JP4175089B2 - Hydro (alkyl) fullerene metal complexes and hydro (alkyl) fullerene derivatives - Google Patents

Hydro (alkyl) fullerene metal complexes and hydro (alkyl) fullerene derivatives Download PDF

Info

Publication number
JP4175089B2
JP4175089B2 JP2002320702A JP2002320702A JP4175089B2 JP 4175089 B2 JP4175089 B2 JP 4175089B2 JP 2002320702 A JP2002320702 A JP 2002320702A JP 2002320702 A JP2002320702 A JP 2002320702A JP 4175089 B2 JP4175089 B2 JP 4175089B2
Authority
JP
Japan
Prior art keywords
fullerene
group
formula
alkyl
hydro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002320702A
Other languages
Japanese (ja)
Other versions
JP2004155675A (en
Inventor
栄一 中村
基樹 戸叶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2002320702A priority Critical patent/JP4175089B2/en
Publication of JP2004155675A publication Critical patent/JP2004155675A/en
Application granted granted Critical
Publication of JP4175089B2 publication Critical patent/JP4175089B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、特定の構造を有するヒドロ(アルキル)フラーレン金属錯体及びヒドロ(アルキル)フラーレン誘導体、並びにヒドロ(アルキル)フラーレン金属錯体を原料とするペンタアルキルフラーレン金属錯体の製造方法に関する。
【0002】
【従来の技術】
1990年にC60の大量合成法が確立されて以来、フラーレンに関する研究が精力的に展開されている。その結果、数多くのフラーレン誘導体が合成され、その多様な機能が明らかにされてきた。それに伴い、フラーレン誘導体を用いた電子伝導材料、半導体、生理活性物質等の各種用途開発が進められている(例えば、非特許文献1及び非特許文献2参照)。
【0003】
この様なフラーレン誘導体の具体例として、本発明者らは、フラーレン骨格に10個の有機基が結合したフラーレン化合物や、5個の有機基が結合したフラーレン化合物、及びこれらの化合物を配位子とする遷移金属錯体を種々合成し、報告してきた(例えば、特許文献1、特許文献2、特許文献3、非特許文献3、非特許文献4及び非特許文献5参照)。
【0004】
【非特許文献1】
日本化学会編、季刊化学総説No.43、「炭素第三の同素体フラーレンの化学」、学会出版センター(1999)
【非特許文献2】
"Fullerenes: Chemistry, Physics, and Technology", John Wiley & Sons (2000)
【特許文献1】
特開平10−167994号公報
【特許文献2】
特開平11−255509号公報
【特許文献3】
特開2002−241323号公報
【非特許文献3】
Journal of the American Chemical Society, 1996年, 118巻, 12850ページ
【非特許文献4】
Organic Letters, 2000年, 2巻, 1919ページ
【非特許文献5】
Chemistry Letters, 2000年, 1098ページ
【0005】
【発明が解決しようとする課題】
本発明は、既に本発明者らが提案した5個の有機基が付加したフラーレン化合物類とは異なり、有機基のうち1個以上水素が付加した金属錯体及び誘導体に関するものであり、これらは、全ての付加基が有機基のものと比べて立体的及び電子的に異なった性質を有することが期待される。例えば、水素が付加した部分に置換反応が起こる等、種々のフラーレン誘導体の前駆体となり、また、金属錯体は、フラーレン部分が立体的に小さくなるため、種々の触媒反応が進行しやすくなるという点である。そのため、これらの新規なフラーレンの金属錯体及びフラーレンの誘導体が要望されていた。
【0006】
【発明を解決するための手段】
本発明の請求項1に係る発明は、下記(式1)で表される部分構造を有する一般式CxRmH(5-m)MLn(式2)で表されるヒドロアルキルフラーレン金属錯体に関するものである。
【0007】
【化4】

Figure 0004175089
【0008】
(式1及び式2中、Aは水素原子またはRを表し、Cxはフラーレン骨格を表し、xは60以上の偶数、Rは炭素数1〜10の置換基を有していてもよいアルキル基又はアリール基を表し、それぞれ同じでも異なっていてもよい、mは1〜4の整数、Mは遷移金属原子を表し、Lはη1又はη2の配位子を表す、nは0〜5の整数であり、nが2以上の場合のLはそれぞれ同じでも異なっていてもよい。)
また、本発明の請求項2に係る発明は、下記(式3)で表される部分構造を有することを特徴とする一般式CxH5MLn(式4)で表されるペンタヒドロフラーレン金属錯体に関するものである。
【0009】
【化5】
Figure 0004175089
【0010】
(式4中、Cxはフラーレン骨格を表し、xは60以上の偶数、Mは遷移金属原子を表し、Lはη1又ははη2の配位子を表し、nは0〜5の整数であり、nが2以上の場合のLはそれぞれ同じでも異なっていてもよい。)
更に、請求項3に係る発明は、下記(式5)で表される部分構造を有する一般式CxRpH(5-p)H(式6)で表されるヒドロ(アルキル)フラーレン誘導体に関するものである。
【0011】
【化6】
Figure 0004175089
【0012】
(式5及び式6中、Aは水素原子またはRを表す。Cxはフラーレン骨格を表し、xは60以上の偶数、Rは炭素数1〜10の置換基を有していてもよいアルキル基又はアリール基を表し、それぞれ同じでも異なっていてもよい、pは0〜4の整数である。)
【0013】
【発明の実施の形態】
本発明のヒドロアルキルフラーレ金属錯体は、一般式CxRmH(5-m)MLn(式2)(式2中、Cxはフラーレン骨格を表し、xは60以上の偶数、Rは炭素数1〜10の置換基を有していてもよいアルキル基又はアリール基を表し、それぞれ同じでも異なっていてもよい、mは1〜4の整数、Mは遷移金属原子を表し、Lはη1又はη2の配位子を表す、nは0〜5の整数であり、nが2以上の場合のLはそれぞれ同じでも異なっていてもよい。)で表される化合物であり、かつ、その化合物が有する水素原子及びRの相対位置が式1に示される部分構造中のAの位置に決まったものである。
【0014】
【化7】
Figure 0004175089
【0015】
式1中のAが全て水素原子、すなわち式2においてmが0の場合が、請求項2に記載の一般式CxH5MLn(式4)で表されるペンタヒドロフラーレン金属錯体である。
また、本発明のヒドロ(アルキル)フラーレン誘導体は、前記式2または式4で表される金属錯体中の、配位子を含む遷移金属原子部分MLnが、水素原子で置換されたものである。具体的には一般式CxRpH(5-p)H(式6)(Cxはフラーレン骨格を表し、xは60以上の偶数、Rは炭素数1〜10の置換基を有していてもよいアルキル基又はアリール基を表し、それぞれ同じでも異なっていてもよい、pは0〜4の整数である。)で表される化合物であり、かつ、以下の式5に表される部分構造を有する。
【0016】
【化8】
Figure 0004175089
【0017】
これら、式2、式4及び式6で表される、ヒドロ(アルキル)フラーレン金属錯体及びヒドロ(アルキル)フラーレン誘導体について、以下、詳細に説明する。
フラーレン骨格Cxは、具体的には、C60(いわゆるバックミンスター・フラーレン)、C70、 C76、C78、C82、C84、C90、C94、C96及びより高次の炭素クラスター骨格である。これらの内C60、C70が工業的に入手容易であるため好ましい。
【0018】
水素原子はフラーレン骨格1個に対して1〜5個、それに対応して有機基(R)はフラーレン骨格に対し、4個〜0個付加しており、それぞれ以下の式7に示された部分構造式中のAの位置に有機基(R)または水素原子が結合しているものである。
【0019】
【化9】
Figure 0004175089
【0020】
複数個の有機基(R)を有している場合は、互いに同一であっても異なっていてもよい。この有機基(R)は通常、炭素数1〜10の置換基を有していてもよいアルキル基又はアリール基であり、それぞれ同じでも異なっていてもよい。
有機基(R)の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基等の直鎖又は分岐の鎖状アルキル基;シクロプロピル基、シクロペンチル基、シクロヘキシル基等の環状アルキル基;ビニル基、プロペニル基、ヘキセニル基等の直鎖又は分岐の鎖状アルケニル基;エチニル基、メチルエチニル基、フェニルエチニル基などのアルキニル基;シクロペンテニル基、シクロヘキセニル基等の環状アルケニル基;2−チエニル基、2−ピリジル基、2−フルフリル基等の複素環基;フェニル基、ナフチル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基があげられる。これらはそれぞれ、1つ以上のアルキル基、アリール基、アルコキシ基、水酸基、アミノ基、カルボキシル基、ハロゲン原子などの置換基で置換されていてもよい。
【0021】
金属錯体の構造中に含まれるMは遷移金属原子を表し、5族〜10族、より好ましくは6〜8族、さらに好ましいのは7族及び8族の金属である。この内、Re及びFeが特に好ましく、Reが最も好ましい。
Lは、Mの配位子である。配位の形態としては、η1,η2の非共役型配位子である。その種類及び個数nは、Mの種類および価数により異なり、Mに応じて適切な種類、個数nが選択される。nは通常0〜5の整数である。Lの具体例としては、η1のものとしては、水素原子、アルキル基、アリール基、ハロゲン原子、アルコキシ基、アミド基など、シグマ結合を形成する配位子であり、η2配位のものとしては、3級ホスフィン、CO、3級アミン、オレフィン等、孤立電子対によって配位する配位子があげられる。また、1,5−シクロオクタジエンや、1,2−ビス(ジフェニルホスフィノ)エタンなどの、η1,η2型の多座配位子も好ましい。η3以上の共役型配位子は、特にこの金属錯体を触媒反応などに適用する際、配位座を強く塞ぐため好ましくなく、またその安定性のため金属錯体を形成した後の配位子の交換反応が進行しにくいため、種々の金属錯体への変換が困難である。
【0022】
具体的なヒドロ(アルキル)フラーレン金属錯体の例を以下の式8〜式11に示す(以下の式9〜式11のPhはフェニル基を、Meはメチル基を表す。)。
【0023】
【化10】
Figure 0004175089
【0024】
一方、本発明のヒドロ(アルキル)フラーレン誘導体は、錯体中のMLn部分がHで置換された化合物である。具体的なヒドロ(アルキル)フラーレン誘導体の例を以下の式12〜式15に示す(式13〜式15中、Phはフェニル基を、Meはメチル基を表す。)。
【0025】
【化11】
Figure 0004175089
【0026】
本発明のヒドロ(アルキル)フラーレン金属錯体は、次のような方法により製造することができる。
原料として、フラーレン又は有機基付加フラーレンを用い、遷移金属前駆体又は遷移金属前駆体及び還元剤を溶媒中で反応させることにより得ることができる。
原料としてフラーレンを用いると、前記式4で表されるペンタヒドロフラーレン金属錯体が製造され、また原料として有機基付加フラーレンを用いると、原料中の有機基の付加位置及び付加数を保った式2で表されるヒドロアルキルフラーレン金属錯体が製造できる。
【0027】
原料となるフラーレンの例としては、C60(いわゆるバックミンスター・フラーレン)、C70、C76、C78、C82、C84、C90、C94、C96及びより高次の炭素クラスター骨格があげられる。この中で、C60、C70が工業的に入手容易であるため、本発明の原料として好ましく用いられる。
原料となる有機基付加フラーレンの有機基の数は1〜4である。具体的には、CxR1H、 CxR1 2、CxR1 3H及びCxR1 4で表される化合物であり、かつそれぞれ、以下(式16〜式19)の部分構造を有するものである。
【0028】
【化12】
Figure 0004175089
【0029】
ここで、有機基付加フラーレンのフラーレン骨格としては、C60(いわゆるバックミンスターフラーレン)、C70、C76、C78、C82、C84、C90、C94、C96及び高次の炭素クラスター骨格があげられる。この中で、原料となるフラーレンとしてC60、C70が入手容易であるため、これらの骨格を有する有機基付加フラーレンが特に好ましい。
ここで、R1は、通常炭素数1〜10の置換基を有していてもよいアルキル基又はアリール基であり、R1が複数ある場合は、それぞれのR1は同一であってもよいし、異なっていてもよい。
1の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基等の直鎖又は分岐の鎖状アルキル基;シクロプロピル基、シクロペンチル基、シクロヘキシル基等の環状アルキル基;ビニル基、プロペニル基、ヘキセニル基等の直鎖又は分岐の鎖状アルケニル基;シクロペンテニル基、シクロヘキセニル基等の環状アルケニル基;エチニル基、メチルエチニル基、フェニルエチニル基などのアルキニル基;2−チエニル基、2−ピリジル基、フルフリル基等の複素環基;フェニル基、ナフチル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基があげられる。これらはそれぞれ、1つ以上のアルキル基、アリール基、アルコキシ基、水酸基、アミノ基、カルボキシル基、ハロゲン原子などの置換基で置換されていてもよい。
【0030】
これらの部分構造を有する有機基付加フラーレンのいくつかは、対応する骨格のフラーレンを原料として、公知の方法で製造が可能である。たとえば、C60(CH2SiMe3)Hは、Journal of Organic Chemistry,1994年,59巻,1246ページに、C60(CH2SiMe3)2は、Journal of Organic Chemistry,1994年,59巻,1246ページ及び特願2002−016143号に、C60(CH2SiMe3)3Hは、特願2002−016143号に、C70Ph3Hは特開平11−255508号公報及びJournal of the American Chemical Society,1998年,120巻,8285ページに、C60(CH2Ph)2PhHは、Organic Letters,2000年,2巻,1919ページに、それぞれ製造法が開示されている。
【0031】
本発明の化合物の製造の際に用いられる遷移金属前駆体は、5族〜10族、より好ましくは6〜8族、さらに好ましくは7族及び8族の錯体である。これらの内、低原子価の遷移金属錯体が還元性を有するので好ましい。具体的には0価、1価または2価のMn, Re, Fe, Ru, Osがあげられる。0価のRe及び、0価および1価のFeがより好ましく、0価のReが最も好ましい。
【0032】
遷移金属前駆体が有する配位子は、水素原子、アルキル基、アリール基、アルコキシ基、アミド基、ハロゲン原子、3級ホスフィン、CO、3級アミン、オレフィンなどがあげられる。具体的な好ましい遷移金属前駆体の例としては、Fe2(CO)9, Fe(CO)5, Re2(CO)10, Cr(CO)6などの遷移金属カルボニル錯体等があげられる。
【0033】
遷移金属前駆体は、生成錯体中のMLn部位の供給源であり、この内、還元性を有する低原子価遷移金属錯体は、フラーレン又は有機基付加フラーレンの還元剤としても働く。
次に、還元剤の具体例としては、水素;1,3−ヘキサジエン、ジヒドロナフタレン、ジヒドロアントラセン、ジイミド、ヒドラジンなどの水素移動能を有する還元剤;トリフェニルホスフィンなどの3級ホスフィン類;ジメチルスルフィドなどのスルフィド類;ボラン、LiAlH4, NaBH4などの金属水素化物;Na, K. Caなどのアルカリ金属またはアルカリ土類金属単体などがあげられる。これらの内、水素移動能を有する還元剤が特に好ましく用いられる。
【0034】
遷移金属前駆体の量は、他の還元剤を用いずに行う場合には、フラーレン又は有機基付加フラーレンに対して過剰量用いる必要がある。通常フラーレンまたは有機基付加フラーレンに対する遷移金属原子のモル比で2.0〜50等量、好ましくは2.0〜20等量である。
還元剤を用いる場合の遷移金属前駆体の量は、フラーレン又は有機基付加フラーレンに対する遷移金属原子のモル比で1.0〜10等量、好ましくは1.0〜3.0等量である。
【0035】
また、還元剤を用いる場合の還元剤の量は、反応の対象となるフラーレン又は有機基付加フラーレン、用いる還元剤や遷移金属錯体の種類や量、反応条件により異なるが、通常フラーレンまたは有機基付加フラーレンに対してモル比で1〜100等量、好ましくは1〜50等量である。
反応溶媒は、通常、ベンゼン、トルエン、キシレン類、トリメチルベンゼン類などの芳香族炭化水素、クロロベンゼン、o−ジクロロベンゼンなどのハロゲン化芳香族炭化水素、ベンゾニトリル、o−トルニトリル、p−トルニトリル等の芳香族ニトリルなどが用いられる。特にベンゾニトリル、o−トルニトリルなどの芳香族ニトリルが好ましい。使用量は、用いる溶媒の種類により異なるが、通常、フラーレンまたは有機基付加フラーレン濃度として、1mmol/L〜100mmol/Lとなる量で用いられる。
【0036】
反応温度は、用いる遷移金属前駆体及び還元剤の種類により異なるが、通常、高温条件が好ましく、具体的には80〜250℃、好ましくは100〜200℃の範囲で行われる。温度が低すぎると十分な反応速度が得られず、温度が高すぎると生成物の分解が起こり、いずれも好ましくない。反応時間は、通常1時間〜10日間程度である。
【0037】
また、ヒドロ(アルキル)フラーレン誘導体は、前記したヒドロ(アルキル)フラーレン金属錯体を製造する際に使用するフラーレン又は有機基付加フラーレンと遷移金属前駆体又は遷移金属前駆体と還元剤を溶媒中で反応させる際に、プロトン化試薬の存在下で行うことにより製造することができる。
プロトン化試薬としては、水、メタノールやエタノールなどのアルコール類、酢酸などのカルボン酸類などが挙げられる。この内、特に水が好ましい。この場合、反応条件は、反応開始前にプロトン化試薬を反応系に加える他は、前記したヒドロ(アルキル)フラーレン金属錯体の製造方法と同様な方法で製造することができる。プロトン化試薬の使用量は、通常フラーレン有機基付加フラーレンに対して1〜100当量の範囲である。
【0038】
これらの生成物は、例えば結晶化やクロマトグラフィーなどの、有機化合物の一般的精製法で単離される。
本発明のヒドロ(アルキル)フラーレン金属錯体及びヒドロ(アルキル)フラーレン誘導体は、医薬原料、電子材料などの用途が期待される。また種々のフラーレン誘導体の錯体及びフラーレン誘導体を合成する際の中間原料としても有用である。
【0039】
【実施例】
本発明を実施例により更に詳細に説明するが、本発明はその要旨を超えない限り以下の実施例により限定されるものではない。
実施例1: C60(CH2Ph)H4-Re(CO)3の合成
シュレンク管中、C60(CH2Ph)H(21.0 mg, 29.1 μmol)とRe2(CO)10(42.2 mg, 64.7 μmol)と9,10-ジヒドロアントラセン(455 mg, 2.52 mmol)、そしてベンゾニトリル(2 ml)の溶液を0 ℃減圧下で30分間脱気した。この溶液を窒素気流下で160 ℃で1日間加熱した後、反応液をトルエン/2−プロパノール = 7/3の混合溶媒(8 ml)で希釈した。この希釈液をろ過し、ろ液を用いて液体クロマトグラフィー(以下、「HPLC」という。)により錯体の精製を行った(使用したカラムの商品名:Bucky Prep.(Nacalai Tesque Co.社製、 20 mm × 250 mm)、トルエン/2−プロパノール = 7/3、流速 = 20 ml/min、滞留時間 = 約12 min)。分取した液を減圧下で体積が1 ml以下になる程度まで濃縮し、メタノールを加えると橙色の沈殿が生成した。沈殿をろ別し、真空乾燥することで目的物を橙色の固体として11.4 mg(収率42%)を得た。生成物の物性は以下の通りである。
【0040】
【化13】
Figure 0004175089
式20中、Bnはベンジル基を表わす。
【0041】
IR (powder, ν/cm-1) 3027 (vw), 2911 (vw), 2020 (s), 1922 (s), 1494 (w), 1456 (w), 1421 (w), 1287 (w), 1214 (w), 1179 (w), 1109 (w), 1078 (w), 1031 (w), 1013 (w), 749 (w),733 (w), 698 (m), 685 (w); 1H NMR (CS2/CDCl3 = 5/1, 400 MHz) δ 3.63 (s, 2H, PhCH2), 5.22 (s, 2H+2H, C60H), 7.14-7.22 (m, 5H, Ph); 13C NMR (CS2/CDCl3 = 5/1, 100 MHz) δ 44.19 (d, 1JCH = 145 Hz, 2C), 44.56 (d, 1JCH = 145 Hz, 2C), 51.84 (t, 1JCH = 131 Hz, 1C), 55.77 (2C), 100.05 (2C), 105.24 (2C), 108.27 (1C), 126.97 (1C), 127.87 (2C), 130.11 (2C), 135.52 (1C), 143.00 (2C), 143.43 (2C), 143.65 (2C), 143.73 (2C), 143.76 (2C), 144.09 (2C), 144.63 (2C), 144.89 (2C), 144.90 (2C+2C), 146.31 (1C), 146.32 (2C), 146.36 (2C), 147.61 (2C), 147.68 (2C+2C), 147.79 (2C+2C), 148.08 (2C), 148.15 (2C), 148.17 (1C), 148.18 (2C), 148.95 (2C), 148.97 (2C), 149.03 (2C), 151.55 (2C) (二硫化炭素由来の強い信号との重なりのため,CO配位子由来の信号は同定できなかった.); APCI-MS (-): m/z = 1086 (M-).
【0042】
実施例2: C60(CH2Ph)2H3-Re(CO)3の合成
シュレンク管中、C60(CH2Ph)2(30.8 mg, 34.1μmol)とRe2(CO)10(58.2 mg, 89.2 μmol)と9,10-ジヒドロアントラセン(613 mg, 3.40 mmol)、そしてベンゾニトリル(3 ml)の溶液を0 ℃減圧下で30分間脱気した。この溶液を窒素気流下160 ℃で1日間加熱した後、反応液をトルエン/2−プロパノール = 7/3の混合溶媒(17 ml)で希釈した。この希釈液をろ過し、ろ液を用いてHPLCにより錯体の精製を行った(使用したカラムの商品名:Bucky Prep.(Nacalai Tesque Co.社製、 20 mm × 250 mm)、トルエン/2−プロパノール = 7/3、流速 = 20 ml/min、滞留時間 = 約12 min)。分取した液を減圧下で体積が1 ml以下になる程度まで濃縮し、メタノールを加えると橙色の沈殿が生成した。沈殿をろ別し、真空乾燥することで目的物を橙色の固体として22.2 mg(収率55%)を得た。生成物の物性は以下の通りである。
【0043】
【化14】
Figure 0004175089
式21中、Bnはベンジル基を表わす。
【0044】
IR (powder, ν/cm-1) 3027 (vw), 2911 (vw), 2020 (s), 1924 (s), 1494 (w), 1454 (w), 1429 (w), 1287 (w), 1215 (w), 1179 (w), 1109 (w), 1077 (w), 1029 (w), 748 (m), 738 (m), 729 (m), 698 (s), 675 (m); 1H NMR (CDCl3, 400 MHz) δ 3.70 (d, J = 13.2 Hz, 2H, PhCHH), 3.75 (d, J = 13.2 Hz, 2H, PhCHH), 5.27 (s, 2H+1H, C60H), 7.14-7.22 (m, 10H, Ph); 13C NMR (CS2/CDCl3 = 5/1, 100 MHz) δ 44.16 (d, 1JCH = 144 Hz, 2C), 44.47 (d, 1JCH = 145 Hz, 1C), 51.73 (t, 1JCH = 132 Hz, 2C), 55.90 (2C), 98.33 (1C), 102.37 (2C), 111.56 (2C), 127.05 (2C), 127.94 (4C), 130.14 (4C), 135.54 (2C), 142.67 (2C), 142.91 (2C), 143.41 (2C), 143.63 (2C), 143.76 (2C), 143.78 (2C), 144.05 (2C), 144.71 (2C), 144.90 (2C), 144.92 (2C), 146.20 (2C), 146.28 (2C), 146.33 (1C), 147.42 (2C), 147.50 (2C), 147.59 (2C), 147.62 (2C), 147.63 (2C), 147.78 (2C), 148.09 (1C), 148.10 (2C), 148.13 (2C), 148.75 (2C), 148.87 (2C), 150.79 (2C), 150.92 (2C)(二硫化炭素由来の強い信号との重なりのため,CO配位子由来の信号は同定できなかった.); APCI-MS (-): m/z = 1176 (M-).
【0045】
実施例3: C60(CH2Ph)2(Ph)H2-Re(CO)3の合成
シュレンク管中、C60(CH2Ph)2(Ph)H(15.3 mg, 15.6 μmol)とRe2(CO)10(25.2 mg, 38.6 μmol)と9,10-ジヒドロアントラセン(29.8 mg, 165 μmol)、そしてベンゾニトリル(1.5 ml)の溶液を0 ℃減圧下で30分間脱気した。この溶液を窒素気流下160 ℃で1日間加熱した後,反応液をトルエン/2−プロパノール = 7/3の混合溶媒(8 ml)で希釈した。この希釈液をろ過し、ろ液を用いてHPLCにより錯体の精製を行った(使用したカラムの商品名:Bucky Prep.(Nacalai Tesque Co.社製、 20 mm × 250 mm)、トルエン/2−プロパノール = 7/3、流速 = 20 ml/min、滞留時間 = 約7min)。分取した液を減圧下で体積が1 ml以下になる程度まで濃縮し、メタノールを加えると橙色の沈殿が生成した。沈殿をろ別し、真空乾燥することで目的物を橙色の固体として12.6mg(収率65%)を得た。生成物の物性は以下の通りである。
【0046】
【化15】
Figure 0004175089
式22中、Bnはベンジル基でPhはフェニル基を表わす。
【0047】
IR (KBr disk, ν/cm-1) 3028 (w), 2918 (w), 2024 (s), 1939 (br, s), 1515 (w), 1494 (m), 1457 (m), 1419 (w), 1288 (w), 1216 (w), 1179 (w), 1079 (w), 1030 (w), 746 (w), 698 (m), 610 (w), 543 (m), 509 (w); 1H NMR (CDCl3, 400 MHz) δ 3.60 (d, J = 13.2 Hz, 1H, PhCHH), 3.62 (d, J = 13.2 Hz, 1H, PhCHH), 3.78 (d, J = 13.2 Hz, 1H, PhCHH), 3.93 (d, J = 13.2 Hz, 1H, PhCHH), 5.32 (d, J = 2.8 Hz, 1H, C60H), 5.51 (d, J = 2.8 Hz, 1H, C60H), 7.20-7.30 (m, 6H, Ph), 7.31-7.41 (m, 4H, Ph), 7.49 (tt, J = 1.2, 7.4 Hz, 1H, Ph), 7.62 (t, J = 7.6 Hz, 2H, Ph), 7.93 (dd, J = 1.2, 8.0 Hz, 2H, Ph); 13C NMR (CS2/CDCl3=3/1, 100 MHz) δ 44.35 (d, 1JCH = 145 Hz, 1C+1C), 50.84 (t, 1JCH=132Hz,1C),51.78(t,1JCH=132Hz,1C),55.92(1C),56.01 (1C), 58.29 (1C), 97.95 (1C), 102.62 (1C), 110.72 (1C), 111.52 (1C), 114.05 (1C), 126.60 (2C), 127.05 (1C), 127.16 (1C), 127.95 (2C), 127.97 (1C), 128.06 (2C), 129.03 (2C), 130.15 (2C), 130.19 (2C), 135.61 (1C), 135.76 (1C), 142.69 (1C), 142.75 (1C), 142.83 (1C), 142.99 (1C), 143.05 (1C), 143.24 (1C), 143.43 (1C), 143.49 (1C), 143.52 (1C), 143.53 (1C), 143.70 (1C+1C), 143.79 (1C+1C), 143.83 (1C), 143.99 (1C), 144.05 (1C), 144.17 (1C), 144.83 (1C), 144.89 (1C), 145.10 (1C), 145.11 (1C), 146.26 (1C), 146.33 (1C), 146.40 (1C), 146.41 (1C), 146.55 (1C), 147.47 (1C), 147.50 (1C+1C), 147.56 (1C), 147.58 (1C), 147.61 (1C), 147.64 (1C), 147.67 1C), 147.71 (1C), 147.7 (1C), 147.80 (1C), 148.16 (1C), 148.18 (1C), 148.20 (1C), 148.23 (1C+1C), 148.42 (1C), 149.04 (1C), 149.48 (1C), 150.52 1C), 150.62 (1C), 150.88 (1C), 151.10 (1C), 151.83 (1C), 190.27 (3C); APCI-MS (+): m/z 1252 (M+).
【0048】
実施例4: C60(CH2Ph)2(Ph)H3の合成
シュレンク管中、C60(CH2Ph)2(Ph)H(19.5 mg, 19.9 μmol)とRe2(CO)10(33.0 mg, 37.1 μmol)と9,10-ジヒドロアントラセン(37.1 mg, 206 μmol)、そしてベンゾニトリル(4 ml)の溶液を0 ℃減圧下で30分間脱気した。この溶液に、水(35.8 μl, 199 μmol)を加え、窒素気流下160 ℃で1日間加熱した後、反応液をトルエン/2−プロパノール =6/4の混合溶媒(16 ml)で希釈した。この希釈液をろ過し、ろ液を用いてHPLCにより化合物の精製を行った(使用したカラムの商品名:Bucky Prep.(Nacalai Tesque Co.社製、 20 mm × 250 mm)、トルエン/2−プロパノール =6/4、流速 = 20 ml/min、滞留時間 = 約10 min)。分取した液を減圧下で体積が1 ml以下になる程度まで濃縮し、メタノールを加えると橙色の沈殿が生成した。沈殿をろ別し、真空乾燥することで目的物(5種の位置異性体の混合物)を橙色の固体として12.0mg(収率61%)を得た。生成物の物性は以下の通りである。
【0049】
【化16】
Figure 0004175089
式23中、Bnはベンジル基、Phはフェニル基を表わす。
【0050】
IR (powder, ν/cm-1) 3027 (w), 1602 (m), 1493 (m), 1451 (m), 1077 (w), 1032 (m), 749 (m), 699 (s); APCI-MS (-): m/z = 981 [(M-1)-].実施例5: C60H5-Re(CO)3の合成
シュレンク管中、C60(19.6 mg, 27.2 μmol)とRe2(CO)10(34.0 mg, 52.1 μmol)と9,10-ジヒドロアントラセン(51.8 mg, 287 μmol)、そしてベンゾニトリル(2 ml)の溶液を0 ℃減圧下で30分間脱気した。この溶液を窒素気流下で160 ℃で1日間加熱した後、反応液をトルエン/2−プロパノール = 7/3の混合溶媒(6 ml)で希釈した。この希釈液をろ過し、ろ液を用いてHPLCにより錯体の精製を行った(使用したカラムの商品名:Bucky Prep.(Nacalai Tesque Co.社製、 20 mm × 250 mm)、トルエン/2−プロパノール =7/3、流速 = 20 ml/min、滞留時間 = 約23min)。分取した液を減圧下濃縮し、得られた固体を真空乾燥することで目的物を橙色の固体として2.1mg(収率8%)得た。生成物の物性は以下の通りである。
【0051】
【化17】
Figure 0004175089
【0052】
IR (powder, ν/cm-1) 2017 (s), 1921 (s), 1901 (s), 1514 (w), 1455 (w), 1419 (w), 1214 (w), 1179 (w), 1167 (w), 1058 (w), 1005 (w), 697 (m); 1H NMR (CDCl3, 400 MHz) δ 5.23 (s, 5H, C60H); 13C NMR (CDCl3, 100 MHz) δ 44.73 (d, 1JCH = 145 Hz, 5C), 102.97 (5C), 143.97 (10C), 145.25 (10C), 146.77 (5C), 148.21 (10C), 148.56 (5C), 149.57 (10C), 190.64 (3C); APCI-MS (-): m/z = 996 (M-).
【0053】
実施例6: C60(CH2Ph)2(Ph)H2-Re(CO)3の合成
シュレンク管中、C60(CH2Ph)2(Ph)H(100 mg, 102 μmol)とRe2(CO)10(161 mg, 246 μmol)、そしてベンゾニトリル(20 ml)の溶液を0 ℃減圧下で30分間脱気した。この溶液を窒素気流下150 ℃で25時間半加熱した後、反応液から溶媒を減圧下で留去した。錯体の精製はHPLCを用いて行った
(使用したカラムの商品名:Bucky Prep.(Nacalai Tesque Co.社製、 20 mm × 250 mm)、トルエン/2−プロパノール =7/3、流速 = 20 ml/min、滞留時間 = 約7min)。分取した液を減圧下濃縮し、得られた固体を真空乾燥することで目的物を橙色の固体として88.2 mg(収率69%)得た。生成物の物性は以下の通りである。
【0054】
【化18】
Figure 0004175089
式25中、Bnはベンジル基、Phはフェニル基を表わす。
【0055】
IR (KBr disk, ν/cm-1) 3028 (w), 2918 (w), 2024 (s), 1939 (br, s), 1515 (w), 1494 (m), 1457 (m), 1419 (w), 1288 (w), 1216 (w), 1179 (w), 1079 (w), 1030 (w), 746 (w), 698 (m), 610 (w), 543 (m), 509 (w); 1H NMR (CDCl3, 400 MHz) δ 3.60 (d, J = 13.2 Hz, 1H, PhCHH), 3.62 (d, J = 13.2 Hz, 1H, PhCHH), 3.78 (d, J = 13.2 Hz, 1H, PhCHH), 3.93 (d, J = 13.2 Hz, 1H, PhCHH), 5.32 (d, J = 2.8 Hz, 1H, C60H), 5.51 (d, J = 2.8 Hz, 1H, C60H), 7.20-7.30 (m, 6H, Ph), 7.31-7.41 (m, 4H, Ph), 7.49 (tt, J = 1.2, 7.4 Hz, 1H, Ph), 7.62 (t, J = 7.6 Hz, 2H, Ph), 7.93 (dd, J = 1.2, 8.0 Hz, 2H, Ph); 13C NMR (CS2/CDCl3=3/1, 100 MHz) δ 44.35 (d, 1JCH = 145 Hz, 1C+1C), 50.84 (t, 1JCH=132Hz,1C),51.78(t,1JCH=132Hz,1C),55.92(1C),56.01 (1C), 58.29 (1C), 97.95 (1C), 102.62 (1C), 110.72 (1C), 111.52 (1C), 114.05 (1C), 126.60 (2C), 127.05 (1C), 127.16 (1C), 127.95 (2C), 127.97 (1C), 128.06 (2C), 129.03 (2C), 130.15 (2C), 130.19 (2C), 135.61 (1C), 135.76 (1C), 142.69 (1C), 142.75 (1C), 142.83 (1C), 142.99 (1C), 143.05 (1C), 143.24 (1C), 143.43 (1C), 143.49 (1C), 143.52 (1C), 143.53 (1C), 143.70 1C+1C), 143.79 (1C+1C), 143.83 (1C), 143.99 (1C), 144.05 (1C), 144.17 (1C), 144.83 (1C), 144.89 (1C), 145.10 (1C), 145.11 (1C), 146.26 (1C), 146.33 1C),146.40 (1C), 146.41 (1C), 146.55 (1C), 147.47 (1C), 147.50 (1C+1C), 147.56 (1C), 147.58 (1C), 147.61 (1C), 147.64 (1C), 147.67(1C), 147.71 (1C), 147.7 (1C), 147.80 (1C), 148.16 (1C), 148.18 (1C), 148.20 (1C), 148.23 (1C+1C), 148.42 (1C), 149.04 (1C), 149.48 (1C), 150.52 1C), 150.62 (1C), 150.88 (1C), 151.10 (1C), 151.83 (1C), 190.27 (3C); APCI-MS (+): m/z 1252 (M+).
【0056】
【発明の効果】
本発明のヒドロ(アルキル)フラーレン金属錯体及びヒドロ(アルキル)フラーレン誘導体は、医薬原料、電子材料などの用途が期待でき、また種々のフラーレン金属錯体及びフラーレン誘導体を合成する際の中間原料、更にはさまざまな合成反応の触媒として有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydro (alkyl) fullerene metal complex having a specific structure, a hydro (alkyl) fullerene derivative, and a method for producing a pentaalkylfullerene metal complex using a hydro (alkyl) fullerene metal complex as a raw material.
[0002]
[Prior art]
C in 199060Since the establishment of a large-scale synthesis method, fullerene research has been energetically developed. As a result, many fullerene derivatives have been synthesized and their various functions have been clarified. Accordingly, various uses such as electron conductive materials, semiconductors, and physiologically active substances using fullerene derivatives have been developed (for example, see Non-Patent Document 1 and Non-Patent Document 2).
[0003]
As specific examples of such fullerene derivatives, the present inventors have provided fullerene compounds in which 10 organic groups are bonded to the fullerene skeleton, fullerene compounds in which 5 organic groups are bonded, and these compounds as ligands. Various transition metal complexes have been synthesized and reported (see, for example, Patent Document 1, Patent Document 2, Patent Document 3, Non-Patent Document 3, Non-Patent Document 4, and Non-Patent Document 5).
[0004]
[Non-Patent Document 1]
The Chemical Society of Japan, Quarterly Chemical Review No. 43, "Chemistry of Carbon Allotrophic Fullerenes", Japan Society Publication Center (1999)
[Non-Patent Document 2]
"Fullerenes: Chemistry, Physics, and Technology", John Wiley & Sons (2000)
[Patent Document 1]
Japanese Patent Laid-Open No. 10-167994
[Patent Document 2]
JP-A-11-255509
[Patent Document 3]
JP 2002-241323 A
[Non-Patent Document 3]
Journal of the American Chemical Society, 1996, 118, 12850
[Non-Patent Document 4]
Organic Letters, 2000, 2, 1919
[Non-Patent Document 5]
Chemistry Letters, 2000, page 1098
[0005]
[Problems to be solved by the invention]
The present invention is different from the fullerene compounds added with five organic groups already proposed by the present inventors, and relates to metal complexes and derivatives added with one or more hydrogens among the organic groups. All added groups are expected to have sterically and electronically different properties compared to those of organic groups. For example, it becomes a precursor of various fullerene derivatives, for example, a substitution reaction occurs in a portion to which hydrogen is added, and the metal complex has a three-dimensionally small fullerene portion, so that various catalytic reactions are likely to proceed. It is. Therefore, these novel metal complexes of fullerene and fullerene derivatives have been desired.
[0006]
[Means for Solving the Invention]
The invention according to claim 1 of the present invention is a general formula C having a partial structure represented by the following (formula 1).xRmH(5-m)MLnThe present invention relates to a hydroalkyl fullerene metal complex represented by (Formula 2).
[0007]
[Formula 4]
Figure 0004175089
[0008]
(In Formula 1 and Formula 2, A represents a hydrogen atom or R, and CxRepresents a fullerene skeleton, x represents an even number of 60 or more, R represents an alkyl group or an aryl group which may have a substituent having 1 to 10 carbon atoms, and may be the same or different, m is 1 An integer of ~ 4, M represents a transition metal atom, L is η1Or η2N is an integer of 0 to 5, and when n is 2 or more, L may be the same or different. )
The invention according to claim 2 of the present invention has a partial structure represented by the following (formula 3):xHFiveMLnThe present invention relates to a pentahydrofullerene metal complex represented by (Formula 4).
[0009]
[Chemical formula 5]
Figure 0004175089
[0010]
(In Formula 4, CxRepresents a fullerene skeleton, x represents an even number of 60 or more, M represents a transition metal atom, and L represents η1Or η2Wherein n is an integer of 0 to 5, and L in the case where n is 2 or more may be the same or different. )
The invention according to claim 3 is a general formula C having a partial structure represented by the following (formula 5).xRpH(5-p)The present invention relates to a hydro (alkyl) fullerene derivative represented by H (Formula 6).
[0011]
[Chemical 6]
Figure 0004175089
[0012]
(In Formula 5 and Formula 6, A represents a hydrogen atom or R. CxRepresents a fullerene skeleton, x represents an even number of 60 or more, R represents an alkyl group or an aryl group which may have a substituent having 1 to 10 carbon atoms, and may be the same or different, p is 0 It is an integer of ~ 4. )
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The hydroalkyl fullerene metal complex of the present invention has the general formula CxRmH(5-m)MLn(Formula 2) (In Formula 2, CxRepresents a fullerene skeleton, x represents an even number of 60 or more, R represents an alkyl group or an aryl group which may have a substituent having 1 to 10 carbon atoms, and may be the same or different, m is 1 An integer of ~ 4, M represents a transition metal atom, L is η1Or η2N is an integer of 0 to 5, and when n is 2 or more, L may be the same or different. And the relative positions of the hydrogen atom and R of the compound are determined at the position of A in the partial structure represented by Formula 1.
[0014]
[Chemical 7]
Figure 0004175089
[0015]
The case in which A in Formula 1 is all hydrogen atoms, that is, when m is 0 in Formula 2,xHFiveMLnIt is a pentahydrofullerene metal complex represented by (Formula 4).
Further, the hydro (alkyl) fullerene derivative of the present invention is a transition metal atom part ML containing a ligand in the metal complex represented by the formula 2 or formula 4.nIs substituted with a hydrogen atom. Specifically, the general formula CxRpH(5-p)H (Formula 6) (CxRepresents a fullerene skeleton, x represents an even number of 60 or more, R represents an alkyl group or an aryl group which may have a substituent having 1 to 10 carbon atoms, and may be the same or different, p is 0 It is an integer of ~ 4. And has a partial structure represented by the following formula 5.
[0016]
[Chemical 8]
Figure 0004175089
[0017]
Hereinafter, the hydro (alkyl) fullerene metal complex and the hydro (alkyl) fullerene derivative represented by Formula 2, Formula 4, and Formula 6 will be described in detail.
Fullerene skeleton CxSpecifically, C60(So-called Buckminster Fullerene), C70, C76, C78, C82, C84, C90, C94, C96And higher order carbon cluster skeletons. C of these60, C70Is preferable because it is easily available industrially.
[0018]
1 to 5 hydrogen atoms are added to one fullerene skeleton, and 4 to 0 organic groups (R) are correspondingly added to the fullerene skeleton, each of which is represented by the following formula 7. An organic group (R) or a hydrogen atom is bonded to position A in the structural formula.
[0019]
[Chemical 9]
Figure 0004175089
[0020]
When it has a plurality of organic groups (R), they may be the same as or different from each other. This organic group (R) is usually an alkyl group or an aryl group which may have a substituent having 1 to 10 carbon atoms, and may be the same or different.
Specific examples of the organic group (R) include linear or branched chain alkyl groups such as methyl group, ethyl group, propyl group and isopropyl group; cyclic alkyl groups such as cyclopropyl group, cyclopentyl group and cyclohexyl group; vinyl A straight chain or branched chain alkenyl group such as a group, propenyl group or hexenyl group; an alkynyl group such as an ethynyl group, a methylethynyl group or a phenylethynyl group; a cyclic alkenyl group such as a cyclopentenyl group or a cyclohexenyl group; 2-thienyl Group, heterocyclic group such as 2-pyridyl group and 2-furfuryl group; aryl group such as phenyl group and naphthyl group; and aralkyl group such as benzyl group and phenethyl group. Each of these may be substituted with one or more substituents such as an alkyl group, an aryl group, an alkoxy group, a hydroxyl group, an amino group, a carboxyl group, and a halogen atom.
[0021]
M contained in the structure of the metal complex represents a transition metal atom, and Group 5 to Group 10, more preferably Group 6 to 8, more preferably Group 7 and Group 8 metals. Of these, Re and Fe are particularly preferred, and Re is most preferred.
L is a ligand of M. The coordination form is η1, Η2This is a non-conjugated ligand. The type and number n vary depending on the type and valence of M, and an appropriate type and number n are selected according to M. n is an integer of 0-5 normally. As a specific example of L, η1Are ligands that form sigma bonds, such as hydrogen atoms, alkyl groups, aryl groups, halogen atoms, alkoxy groups, amide groups, and the like,2Examples of coordination include ligands coordinated by a lone electron pair, such as tertiary phosphine, CO, tertiary amine, and olefin. In addition, η such as 1,5-cyclooctadiene and 1,2-bis (diphenylphosphino) ethane1, Η2A type of multidentate ligand is also preferred. ηThreeThe above conjugated ligands are not preferred because they strongly block the coordination site, especially when this metal complex is applied to catalytic reactions, and the exchange of the ligand after the metal complex is formed due to its stability. Since the reaction does not proceed easily, conversion to various metal complexes is difficult.
[0022]
Examples of specific hydro (alkyl) fullerene metal complexes are shown in the following formulas 8 to 11 (Ph in the following formulas 9 to 11 represents a phenyl group, and Me represents a methyl group).
[0023]
[Chemical Formula 10]
Figure 0004175089
[0024]
On the other hand, the hydro (alkyl) fullerene derivative of the present invention has ML in the complex.nA compound in which the moiety is substituted with H. Examples of specific hydro (alkyl) fullerene derivatives are shown in the following formulas 12 to 15 (in formulas 13 to 15, Ph represents a phenyl group, and Me represents a methyl group).
[0025]
Embedded image
Figure 0004175089
[0026]
The hydro (alkyl) fullerene metal complex of the present invention can be produced by the following method.
It can be obtained by using fullerene or an organic group-added fullerene as a raw material and reacting a transition metal precursor or a transition metal precursor and a reducing agent in a solvent.
When fullerene is used as a raw material, a pentahydrofullerene metal complex represented by the above formula 4 is produced. When an organic group-added fullerene is used as a raw material, Formula 2 which maintains the addition position and number of organic groups in the raw material. The hydroalkyl fullerene metal complex represented by these can be manufactured.
[0027]
As an example of fullerene as a raw material, C60(So-called Buckminster Fullerene), C70, C76, C78, C82, C84, C90, C94, C96And higher order carbon cluster skeletons. In this, C60, C70Is easily used industrially and is preferably used as a raw material of the present invention.
The number of organic groups of the organic group-added fullerene as a raw material is 1 to 4. Specifically, CxR1H, CxR1 2, CxR1 ThreeH and CxR1 FourEach having a partial structure of (Formula 16 to Formula 19) below.
[0028]
Embedded image
Figure 0004175089
[0029]
Here, the fullerene skeleton of the organic group-added fullerene is C60(So-called Buckminsterfullerene), C70, C76, C78, C82, C84, C90, C94, C96And higher-order carbon cluster skeletons. Among these, C is used as the raw material fullerene.60, C70Therefore, organic group-added fullerenes having these skeletons are particularly preferable.
Where R1Is usually an alkyl group or aryl group optionally having a substituent having 1 to 10 carbon atoms, and R1If there are multiple, each R1May be the same or different.
R1Specific examples of these include linear or branched chain alkyl groups such as methyl group, ethyl group, propyl group and isopropyl group; cyclic alkyl groups such as cyclopropyl group, cyclopentyl group and cyclohexyl group; vinyl group, propenyl group, Linear or branched chain alkenyl groups such as hexenyl group; cyclic alkenyl groups such as cyclopentenyl group and cyclohexenyl group; alkynyl groups such as ethynyl group, methylethynyl group and phenylethynyl group; 2-thienyl group, 2-pyridyl Groups, heterocyclic groups such as furfuryl groups; aryl groups such as phenyl groups and naphthyl groups; and aralkyl groups such as benzyl groups and phenethyl groups. Each of these may be substituted with one or more substituents such as an alkyl group, an aryl group, an alkoxy group, a hydroxyl group, an amino group, a carboxyl group, and a halogen atom.
[0030]
Some of the organic group-added fullerenes having these partial structures can be produced by a known method using fullerene having a corresponding skeleton as a raw material. For example, C60(CH2SiMeThree) H, Journal of Organic Chemistry, 1994, 59, 1246, C60(CH2SiMeThree)2Is described in Journal of Organic Chemistry, 1994, 59, 1246 and Japanese Patent Application No. 2002-016143.60(CH2SiMeThree)ThreeH, Japanese Patent Application No. 2002-016143, C70PhThreeH is disclosed in JP-A-11-255508 and Journal of the American Chemical Society, 1998, 120, 8285, C60(CH2Ph)2The production method of PhH is disclosed in Organic Letters, 2000, Vol. 2, p. 1919.
[0031]
The transition metal precursor used in the production of the compound of the present invention is a complex of Group 5 to Group 10, more preferably Group 6 to 8, more preferably Group 7 and Group 8. Of these, low-valent transition metal complexes are preferred because they have reducing properties. Specifically, zero-valent, monovalent or divalent Mn, Re, Fe, Ru, and Os can be mentioned. Zero-valent Re and zero-valent and monovalent Fe are more preferable, and zero-valent Re is most preferable.
[0032]
Examples of the ligand possessed by the transition metal precursor include a hydrogen atom, an alkyl group, an aryl group, an alkoxy group, an amide group, a halogen atom, a tertiary phosphine, CO, a tertiary amine, and an olefin. Examples of specific preferred transition metal precursors include Fe2(CO)9, Fe (CO)Five, Re2(CO)Ten, Cr (CO)6And transition metal carbonyl complexes.
[0033]
Transition metal precursors are MLnAmong them, the low-valent transition metal complex having reducibility also serves as a reducing agent for fullerene or organic group-added fullerene.
Next, specific examples of the reducing agent include hydrogen; a reducing agent having a hydrogen transfer ability such as 1,3-hexadiene, dihydronaphthalene, dihydroanthracene, diimide, hydrazine; tertiary phosphines such as triphenylphosphine; dimethyl sulfide Sulfides such as borane, LiAlHFour, NaBHFourMetal hydrides such as, alkali metals such as Na, K. Ca, or alkaline earth metals alone. Of these, a reducing agent having hydrogen transfer ability is particularly preferably used.
[0034]
When the transition metal precursor is used without using another reducing agent, it is necessary to use an excess amount relative to fullerene or organic group-added fullerene. Usually, the molar ratio of transition metal atom to fullerene or organic group-added fullerene is 2.0 to 50 equivalents, preferably 2.0 to 20 equivalents.
When the reducing agent is used, the amount of the transition metal precursor is 1.0 to 10 equivalents, preferably 1.0 to 3.0 equivalents, in terms of the molar ratio of transition metal atoms to fullerene or organic group-added fullerene.
[0035]
In addition, the amount of the reducing agent in the case of using a reducing agent varies depending on the fullerene or organic group addition fullerene to be reacted, the type and amount of the reducing agent or transition metal complex used, and the reaction conditions. The molar ratio is 1 to 100 equivalents, preferably 1 to 50 equivalents with respect to fullerene.
Reaction solvents are typically aromatic hydrocarbons such as benzene, toluene, xylenes, trimethylbenzenes, halogenated aromatic hydrocarbons such as chlorobenzene and o-dichlorobenzene, benzonitrile, o-tolunitrile, p-tolunitrile, etc. An aromatic nitrile or the like is used. In particular, aromatic nitriles such as benzonitrile and o-tolunitrile are preferable. The amount used varies depending on the type of solvent used, but is usually used in an amount of 1 mmol / L to 100 mmol / L as the fullerene or organic group-added fullerene concentration.
[0036]
The reaction temperature varies depending on the type of transition metal precursor and reducing agent to be used, but usually high temperature conditions are preferable, specifically, 80 to 250 ° C., preferably 100 to 200 ° C. If the temperature is too low, a sufficient reaction rate cannot be obtained, and if the temperature is too high, decomposition of the product occurs, which is not preferable. The reaction time is usually about 1 hour to 10 days.
[0037]
The hydro (alkyl) fullerene derivative is prepared by reacting the fullerene or organic group-added fullerene, transition metal precursor, transition metal precursor and reducing agent used in the production of the above-mentioned hydro (alkyl) fullerene metal complex in a solvent. In the presence of a protonating reagent.
Examples of the protonating reagent include water, alcohols such as methanol and ethanol, carboxylic acids such as acetic acid, and the like. Of these, water is particularly preferable. In this case, the reaction conditions can be produced by the same method as the method for producing a hydro (alkyl) fullerene metal complex described above, except that a protonating reagent is added to the reaction system before starting the reaction. The amount of the protonating reagent used is usually in the range of 1 to 100 equivalents relative to the fullerene organic group-added fullerene.
[0038]
These products are isolated by common purification methods of organic compounds, such as crystallization and chromatography.
The hydro (alkyl) fullerene metal complex and hydro (alkyl) fullerene derivative of the present invention are expected to be used as pharmaceutical raw materials and electronic materials. It is also useful as an intermediate material for the synthesis of various fullerene derivative complexes and fullerene derivatives.
[0039]
【Example】
The present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist.
Example 1: C60(CH2Ph) HFour-Re (CO)ThreeSynthesis of
Schlenk tube, C60(CH2Ph) H (21.0 mg, 29.1 μmol) and Re2(CO)Ten(42.2 mg, 64.7 μmol), 9,10-dihydroanthracene (455 mg, 2.52 mmol), and a solution of benzonitrile (2 ml) were degassed at 0 ° C. under reduced pressure for 30 minutes. This solution was heated at 160 ° C. for 1 day under a nitrogen stream, and then the reaction solution was diluted with a mixed solvent (8 ml) of toluene / 2-propanol = 7/3. The diluted solution was filtered, and the complex was purified by liquid chromatography (hereinafter referred to as “HPLC”) using the filtrate (trade name of the column used: Bucky Prep. (Manufactured by Nacalai Tesque Co., 20 mm × 250 mm), toluene / 2-propanol = 7/3, flow rate = 20 ml / min, residence time = about 12 min). The collected liquid was concentrated to a volume of 1 ml or less under reduced pressure, and methanol was added to form an orange precipitate. The precipitate was filtered off and dried under vacuum to obtain 11.4 mg (yield 42%) of the target product as an orange solid. The physical properties of the product are as follows.
[0040]
Embedded image
Figure 0004175089
In Formula 20, Bn represents a benzyl group.
[0041]
IR (powder, ν / cm-1) 3027 (vw), 2911 (vw), 2020 (s), 1922 (s), 1494 (w), 1456 (w), 1421 (w), 1287 (w), 1214 (w), 1179 (w) , 1109 (w), 1078 (w), 1031 (w), 1013 (w), 749 (w), 733 (w), 698 (m), 685 (w);1H NMR (CS2/ CDClThree= 5/1, 400 MHz) δ 3.63 (s, 2H, PhCH2), 5.22 (s, 2H + 2H, C60H), 7.14-7.22 (m, 5H, Ph);13C NMR (CS2/ CDClThree= 5/1, 100 MHz) δ 44.19 (d,1JCH = 145 Hz, 2C), 44.56 (d,1JCH = 145 Hz, 2C), 51.84 (t,1JCH = 131 Hz, 1C), 55.77 (2C), 100.05 (2C), 105.24 (2C), 108.27 (1C), 126.97 (1C), 127.87 (2C), 130.11 (2C), 135.52 (1C), 143.00 (2C) ), 143.43 (2C), 143.65 (2C), 143.73 (2C), 143.76 (2C), 144.09 (2C), 144.63 (2C), 144.89 (2C), 144.90 (2C + 2C), 146.31 (1C), 146.32 (2C), 146.36 (2C), 147.61 (2C), 147.68 (2C + 2C), 147.79 (2C + 2C), 148.08 (2C), 148.15 (2C), 148.17 (1C), 148.18 (2C), 148.95 ( 2C), 148.97 (2C), 149.03 (2C), 151.55 (2C) (The signal derived from the CO ligand could not be identified due to the overlap with the strong signal derived from carbon disulfide.); APCI-MS ( -): m / z = 1086 (M-).
[0042]
Example 2: C60(CH2Ph)2HThree-Re (CO)ThreeSynthesis of
Schlenk tube, C60(CH2Ph)2(30.8 mg, 34.1 μmol) and Re2(CO)TenA solution of (58.2 mg, 89.2 μmol), 9,10-dihydroanthracene (613 mg, 3.40 mmol), and benzonitrile (3 ml) was degassed at 0 ° C. under reduced pressure for 30 minutes. This solution was heated at 160 ° C. for 1 day under a nitrogen stream, and then the reaction solution was diluted with a mixed solvent (17 ml) of toluene / 2-propanol = 7/3. The diluted solution was filtered, and the complex was purified by HPLC using the filtrate (trade name of the column used: Bucky Prep. (Nacalai Tesque Co., 20 mm × 250 mm), toluene / 2- Propanol = 7/3, flow rate = 20 ml / min, residence time = about 12 min). The collected liquid was concentrated to a volume of 1 ml or less under reduced pressure, and methanol was added to form an orange precipitate. The precipitate was filtered off and dried under vacuum to obtain 22.2 mg (yield 55%) of the target product as an orange solid. The physical properties of the product are as follows.
[0043]
Embedded image
Figure 0004175089
In Formula 21, Bn represents a benzyl group.
[0044]
IR (powder, ν / cm-1) 3027 (vw), 2911 (vw), 2020 (s), 1924 (s), 1494 (w), 1454 (w), 1429 (w), 1287 (w), 1215 (w), 1179 (w) , 1109 (w), 1077 (w), 1029 (w), 748 (m), 738 (m), 729 (m), 698 (s), 675 (m);1H NMR (CDClThree, 400 MHz) δ 3.70 (d, J = 13.2 Hz, 2H, PhCHH), 3.75 (d, J = 13.2 Hz, 2H, PhCHH), 5.27 (s, 2H + 1H, C60H), 7.14-7.22 (m, 10H, Ph);13C NMR (CS2/ CDClThree= 5/1, 100 MHz) δ 44.16 (d,1JCH = 144 Hz, 2C), 44.47 (d,1JCH = 145 Hz, 1C), 51.73 (t,1JCH = 132 Hz, 2C), 55.90 (2C), 98.33 (1C), 102.37 (2C), 111.56 (2C), 127.05 (2C), 127.94 (4C), 130.14 (4C), 135.54 (2C), 142.67 (2C) ), 142.91 (2C), 143.41 (2C), 143.63 (2C), 143.76 (2C), 143.78 (2C), 144.05 (2C), 144.71 (2C), 144.90 (2C), 144.92 (2C), 146.20 (2C) ), 146.28 (2C), 146.33 (1C), 147.42 (2C), 147.50 (2C), 147.59 (2C), 147.62 (2C), 147.63 (2C), 147.78 (2C), 148.09 (1C), 148.10 (2C) ), 148.13 (2C), 148.75 (2C), 148.87 (2C), 150.79 (2C), 150.92 (2C) APCI-MS (-): m / z = 1176 (M-).
[0045]
Example 3: C60(CH2Ph)2(Ph) H2-Re (CO)ThreeSynthesis of
Schlenk tube, C60(CH2Ph)2(Ph) H (15.3 mg, 15.6 μmol) and Re2(CO)TenA solution of (25.2 mg, 38.6 μmol), 9,10-dihydroanthracene (29.8 mg, 165 μmol), and benzonitrile (1.5 ml) was degassed at 0 ° C. under reduced pressure for 30 minutes. After this solution was heated at 160 ° C. for 1 day under a nitrogen stream, the reaction solution was diluted with a mixed solvent (8 ml) of toluene / 2-propanol = 7/3. The diluted solution was filtered, and the complex was purified by HPLC using the filtrate (trade name of the column used: Bucky Prep. (Nacalai Tesque Co., 20 mm × 250 mm), toluene / 2- (Propanol = 7/3, flow rate = 20 ml / min, residence time = about 7 min). The collected liquid was concentrated to a volume of 1 ml or less under reduced pressure, and methanol was added to form an orange precipitate. The precipitate was filtered off and dried in vacuo to give 12.6 mg (yield 65%) of the desired product as an orange solid. The physical properties of the product are as follows.
[0046]
Embedded image
Figure 0004175089
In Formula 22, Bn represents a benzyl group and Ph represents a phenyl group.
[0047]
IR (KBr disk, ν / cm-1) 3028 (w), 2918 (w), 2024 (s), 1939 (br, s), 1515 (w), 1494 (m), 1457 (m), 1419 (w), 1288 (w), 1216 ( w), 1179 (w), 1079 (w), 1030 (w), 746 (w), 698 (m), 610 (w), 543 (m), 509 (w);1H NMR (CDClThree, 400 MHz) δ 3.60 (d, J = 13.2 Hz, 1H, PhCHH), 3.62 (d, J = 13.2 Hz, 1H, PhCHH), 3.78 (d, J = 13.2 Hz, 1H, PhCHH), 3.93 (d, J = 13.2 Hz, 1H, PhCHH), 5.32 (d, J = 2.8 Hz, 1H, C60H), 5.51 (d, J = 2.8 Hz, 1H, C60H), 7.20-7.30 (m, 6H, Ph), 7.31-7.41 (m, 4H, Ph), 7.49 (tt, J = 1.2, 7.4 Hz, 1H, Ph), 7.62 (t, J = 7.6 Hz, 2H, Ph), 7.93 (dd, J = 1.2, 8.0 Hz, 2H, Ph);13C NMR (CS2/ CDClThree= 3/1, 100 MHz) δ 44.35 (d,1JCH = 145 Hz, 1C + 1C), 50.84 (t,1JCH= 132Hz, 1C), 51.78 (t,1JCH= 132Hz, 1C), 55.92 (1C), 56.01 (1C), 58.29 (1C), 97.95 (1C), 102.62 (1C), 110.72 (1C), 111.52 (1C), 114.05 (1C), 126.60 (2C) , 127.05 (1C), 127.16 (1C), 127.95 (2C), 127.97 (1C), 128.06 (2C), 129.03 (2C), 130.15 (2C), 130.19 (2C), 135.61 (1C), 135.76 (1C) , 142.69 (1C), 142.75 (1C), 142.83 (1C), 142.99 (1C), 143.05 (1C), 143.24 (1C), 143.43 (1C), 143.49 (1C), 143.52 (1C), 143.53 (1C) , 143.70 (1C + 1C), 143.79 (1C + 1C), 143.83 (1C), 143.99 (1C), 144.05 (1C), 144.17 (1C), 144.83 (1C), 144.89 (1C), 145.10 (1C), 145.11 (1C), 146.26 (1C), 146.33 (1C), 146.40 (1C), 146.41 (1C), 146.55 (1C), 147.47 (1C), 147.50 (1C + 1C), 147.56 (1C), 147.58 (1C ), 147.61 (1C), 147.64 (1C), 147.67 1C), 147.71 (1C), 147.7 (1C), 147.80 (1C), 148.16 (1C), 148.18 (1C), 148.20 (1C), 148.23 (1C + 1C), 148.42 (1C), 149.04 (1C), 149.48 (1C), 150.52 1C), 150.62 (1C), 150.88 (1C), 151.10 (1C), 151.83 (1C), 190.27 (3C); APCI-MS (+): m / z 1252 (M+).
[0048]
Example 4: C60(CH2Ph)2(Ph) HThreeSynthesis of
Schlenk tube, C60(CH2Ph)2(Ph) H (19.5 mg, 19.9 μmol) and Re2(CO)TenA solution of (33.0 mg, 37.1 μmol), 9,10-dihydroanthracene (37.1 mg, 206 μmol), and benzonitrile (4 ml) was degassed at 0 ° C. under reduced pressure for 30 minutes. Water (35.8 μl, 199 μmol) was added to this solution and heated at 160 ° C. for 1 day under a nitrogen stream, and then the reaction solution was diluted with a mixed solvent (16 ml) of toluene / 2-propanol = 6/4. The diluted solution was filtered, and the compound was purified by HPLC using the filtrate (trade name of the column used: Bucky Prep. (Nacalai Tesque Co., 20 mm × 250 mm), toluene / 2- Propanol = 6/4, flow rate = 20 ml / min, residence time = about 10 min). The collected liquid was concentrated to a volume of 1 ml or less under reduced pressure, and methanol was added to form an orange precipitate. The precipitate was filtered off and dried in vacuo to give 12.0 mg (yield 61%) of the desired product (mixture of five regioisomers) as an orange solid. The physical properties of the product are as follows.
[0049]
Embedded image
Figure 0004175089
In Formula 23, Bn represents a benzyl group and Ph represents a phenyl group.
[0050]
IR (powder, ν / cm-1) 3027 (w), 1602 (m), 1493 (m), 1451 (m), 1077 (w), 1032 (m), 749 (m), 699 (s); APCI-MS (-): m / z = 981 [(M-1)-Example 5: C60HFive-Re (CO)ThreeSynthesis of
Schlenk tube, C60(19.6 mg, 27.2 μmol) and Re2(CO)TenA solution of (34.0 mg, 52.1 μmol), 9,10-dihydroanthracene (51.8 mg, 287 μmol), and benzonitrile (2 ml) was degassed at 0 ° C. under reduced pressure for 30 minutes. This solution was heated at 160 ° C. for 1 day under a nitrogen stream, and then the reaction solution was diluted with a mixed solvent (6 ml) of toluene / 2-propanol = 7/3. The diluted solution was filtered, and the complex was purified by HPLC using the filtrate (trade name of the column used: Bucky Prep. (Nacalai Tesque Co., 20 mm × 250 mm), toluene / 2- Propanol = 7/3, flow rate = 20 ml / min, residence time = about 23 min). The separated liquid was concentrated under reduced pressure, and the obtained solid was vacuum-dried to obtain 2.1 mg (yield 8%) of the target product as an orange solid. The physical properties of the product are as follows.
[0051]
Embedded image
Figure 0004175089
[0052]
IR (powder, ν / cm-1) 2017 (s), 1921 (s), 1901 (s), 1514 (w), 1455 (w), 1419 (w), 1214 (w), 1179 (w), 1167 (w), 1058 (w) , 1005 (w), 697 (m);1H NMR (CDClThree, 400 MHz) δ 5.23 (s, 5H, C60H);13C NMR (CDClThree, 100 MHz) δ 44.73 (d,1JCH = 145 Hz, 5C), 102.97 (5C), 143.97 (10C), 145.25 (10C), 146.77 (5C), 148.21 (10C), 148.56 (5C), 149.57 (10C), 190.64 (3C); APCI-MS (-): m / z = 996 (M-).
[0053]
Example 6: C60(CH2Ph)2(Ph) H2-Re (CO)ThreeSynthesis of
Schlenk tube, C60(CH2Ph)2(Ph) H (100 mg, 102 μmol) and Re2(CO)Ten(161 mg, 246 μmol) and a solution of benzonitrile (20 ml) were degassed at 0 ° C. under reduced pressure for 30 minutes. This solution was heated at 150 ° C. for 25 hours under a nitrogen stream, and then the solvent was distilled off from the reaction solution under reduced pressure. The complex was purified using HPLC.
(Product name of the column used: Bucky Prep. (Nacalai Tesque Co., 20 mm × 250 mm), toluene / 2-propanol = 7/3, flow rate = 20 ml / min, residence time = about 7 min). The separated liquid was concentrated under reduced pressure, and the obtained solid was vacuum-dried to obtain 88.2 mg (yield 69%) of the target product as an orange solid. The physical properties of the product are as follows.
[0054]
Embedded image
Figure 0004175089
In Formula 25, Bn represents a benzyl group and Ph represents a phenyl group.
[0055]
IR (KBr disk, ν / cm-1) 3028 (w), 2918 (w), 2024 (s), 1939 (br, s), 1515 (w), 1494 (m), 1457 (m), 1419 (w), 1288 (w), 1216 ( w), 1179 (w), 1079 (w), 1030 (w), 746 (w), 698 (m), 610 (w), 543 (m), 509 (w);1H NMR (CDClThree, 400 MHz) δ 3.60 (d, J = 13.2 Hz, 1H, PhCHH), 3.62 (d, J = 13.2 Hz, 1H, PhCHH), 3.78 (d, J = 13.2 Hz, 1H, PhCHH), 3.93 (d, J = 13.2 Hz, 1H, PhCHH), 5.32 (d, J = 2.8 Hz, 1H, C60H), 5.51 (d, J = 2.8 Hz, 1H, C60H), 7.20-7.30 (m, 6H, Ph), 7.31-7.41 (m, 4H, Ph), 7.49 (tt, J = 1.2, 7.4 Hz, 1H, Ph), 7.62 (t, J = 7.6 Hz, 2H, Ph), 7.93 (dd, J = 1.2, 8.0 Hz, 2H, Ph);13C NMR (CS2/ CDClThree= 3/1, 100 MHz) δ 44.35 (d,1JCH = 145 Hz, 1C + 1C), 50.84 (t,1JCH= 132Hz, 1C), 51.78 (t,1JCH= 132Hz, 1C), 55.92 (1C), 56.01 (1C), 58.29 (1C), 97.95 (1C), 102.62 (1C), 110.72 (1C), 111.52 (1C), 114.05 (1C), 126.60 (2C) , 127.05 (1C), 127.16 (1C), 127.95 (2C), 127.97 (1C), 128.06 (2C), 129.03 (2C), 130.15 (2C), 130.19 (2C), 135.61 (1C), 135.76 (1C) , 142.69 (1C), 142.75 (1C), 142.83 (1C), 142.99 (1C), 143.05 (1C), 143.24 (1C), 143.43 (1C), 143.49 (1C), 143.52 (1C), 143.53 (1C) , 143.70 1C + 1C), 143.79 (1C + 1C), 143.83 (1C), 143.99 (1C), 144.05 (1C), 144.17 (1C), 144.83 (1C), 144.89 (1C), 145.10 (1C), 145.11 (1C), 146.26 (1C), 146.33 1C), 146.40 (1C), 146.41 (1C), 146.55 (1C), 147.47 (1C), 147.50 (1C + 1C), 147.56 (1C), 147.58 (1C), 147.61 (1C), 147.64 (1C), 147.67 (1C), 147.71 (1C), 147.7 (1C), 147.80 (1C), 148.16 (1C), 148.18 (1C), 148.20 (1C), 148.23 (1C + 1C ), 148.42 (1C), 149.04 (1C), 149.48 (1C), 150.52 1C), 150.62 (1C), 150.88 (1C), 151.10 (1C), 151.83 (1C), 190.27 (3C); APCI-MS ( +): m / z 1252 (M+).
[0056]
【The invention's effect】
The hydro (alkyl) fullerene metal complex and hydro (alkyl) fullerene derivative of the present invention can be expected to be used for pharmaceutical raw materials, electronic materials and the like, intermediate raw materials for synthesizing various fullerene metal complexes and fullerene derivatives, It is useful as a catalyst for various synthetic reactions.

Claims (5)

下記(式1)で表される部分構造を有することを特徴とする一般式CxRmH(5-m)MLn(式2)で表されるヒドロアルキルフラーレン金属錯体。
Figure 0004175089
(式1及び式2中、Aは水素原子またはRを表し、Cxはフラーレン骨格を表し、xは60以上の偶数、Rは炭素数1〜10の置換基を有していてもよいアルキル基又はアリール基を表し、それぞれ同じでも異なっていてもよい、mは1〜4の整数、Mは遷移金属原子を表し、Lはη1又はη2の配位子を表す、nは0〜5の整数であり、nが2以上の場合のLはそれぞれ同じでも異なっていてもよい。)
Following hydroalkylation fullerene metal complex represented by the general formula C x R m H characterized by having a partial structure represented by formula (1) (5-m) ML n ( Equation 2).
Figure 0004175089
(In Formula 1 and Formula 2, A represents a hydrogen atom or R, C x represents a fullerene skeleton, x represents an even number of 60 or more, and R represents an alkyl optionally having a substituent having 1 to 10 carbon atoms. Each represents the same or different group, m represents an integer of 1 to 4, M represents a transition metal atom, L represents a ligand of η 1 or η 2 , and n represents 0 to 0 L is an integer of 5 and n in the case where n is 2 or more may be the same or different.)
下記(式3)で表される部分構造を有することを特徴とする一般式CxH5MLn(式4)で表されるペンタヒドロフラーレン金属錯体。
Figure 0004175089
(式4中、Cxはフラーレン骨格を表し、xは60以上の偶数、Mは遷移金属原子を表し、Lはη1又ははη2の配位子を表し、nは0〜5の整数であり、nが2以上の場合のLはそれぞれ同じでも異なっていてもよい。)
A pentahydrofullerene metal complex represented by the general formula C x H 5 ML n (formula 4), having a partial structure represented by the following (formula 3).
Figure 0004175089
(In Formula 4, C x represents a fullerene skeleton, x represents an even number of 60 or more, M represents a transition metal atom, L represents a ligand of η 1 or η 2 , and n is an integer of 0 to 5) And L in the case where n is 2 or more may be the same or different.
下記(式5)で表される部分構造を有することを特徴とする一般式CxRpH(5-p)H(式6)で表されるヒドロ(アルキル)フラーレン誘導体。
Figure 0004175089
(式5及び式6中、Aは水素原子またはRを表す。Cxはフラーレン骨格を表し、xは60以上の偶数、Rは炭素数1〜10の置換基を有していてもよいアルキル基又はアリール基を表し、それぞれ同じでも異なっていてもよい、pは0〜4の整数である。)
Hydro (alkyl) fullerene derivative represented by the following general formula and having a partial structure represented by formula (5) C x R p H ( 5-p) H ( Equation 6).
Figure 0004175089
(In Formula 5 and Formula 6, A represents a hydrogen atom or R. C x represents a fullerene skeleton, x represents an even number of 60 or more, and R represents an alkyl optionally having a substituent having 1 to 10 carbon atoms. Represents a group or an aryl group, and may be the same or different, p is an integer of 0 to 4)
フラーレン骨格Cxのxが60又は70である請求項1又は2に記載のヒドロ(アルキル)フラーレン金属錯体。The hydro (alkyl) fullerene metal complex according to claim 1, wherein x of the fullerene skeleton C x is 60 or 70. フラーレン骨格Cxのxが60又は70である請求項3記載のヒドロ(アルキル)フラーレン誘導体。The hydro (alkyl) fullerene derivative according to claim 3, wherein x of the fullerene skeleton Cx is 60 or 70.
JP2002320702A 2002-11-05 2002-11-05 Hydro (alkyl) fullerene metal complexes and hydro (alkyl) fullerene derivatives Expired - Lifetime JP4175089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002320702A JP4175089B2 (en) 2002-11-05 2002-11-05 Hydro (alkyl) fullerene metal complexes and hydro (alkyl) fullerene derivatives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002320702A JP4175089B2 (en) 2002-11-05 2002-11-05 Hydro (alkyl) fullerene metal complexes and hydro (alkyl) fullerene derivatives

Publications (2)

Publication Number Publication Date
JP2004155675A JP2004155675A (en) 2004-06-03
JP4175089B2 true JP4175089B2 (en) 2008-11-05

Family

ID=32801469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002320702A Expired - Lifetime JP4175089B2 (en) 2002-11-05 2002-11-05 Hydro (alkyl) fullerene metal complexes and hydro (alkyl) fullerene derivatives

Country Status (1)

Country Link
JP (1) JP4175089B2 (en)

Also Published As

Publication number Publication date
JP2004155675A (en) 2004-06-03

Similar Documents

Publication Publication Date Title
JP3281920B2 (en) Method for producing allylfuran compound
JP4636889B2 (en) FULLERENE DERIVATIVE, FULLERENE METAL COMPLEX, AND METHOD FOR PRODUCING THEM
EP2006276B1 (en) Process for the preparation of fullerene derivatives
JP4109458B2 (en) Fullerene derivatives and metal complexes
JP5565554B2 (en) Hydrogen storage material
JP4175089B2 (en) Hydro (alkyl) fullerene metal complexes and hydro (alkyl) fullerene derivatives
JP2004155674A (en) Method for producing hydro(alkyl)fullerene metal complex, method for producing hydro(alkyl)fullerene derivative and method for producing pentaalkylfullerene metal complex
Taher et al. Rigid-rod structured palladium complexes
CA2795741A1 (en) Novel synthesis process for ivabradine and its addition salts to a pharmaceutically acceptable acid
Lamač et al. Intramolecular activation of pendant alkenyl group as a tool for modification of the zirconocene framework
US8394979B2 (en) Process for preparing cycloplatinated platinum complexes, platinum complexes prepared by this process and the use thereof
JP5471069B2 (en) Tetrahydropyridine derivative and method for producing the same
JPWO2005070876A1 (en) Enantioselective method of nucleophilic addition reaction of enamide to imine and synthesis method of α-amino-γ-keto acid ester
JP5265640B2 (en) FULLERENE DERIVATIVE, FULLERENE METAL COMPLEX, AND METHOD FOR PRODUCING THEM
JP2003261569A (en) Heterocyclic compound having ligand, method for producing the same, and metallic element-fixing film given by using the heterocyclic compound
RU2350619C1 (en) Method of 2,3-fullero[60]-7-phenyl-7-phosphabicyclo[2,2,1]heptane production
JP4967098B2 (en) Cycloheptatrienylpalladium compound and process for producing the same
JP2008069104A (en) Helicene derivative, triyne derivative and method for producing the helicene derivative
JP4011022B2 (en) Polymer-immobilized allene ruthenium complex, its catalyst, and organic synthesis reaction method using the same
JP4572390B2 (en) Phosphorus compound and method for producing the same
JP6551922B2 (en) Process for producing alcohol by hydrogenation of carboxylic acid compound, and ruthenium complex used in the process
JPH08500341A (en) Method for producing aromatic thiol
JP2006151839A (en) Method for enantioselectively preparing beta-cyanocarboxylic acid derivative from alpha, beta-unsaturated carboxylic acid derivative and catalyst used in the method
JP2004210672A (en) Bisphosphonium salt compound and method for producing the same
US20040215028A1 (en) Formation of enediynes by reductive coupling followed by alkyne metathesis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080811

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4175089

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term