中に位置することになるために、接合開始部の欠陥を補修でき、その部分が製品として残ることがない。
かかる技術は直線状の接合線を有する接合線を補修接合する場合にも適用でき、この場合は補修接合開始後前記補修接合開始位置より工具半径(A/2)より大なる距離(B>(A/2))だけ逆接合した後反転して順方向に補修接合を行うことを特徴とする。これらの技術も曲面若しくは直面状もしくは円周面状のシングルスキンやダブルスキンパネル等の摩擦接合体に適用できる。
The ninth technique for obtaining the friction bonded body of the present invention is for ensuring the quality of the bonding start portion or the end portion.
That is, at the start of friction stir welding, it is necessary to rotate and preheat the tool with the tool stopped at the welding start position. Cheap.
In addition, when joining is started near the edge of the base metal, the end part is deformed, and defects are likely to occur due to the deformation.Therefore, it is necessary to take it closer to the inside than the joining start position. It is easy to waste.
For this reason, in the present technology, when a straight joining line is provided, the joining start position is set inward by a distance (B> (A / 2)) larger than the tool radius (A / 2) from the base material edge. Then, after joining is started, reverse joining is performed to the edge side from the joining start position, and then reverse joining is performed to perform forward joining.
According to such a technique, since the joining start point is located in the middle of the joining path when reversed, the defect at the joining start portion can be repaired, and the portion does not remain as a product.
Such a technique can also be applied when repairing and joining a joining line having a straight joining line. In this case, after starting repair joining, a distance (B>(B> ( A / 2)) is reversely joined and then reversed to perform repair joining in the forward direction. These techniques can also be applied to a friction bonded body such as a single-skin or double-skin panel having a curved surface, a face-like surface or a circumferential surface.

又本技術は、円周接合のように無端状の接合線を有する場合にも適用でき、接合開始位置と接合終端位置を重複させ、該重複距離が工具半径(A/2)より大なる距離(B>(A/2))に設定されていることを特徴とする。そしてこの技術は円周接合のように無端状の接合線を有するシングルスキンやダブルスキンパネル等の摩擦接合体に適用できる。
このように構成することにより、接合開始位置と接合終端位置のいずれにおいても接合路途中に位置することになるために、接合開始と接合終端位置部の欠陥を補修でき、その部分が製品として残ることがない。
The present technology can also be applied to the case where endless joining lines are used, such as circumferential joining, where the joining start position and the joining end position overlap, and the overlap distance is larger than the tool radius (A / 2). (B> (A / 2)) is set. This technique can be applied to a friction bonded body such as a single skin or a double skin panel having endless bonding lines such as circumferential bonding.
By being configured in this way, since both the joining start position and the joining end position are located in the middle of the joining path, defects at the joining start and joining end positions can be repaired, and the part remains as a product. There is nothing.

本発明の摩擦接合体を得るための第10の技術はテーパ状プラグ穴の終端径底部が位置する母材裏面側に裏当て部材を当接した状態でプラグ穴大径側よりテーパ状プラグを挿設して両者間に回転押圧力を付与しながらその摺動摩擦入熱により軟化させて接合を行うプラグ接合装置に適用されるものであり、摩擦攪拌接合部の終端部に生じる孔の穴埋めやその欠陥部の除去に使用する。その特徴とするところは、前記裏当て部材にプラグ穴の終端径と同心状の貫通孔を設けるとともに、該貫通孔端部と裏当て面との間の縁部をR状に形成するとともに、該R部の外縁直径(R)、前記プラグ穴の終端径直径(d3)、貫通孔の直径(e3)を下記の式の範囲に設定したことにある。
(R)>(d3)>(e3)
The tenth technique for obtaining the friction bonded body of the present invention is that the tapered plug is inserted from the large diameter side of the plug hole with the backing member in contact with the back surface of the base material where the bottom end of the tapered plug hole is located. It is applied to a plug joining device that is inserted and softened by sliding frictional heat input while applying a rotational pressing force between them, and is used to fill holes formed at the end of the friction stir weld Used to remove the defective part. The feature is that the backing member is provided with a through hole concentric with the terminal diameter of the plug hole, and an edge between the end of the through hole and the backing surface is formed in an R shape, The outer edge diameter (R) of the R portion, the terminal diameter (d3) of the plug hole, and the diameter (e3) of the through hole are set within the ranges of the following formulas.
(R)>(d3)> (e3)

この場合前記プラグ穴の片側テーパ角度を60〜80°の範囲に設定してプラグ径が大きくなり、熱影響部が広がるのを防止できる。
又プラグ穴のテーパ角度が小さい場合でも裏当ての底に穴をあけて、余肉が生じた場合、下に逃がして、余肉による接合不良を抑制出来るために、接合性を改善出来る。
又裏当て部材の貫通孔端部と裏当て面との間の縁部をR状に形成するとともに、該R部の外縁直径(R)、前記プラグ穴の終端径直径(d)貫通孔の直径(e)の範囲を規定し、そして好ましくは前記テーパ状プラグ先端直径(c)を前記プラグ穴の終端径直径(d)より大に設定することにより、接合板65板下部の変形を促すことで底部の密着を改善出来る。
In this case, the one-side taper angle of the plug hole can be set in the range of 60 to 80 ° to increase the plug diameter and prevent the heat affected zone from spreading.
Further, even when the taper angle of the plug hole is small, a hole is made in the bottom of the backing, and if a surplus is generated, it can escape to the bottom, so that poor joining due to the surplus can be suppressed, so that the joining property can be improved.
In addition, an edge between the end of the through hole of the backing member and the backing surface is formed in an R shape, and the outer edge diameter (R) of the R portion, the terminal diameter of the plug hole (d) of the through hole The range of the diameter (e) is defined, and preferably, the tapered plug tip diameter (c) is set larger than the terminal diameter diameter (d) of the plug hole to promote deformation of the lower part of the joining plate 65 plate. The bottom adhesion can be improved.

以上記載のごとく本発明によれば、接合完了時に、回転工具と材料の溶着や固着を防止出来、高品質の摩擦攪拌接合体が得られる。
更に本発明は、直線状の接合線を有するスキンパネル同士の接合の際に接合終端部における接合の乱れをなくし、高品質の摩擦攪拌接合体が得られる。
更に本発明によれば、摩擦攪拌接合の終端において形成されるプラグ穴や接合中の欠陥をプラグにて封止する際にプラグ穴のプラグ径が大きくなることなく、しかもその周囲の熱的影響が広がることなくプラグ穴終端(底部)の接合が安定しうる高品質の摩擦攪拌接合が可能となる。
As described above, according to the present invention, it is possible to prevent welding and fixing between the rotary tool and the material when the joining is completed, and a high-quality friction stir joined body can be obtained.
Further, according to the present invention, when the skin panels having a linear joining line are joined together, the joining disorder at the joining terminal portion is eliminated, and a high-quality friction stir joined body is obtained.
Furthermore, according to the present invention, when plug holes formed at the end of friction stir welding and defects during bonding are sealed with plugs, the plug diameter of the plug holes does not increase, and the surrounding thermal influences. High-quality friction stir welding is possible in which the end of the plug hole (bottom) can be stably joined without spreading.

以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。   Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.

先ず本発明が適用される摩擦攪拌接合装置本体5の要部構成を図1に基づいて説明する。
図1は送りモータにより駆動する送りねじを用いた摩擦攪拌接合装置の実施例、特に裏面ショルダ1と表面ショルダ2の両者を同期して回転可能にした実施例を示す要部概略図で、図中1は回転主軸4軸端に設けられた裏面ショルダで、該回転主軸4は裏面ショルダ取り付け部よりネジ状ピン軸3が形成され、更にその回転主軸4の表面ショルダ2に挿設される部位をスプライン状に構成し、スプライン19を介して表面ショルダ2が回転主軸に軸方向に摺動自在に嵌合されている。
更に回転主軸4の延在軸端側にはサーボモータ等の回転駆動部12を設けている。
これにより表面ショルダ2と裏面ショルダ1が同期して回転可能に構成される。すなわち表面ショルダ2は前記回転主軸4にスプライン19を介して、軸方向に摺動自在に連結され、回転主軸4の回転駆動部12により回転可能に構成されている。
First, the main configuration of the friction stir welding apparatus main body 5 to which the present invention is applied will be described with reference to FIG.
FIG. 1 is a schematic view of an essential part showing an embodiment of a friction stir welding apparatus using a feed screw driven by a feed motor, particularly an embodiment in which both a rear shoulder 1 and a front shoulder 2 can be rotated synchronously. The middle 1 is a back shoulder provided at the end of the rotation main shaft 4. The rotation main shaft 4 has a screw-shaped pin shaft 3 formed from a back shoulder mounting portion, and is further inserted into the front shoulder 2 of the rotation main shaft 4. The surface shoulder 2 is fitted to the rotary main shaft so as to be slidable in the axial direction through the spline 19.
Further, a rotation drive unit 12 such as a servo motor is provided on the extending shaft end side of the rotation main shaft 4.
Accordingly, the front shoulder 2 and the rear shoulder 1 are configured to be rotatable in synchronization. That is, the surface shoulder 2 is connected to the rotary main shaft 4 through a spline 19 so as to be slidable in the axial direction, and is configured to be rotatable by the rotation drive unit 12 of the rotary main shaft 4.

そして前記回転駆動部12を構成するサーボモータは制御回路13により一定速度若しくは制御された回転数で回転可能に構成されている。
又裏面ショルダ1が取りつけられた回転軸4の軸端には下側工具ベース9を介して「送りねじ21と送りねじ駆動モータ22、及びロードセル23が収納された」第1のアクチュエータ10が連結されており、又表面ショルダ2は軸受25が内蔵された支持収納部40を介して、「送りねじ210と送りねじ駆動モータ220及びロードセル230が収納された」第2のアクチュエータ11が連結されている。
この結果、これらのアクチュエータ11、10及び回転駆動部17は制御回路13に接続され、アクチュエータ11、10の夫々のロードセル23、230の信号に基づいて送りねじ駆動モータ22、220の回転位相を制御して例えば前記裏面側と表面側のショルダ面間にスキンパネル等の母材の接合部350を挟持した状態で、該接合面の表側にかかる表面ショルダ2面の荷重と、裏面ショルダ1面の荷重を夫々制御し得る。
The servo motor constituting the rotation drive unit 12 is configured to be rotatable at a constant speed or a controlled rotation speed by the control circuit 13.
Further, a first actuator 10 “with a feed screw 21, a feed screw drive motor 22 and a load cell 23” is connected via a lower tool base 9 to the shaft end of the rotary shaft 4 to which the back shoulder 1 is attached. The surface shoulder 2 is connected to the second actuator 11 "with the feed screw 210, the feed screw drive motor 220, and the load cell 230 accommodated" via the support accommodating portion 40 in which the bearing 25 is incorporated. Yes.
As a result, the actuators 11 and 10 and the rotation drive unit 17 are connected to the control circuit 13, and the rotation phases of the feed screw drive motors 22 and 220 are controlled based on the signals of the load cells 23 and 230 of the actuators 11 and 10, respectively. For example, in a state in which a base material joining portion 350 such as a skin panel is sandwiched between the back side and the front side shoulder surface, the load on the surface shoulder 2 surface on the front side of the joining surface, and the back shoulder 1 surface Each load can be controlled.

又制御回路13では、回転駆動部17のサーボモータの回転数も制御可能に構成し、例えば裏面ショルダ1と表面側のショルダ2の摩擦入熱量を制御可能に構成し、回転速度とアクチュエータ10、11による押圧荷重のいずれの組み合わせにても制御可能に構成している。
更に制御回路13では、前記装置本体5を母材接合線方向に沿って移動、停止及び反転させる制御及び送りねじ駆動モータ22、220の回転位相を制御して例えば前記裏面側と表面側のショルダ面間の間隔変位、荷重さらには回転停止位置での予熱、保持時間の制御等を行っているが、その詳細は後述する。
図中15はベースプレートで、レール29により母材接合線方向に移動可能に構成されている。そしてベースプレート15の送りモータ30も制御回路13により送り移動速度を制御可能に構成されている。
Further, the control circuit 13 is configured to be able to control the rotation speed of the servo motor of the rotation driving unit 17, for example, to be able to control the frictional heat input amount of the rear shoulder 1 and the front shoulder 2, and the rotational speed and the actuator 10. 11 is configured to be controllable in any combination of the pressing loads by 11.
Further, the control circuit 13 controls the movement of the apparatus main body 5 along the base material joining line direction, stops and reverses it, and controls the rotational phases of the feed screw drive motors 22 and 220 to control, for example, the back side and front side shoulders. The displacement between the surfaces, the load, the preheating at the rotation stop position, the control of the holding time, and the like are performed, details of which will be described later.
In the figure, reference numeral 15 denotes a base plate which is configured to be movable in the direction of the base material joining line by a rail 29. The feed motor 30 of the base plate 15 is also configured to be able to control the feed movement speed by the control circuit 13.

アクチュエータ10、11は、送りねじと送りねじ駆動モータ及びロードセルからなるアクチュエータではなく、ロードセルが収納された油圧シリンダと油圧現とから構成してもよく、その作用効果は送りネジを用いたものと同様である。   The actuators 10 and 11 are not actuators composed of a feed screw, a feed screw drive motor and a load cell, but may be composed of a hydraulic cylinder in which the load cell is housed and a hydraulic current, and the operation and effects thereof are those using a feed screw. It is the same.

図2(A)及び(B)は夫々本発明の機械的構成を示す夫々の実施例の概要図である。
図2(A)において図中15はベースプレートで、レール29により母材接合線方向に移動可能に構成されている。ベースプレート15上にはリニアガイド6により回転主軸4方向に移動自在に支持された上工具ベース7と第2のアクチュエータ11が取り付けられている。
そして上工具ベース7は第2のアクチュエータ11によって表面ショルダ2を軸方向に移動自在に構成されており、該アクチュエータ11にはロードセルが設けられていることは前記した通りである。
上工具ベース7上には摩擦攪拌接合装置本体5、リニアガイド8により回転主軸4方向に移動自在に支持された下工具ベース9及び第1のアクチュエータ10が設けられ、該アクチュエータ10にもロードセルが設けられている。
2 (A) and 2 (B) are schematic views of the respective embodiments showing the mechanical configuration of the present invention.
In FIG. 2A, reference numeral 15 in the drawing denotes a base plate, which is configured to be movable in the direction of the base material joining line by a rail 29. On the base plate 15, an upper tool base 7 and a second actuator 11 supported by a linear guide 6 so as to be movable in the direction of the rotation main shaft 4 are attached.
The upper tool base 7 is configured such that the surface shoulder 2 can be moved in the axial direction by the second actuator 11, and the actuator 11 is provided with a load cell as described above.
On the upper tool base 7, a lower tool base 9 and a first actuator 10 supported by a friction stir welding apparatus body 5 and a linear guide 8 so as to be movable in the direction of the rotation main shaft 4 are provided. Is provided.

装置本体5は回転主軸4軸端に設けられた裏面ショルダ1、表面ショルダ2夫々の回転主軸4の裏面ショルダ1取り付け部に設けられたネジ状ピン軸3等が存在し、更にその回転主軸4はスプライン19を介して表面ショルダ2が回転主軸4に軸方向に摺動自在に連結され、更に回転主軸4が延在し、その延在部にサーボモータ等の回転駆動部12が設けられ、更に該回転主軸4はリニアガイド8により回転主軸4方向に移動自在に支持された下工具ベース9に取り付けられている。   The apparatus main body 5 includes a screw-like pin shaft 3 provided at the back shoulder 1 mounting portion of the rotation main shaft 4 of each of the back shoulder 1 and the front shoulder 2 provided at the end of the rotation main shaft 4, and the rotation main shaft 4. The surface shoulder 2 is slidably connected to the rotation main shaft 4 through the spline 19 in the axial direction, the rotation main shaft 4 extends, and a rotation driving unit 12 such as a servo motor is provided in the extending portion. Further, the rotation main shaft 4 is attached to a lower tool base 9 supported by a linear guide 8 so as to be movable in the direction of the rotation main shaft 4.

かかる装置によれば、裏面ショルダ1を軸変位させる第一のアクチュエータは、表面ショルダ2を軸変位させる第二のアクチュエータによって移動変位させる上工具ベース7上に搭載されていることになる。
この結果、前記装置では、接合中上側の表面ショルダ2工具をベースプレート15上の第2のアクチュエータ11によって上工具ベース7を介して母材接合部350表面に押し付け、上工具ベース7上の第1のアクチュエータ10により下工具ベース9を介して下側の裏面ショルダ1工具を引張って接合しており、板厚変化に対応表面ショルダ2により表面ならいを行いながら、荷重一定制御により摩擦攪拌接合が可能となる。
According to such an apparatus, the first actuator that axially displaces the back shoulder 1 is mounted on the upper tool base 7 that is displaced by the second actuator that axially displaces the front shoulder 2.
As a result, in the apparatus, the upper surface shoulder 2 tool during welding is pressed against the surface of the base material joint portion 350 via the upper tool base 7 by the second actuator 11 on the base plate 15, and the first tool on the upper tool base 7 is pressed. The lower back shoulder 1 tool is pulled and joined by the actuator 10 through the lower tool base 9, and friction stir welding can be performed by constant load control while leveling the surface with the front shoulder 2 in response to changes in plate thickness. It becomes.

そしてこのときの荷重は前記2つのアクチュエータ10、11により、接合部350を挟み込む摩擦入熱荷重Pcと材料表面Psを押さえつける表面倣い荷重に分離して、独立に制御することが出来、表面ショルダ2工具が料表面を倣いながら、裏面ショルダ1によって接合部350にかかる入熱量を制御して安定した品質を得ることが可能である。
具体的には、ベースプレート15上に表面ショルダ2を駆動する第2のアクチュエータ11と上工具ベース7上とを、更に、下工具ベース9を介して裏面ショルダ1を駆動する第1のアクチュエータ10を設けた図2(A)の実施例の場合は、第2のアクチュエータ1の荷重P1は表面倣い荷重Ps(例えば50kgf)に、第1アクチュエータ2の荷重P2は摩擦入熱荷重Pc(例えば700kgf)に対応する。
The load at this time can be controlled by the two actuators 10 and 11 separately into the frictional heat input load Pc sandwiching the joint 350 and the surface imprinting load pressing the material surface Ps, and can be controlled independently. While the tool follows the surface of the material, the back surface shoulder 1 can control the amount of heat input to the joint 350 to obtain stable quality.
Specifically, a second actuator 11 that drives the front shoulder 2 and the upper tool base 7 on the base plate 15, and a first actuator 10 that drives the back shoulder 1 via the lower tool base 9 are provided. In the case of the embodiment shown in FIG. 2A, the load P1 of the second actuator 1 is the surface scanning load Ps (for example, 50 kgf), and the load P2 of the first actuator 2 is the frictional heat input load Pc (for example, 700 kgf). Corresponding to

従って本実施例によれば、この接合部350に印加するショルダの荷重を、接合部350を挟み込む入熱用荷重Pcと材料表面を押さえつける倣い用荷重Psに分離して、夫々独立のアクチュエータで制御することで、工具の接合部350表面倣い、接合部350にかかる入熱量を精度よく制御して安定した品質を得ることが可能であるとともに、前記アクチュエータを送り(ボール)ネジ若しくは油圧駆動により行うことにより一層荷重精度が出せる。   Therefore, according to the present embodiment, the shoulder load applied to the joint portion 350 is separated into a heat input load Pc that sandwiches the joint portion 350 and a copying load Ps that presses the material surface, and is controlled by independent actuators. By doing so, it is possible to obtain a stable quality by accurately controlling the surface of the joint portion 350 of the tool and the amount of heat input to the joint portion 350, and the actuator is fed by a feed (ball) screw or hydraulically driven. Therefore, load accuracy can be further increased.

図2(B)は共通するベースプレート15上に2つのアクチュエータ10、11が搭載された他の実施例で、レール29により母材接合線方向に移動可能に構成されているベースプレート5上にはリニアガイド6により回転主軸4方向に移動自在に支持された上工具ベース7と下工具ベース9に夫々第1及び第2のアクチュエータ10、11が取り付けられている。
そして上工具ベース7には摩擦攪拌接合装置本体5が設けられ、第2のアクチュエータ11によって表面ショルダ2を軸方向に移動自在に構成されており、該アクチュエータ11にはロードセルが設けられている。
下工具ベース9上には回転主軸4軸端に設けられた裏面ショルダ1が設けられ、第1のアクチュエータ10及びリニアガイド8により回転主軸4方向に移動自在に回転主軸4を支持するとともに該アクチュエータ10にロードセルが設けられている。
FIG. 2B shows another embodiment in which two actuators 10 and 11 are mounted on a common base plate 15, and a linear motion is provided on the base plate 5 that is configured to be movable in the base material joining line direction by rails 29. First and second actuators 10 and 11 are respectively attached to an upper tool base 7 and a lower tool base 9 that are supported by a guide 6 so as to be movable in the direction of the rotation main shaft 4.
The upper tool base 7 is provided with a friction stir welding apparatus main body 5, and is configured such that the surface shoulder 2 can be moved in the axial direction by a second actuator 11, and the actuator 11 is provided with a load cell.
On the lower tool base 9, there is provided a back shoulder 1 provided at the end of the rotation spindle 4 and supports the rotation spindle 4 movably in the direction of the rotation spindle 4 by the first actuator 10 and the linear guide 8 and the actuator. 10 is provided with a load cell.

かかる装置によれば、裏面ショルダ1を軸変位させる第1のアクチュエータ10及び、表面ショルダ2を軸変位させる第2のアクチュエータ11はいずれもベースプレート15上に軸移動可能に搭載されていることになる。
この結果、前記装置では、接合中上側の表面ショルダ2をベースプレート15上に設けた第2のアクチュエータ11によって上工具ベース7を介して母材接合部350表面に押し付け、又共通するベースプレート15上に設けた第1のアクチュエータ10により下工具ベース9を及び回転主軸4を介して下側の裏面ショルダ1工具を引張って接合しており、板厚変化に対応表面ショルダ2により表面ならいを行いながら、荷重一定制御により摩擦攪拌接合が可能となる。
そしてこのときの荷重は、材料を挟み込む摩擦入熱荷重Pcは第1のアクチュエータ10により又材料表面Psを押さえつける表面倣い荷重Psは第1のアクチュエータ10と第2のアクチュエータ11の偏差により、夫々独立に制御することが出来、表面ショルダ2工具が料表面を倣いながら、裏面ショルダ1によって接合部350にかかる入熱量を制御して安定した品質を得ることが可能である。
具体的には、ベースプレート15上に表面ショルダ2を駆動する第2のアクチュエータ11と裏面ショルダ1を駆動する第1のアクチュエータを設けた図2B)の実施例の場合は、第2のアクチュエータ1の荷重P1は(表面倣い荷重Ps+摩擦入熱荷重P2)(例えば750kgf)に、第1アクチュエータ2の荷重P2は摩擦入熱荷重Pc(例えば700kgf)に対応する。
According to such an apparatus, the first actuator 10 that axially displaces the back shoulder 1 and the second actuator 11 that axially displaces the front shoulder 2 are both mounted on the base plate 15 so as to be axially movable. .
As a result, in the apparatus, the upper surface shoulder 2 during the joining is pressed against the surface of the base material joint portion 350 via the upper tool base 7 by the second actuator 11 provided on the base plate 15, and on the common base plate 15. The lower tool base 9 and the lower back shoulder 1 tool are pulled and joined by the provided first actuator 10 and the rotating main shaft 4, and the surface shoulder 2 corresponding to the change in the plate thickness performs Friction stir welding is possible by constant load control.
The load at this time is independent of the frictional heat input load Pc sandwiching the material by the first actuator 10 and the surface scanning load Ps for pressing the material surface Ps is independent of the deviation between the first actuator 10 and the second actuator 11. It is possible to control the amount of heat input to the joint 350 by the back shoulder 1 while the front shoulder 2 tool follows the surface of the material, and to obtain a stable quality.
Specifically, in the case of the embodiment of FIG. 2B) in which the second actuator 11 for driving the front shoulder 2 and the first actuator for driving the rear shoulder 1 are provided on the base plate 15, the second actuator 1 The load P1 corresponds to (surface scanning load Ps + friction heat input load P2) (for example, 750 kgf), and the load P2 of the first actuator 2 corresponds to the friction heat input load Pc (for example, 700 kgf).

次にかかる装置を用いた本発明の実施形態を説明する。
図3は本発明が使用する接合材の硬度と温度の関係を示し、例えばロケットに使用される2219系アルミ合金では350℃前後で軟化が開始し、530〜540℃で部分溶融が始まる。一方、6000系のアルミ合金では250℃から軟化が始まる。
1)スローアップ
先ず接合開始時にスローアップを行う。
スローアップとは、工具の送りを停止した状態で、表面ショルダ2を駆動する第2のアクチュエータ11と裏面ショルダ1を駆動する第1のアクチュエータ10を制御してピン軸のねじ切り防止のため、ピン軸のねじ切りが起きない低荷重より徐々に荷重を増加して軟化点以上に加熱するものである。
具体的には図2(A)の実施例の場合は、第2のアクチュエータ11の荷重P1を表面倣い荷重Ps(例えば50kgf)に設定し、第1アクチュエータ11の荷重P2は摩擦入熱荷重Pcを(例えば0.5KN〜7KN)に増加させてスローアップを図る。
図2(B)の実施例の場合は、第2のアクチュエータの荷重P1は(表面倣い荷重Ps+摩擦入熱荷重P2)(例えば1KN〜7.5KN)に、第1アクチュエータ2の荷重P2は摩擦入熱荷重Pc(例えば0.5〜7.0KN)に荷重を増加させてスロープアップを図る。
Next, an embodiment of the present invention using such an apparatus will be described.
FIG. 3 shows the relationship between the hardness and temperature of the bonding material used in the present invention. For example, in a 2219 series aluminum alloy used for a rocket, softening starts at around 350 ° C., and partial melting starts at 530 to 540 ° C. On the other hand, the 6000 series aluminum alloy begins to soften at 250 ° C.
1) Slow-up First, a slow-up is performed at the start of joining.
Slow-up means that the second actuator 11 that drives the front shoulder 2 and the first actuator 10 that drives the rear shoulder 1 are controlled in a state where the feed of the tool is stopped to prevent threading of the pin shaft. The load is gradually increased from a low load that does not cause threading of the shaft, and heated above the softening point.
Specifically, in the embodiment of FIG. 2A, the load P1 of the second actuator 11 is set to the surface scanning load Ps (for example, 50 kgf), and the load P2 of the first actuator 11 is the frictional heat input load Pc. Is increased to (for example, 0.5 KN to 7 KN) to slow down.
2B, the load P1 of the second actuator is (surface scanning load Ps + friction heat input load P2) (for example, 1 KN to 7.5 KN), and the load P2 of the first actuator 2 is friction. The load is increased to the heat input load Pc (for example, 0.5 to 7.0 KN) to increase the slope.

図4は比較例1、2と実施例1におけるスローアップの実験結果を示す表図である。
即ち本実施例では図4に示すように、工具として表面及び裏面ショルダ1径φ20mm、ピン軸径φ10mm 材質SKD61の回転工具を用い、接合物として2219-T87アルミ合金を用いて実験を行った。
先ず比較例1として接合開始時に、工具の送りを停止した状態で、表面ショルダ2を駆動する第2のアクチュエータ11と裏面ショルダ1を駆動する第1のアクチュエータ10を制御して摩擦入熱荷重Pcを0.5KNの初期加圧力のまま入熱を行い工具を移動して接合送りを開始しようとしたが、入熱不足で工具の移動が出来ず、移動の際の負荷により工具が破損してしまった。
FIG. 4 is a table showing the results of slow-up experiments in Comparative Examples 1 and 2 and Example 1.
That is, in this embodiment, as shown in FIG. 4, the experiment was performed using a rotating tool having a front and back shoulder diameter of 20 mm, a pin shaft diameter of 10 mm and a material SKD61 as a tool, and 2219-T87 aluminum alloy as a joint.
First, as Comparative Example 1, the frictional heat input load Pc is controlled by controlling the second actuator 11 that drives the front shoulder 2 and the first actuator 10 that drives the rear shoulder 1 with the tool feed stopped at the start of welding. I tried to start the joint feed by moving the tool with the initial pressure of 0.5KN and moving the tool, but the tool could not move due to insufficient heat input, and the tool was damaged due to the load during movement Oops.

比較例2として接合開始時に、工具の送りを停止した状態で、前記第1のアクチュエータ10を制御して摩擦入熱荷重Pcを7KNの接合加圧力のまま入熱を行おうとしたが、即座にピン軸3がねじ切れて工具が破損してしまった。   As a comparative example 2, at the start of welding, with the tool feed stopped, the first actuator 10 was controlled to try to input heat with the frictional heat input load Pc being 7 KN. The pin shaft 3 was broken and the tool was damaged.

次に本実施例として接合開始時に、工具の送りを停止した状態で、表面ショルダ2を駆動する第2のアクチュエータ11と裏面ショルダ1を駆動する第1のアクチュエータ10を制御して摩擦入熱荷重Pcを0.5KNの初期加圧力〜7KNまで荷重を10秒の間で徐々にスローアップした後回転工具を移動して接合送りを開始したが問題が生じることはなかった。
なお前記初期加圧力はピン軸がねじ切れない荷重、例えば1kN以下の低い荷重に設定される。そして摩擦発熱で材料表面を軟化させながら、ピン軸3がねじ切れないように荷重増加させつつ接合に必要な荷重まで荷重を増加させた後、接合を開始すればよい。
また、荷重を徐々に上げていくのは、ピンに過大なトルクがかかりねじ切れるのを防止するためであるから、工具回転主軸4のモータのトルクが一定値を超えないように工具の回転速度を制御しながら、工具間隔を短くして、接合荷重まで上昇させてもよい。
例えば図5は回転速度を50rpmから250rpmに上げながらスローアップを図っている。
Next, as the present embodiment, the frictional heat input load is controlled by controlling the second actuator 11 that drives the front shoulder 2 and the first actuator 10 that drives the rear shoulder 1 with the tool feed stopped at the start of welding. Pc was gradually slowed up for 10 seconds from an initial pressure of 0.5 KN to 7 KN, and then the rotary tool was moved to start joint feeding, but no problem occurred.
The initial pressure is set to a load at which the pin shaft does not break, for example, a low load of 1 kN or less. Then, after the material surface is softened by frictional heat generation, the load is increased so that the pin shaft 3 does not break, and the load is increased to a load necessary for the bonding, and then the bonding is started.
In addition, the load is gradually increased in order to prevent an excessive torque from being applied to the pin to prevent the pin from being twisted. Therefore, the rotation speed of the tool is set so that the motor torque of the tool rotation spindle 4 does not exceed a certain value. The tool interval may be shortened and the joint load may be increased while controlling the.
For example, FIG. 5 shows a slow-up while increasing the rotational speed from 50 rpm to 250 rpm.

2)保持時間
図5はスローアップ、保持時間及び接合開始までの時間、速度の関係を示すグラフ図である。
接合材の肉厚例えば4mm程度と薄い場合は、工具の送りを停止した状態で、表面ショルダ2を駆動する第2のアクチュエータ11と裏面ショルダ1を駆動する第1のアクチュエータを制御して荷重をスロープアップ後ただちに接合線に沿って工具を移動させてもよいが、接合物が数mm以上と厚い場合は、図5に示すようにスローアップ後、接合材料を更に接合容易な温度領域まで均熱に軟化加熱させるため、保持時間を設けたのち、接合線に沿って工具を移動させるのがよい。
2) Holding time FIG. 5 is a graph showing the relationship between the slow-up, holding time, time to start joining, and speed.
When the thickness of the bonding material is as thin as about 4 mm, for example, the load is controlled by controlling the second actuator 11 that drives the front shoulder 2 and the first actuator that drives the rear shoulder 1 while the feed of the tool is stopped. The tool may be moved along the joining line immediately after ramp-up. However, if the joint is thicker than several millimeters, after slowing up as shown in FIG. In order to soften and heat the heat, it is preferable to move the tool along the joining line after providing a holding time.

図6(A)は保持時間を設定した表図で、該表図に示すように、接合条件として工具形状(表裏ショルダー径φ20mm、ピン径φ10mm 材質SKD61)接合物として板厚6mmの2219-T87アルミ合金を使用して接合開始後の接合条件を回転数400rpm 送り速度:350mm/minに設定して接合を行ったところ、
10秒間のスローアップ後保持時間を持たずに直ちに接合を開始した比較例4の場合には入熱が不足して、接合材料が十分軟化していないため、ピン軸が破損して、材料が接合できなかった。
これに対して実施例2の、10秒間のスローアップ後荷重を一定にしながら5秒の接合時間を設定した場合には、接合部350が350-450℃付近の温度、即ち「軟化点〜部分溶融点温度―50℃前後」の温度域に加熱されるため、良好な接合部350が得られることが確認できた。
FIG. 6A is a table in which holding time is set. As shown in the table, 2219-T87 having a tool shape (front and back shoulder diameter φ20 mm, pin diameter φ10 mm, material SKD61) as a bonding condition and a plate thickness of 619 mm is used. When aluminum alloy was used and the joining conditions were set at the rotational speed of 400 rpm and the feed rate was set to 350 mm / min.
In the case of Comparative Example 4 in which the joining was started immediately after the 10-second slow-up without holding time, the heat input was insufficient and the joining material was not sufficiently softened. Could not join.
On the other hand, in the case of setting the bonding time of 5 seconds while keeping the load constant after 10 seconds of slow-up in Example 2, the temperature of the bonding portion 350 is around 350-450 ° C., that is, “softening point to portion Since it was heated to a temperature range of “melting point temperature—about 50 ° C.”, it was confirmed that a good joint 350 was obtained.

一方、余熱保持時間が10sの場合には、図6(B)に示すように工具周囲のせん断力が働く部分の温度が部分湯融点以上に上がりすぎて、材料の軟化が大になったり、又部分溶融により一部が液状化するため、工具の周りに発生するせん断力に耐え切れず、穴があいてしまう。   On the other hand, when the remaining heat holding time is 10 s, the temperature of the portion where the shearing force around the tool acts as shown in FIG. Moreover, since a part is liquefied by partial melting, the shearing force generated around the tool cannot be endured and a hole is formed.

したがって、接合材が数ミリ以上と厚肉の場合はスローアップを設けても接合送り開始前に工具を停止して適切な余熱を行うことが不可欠で、その入熱量を制御する必要がある。   Therefore, when the joining material is thick, such as several millimeters or more, it is indispensable to stop the tool and start appropriate residual heat before starting the joining feed even if a slow-up is provided, and it is necessary to control the amount of heat input.

図6(B)は、工具周囲に非接触温度センサ33を設けて制御回路13の入出力信号を示す構成図である。
入熱の制御方法としては、前記した保持時間による制御も可能であるが、材料の軟化に伴い、荷重一定の制御を行った場合、材料が軟化するため、工具間距離が短くなる。材料の軟化の具合を、工具間距離(ショルダ変位)の減少量で把握して、余熱が完了したと判断することも可能である。
時間による制御では、工具や材料の表面状況が異なり、摩擦係数が変化した場合には、発熱量が変化して、材料の軟化の程度が保持時間だけでは制御できない恐れがあるが、前記アクチュエータの変位量から、工具間距離の変化が簡単に求められるので、該アクチュエータの変位と保持時間のアンド条件を制御回路13で判断して、余熱の完了を判断することでより、安定した施工が可能となる。
すなわち、工具間隔が素材板厚に対して短すぎると、工具の負荷が高くなり、ピンが破損する。
FIG. 6B is a configuration diagram showing input / output signals of the control circuit 13 by providing a non-contact temperature sensor 33 around the tool.
As a method for controlling heat input, the control based on the holding time described above is also possible. However, when the load is controlled constant as the material is softened, the material softens and the distance between the tools is shortened. The degree of softening of the material can be grasped by the amount of decrease in the distance between the tools (shoulder displacement), and it can be determined that the residual heat has been completed.
In the control by time, when the surface condition of the tool or material is different and the friction coefficient changes, the amount of generated heat may change, and the degree of softening of the material may not be controlled only by the holding time. Since the change in the distance between the tools can be easily obtained from the amount of displacement, stable operation is possible by judging the AND condition of the displacement and holding time of the actuator with the control circuit 13 and judging the completion of the residual heat. It becomes.
That is, when the tool interval is too short with respect to the material plate thickness, the load on the tool increases and the pins are damaged.

なお、図6(B)に示すように、接合の送りの開始を工具または材料の温度を非接触の温度計33を用いて測定して、該アクチュエータの変位と保持時間とともに温度の3つのアンド条件を制御回路13で判断して、余熱の完了を判断することでより、一層安定した施工が可能となる。
この場合に接合部350温度は、接合部350は表面ショルダ2と裏面ショルダ1に挟まれているために直接測定できないが、せん断力が働く縁部で、300〜350度付近となるためにこの温度を測定すればよい。
As shown in FIG. 6 (B), the temperature of the tool or material is measured using a non-contact thermometer 33, and the start of the joint feed is measured. By determining the conditions with the control circuit 13 and determining the completion of the residual heat, more stable construction can be performed.
In this case, the temperature of the joint portion 350 cannot be directly measured because the joint portion 350 is sandwiched between the front shoulder 2 and the rear shoulder 1. What is necessary is just to measure temperature.

3)接合開始反転
次に前記スローアップとの熱保持時間を設定して均熱後後工具送りを開始するわけであるが、前記したように摩擦開始時には材料を予熱する必要があるため、接合下流部と比較して入熱が多めになり、接合開始部は欠陥を生じやすい。そのため従来はタブ板を使用して接合を行っていたが、かかる方法では接合開始位置にタブ板を強固に固定する必要があるのみならずタブ板からの移行部で欠陥が生じやすい。
そこで本実施例においては図7(a)及び(b)に示すように、次のような工夫を行っている。
即ち図7(a)及び(b)は直線状の接合線を有する場合の接合開始位置における軌跡及び補修する場合の工具軌跡を示す。
スキンパネルの接合のように接合開始始端と終端を有し、接合線が直線状の場合は、パネル始端より接合開始位置までのふち距離bを多めに取って、具体的には、直線状の接合線を有する場合に接合開始位置を母材縁部より工具半径(A/2)より大なる距離(b>(A/2))だけ内側に設定し、前記保持時間終了後、接合を開始する際に、前記接合開始位置より縁部側に逆移動して接合し(B)に示すように未接合部350の長さdが(A/2)以下になるように、略工具半径(A/2)分若しくはそれよりわずかに大なる距離だけ移動させた後反転して順移動による接合を行う。
3) Reversal of welding start Next, the heat holding time with the slow-up is set and the tool feed is started after soaking. However, as described above, it is necessary to preheat the material at the start of friction. Compared with the downstream part, the heat input becomes larger, and the joining start part tends to cause defects. Therefore, in the past, the tab plate was used for joining, but in this method, it is not only necessary to firmly fix the tab plate at the joining start position, but defects are likely to occur at the transition from the tab plate.
Therefore, in the present embodiment, as shown in FIGS. 7A and 7B, the following devices are made.
That is, FIGS. 7A and 7B show the trajectory at the joining start position in the case of having a straight joining line and the tool trajectory in the case of repair.
In the case of having a joining start start end and a terminating end as in the case of skin panel joining, and the joining line is linear, take a large edge distance b from the panel starting end to the joining start position, specifically, When there is a joining line, the joining start position is set inward by a distance (b> (A / 2)) larger than the tool radius (A / 2) from the base material edge, and joining is started after the holding time is over. In this case, the tool is moved back to the edge side from the joining start position and joined, as shown in (B), so that the length d of the unjoined part 350 becomes (A / 2) or less. A / 2) The distance is moved by a distance slightly larger than that, and then reversed and joined by forward movement.

かかる実施例によれば、ふち距離bが長いため、端部変形による接合スタート部の欠陥を防止できる上、未接合部350bのふち距離b長さを接合終端部と同様に工具直径の半分(半径)まで近づけることが可能となる。
又接合移動中の一般接合部350の接合開始部は、接合開始部より低入熱のため不完全接合部350aとなっているが、接合開始部は前記戻り動作により再接合されるため、接合スタート時に不完全接合部350aとして欠陥を生じても、反転後の再接合過程時にこれを除去出来る。
かかる技術は直線状の接合線を有する接合線を補修接合する場合にも適用でき、補修接合開始後前記補修接合開始位置より工具半径(A/2)より大なる距離(d>(A/2))だけ逆接合した後反転して順方向に補修接合を行うことにより(a)と同様な効果を有する。
According to this embodiment, since the edge distance b is long, it is possible to prevent defects in the joining start part due to end deformation, and the edge distance b length of the unjoined part 350b is half of the tool diameter ( (Radius).
The joining start part of the general joining part 350 during the joining movement is an incomplete joining part 350a due to lower heat input than the joining starting part. However, the joining start part is rejoined by the return operation. Even if a defect occurs as the incompletely joined portion 350a at the start, it can be removed during the rejoining process after reversal.
Such a technique can also be applied to repair joining of a joining line having a straight joining line, and after the repair joining start, a distance (d> (A / 2) greater than the tool radius (A / 2) from the repair joining start position. The effect similar to (a) is obtained by performing reverse bonding after performing reverse bonding only)) and performing repair bonding in the forward direction.

円周接合のように無端状の接合線を有する場合には、図7(c)に示すように接合開始位置と接合終端位置を重複させ、該重複距離Sが工具半径(A/2)より大なる距離(d>(A/2))に設定すれば、接合開始端で欠陥が生じても通常接合の終端側で重複して接合するために、円周接合や無端状の接合を行う場合にも、接合開始部を再接合することで、品質の改善が図れる。   When there is an endless joining line as in the case of circumferential joining, the joining start position and the joining end position are overlapped as shown in FIG. 7 (c), and the overlap distance S is determined from the tool radius (A / 2). If the distance is set to be large (d> (A / 2)), even if a defect occurs at the joining start end, circumferential joining or endless joining is performed in order to overlap the joining at the end of the normal joining. Even in this case, the quality can be improved by rejoining the joining start portion.

4)接合過程
そして工具を順方向に移動しながら接合を行う通常接合において本実施例では、板厚変化に対応して2つのアクチュエータ10、11を制御し、表面ショルダ2と裏面ショルダ1により材料を挟み込み摩擦入熱を行う荷重Pcと表面ショルダ2により材料表面Psを押さえつける荷重に分離して、ロードセルによる荷重検知に基づいて2つのアクチュエータ独立に制御することで、工具の表面倣いと、接合部350にかかる入熱量を制御して安定した品質を得ている。
例えば図2(A)に示すように、表面ショルダ2を移動自在に支持する上側工具ベース上に、裏面ショルダ1の下部工具を駆動する第1のアクチュエータを設けた場合にはアクチュエータ1の荷重P1はPsに、アクチュエータ2の荷重P2はPcに対応する。これに対して、図2(B)のように同一ベース上に第1及び第2のアクチュエータを設けた場合は、PsはP1とP2の偏差量が、PcはP1より偏差成分を取り除いた値が対応することは前記したとおりである。
4) Joining process In normal joining in which welding is performed while moving the tool in the forward direction, in this embodiment, the two actuators 10 and 11 are controlled in response to the change in plate thickness, and the material is obtained by the front shoulder 2 and the rear shoulder 1. By separating the load Pc for frictional heat input and the load for pressing the material surface Ps by the surface shoulder 2, and controlling the two actuators independently based on the load detection by the load cell, The amount of heat input to 350 is controlled to obtain a stable quality.
For example, as shown in FIG. 2A, when the first actuator for driving the lower tool of the back shoulder 1 is provided on the upper tool base that movably supports the front shoulder 2, the load P1 of the actuator 1 is set. Corresponds to Ps, and the load P2 of the actuator 2 corresponds to Pc. On the other hand, when the first and second actuators are provided on the same base as shown in FIG. 2B, Ps is the deviation amount between P1 and P2, and Pc is the value obtained by removing the deviation component from P1. Is as described above.

従って板厚がほぼ一定の材料を接合する場合には、接合速度、工具回転数が一定となるように制御回路13で制御されている場合、前記ロードセルによるアクチュエータ制御により工具荷重を一定値にすることで、接合部350に一定量の摩擦熱を与えることが可能となるため、安定した接合を行うことが可能であるが、長尺ものの接合材料でしかも接合線が数m以上と長くなる場合は、6mm厚の材料で10%程度板厚が変化し、この場合も板厚変動に応じて前記2つのアクチュエータをロードセルの荷重に基づいて制御することで工具間距離が追従して制御され荷重が一定になり、入熱を制御できる。
特にアクチュエータにより工具間距離の追従は極めて重要で本実施例に示すように、油圧若しくは送りねじにより厳しく制御されないと、板厚の0.1mm程度の変動でも、約5%の荷重が変化し、板厚変化以上に入熱が変化する。
一方、テーパ形状の板厚を持った部材の接合も前記2つのアクチュエータをロードセルの荷重に基づいて制御することで荷重一定に制御される。たとえば、2219-T87材の6mm材の適正な接合条件は、荷重8kN、回転数400rpm、送り速度400mm/minであり、8mm材では接合速度が300mm/minであるから、6mmから8mmに変化するテーパー部では工具位置から算出した板厚変化に応じて、接合速度を変化させることで健全な接合部350を得ることが可能である。
Therefore, when joining materials having a substantially constant thickness, when the control circuit 13 controls the joining speed and the number of rotations of the tool to be constant, the tool load is set to a constant value by actuator control using the load cell. Therefore, it is possible to give a certain amount of frictional heat to the joint portion 350, so that stable joining can be performed, but when a long joining material is used and the joining line becomes as long as several meters or longer The thickness of the 6mm-thick material changes about 10%. In this case as well, the distance between the tools is tracked by controlling the two actuators based on the load cell load according to the thickness fluctuation. Becomes constant and heat input can be controlled.
In particular, the tracking of the distance between the tools by the actuator is extremely important. As shown in this embodiment, if the pressure is not strictly controlled by hydraulic pressure or a feed screw, the load changes by about 5% even if the plate thickness varies by about 0.1 mm. The heat input changes more than the thickness change.
On the other hand, the joining of members having a tapered plate thickness is also controlled to be constant by controlling the two actuators based on the load of the load cell. For example, the proper joining conditions for a 6mm material of 2219-T87 material are a load of 8 kN, a rotation speed of 400 rpm, and a feed rate of 400 mm / min. With an 8 mm material, the joining speed is 300 mm / min, and therefore changes from 6 mm to 8 mm. In the taper portion, it is possible to obtain a sound joint portion 350 by changing the joining speed in accordance with the plate thickness change calculated from the tool position.

図8は表面ショルダ2(上工具ともいう)と裏面ショルダ1(下工具ともいう)間の負荷状態を示し、(a)は無負荷状態、(b)は圧縮状態、(c)は引っ張り状態を示す。
さて図10(b)に示すように、表面ショルダ2は機械主軸40(図1に示す支持収納部40aに内包されている)に取り付けられており、このため裏面ショルダ1側と同一入熱でも表面ショルダ2側に奪熱され、言い換えれば裏面ショルダ1のほうが、熱容量が少ない。また、接合する対象によっては、材料にうねりがあるために図8(a)に示すように、荷重偏差をゼロとすると、工具間隔が接合材料の肉厚に追従できず、接合時に変形させてしまう。
従って荷重偏差、即ち表面荷重Psを図8のように正負を定義すると、(b)に示すように表面ショルダ2側の押圧力が強く接合材料にくみ込みすぎた場合には圧縮(+)になり、図8(c)に示すように、裏面ショルダ1側の押圧力が強い場合は引っ張り(−)になる。そこで、図8(a)に示すように両ショルダ間の荷重偏差をゼロとした場合、0.1mm程度下側工具が材料に食い込んだ状態になるために表面荷重Psが圧縮荷重状態で且つ接合荷重の1/10程度以下、具体的には7〜12%圧縮荷重になるように制御することで、食い込み量がほぼ上下で同じ接合部350を得ることが可能であることは実験により確かめられた。
そして、この場合にロードセルを用いて2つのアクチュエータ10、11を介して位置(荷重)制御すれば、板と接合装置の間隔が変化しても対応できる。
FIG. 8 shows a load state between the front shoulder 2 (also referred to as the upper tool) and the rear shoulder 1 (also referred to as the lower tool), where (a) is an unloaded state, (b) is a compressed state, and (c) is a pulled state. Indicates.
Now, as shown in FIG. 10B, the front shoulder 2 is attached to the machine main shaft 40 (enclosed in the support housing portion 40a shown in FIG. 1), and therefore, even with the same heat input as the back shoulder 1 side. Heat is taken to the front shoulder 2 side, in other words, the rear shoulder 1 has a smaller heat capacity. Also, depending on the object to be joined, since the material has undulations, as shown in FIG. 8 (a), if the load deviation is zero, the tool interval cannot follow the thickness of the joining material and is deformed at the time of joining. End up.
Therefore, if the load deviation, that is, the surface load Ps is defined as positive or negative as shown in FIG. 8, if the pressing force on the surface shoulder 2 side is strong and the joint material is excessively entrapped as shown in FIG. Thus, as shown in FIG. 8C, when the pressing force on the back shoulder 1 side is strong, the tension (-) occurs. Therefore, when the load deviation between both shoulders is zero as shown in FIG. 8 (a), the surface load Ps is in a compressive load state and joined because the lower tool bites into the material by about 0.1 mm. It has been confirmed by experiments that it is possible to obtain the same joint portion 350 with the amount of biting almost at the top and bottom by controlling it to be about 1/10 or less of the load, specifically 7 to 12% compressive load. It was.
In this case, if the position (load) is controlled via the two actuators 10 and 11 using the load cell, it is possible to cope with a change in the distance between the plate and the joining device.

又図9に示すように、2つのアクチュエータの変位は制御回路13側で検知出来るために、接合材の板厚と接合中の工具間距離の偏差をもとに、ギャップによる板厚減少による接合部350の不良も検出出来る。
この場合は前記偏差(板厚一定の場合は工具間隔)が一定値以下となった場合には、アラーム41で警報を出すとともに接合線位置に対応するポイントを記録計42に記録し、更に前記偏差が更に大きい場合は接合をやめる。また、接合後、前記記録計42を基に検査する位置を特定することも容易である。
Also, as shown in FIG. 9, since the displacement of the two actuators can be detected by the control circuit 13 side, based on the deviation of the thickness of the joining material and the distance between the tools during joining, joining by reducing the thickness due to the gap The defect of the part 350 can also be detected.
In this case, when the deviation (the tool interval when the plate thickness is constant) becomes less than a certain value, an alarm is given by the alarm 41 and the point corresponding to the joining line position is recorded on the recorder 42, and If the deviation is larger, stop joining. It is also easy to specify the position to be inspected based on the recorder 42 after joining.

例えば均一板厚の接合部350材を接合していると仮定した場合、接合過程でギャップ量が拡大すると材料を隙間に埋める必要が生じるため、上下の工具間距離が狭くなる。従って接合部350の板厚をa1、ギャップをb1、下工具径(裏面ショルダ1)をc1とした場合、工具の間隔の減少値Δa1は次式のようになる。
Δa1=(a1xb1)/c1
Ex: 板厚:6mm、ギャップ1mm、工具径:20mm の場合は
Δa=6/20=0.3mmとなる。
この板厚間隔の減少を、表面ショルダ2と裏面ショルダ1それぞれを制御するアクチュエータ10、11の位置から求まる工具(両ショルダ)間距離でもとめ、工具間距離の絶対値および変動(偏差)をもとにギャップの変化を検出する。
For example, when it is assumed that the joint member 350 having a uniform plate thickness is joined, if the gap amount is increased in the joining process, the material needs to be filled in the gap, so that the distance between the upper and lower tools is reduced. Therefore, when the plate thickness of the joining portion 350 is a1, the gap is b1, and the lower tool diameter (back shoulder 1) is c1, the tool interval reduction value Δa1 is expressed by the following equation.
Δa1 = (a1 × b1) / c1
Ex: When the plate thickness is 6 mm, the gap is 1 mm, and the tool diameter is 20 mm, Δa = 6/20 = 0.3 mm.
This reduction in the sheet thickness interval is also determined by the distance between the tools (both shoulders) determined from the positions of the actuators 10 and 11 that control the front shoulder 2 and the rear shoulder 1 respectively, and the absolute value and variation (deviation) of the distance between the tools is also obtained. And detecting gap changes.

5)異常停止
本発明に使用する摩擦攪拌接合装置の制御信号と、制御回路と制御動作の関係を示すグラフブロック図である。
ボビンツールの場合、表面ショルダと裏面ショルダで接合材を挟んで接合を行う場合ため、該ショルダを回転する回転主軸4に高いトルクA(2219-T87材6mmの場合、約60Nm)が発生するが、図9に示すように、ピン軸3が折れた場合には、材料が挟まれなくなるため、回転主軸4のトルクAは急激に減少する。また、ピン軸3の破損にともない、裏面ショルダ1を引っ張り一定荷重に制御使用とした第1のアクチュエータ10は、ピン軸破損により荷重がなくなるため、工具間距離が短くなるように変位する。
この二つの検知信号にもとづいて制御回路8で工具の破損を検出できる。工具破損を検知した際には、工具で、未接合部350を傷つけることがないように、制御回路13で工具送り方向への移動を停止するとともに、2つのアクチュエータ10、11により図10に示すように表面ショルダ2および裏面ショルダ1を駆動している軸を板から離れる方向に移動させることで、接合できていない部分の表面を工具でこすったりして、傷つけることを防止出来る。
なお、本実施例では回転主軸4のサーボモータのトルクAおよび裏面ショルダの回転主軸Z2の荷重、変位、送りの負荷をもとに、ピン軸3の破損を検出することも可能であり、この場合も接合を停止するとともに表面ショルダ2の第2のアクチュエータ11接合材から離間する方向に移動させ、工具との溶着を防止する。
5) Abnormal stop It is a graph block diagram which shows the control signal of the friction stir welding apparatus used for this invention, and the relationship between a control circuit and control operation.
In the case of a bobbin tool, since a joining material is sandwiched between a front shoulder and a back shoulder, a high torque A (about 60 Nm in the case of 6mm 2219-T87 material) is generated in the rotating spindle 4 that rotates the shoulder. As shown in FIG. 9, when the pin shaft 3 is broken, the material is not pinched, so the torque A of the rotating main shaft 4 rapidly decreases. In addition, as the pin shaft 3 is broken, the first actuator 10 that pulls the back shoulder 1 and uses it to control a constant load is displaced so that the distance between the tools is shortened because the load is lost due to the pin shaft breakage.
Tool breakage can be detected by the control circuit 8 based on these two detection signals. When the tool breakage is detected, the movement in the tool feed direction is stopped by the control circuit 13 so that the unjoined portion 350 is not damaged by the tool, and the two actuators 10 and 11 are used to show the tool in FIG. Thus, by moving the shaft driving the front shoulder 2 and the rear shoulder 1 in the direction away from the plate, it is possible to prevent the surface of the unjoined portion from being rubbed with a tool and damaged.
In this embodiment, it is also possible to detect breakage of the pin shaft 3 based on the torque A of the servo motor of the rotary spindle 4 and the load, displacement, and feed load of the rotary spindle Z2 of the back shoulder. Also in this case, the welding is stopped and moved in a direction away from the second actuator 11 bonding material of the surface shoulder 2 to prevent welding with the tool.

6)接合完了動作
図10(a)及び(b)は接合完了時に裏面ショルダと表面ショルダとを母材押圧面より離間させピン軸の溶着を防止する概要図である。
さて前記接合完了後接合終端部でボビンツールからなる工具を除去する必要があるが、工具間隔が一定の工具で、回転をとめた場合、接合部350の材料とネジを切ったピン軸が溶着して両者を分離することができないため、接合材料の一部を切断して、切削加工や化学的な方法で工具と材料を分離する必要があり、そこで本実施例においては、接合完了時に、上下の工具間隔を開くことで、工具と材料の溶着を防止する。
工具には表面ショルダ2と裏面ショルダ1とピン軸3が有り、基本的にはピン軸3のみが回転軸方向に移動可能に構成すればよいが、ピン軸3には裏面ショルダ1も連結しているために、ピン軸3の移動は裏面ショルダ1も接合面から離脱できる。
又表面ショルダ2も接合面から離脱できれば溶着が一層防止できる。
6) Joining Completion Operation FIGS. 10A and 10B are schematic views for preventing the welding of the pin shaft by separating the back shoulder and the front shoulder from the base material pressing surface when joining is completed.
Now, it is necessary to remove the tool consisting of the bobbin tool at the joining end after completion of the joining, but when the tool is fixed and the rotation is stopped, the material of the joining part 350 and the threaded pin shaft are welded. Since it is not possible to separate the two, it is necessary to cut a part of the joining material and separate the tool and the material by a cutting process or a chemical method. Therefore, in this embodiment, when joining is completed, By opening the upper and lower tool spacing, welding of the tool and material is prevented.
The tool has a front shoulder 2, a rear shoulder 1, and a pin shaft 3. Basically, only the pin shaft 3 may be configured to be movable in the direction of the rotation axis, but the rear shoulder 1 is also connected to the pin shaft 3. Therefore, the movement of the pin shaft 3 allows the back shoulder 1 to be detached from the joint surface.
Further, if the surface shoulder 2 can be detached from the joint surface, the welding can be further prevented.

そしてそのピン軸3の移動ストロークSTがピン軸3が接合部350より離脱可能な接合材厚みS’より大なるストローク量STであることが必要である。なお、本実施例については、ピン軸3に回転主軸4が連接されており、該回転主軸4は下工具ベース9を介して第1のアクチュエータ10により変位できるため、制御回路13よりの信号により第2のアクチュエータ11と第1のアクチュエータ10を同期させて駆動させることにより、図10(a)に示すように、先ずピン軸3が接合部350より離脱可能なストローク量STだけ駆動され、回転主軸4端に連結している裏面ショルダ1も接合面より離脱し、更に第2のアクチュエータ11により表面ショルダ2も同様に接合面より離脱する。   The moving stroke ST of the pin shaft 3 needs to be a stroke amount ST larger than the bonding material thickness S ′ at which the pin shaft 3 can be detached from the bonding portion 350. In the present embodiment, the rotation main shaft 4 is connected to the pin shaft 3, and the rotation main shaft 4 can be displaced by the first actuator 10 via the lower tool base 9, so that a signal from the control circuit 13 is used. By driving the second actuator 11 and the first actuator 10 synchronously, as shown in FIG. 10A, first, the pin shaft 3 is driven by a stroke amount ST that can be detached from the joint 350, and rotated. The back shoulder 1 connected to the end of the main shaft 4 is also detached from the joint surface, and the front shoulder 2 is similarly detached from the joint surface by the second actuator 11.

又前記ピン軸3はネジ条で形成されているために、軟化している接合部350がネジ条にまとわりついている。従ってこれと一体的に連設している回転主軸4を、軸方向に移動させた後若しくは移動途中に前記回転主軸4を介してピン軸3を回転させれば遠心力によりピン軸3に残存付着して接合残も除去できる。
そして前記回転は接合部350の温度が軟化点以下に低下するまで継続させれば、ピン軸3と接合部350との溶着が完全に防止出来るとともに、軟化材料を遠心力で接合部350の穴部35から排除することもできる。
Further, since the pin shaft 3 is formed by a thread, a softened joint portion 350 is attached to the thread. Accordingly, if the rotation main shaft 4 integrally connected thereto is moved in the axial direction, or if the pin shaft 3 is rotated through the rotation main shaft 4 during the movement, it remains on the pin shaft 3 due to centrifugal force. Adhesion and adhesion residue can be removed.
If the rotation is continued until the temperature of the joint portion 350 falls below the softening point, welding between the pin shaft 3 and the joint portion 350 can be completely prevented, and the softening material can be removed from the hole of the joint portion 350 by centrifugal force. It can also be excluded from the part 35.

また前記の措置を執らずに、接合材側のアルミの熱膨張係数が工具の材質である鉄よりも大きいため、温度が下がった後、アルミが収縮し焼きばめのようになる可能性があるため、接合後板の温度が下がるまで、接合完了後を表面ショルダ2と裏面ショルダ1の離間を行った後ピン軸3の回転を保持し、収縮した穴35をピン軸で削り取った後、回転を停止してもよい。
なお、前記離脱を容易にするために、ピン軸自体を移動軸側に向けてテーパ状にしてもよい。
Also, without taking the above measures, because the thermal expansion coefficient of aluminum on the joining material side is larger than that of iron, which is the material of the tool, there is a possibility that the aluminum will shrink and shrink fit after the temperature drops. Therefore, after the joining is completed, the front shoulder 2 and the rear shoulder 1 are separated from each other until the temperature of the post-joining plate is lowered, the rotation of the pin shaft 3 is held, and the contracted hole 35 is scraped off by the pin shaft. The rotation may be stopped.
In order to facilitate the detachment, the pin shaft itself may be tapered toward the moving shaft side.

更に図10(b)に示すように前記ピン軸に連接されている回転主軸4は、該ピン軸3最大径a1より小なる回転主軸径b1に形成し、前記ピン軸3の移動により接合部350の穴35内に回転主軸4が位置可能に構成されているのがよく、具体的には前記ピン軸3をM10のネジ状軸で形成されている場合に、該ネジ状軸3の、ネジ外径(最大径)a1より小なる9.8mm程度の回転主軸4の径b1に設定するのがよい。そして更に本実施例はは前記ピン軸3と裏面ショルダ1が一体的に連接されているとともに、前記回転主軸4が表面ショルダ2の軸穴2a内に挿設されているために、前記表面ショルダ2軸穴径(a1’)とピン軸の最大径(a1)と回転主軸(請求項では移動軸)径(b1)の関係が下記式の関係にあるのがよい。
例(a1’:例10.05mm)≧(a1:例M10)>(b1:例9.8mm)
Further, as shown in FIG. 10B, the rotation main shaft 4 connected to the pin shaft is formed to have a rotation main shaft diameter b1 smaller than the maximum diameter a1 of the pin shaft 3, and the joint portion is moved by the movement of the pin shaft 3. It is preferable that the rotation main shaft 4 is configured to be able to be positioned in the hole 35 of the 350. Specifically, when the pin shaft 3 is formed of the screw-shaped shaft of M10, It is preferable to set the diameter b1 of the rotating main shaft 4 to be about 9.8 mm which is smaller than the screw outer diameter (maximum diameter) a1 . Further, in this embodiment, since the pin shaft 3 and the back shoulder 1 are integrally connected, and the rotary main shaft 4 is inserted into the shaft hole 2a of the front shoulder 2, the front shoulder The relationship between the biaxial hole diameter ( a1 '), the maximum diameter ( a1 ) of the pin shaft, and the rotation main shaft (moving shaft in the claims) diameter ( b1 ) is preferably expressed by the following equation.
Example ( a1 ′ : Example 10.05mm) ≧ ( a1 : Example M10)> ( b1 : Example 9.8mm)

このように構成すれば軟化した接合部350が表面ショルダ2の軸穴2a内に入り込むこともなく、且つストローク移動後においても回転主軸4に軟化した接合部350が付着することがない。
そして前記処置が完了後裏面ショルダ1下面のネジをはずしてピン軸と裏面ショルダ1をはずして工具取り外しを行う。
With this configuration, the softened joint portion 350 does not enter the shaft hole 2a of the surface shoulder 2, and the softened joint portion 350 does not adhere to the rotary main shaft 4 even after the stroke movement.
After the treatment is completed, the screw on the lower surface of the back shoulder 1 is removed, the pin shaft and the back shoulder 1 are removed, and the tool is removed.

7)プラグ接合
図11はプラグ接合の概要を示し、(a)は本発明、(b)は従来技術である。
図12はプラグ接合の観察写真を示し、(A)は本発明、(B)は従来技術である。
図13は、(a)はプラグ接合している状態を示す作用図、(B)はその接合条件を示す。
7) Plug Joining FIG. 11 shows an outline of plug joining, (a) is the present invention, and (b) is the prior art.
FIG. 12 shows an observation photograph of plug bonding, where (A) is the present invention and (B) is the prior art.
FIG. 13A is an operation diagram showing a state of plug joining, and FIG. 13B shows the joining conditions.

次に接合完了後の後処置の問題である。
前記したようにボビンツール方式の摩擦接合の終端においては、ピン軸に対応する終端穴が開いている。この終端の穴を補修するために、図11(b)に示すように前記ストレート穴をテーパ状に削成した後、同材質のテーパプラグ60を回転治具にて前記テーパプラグ穴70を摺擦して摩擦接合により接合している。また一般の接合部においても欠陥が発生した部分にテーパ形状の穴を開けてテーパプラグを摩擦接合することにより欠陥が除去できる。
この場合に接合材がジュラルミン等のアルミ合金の場合のテーパプラグの押圧により接合板65側が変形しやすいので接合板65の背面側に裏当てを当てて変形を防止している。かかる方式の場合に押圧力を高めるために、テーパ穴のテーパ角度を30〜50°言い換えれば押圧方向に対し40〜60°とテーパ角度が大きくなり、結果的にプラグ径が増大するとともに、熱影響部が広がる。
例えば図11(b)はプラグ穴70をテーパ角度を50°に設定し、同角度テーパプラグ60を用いプラグ穴70底部側の接合板65背面に、凹陥部751を有する裏当て板750を当接して図13(B)に示すように、3000rpmの回転数で且つ60Mpaの加圧力で0.5秒摩擦接合を行った後、回転数を停止して加圧力を120Mpaに増加させて圧着を行ったところ、図12(B)の観察写真で示すように、プラグ終端の軟化部分が裏当て板750の凹陥部751底についてしまい、プラグ穴70の終端周囲に肉が完全に充てんされず特に裏当て板750と接触するナイフエッジ状部分に隙間があることが確認された。
Next is the problem of post-treatment after the completion of joining.
As described above, at the end of the bobbin tool type friction welding, an end hole corresponding to the pin shaft is opened. In order to repair the hole at the end, as shown in FIG. 11B, after the straight hole is cut into a taper shape, the taper plug 60 made of the same material is slid with the rotating jig. Rubbing and joining by friction welding. Further, in a general joint portion, the defect can be removed by making a tapered hole in a portion where the defect has occurred and friction-joining the taper plug.
In this case, since the joining plate 65 side is easily deformed by pressing of the taper plug when the joining material is an aluminum alloy such as duralumin, the back side of the joining plate 65 is backed to prevent the deformation. In order to increase the pressing force in such a system, the taper angle of the tapered hole is 30 to 50 °, in other words, the taper angle is increased to 40 to 60 ° with respect to the pressing direction. As a result, the plug diameter increases, The influence part spreads.
For example, in FIG. 11B, the taper angle of the plug hole 70 is set to 50 °, and the backing plate 750 having the recessed portion 751 is applied to the back surface of the joining plate 65 on the bottom side of the plug hole 70 using the taper plug 60 having the same angle. As shown in FIG. 13 (B), after performing friction welding for 0.5 seconds at a rotational speed of 3000 rpm and a pressing force of 60 Mpa, the rotational speed was stopped and the pressing force was increased to 120 Mpa to perform pressure bonding. However, as shown in the observation photograph of FIG. 12 (B), the softened portion of the plug end comes to the bottom of the recessed portion 751 of the backing plate 750, and the periphery of the end of the plug hole 70 is not completely filled with meat. It was confirmed that there was a gap in the knife edge-shaped portion that was in contact with the plate 750.

そこで先ず、前記問題点を解決するために、図11(a)に示すように、前記プラグ穴70の片側テーパ角度を60〜80°好ましくは70°言い換えれば押圧方向に対し10〜30°好ましくは20°に設定してプラグ径が大きくなり、熱影響部が広がるのを防止した。   First, in order to solve the above problems, as shown in FIG. 11A, the one-side taper angle of the plug hole 70 is 60 to 80 °, preferably 70 °, in other words, 10 to 30 ° with respect to the pressing direction. Was set to 20 ° to increase the plug diameter and prevent the heat affected zone from spreading.

次に前記裏当て部材75について、プラグ穴70の終端径d3と同心状の貫通孔76を設けるとともに、該貫通孔76の直径e3をプラグ穴70の終端部直径d3より僅かに小に設定するとともに、該貫通孔76上端部と裏当て表面75aとの間の縁部77をR状に形成するとともに、該R状縁部77の外縁直径(R)を、前記プラグ穴70の終端径直径(d3)より僅かに大にし、プラグ穴70の終端のナイフエッジ部71が貫通孔76側に突出するように構成する。   Next, the backing member 75 is provided with a through hole 76 concentric with the terminal diameter d3 of the plug hole 70, and the diameter e3 of the through hole 76 is set slightly smaller than the terminal diameter d3 of the plug hole 70. In addition, an edge portion 77 between the upper end portion of the through hole 76 and the backing surface 75a is formed in an R shape, and an outer edge diameter (R) of the R shape edge portion 77 is set to a terminal diameter diameter of the plug hole 70. It is configured to be slightly larger than (d3) so that the knife edge portion 71 at the end of the plug hole 70 protrudes toward the through hole 76.

一方テーパプラグ60はプラグ穴70と同角度のテーパ角度を70°に設定し、該テーパプラグ60先端直径をプラグ穴70底部貫通孔76の直径(e3)より僅かに大にした。
この結果図13(a)に示すように、前記貫通孔76の存在により余肉78が生じた場合、貫通孔76側に逃がして、余肉78による接合不良を抑制出来るために、接合性を改善出来る。
又裏当て部材75の貫通孔76端部と裏当て表面との間の縁部77をR状に形成するとともに、R部の外縁直径(R)を、前記プラグ穴70の終端径直径(d3)より僅かに大にし、プラグ穴70の終端ナイフエッジ部71が貫通孔76側に突出するように構成したために、該ナイフエッジ部71がR状縁部77に沿って変形しながら該ナイフエッジ部71の変形を促すことでプラグ穴70底部の密着を改善出来る。
又テーパプラグ60先端直径をプラグ穴70底部貫通孔の直径(e3)より僅かに大にしたためにテーパプラグ60は先ず、ナイフエッジ部71の上側のプラグ穴70に当接して軟化してずり落ちながら前記ナイフエッジ部71を下側に変形させることが出来、密着度が向上する。
On the other hand, the taper plug 60 has the same taper angle as the plug hole 70 set to 70 °, and the tip diameter of the taper plug 60 is slightly larger than the diameter (e3) of the bottom through hole 76 of the plug hole 70.
As a result, as shown in FIG. 13 (a), when the surplus wall 78 is generated due to the presence of the through hole 76, it escapes to the through hole 76 side, so that poor bonding due to the surplus wall 78 can be suppressed. Can improve.
Further, the edge 77 between the end of the through hole 76 of the backing member 75 and the backing surface is formed in an R shape, and the outer edge diameter (R) of the R portion is the terminal diameter diameter (d3) of the plug hole 70. ) And the terminal knife edge 71 of the plug hole 70 protrudes toward the through hole 76, so that the knife edge 71 is deformed along the R-shaped edge 77 while the knife edge 71 is deformed. By promoting the deformation of the portion 71, the close contact of the bottom of the plug hole 70 can be improved.
Since the tip diameter of the taper plug 60 is made slightly larger than the diameter (e3) of the bottom through hole of the plug hole 70, the taper plug 60 first comes into contact with the plug hole 70 on the upper side of the knife edge portion 71 and softens and falls off. However, the knife edge portion 71 can be deformed downward, and the degree of adhesion is improved.

本実施例においても図12(A)に示すように裏当て部材を当接して3000rpmの回転数で且つ60Mpaの加圧力で0.5秒摩擦接合を行った後、回転数を停止して加圧力を120Mpaに増加させて圧着を行ったところ、プラグ穴70終端のナイフエッジ部の変形を促すことで底部の密着を改善出来たことが確認できた。   Also in this embodiment, as shown in FIG. 12 (A), the backing member is brought into contact and friction welding is performed at a rotational speed of 3000 rpm and a pressurizing force of 60 Mpa for 0.5 seconds, and then the rotational speed is stopped and the pressurizing force is applied. When the pressure was increased to 120 Mpa, it was confirmed that the adhesion of the bottom could be improved by promoting the deformation of the knife edge at the end of the plug hole 70.

送りモータにより駆動する送りねじを用いた摩擦攪拌接合装置本体の実施例、特に裏面側ショルダと表面側ショルダ2の両者を同期して回転可能にした実施例を示す要部概略図であるである。It is a principal part schematic diagram which shows the Example of the friction stir welding apparatus main body using the feed screw driven by a feed motor, especially the Example which made both the back side shoulder and the surface side shoulder 2 rotatable synchronously. . (A)及び(B)は夫々本発明の実施形態の機械的構成を示す夫々の実施例の全体概要図である。(A) And (B) is the whole general | schematic figure of each Example which shows the mechanical structure of embodiment of this invention, respectively. 本発明が使用する接合材の硬度と温度の関係を示しグラフ図である。It is a graph which shows the relationship between the hardness of the joining material which this invention uses, and temperature. 比較例1、2と実施例1におけるスローアップの実験結果を示す表図である。It is a table | surface figure which shows the experiment result of the slow-up in the comparative examples 1 and 2 and Example 1. FIG. スローアップ、保持時間及び接合開始までの時間、速度の関係を示すグラフ図である。It is a graph which shows the relationship between slow-up, holding time, time to the start of joining, and speed. (A)は比較例3、4と実施例2におけるスローアップの実験結果を示す表図である。(B)に示すように工具周囲に非接触温度センサを設けて制御回路の入出力信号を示す構成図である。(A) is a table | surface figure which shows the experiment result of the slow up in Comparative Examples 3 and 4 and Example 2. FIG. It is a block diagram which shows the input-output signal of a control circuit, providing a non-contact temperature sensor around a tool as shown to (B). (a)及び(b)は直線状の接合線を有する場合の接合開始位置における軌跡及び補修する場合の工具軌跡を示す。(c)は円周接合のように無端状の接合線を有する場合接合軌跡を示す。(A) And (b) shows the locus | trajectory in the joining start position in the case of having a linear joining line, and the tool locus | trajectory in the case of repair. (C) shows a joining locus | trajectory when it has endless joining lines like circumferential joining. 表面ショルダ(上工具)と裏面ショルダ(下工具)間の負荷状態を示し、(a)は無負荷状態、(b)は圧縮状態、(c)は引っ張り状態を示す。The load state between the front shoulder (upper tool) and the rear shoulder (lower tool) is shown, (a) shows an unloaded state, (b) shows a compressed state, and (c) shows a pulled state. 本発明の実施形態に使用する摩擦攪拌接合装置の制御信号と、制御回路と制御動作の関係を示すグラフブロック図である。It is a graph block diagram which shows the relationship between the control signal of the friction stir welding apparatus used for embodiment of this invention, a control circuit, and control operation. (a)及び(b)は接合完了時に裏面ショルダと表面ショルダとを母材押圧面より離間させピン軸の溶着を防止する概要図である。(A) And (b) is a schematic diagram which prevents the welding of a pin shaft by separating the back shoulder and the front shoulder from the base material pressing surface when the joining is completed. プラグ接合の概要を示し、(a)は本発明の実施形態、(b)は従来技術である。The outline of plug joining is shown, (a) is an embodiment of the present invention, and (b) is a prior art. プラグ接合の観察写真を示し、(B)は本発明の実施形態、(A)は従来技術である。The observation photograph of plug joining is shown, (B) is an embodiment of the present invention, and (A) is a prior art. (A)はプラグ接合している状態を示す作用図、(B)はその接合条件を示す。(A) is an operation diagram showing a state of plug joining, and (B) shows the joining conditions.

符号の説明Explanation of symbols

1 裏面側ショルダ
2 表面側ショルダ
3 ネジ状ピン軸
4 回転主軸
5 ベースプレート
7 上工具ベース
9 下側工具ベース
10 第1のアクチュエータ
11 第2のアクチュエータ
12 回転駆動部
13 制御回路
23、230 ロードセル
33 非接触の温度計
60 テーパプラグ
70 プラグ穴
76 貫通孔
77 R状縁部
71 ナイフエッジ部
78 余肉
DESCRIPTION OF SYMBOLS 1 Back side shoulder 2 Front side shoulder 3 Screw-shaped pin shaft 4 Rotation main shaft 5 Base plate 7 Upper tool base 9 Lower tool base 10 1st actuator 11 2nd actuator 12 Rotation drive part 13 Control circuit 23, 230 Load cell 33 Non Contact thermometer 60 Taper plug 70 Plug hole 76 Through hole 77 R-shaped edge 71 Knife edge 78 Extra thickness

Claims (9)

母材接合部の表裏両面側より夫々裏面押圧部材と表面押圧部材を摺動回転させながら摩擦入熱を行うとともに、該入熱された接合部を、前記少なくとも一の押圧部材とともに回転する攪拌部材により攪拌させながら前記両押圧部材と攪拌部材からなる回転工具を所定方向に移動させて接合部の固相接合を行う摩擦攪拌接合方法において、
前記両押圧部材との間隔を可変に構成された裏面押圧部材と表面押圧部材により母材接合部の表裏両面に倣いながら摩擦荷重制御を行うとともに、接合完了時に、前記攪拌部材の移動に同期して裏面押圧部材と表面押圧部材が母材押圧面より母材反押圧方向に離間させることを特徴とする摩擦攪拌接合方法。
A stirrer that performs frictional heat input while sliding and rotating the back surface pressing member and the surface pressing member from the front and back both sides of the base material joint, and rotates the heat-joined joint together with the at least one pressing member. In the friction stir welding method for performing solid phase bonding of the joint by moving the rotary tool composed of both the pressing member and the stirring member in a predetermined direction while being stirred by
Frictional load control is performed while following the front and back surfaces of the base material joint portion by a back surface pressing member and a front surface pressing member that are configured so that the distance between the both pressing members is variable, and synchronized with the movement of the stirring member when the joining is completed. The back surface pressing member and the front surface pressing member are separated from the base material pressing surface in the base material counter-pressing direction.
前記攪拌部材を回転軸方向に移動させた後若しくは移動途中に前記攪拌部材を回転させることを特徴とする請求項1記載の摩擦攪拌接合方法。  The friction stir welding method according to claim 1, wherein the stirring member is rotated after the stirring member is moved in the rotation axis direction or during the movement. 母材接合部の表裏両面側より夫々裏面押圧部材と表面押圧部材を摺動回転させながら摩擦入熱を行うとともに、該入熱された接合部を、前記少なくとも一の押圧部材とともに回転する攪拌部材により攪拌させながら前記両押圧部材と攪拌部材からなる回転工具を所定方向に移動させて接合部の固相接合を行う摩擦攪拌接合方法において、
前記両押圧部材との間隔を可変に構成された裏面押圧部材と表面押圧部材により母材接合部の表裏両面に倣いながら摩擦荷重制御を行うとともに、接合完了時に、前記裏面押圧部材と表面押圧部材とを母材押圧面より母材反押圧方向に離間させるとともに、前記攪拌部材の回転を接合部の温度が軟化点以下に低下するまで継続させて、攪拌部材と接合部との溶着を防止することを特徴とする摩擦攪拌接合方法。
A stirrer that performs frictional heat input while sliding and rotating the back surface pressing member and the surface pressing member from the front and back both sides of the base material joint, and rotates the heat-joined joint together with the at least one pressing member. In the friction stir welding method for performing solid phase bonding of the joint by moving the rotary tool composed of both the pressing member and the stirring member in a predetermined direction while being stirred by
Wherein performs frictional force control while scanning the front and back surfaces of the base material joint by back side press member and the surface pressing member is variably configured the distance between the two pressing members, at the time of completion of joining, before Symbol back side press member and the surface pressing The member is separated from the base material pressing surface in the direction opposite to the base material pressing direction, and the rotation of the stirring member is continued until the temperature of the joint portion falls below the softening point to prevent welding between the stirring member and the joint portion. And a friction stir welding method.
母材接合部の表裏両面側より夫々摺動回転させながら摩擦入熱を行う裏面押圧部材と表面押圧部材と、前記入熱された接合部を攪拌する攪拌部材を備えた回転工具を有してなる摩擦攪拌接合装置において、
前記攪拌部材を回転軸方向に移動可能に構成するとともに、該移動ストロークが攪拌部材と接合部位間が離脱可能なストローク量であり、前記母材接合部の接合完了時に攪拌部材と接合部位間を離脱させる制御回路を具えていることを特徴とする摩擦攪拌接合装置。
A rotating tool provided with a back surface pressing member and a surface pressing member that perform frictional heat input while sliding and rotating from the front and back both sides of the base material joint portion, and a stirring member that stirs the heat input joint portion. In the friction stir welding apparatus
The stirring member is configured to be movable in the rotation axis direction, and the moving stroke is a stroke amount that can be separated between the stirring member and the joining portion, and when the joining of the base material joining portion is completed, the stirring member and the joining portion are separated. A friction stir welding apparatus comprising a control circuit for detachment .
母材接合部の表裏両面側より夫々摺動回転させながら摩擦入熱を行う裏面押圧部材と表面押圧部材と、前記入熱された接合部を攪拌する攪拌部材を備えた回転工具を有してなる摩擦攪拌接合装置において、
前記攪拌部材を回転軸方向に移動可能に構成するとともに、該移動ストロークが攪拌部材と接合部位間が離脱可能なストローク量であり、更に前記攪拌部材に、該攪拌部材最大径より小なる移動軸が連接され、前記攪拌部材の移動により接合部内に移動軸が位置可能に構成されていることを特徴とする摩擦攪拌接合装置。
A rotating tool provided with a back surface pressing member and a surface pressing member that perform frictional heat input while sliding and rotating from the front and back both sides of the base material joint portion, and a stirring member that stirs the heat input joint portion. In the friction stir welding apparatus
Thereby configured to be movable to the agitating member in the rotational axis direction, the mobile stroke Ri junction between the detachable stroke amount der an agitating member, further the agitating member becomes smaller than the maximum diameter the stirrer拌部material moving A friction stir welding apparatus characterized in that a shaft is connected and a moving shaft can be positioned in the joint portion by movement of the stirring member.
母材接合部の表裏両面側より夫々摺動回転させながら摩擦入熱を行う裏面押圧部材と表面押圧部材と、前記入熱された接合部を攪拌する攪拌部材を備えた回転工具を有してなる摩擦攪拌接合装置において、
前記攪拌部材を回転軸方向に移動可能に構成するとともに、該移動ストロークが攪拌部材と接合部位間が離脱可能なストローク量であり、更に前記攪拌部材をネジ状軸で形成するとともに、該ネジ状軸に、ネジ外径より小なる移動軸が連接され、前記攪拌部材の移動により接合部内に移動軸が位置可能に構成されていることを特徴とする摩擦攪拌接合装置。
A rotating tool provided with a back surface pressing member and a surface pressing member that perform frictional heat input while sliding and rotating from the front and back both sides of the base material joint portion, and a stirring member that stirs the heat input joint portion. In the friction stir welding apparatus
Wherein the agitating member while movable in the rotation axis direction, the movement stroke can withdrawal between the stirring member and the bonding sites stroke der is, thereby forming further the stirring member with a screw-like shaft, the screw A friction stir welding apparatus characterized in that a moving shaft smaller than an outer diameter of the screw is connected to the shaft, and the moving shaft can be positioned in the joint portion by the movement of the stirring member.
母材接合部の表裏両面側より夫々摺動回転させながら摩擦入熱を行う裏面押圧部材と表面押圧部材と、前記入熱された接合部を攪拌する攪拌部材を備えた回転工具を有してなる摩擦攪拌接合装置において、
前記攪拌部材を回転軸方向に移動可能に構成するとともに、該移動ストロークが攪拌部材と接合部位間が離脱可能なストローク量であり、更に前記攪拌部材と裏面押圧部材が一体的に連接されているとともに、前記移動軸が表面押圧部材の軸穴内に挿設され、前記軸穴径(a1’)と攪拌部材の最大径(a1)と移動軸径(b1)の関係が下記式の関係にあることを特徴とする摩擦攪拌接合装置。
(a1’)≧(a1)>(b1)
A rotating tool provided with a back surface pressing member and a surface pressing member that perform frictional heat input while sliding and rotating from the front and back both sides of the base material joint portion, and a stirring member that stirs the heat input joint portion. In the friction stir welding apparatus
Thereby configured to be movable to the stirring member in the rotational axis direction, the mobile stroke is between the stirring member and the bonding sites Ri stroke der capable of being released, further the stirring member and the back side press member is connected integrally The moving shaft is inserted into the shaft hole of the surface pressing member, and the relationship between the shaft hole diameter (a1 ′), the maximum diameter (a1) of the stirring member, and the moving shaft diameter (b1) is expressed by the following relationship: There is provided a friction stir welding apparatus.
(A1 ′) ≧ (a1)> (b1)
母材接合部の表裏両面側より夫々裏面押圧部材と表面押圧部材を摺動回転させながら摩擦入熱を行うとともに、該入熱された接合部を、前記少なくとも一の押圧部材とともに回転する攪拌部材により攪拌させながら前記両押圧部材と攪拌部材からなる回転工具を所定方向に移動させて接合部の固相接合を行って形成された曲面若しくは直面状もしくは円周面状のシングルスキンやダブルスキンパネルからなる摩擦接合体において、
前記両押圧部材との間隔を可変に構成された裏面押圧部材と表面押圧部材により母材接合部の表裏両面に倣いながら摩擦荷重制御を行うとともに、接合完了時に形成される工具取り出し穴がピン軸直径より大で且つ前記両押圧部材直径より小径に形成したことを特徴とする摩擦接合体。
A stirrer that performs frictional heat input while sliding and rotating the back surface pressing member and the surface pressing member from the front and back both sides of the base material joint, and rotates the heat-joined joint together with the at least one pressing member. A curved or confronted or circumferential single skin or double skin panel formed by moving the rotary tool composed of both the pressing member and the agitating member in a predetermined direction while agitating by means of solid phase joining of the joining portion In a friction bonded body consisting of
Frictional load control is performed while following both the front and back surfaces of the base material joining portion by a back surface pressing member and a front surface pressing member which are configured so that a distance between both the pressing members is variable, and a tool take-out hole formed at the completion of the bonding is a pin shaft. A friction bonded body characterized in that it is larger than the diameter and smaller than the diameter of both the pressing members .
前工具取出穴をプラグで封入した事を特徴とする請求項8記載の摩擦接合体。 9. The friction bonded body according to claim 8, wherein the front tool outlet hole is sealed with a plug.
JP2005231414A 2005-08-09 2005-08-09 Friction stir welding method and its joining apparatus and friction joined body Expired - Fee Related JP4175484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005231414A JP4175484B2 (en) 2005-08-09 2005-08-09 Friction stir welding method and its joining apparatus and friction joined body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005231414A JP4175484B2 (en) 2005-08-09 2005-08-09 Friction stir welding method and its joining apparatus and friction joined body

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003092748A Division JP3810754B2 (en) 2003-03-28 2003-03-28 Friction stir welding method, its joining apparatus, and its friction joined body

Publications (2)

Publication Number Publication Date
JP2006007327A JP2006007327A (en) 2006-01-12
JP4175484B2 true JP4175484B2 (en) 2008-11-05

Family

ID=35775122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005231414A Expired - Fee Related JP4175484B2 (en) 2005-08-09 2005-08-09 Friction stir welding method and its joining apparatus and friction joined body

Country Status (1)

Country Link
JP (1) JP4175484B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103459081A (en) * 2011-01-19 2013-12-18 日本轻金属株式会社 Rotary tool unit, friction stir welding method, double-skin panel assembly, and friction stir welding method for double-skin panel assembly

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4790584B2 (en) * 2006-12-14 2011-10-12 日本車輌製造株式会社 Friction stir welding apparatus and friction stir welding method
JP5221411B2 (en) * 2009-02-19 2013-06-26 本田技研工業株式会社 Joining control method of friction stir welding
JP5345223B2 (en) * 2010-01-15 2013-11-20 三菱重工業株式会社 Method for manufacturing joining member and friction stir welding apparatus
JP7261678B2 (en) * 2019-07-04 2023-04-20 シチズン時計株式会社 Machine tools and processing methods

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103459081A (en) * 2011-01-19 2013-12-18 日本轻金属株式会社 Rotary tool unit, friction stir welding method, double-skin panel assembly, and friction stir welding method for double-skin panel assembly

Also Published As

Publication number Publication date
JP2006007327A (en) 2006-01-12

Similar Documents

Publication Publication Date Title
JP4175484B2 (en) Friction stir welding method and its joining apparatus and friction joined body
JP5757701B2 (en) Device for joining at least two flat plates
JP5183917B2 (en) Deposition friction stir welding method and assembly
WO2016063538A1 (en) Friction stir spot welding device and friction stir spot welding method
JP4500883B2 (en) Mash seam welding method and apparatus
JP6155155B2 (en) Friction stir tool, friction stir welding apparatus, and friction stir welding method
JP3810754B2 (en) Friction stir welding method, its joining apparatus, and its friction joined body
JP3740125B2 (en) Friction stir welding apparatus and joining method thereof
JP2008506534A (en) Process for friction welding components
EP1375050B1 (en) Machining control method and robot
JP4183964B2 (en) Friction stir welding equipment
WO2017047574A1 (en) Friction stir spot welding device and friction stir spot welding method
JP2015066575A5 (en)
CN108349042B (en) Friction stir spot welding apparatus and friction stir spot welding method
KR102031895B1 (en) Friction Stir Point Bonding Device and Friction Stir Point Bonding Method
JP2003181654A (en) Friction stir welding device
JP4740289B2 (en) Friction stir welding equipment
JP5183140B2 (en) Friction stir welding system and friction stir welding method
JP4256864B2 (en) Friction stir welding method, its joining apparatus, and its friction joined body
JP4640548B2 (en) Friction stir welding method and apparatus
TW201806686A (en) Friction welding method and friction welding device
JP2004050234A (en) Method and device for controlling rotary tool of friction stir joining
JP3735298B2 (en) Friction stir welding apparatus and friction stir welding method
TW201420242A (en) Friction stir welding parts including one or more expendable portions
JP4331038B2 (en) Friction stir spot welding device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080718

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080812

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4175484

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees