JP4170700B2 - Electroluminescence display device and manufacturing method - Google Patents

Electroluminescence display device and manufacturing method Download PDF

Info

Publication number
JP4170700B2
JP4170700B2 JP2002222296A JP2002222296A JP4170700B2 JP 4170700 B2 JP4170700 B2 JP 4170700B2 JP 2002222296 A JP2002222296 A JP 2002222296A JP 2002222296 A JP2002222296 A JP 2002222296A JP 4170700 B2 JP4170700 B2 JP 4170700B2
Authority
JP
Japan
Prior art keywords
display device
layer
electrode
cross
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002222296A
Other languages
Japanese (ja)
Other versions
JP2004063359A (en
Inventor
信行 伊藤
範人 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2002222296A priority Critical patent/JP4170700B2/en
Priority to GB0317863A priority patent/GB2391686B/en
Priority to GB0519859A priority patent/GB2416066B/en
Priority to US10/630,089 priority patent/US7307381B2/en
Publication of JP2004063359A publication Critical patent/JP2004063359A/en
Priority to US11/980,273 priority patent/US7898173B2/en
Application granted granted Critical
Publication of JP4170700B2 publication Critical patent/JP4170700B2/en
Priority to US12/693,822 priority patent/US8267735B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は情報表示装置に関する。特に自発光表示装置に関し、さらにはエレクトロルミネッセンス(EL)表示装置に関する。また、該表示装置を表示部に用いた電子機器に関する。
【0002】
【従来の技術】
近年、平面表示装置(フラットディスプレイ)が多くの分野、場所で使われており、情報化が進む中でますます重要性が高まっている。現在、フラットディスプレイの代表と言えば液晶ディスプレイ(LCD)であるが、LCDとは異なる表示原理に基づくフラットディスプレイとして、有機EL、無機EL、プラズマディスプレイパネル(PDP)、ライトエミッティングダイオード表示装置(LED)、蛍光表示管表示装置(VFD)、フィールドエミッションディスプレイ(FED)などの開発も活発に行われている。これらの新しいフラットディスプレイはいずれも自発光型と呼ばれるもので、LCDとは次の点で大きく異なりLCDには無い優れた特徴を有している。
【0003】
LCDは受光型と呼ばれ、液晶は自身では発光することはなく、外光を透過、遮断するいわゆるシャッターとして動作し表示装置を構成する。このため光源を必要とし、一般にバックライトが必要である。これに対して、自発光型は装置自身が発光するため別光源が不要である。LCDの様な受光型では、表示情報の様態に拘わらず常にバックライトが点灯し、全表示状態とほぼ変わらない電力を消費することになる。これに対して自発光型は、表示情報に応じて点灯する必要のある箇所だけが電力を消費するだけなので、受光型表示装置に比較して電力消費が少ないという利点が原理的にある。
同様にLCDではバックライト光源の光を遮光して暗状態を得るため少量であっても光漏れを完全に無くす事は困難であるのに対して、自発光型では発光しない状態がまさに暗状態であるので理想的な暗状態を容易に得ることができコントラストにおいても自発光型が圧倒的に優位である。
【0004】
また、LCDは液晶の複屈折による偏光制御を利用しているため、観察する方向によって大きく表示状態が変わる、いわゆる視野角依存性が強いが、自発光型ではこの問題がほとんど無い。
さらに、LCDは有機弾性物質である液晶の誘電異方性に由来する配向変化を利用するため、原理的に電気信号に対する応答時間が1ms以上である。これに対して、開発が進められている上記の技術では電子/正孔といった、いわゆるキャリア遷移、電子放出、プラズマ放電などを利用しているため、応答時間はns桁であり液晶とは比較にならないほど高速であり、LCDの応答の遅さに由来する動画残像の問題が無い。
【0005】
これらの中でも特に有機ELの研究が活発である。有機ELはOEL(Organic EL)又は有機ライトエミッティングダイオード(OLED:Organic Light Emitting Diode)とも呼ばれている。
OEL素子、OLED素子は陽極と陰極の一対の電極間に有機化合物を含む層(EL層)を挟持した構造となっており、Tang等の「アノード電極/正孔注入層/発光層/カソード電極」の積層構造が基本になっている(特許 第1526026号)。また、Tang等が低分子材料を用いているの対して、中野らは高分子材料を用いている(特開平3−273087)。
また、正孔注入層や電子注入層を用いて効率を向上させたり、発光層に蛍光色素等をドープして発光色を制御することも行われている。
【0006】
【発明が解決しようとする課題】
EL素子は画素毎に形成された陽極上にEL膜が形成され、EL膜上に共通電極として陰極が形成される構成が一般的である。しかし、抵抗を小さくするために、膜厚を200nm程度と厚くした陽極上に、膜厚が30nm〜150nmと薄いEL膜が形成されるため、陽極の側面において、EL膜の断線が発生してしまう。EL膜の断線が起こると、その断線した部分で陽極と陰極が短絡してしまい、EL膜が発光せず、黒点の欠陥となる。それに対して、山崎らによる発明者の特開2002−164181では、EL層を蒸着形成した場合に、隔壁と電極の境界部でEL層が薄くなり、この部分に電流が集中する事で、従来隔壁構造を用いた場合の電極断線と隔壁と電極の境界部でのEL層が薄くなる問題を解決するために、図10、図11の如くテーパー隔壁の上端部300、400と下端部301、401をそれぞれ基板に対して凸形状、凹形状になるように曲面形状としている。これによって電極断線と膜厚不均一の問題を解消させた。
【0007】
しかし、発明者が山崎の隔壁を用いて実験を行ったところ電極断線の問題が発生しない事は確認したが、インクジェット法でEL層の成膜を試みたところ、図12の様に膜厚不均一の問題が従来よりも顕著になってしまった。下端部301の凹曲面形状部での液溜まり現象が見られ、EL層インクを隔壁側面に引き付ける作用を強めたためと考えられる。
ウエットプロセスによるEL層の形成はメリットが非常に多く、有機EL表示装置の作製方法として有望であるが、以下に示す井上の複雑なプロセス以外に膜厚を均一に制御できる方法は無かった。有機ELディスプレイの作製方法の従来良く知られている方法として、井上による、Vol.22、No.11、O plus E、p1433−1440、 『カラーポリマーELディスプレイ』にあるように、図5に示す絶縁層8上に隔壁4を形成し、インク化した発光材料5をインクジェットノズル9により吐出して、画素開口部6に選択的に配置する(図15)。発光材料インクを定着させるために画素開口部及び絶縁層は親水性に処理する。絶縁層は電極エッジ部の電解集中による対向電極間の絶縁不良いわゆる電極間リークを防ぐために設置する。また、図5の様に隔壁を撥水処理することで画素開口部を外れて隔壁上に着弾したインク滴が画素開口部に滑り込む様にしている。
【0008】
藤田らによる発明者の特開2001−351787は、三角形や台形あるいは円弧状のテーパー形状でかつ電極近傍の裾部を有し、裾部が凹面であることを特徴とする山崎と類似した隔壁を有する有機EL素子であり、印刷法でEL層を形成しているが、問題としているのは山崎の表示装置の下端部301、401にあたる場所での電極断線であり膜厚の均一性については言及していない。しかしながら、特開2001−351787の図2(a)、(b)、(c)には隔壁側面に沿って膜厚が盛り上がっているEL層の形状が表されており、本願が解決しようとする課題が残されたままである。
本願は以上の点に注目をして成されたものであって、電極断線も発生せず、EL層を均一膜厚に形成するための簡便な方法を提供し、実用性に優れた有機EL表示装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明のエレクトロルミネッセンス表示装置は、少なくとも基板と、基板上に形成される電極とEL(エレクトロルミネッセンス)層から構成されるエレクトロルミネッセンス表示装置において、電極端を覆って基板面に対して凸形状の曲面断面形状を有し、且つ、基板面と接する下端部において、該曲面断面形状が外側に凸状である突起体を有し、前記EL層は、ウェットプロセスにより配設されたものであり、隔壁と境界部近傍でEL層膜厚が僅かに厚くなっている他は画素開口部の大部分でEL層が平坦で、且つ、突起体近傍で突起体曲面と逆方向の曲面形状を成して連続して滑らかに突起体に接していることを特徴とするものである。
そして、上記のエレクトロルミネッセンス表示装置において、突起体断面形状が円弧の一部分であることを特徴とするものである。
そしてまた、上記いずれかのエレクトロルミネッセンス表示装置において、突起体断面形状が円弧の一部分とそれに連続する上部平坦部から構成されることを特徴とするものである。
また、上記いずれかのエレクトロルミネッセンス表示装置において、突起体の厚さが5μm以上であることを特徴とするものである。
また、本発明のエレクトロルミネッセンス表示装置の製造方法は、前記に記載の突起体を有する基板表面に少なくとも発光層を含む有機層をインクジェット法、印刷法、キャスト法、交互吸着法、スピン塗布法、ディップ法、ディスペンサ法のウエットプロセスにより形成することを特徴とする。
さらに、本発明の電子機器は、前記に記載の表示装置を表示部に用いたことを特徴とする。
【0010】
【発明の実施の形態】
本発明の実施の形態を図に基づいて、詳しく説明する。
図1は、本発明の実施例の表示装置の断面構成図であり、図2は本発明の実施例の表示装置の拡大断面構成図であり、また図3は本発明の他の実施例の表示装置の拡大断面構成図である。
通常インクジェット法により発光層を形成する場合は図18のように1画素毎にドット状に発光材料インクを吐出して形成して、画素を配置する。これに合わせて隔壁も形成する。図1、図2、図3は、図18に示す図中のA←→BあるいはC←→Dの断面を表している。
【0011】
隣接する複数の画素で同じ発光色の発光層を形成する場合、例えばパッシブマトリクス表示装置のデータラインやアクティブマトリクス表示装置であっても、ストライプ画素配置の場合には同様にデータラインに同一の発光色を形成することができる。このような場合には図19のように隔壁開口部もライン状に形成する。この場合にはインクジェット法に加えて、いわゆるディスペンサ法による発光層の形成も可能である。
これらのインク溶液によって発光層を形成する方法では、画素の形状も重要である。図18、図19のように画素が角部を有する場合にはインク溶液は角部で決壊が生じ易い。表面張力が均一に働くように図20のように画素開口部が楕円形、長円形、円形のように角部を有しない方が良く、隔壁を以上の様に形成することがより好ましい。
【0012】
本明細書においては画素電極と対向電極が陽極、陰極のいずれかに相当し一対の電極を構成する。その間に設けられる全ての層を総称してEL層と呼び、上記の正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層がこれに含まれる。
図13に有機EL素子の断面構造を示す。
有機ELは電極間に電場を印加しEL層に電流を通じることで発光するが、従来は一重項励起状態から基底状態に戻る際の蛍光発光のみを利用していたが、最近の研究により三重項励起状態から基底状態に戻る際の燐光発光を有効に利用することができるようになり効率が向上している。
通常、ガラス基板やプラスチック基板といった透光性基板2に透光性電極3を形成してから、EL層5、対向電極7の順に形成して製造される。一般には陽極がITOなどの透光性電極、陰極が金属で構成され非透光性電極であることが多い。
【0013】
図13では図示しないが、有機EL素子は水分や酸素による特性劣化が著しいため、一般には素子が水分や酸素に触れない様に不活性ガスを充満した上で別基板を用いたり、薄膜蒸着によりいわゆる封止を行ない信頼性を確保している。
有機EL素子をディスプレイとして利用する場合、LCDと同様に電極構成と駆動方法により、パッシブマトリクス方式とアクティブマトリクス方式に大別することが出来る。パッシブマトリクス方式は、EL層を挟んで互いに交差する水平方向電極と垂直方向電極により、一対の電極を構成するもので構造が簡単であるが、画像を表示するためには時分割走査により、走査線の本数倍だけ瞬間輝度を高めなければならず、通常のVGA以上のディスプレイでは10000cd/m2を上回る有機ELの瞬間輝度が必要であり、ディスプレイとしては実用上多くの問題がある。アクティブマトリクス方式は、TFTなどを形成した基板に画素電極を形成し、EL層、対向電極を形成するものでパッシブマトリクス方式に比べて、構造は複雑であるが発光輝度、消費電力、クロストークといった多くの点で有機ELディスプレイとして有利である。
【0014】
さらに、多結晶シリコン(ポリシリコン)膜や連続粒界シリコン(CGシリコン)膜を用いたアクティブマトリクス方式ディスプレイでは、アモルファスシリコン膜よりも電荷移動度が高いので、TFTの大電流処理が可能であり、電流駆動素子である有機ELの駆動に適している。また、ポリシリコンTFT、CGシリコンTFTでは、高速動作が可能であることにより、従来、外付けのICで処理していた各種制御回路を、ディスプレイ画素と同一基板上に形成し、表示装置の小型化、低コスト化、多機能化等多くのメリットがある。
【0015】
図16はアクティブマトリクス有機EL表示装置の代表的な画素回路構成である。11走査線G、12データ信号線D、13電源供給線Vの各バスラインに加えて、14スイッチング用TFT、15ゲート保持容量、16駆動用TFTと17EL素子で構成される。走査線Gで選択されたスイッチング用TFTのゲートがオープンされ、データ信号線Dから発光強度に応じた信号電圧がTFTソースに加えられると、駆動用TFTのゲートが信号電圧の大きさに応じてアナログ的にオープンされ、その状態がゲート保持容量で保持される。電源供給線Vから駆動用TFTのソースに電圧が印加されると、ゲートの開き具合に応じた電流がEL素子に流れ、信号電圧の大きさに応じて階調的に発光する。図17は18画素をマトリクス状に配置した実際のアクティブ駆動有機EL表示装置のマトリクス画素構成を示す構成図である。
【0016】
有機EL表示装置の回路構成、駆動方法としては他にTFTの数を更に多くしたもの(Yumotoらの『PixEL−Driving Methods for Large−Sized Poly−Si AM−OLED Displays』 Asia Display/IDW′01P.1395−1398)や時分割階調(Mizukamiらの『6−bit Digital VGA OLED』 SID′00 P.912−915)や面積分割階調(Miyashitaらの『Full Color Displays Fabricated by Ink−Jet Printing』 Asia Display/IDW′01 P.1399−1402)などのデジタル階調駆動法などがあり、これらのどの技術を用いても良い。
【0017】
パッシブマトリクス方式であっても、走査線数の少ない簡単なディスプレイであれば、構造の簡単さを活かして実用的な装置を実現する事は出来る。さらには、従来の蛍光発光材料に加えて、燐光発光材料の開発が進められており、発光効率が大幅に向上している。これらの高発光効率の発光材料を利用することで、パッシブマトリクス方式の従来の問題が解決される可能性がある。
図14の様に、発光10を基板とは反対方向に取り出すトップエミッション構造も研究が進められている。トップエミッション構造に対しては、図13の構造はボトムエミッション構造と呼ばれることもある。トップエミッション構造は、特にアクティブマトリクス方式の表示装置において、TFTやバスラインといった回路構成によって発光面積率が制限される事がなく、より多機能で複雑な回路が形成できる事から、将来有望な技術として開発が進められている。
本発明においては有機ELは上記いずれの技術を用いても良い。
【0018】
カラー化を達成する方法としては、最も基本的なR、G、B3色の有機EL材料を表示装置の画素毎に精密に配置する3色並置方式の他に、白色発光層とR、G、B3色のカラーフィルター(CF)を組み合わせるCF方式と青色発光層とR、Gの蛍光変換色素フィルターとを組み合わせるCCM(Color Changing Medium)方式がある。
カラー化の方式を比較すると、CF方式では白色発光材料が必要であるが、照明用途としての見掛けの白色有機EL材料は実現しているが、R、G、B3色のスペクトルを備えた真の白色有機EL材料は未だ実現しておらず、またカラーフィルターを使用するために発光の利用効率が1/3になってしまう欠点がある。
【0019】
CCM方式では青色発光材料のみを使用するため、その発光効率とCCMフィルターのR、Gへの変換効率が重要であるが、十分な効率を得ることは容易ではなく実用にはなっていない。CF方式のLCDがテレビ映像の再現性に難点があるのと同様に、色再現性の点でCF方式は不十分である。CCM方式も1種のフィルター方式でありこの点は同様であり、3色並置方式は各色発光材料の材料組成を微妙に調整する事で色再現性に優れている。また、CF方式やCCM方式はフィルターを使用するため素子が厚くなったり、部品点数が多くなるなど、総合的に3色並置方式が有利である。
【0020】
3色並置の微細画素を形成する方式としては、低分子材料ではマスク真空蒸着法が用いられ、高分子材料では溶液化してインクジェット法や印刷法、転写法などが用いられる。最近では塗布可能な低分子材料も開発されている。
3色並置によるカラーディスプレイを考えた場合、低分子材料のマスク真空蒸着法では、真空装置および蒸着マスクの制限から大型化への対応及び大型基板を用いての多数枚作製が困難であるという問題がある。この事は、開発段階での試作程度の作製であれば問題が無いが、本格的な生産段階ではタクトとコストの面で市場の要請に応えることが難しい事を意味している。一方、高分子材料や塗布可能な低分子材料ではインクジェット法、印刷法、キャスト法、交互吸着法、スピン塗布法、ディップ法等のウエットプロセスによる成膜が出来るため、上記の大型基板対応への問題は少なく、特にインクジェット法であれば高精細ディスプレイの作製も可能であるため、将来的に最も有力な方法であると言える。
【0021】
また、マスク真空蒸着法では画素部分に選択的に発光材料を配置するためには材料の大半がマスクに付着して、材料利用効率が著しく低くなってしまう。
これに対してインクジェット法は必要な画素部分にのみ発効材料を選択的に配置させる事が出来るので最も材料利用効率の高い方法である。
【0022】
インクジェット法による有機ELディスプレイの作製方法について説明する。
従来良く知られている方法としては、井上による、Vol.22、No.11、O plus E、p1433−1440、 『カラーポリマーELディスプレイ』にあるように、図5に示す絶縁層8上に隔壁4を形成し、インク化した発光材料5をインクジェットノズル9により吐出して、画素開口部6に選択的に配置する(図15)。発光材料インクを定着させるために、画素開口部及び絶縁層は親水性に処理する。絶縁層は、電極エッジ部の電解集中による対向電極間の絶縁不良いわゆる電極間リークを防ぐために設置する。
【0023】
インクジェット法で問題となるのは、インク滴が開口部から外れて着弾する場合である。多数の画素に対して、正確に開口部に発光層材料を形成するためには、画素から外れて着弾するインク滴を画素開口部に設置させる手段が重要である。井上は図5の様に隔壁を撥水処理することで、画素開口部を外れて隔壁上に着弾したインク滴が画素開口部に滑り込む様にしている。具体的には電極をITO、絶縁層をSiO2、隔壁をポリイミドで形成し、基板全面をO2プラズマ処理する事で、一旦親水性にした後にCF4プラズマで処理する事でポリイミド隔壁のみを撥水性にすることで、所望の基板表面状態にしている。ITO電極表面とSiO2絶縁層表面はCF4プラズマ処理をしても親水性を保ったままである。
【0024】
隔壁を絶縁体で構成すれば、図4のように絶縁層と隔壁を兼ねる事が可能であり、プロセス数を減らすことができ有利であるが、井上の方法では絶縁層と隔壁を兼ねる様にして、プロセス数を減らす事はできない。図4に示す様に画素を外れたインクを画素開口部に正確に定着させるために、上記の様に隔壁を撥水性、電極を親水性にすると隔壁と電極の境界部で電極が露出し、対向電極との間で電極間リークが発生してしまう。
【0025】
一方、隔壁を撥水性としないことで、隔壁と電極の境界部分でのEL層のはじきを無くして、電極間リークを発生させることなく、有機EL表示装置を実現する方法が公知である。井上の方法では、隔壁は2μm程度の高さであるのに対して、この場合にはEL層インクの着弾を確実にするために、隔壁が5μm以上の高さである事が望ましい。隔壁の高さは図中のHで示す。井上が隔壁の撥水性により、隔壁の外部にEL層インクが流れ出る決壊を防いでいるのに対して、上記の方法では隔壁の高さにより、EL層インクの決壊を防いでいるからである。この高い隔壁を利用する方法では別の問題が多く発生する。
【0026】
隔壁と電極の境界部分でのEL層のはじきを無くすためには、図6の様に隔壁側面にある程度の親水性を与えて、EL層インクを隔壁側面で保持する事が必要である。井上の説明でも述べた様に、隔壁の形成にはパターニングが容易なポリイミド等を用いるが、その目的ではアクリル樹脂、感光性レジスト等を用いる事もできる。これらの材料は、通常、元々撥水性の物質であったり、後から特別の撥水処理を行わないのであれば、多くの場合親水性を有しているので、これらの材料を用いて隔壁を形成することで、EL層インクを隔壁側面で保持して、隔壁と電極の境界部分でのEL層のはじきを無くすことは容易である。ただし、この隔壁側面でのEL層インクの保持により液体の表面張力によるいわゆるメニスカス表面状態が形成されることが避けられない。EL層インクが、このメニスカス表面形状のまま溶媒が蒸発して乾燥すれば、インク状態でのメニスカス表面形状がそのまま反映され、図6に示す様にEL層の膜厚が不均一となってしまう。この様な膜厚が不均一なEL層に電界を印加した場合、膜厚の薄い部分には電流が集中し、逆に膜圧が厚い部分には電流が十分流れないために、発光輝度に違いが生じる。実際、図6の様な不均一な膜圧のEL層に電界を印加すると、図7の様に、膜圧の薄い画素中央部しか発光しない現象が発生する。図7には画素開口部が長方形の場合と楕円形の場合を示している。この様に画素中央部しか発光しないと表示装置として十分な輝度、効率が達成できない。
【0027】
別に対向電極の断線の問題も重要である。通常、対向電極は金属薄膜を蒸着形成するので100nmから厚くても500nmが安定に形成できる限界である。それ以上厚くするともはや薄膜では無くなるので、金属それ自身の張力によってめくれ上がって剥離する危険性が増加する。この範囲の膜厚では、隔壁が5μm以上の高さの場合、図6に示す様に隔壁のコーナー部で断線が発生し易くなり、EL層に電界が印加されない不良画素が多く発生する。
【0028】
従来は、隔壁を図8の様なテーパー形状として、この問題を解決しようとしている。しかし、この場合も電極断線の問題は、完全には解決されず、また山崎による特開2002−164181ではEL層を蒸着形成した場合には、隔壁と電極の境界部202でEL層が薄くなり、この部分に電流が集中する事が報告されている。この場合には図9の様に先に説明した図7とは逆の画素周辺しか発光しない現象が発生し、この場合も表示装置として十分な輝度、効率が達成できない。山崎は、これらの従来隔壁構造を用いた場合の電極断線と隔壁と電極の境界部でのEL層が薄くなる問題を解決するために、図10、図11の如くテーパー隔壁の上端部300、400と下端部301、401をそれぞれ基板に対して、凸形状、凹形状になるように曲面形状としている。これによって電極断線と膜厚不均一の問題を解消した有機EL表示装置を実現している。
【0029】
以上の本発明を用いて提供される表示装置を表示部1として搭載した図21に示すような20機器として、19操作部を備えた携帯電話やPDA(Personal Degital Assistant)タイプの端末、PC(Personal Computer)、テレビ受像機、ビデオカメラ、デジタルカメラなどを提供する事ができる。
【0030】
以上、本願について説明したが実施例に基づきさらに本願を詳しく説明する。
なお、本願はこれに限定されるものではない。
【実施例】
(実施例1)
本発明の実施例として下記の溶液を調製した。
(有機EL層形成用塗布液の調製)
・ポリビニルカルバゾール 70重量部
・オキサジアゾール化合物 30重量部
・クマリン6(※蛍光色素) 1重量部
・1、1、2−トリクロロエタン(溶媒) 633重量部
※蛍光色素がクマリン6の場合は501nmをピークに持つ緑色発光、ペリレンの場合は460〜470nmをピークに持つ青色発光、DCMの場合は570nmをピークに持つ赤色発光が得られ、これらを各色の発光材料として用いた。
【0031】
(EL表示装置の作製)
図1の断面形状の如き電極および隔壁を形成した基板を用意した。隔壁が電極絶縁層を兼ねる様に電極端を覆う配置とした。電極はITO、ネサ膜やIZOなどの透明電極を成膜、エッチングによりパターン形成した。隔壁は東京応化社製の感光性レジストOFPR−800(粘度500cp)を1200rpmでスピンコート、110℃でプレベーク後、フォトマスクを用いて露光、現像を行ない、240℃でポストベークして形成した。上記の条件で隔壁高さ(膜厚)を6μmに形成することができた。このようにして形成した隔壁の形状は走査型電子顕微鏡(SEM)等を用いて容易に確認する事ができる。隔壁の形状は基板面に対して凸形状の曲面断面形状を有し、その断面形状が円弧の一部分である事を確認した。図22に断面SEM写真を示す。
【0032】
透明電極を用いるのはボトムエミッションの素子構造であり、透明基板を用いる。電極に金属を用いてトップエミッション素子構造とする事もできる。電極開口部は100μm×300μmの長方形形状とした。
基板を洗浄後、いわゆるバッファ層として正孔注入性を有するPEDOT/PSS(ポリチオフェン:Bayer CH8000)をスピンコートにより80nm塗布し、160℃で焼成して形成した。上記有機EL層形成用塗布液をPEDOT上の画素開口部にインクジェット法により吐出し、80℃で乾燥することにより膜厚100nmの発光層を形成した。続いてMgAg合金(Mg:Ag=10:1)を厚さ150nmになるように蒸着し、その上に保護層としてAgを200nmの厚みになるように蒸着し陰電極を形成した。
いわゆるTFT基板を用いてアクティブマトリクス表示装置を作製する場合は陰電極は全面形成とし、パッシブマトリクス表示装置を作製する場合は、基板上の電極パターンと直交するようにストライプ形状に形成する。
【0033】
別に発光層を形成した段階の基板をSEM及び原子力間顕微鏡(AFM)で観察した。図2に示す様に、図2中1000の隔壁と境界部近傍で、EL層膜厚が僅かに厚くなっている他は画素開口部の大部分でEL層が平坦である事を確認した。図2中の1000の隔壁とEL層の境界部近傍ではEL層が隔壁近傍で突起体曲面と逆方向の曲面形状を成して滑らかに接している事が確認された。
電極間に直流電界を印加して画素開口部の発光の様子を観察したところ、図7や図9の様にEL層膜厚の不均一に由来する発光不良は発生しなかった。制御回路を接続して画像信号を入力することにより、表示性能に優れたカラー表示を得ることができた。
【0034】
(実施例2)
実施例1でレジスト材料の処理条件を変更する以外は、実施例1と同様に行った。
具体的には実施例1で用いたのと同一のレジスト材料をポストベーク温度を180℃とした以外は、実施例1と同様に処理して形成した。隔壁の形状をSEMにより確認したところ、図3の様に、基板面に対して凸形状の曲面断面形状を有し、その断面形状が突起体断面形状が円弧の一部分とそれに連続する上部平坦部から構成される形状であることを確認した。図23に断面SEM写真を示す。
【0035】
続いて実施例1と同様にEL表示装置を作製した。
別に発光層を形成した段階の基板をSEM及び原子力間顕微鏡(AFM)で観察した。図3に示す様に図3中1001の隔壁と境界部近傍でEL層膜厚が僅かに厚くなっている他は画素開口部の大部分でEL層が平坦である事を確認した。図3中1001の隔壁とEL層の境界部近傍ではEL層が隔壁近傍で突起体曲面と逆方向の曲面形状を成して滑らかに接している事が確認された。
電極間に直流電界を印加して画素開口部の発光の様子を観察したところ、図7や図9の様にEL層膜厚の不均一に由来する発光不良は発生しなかった。制御回路を接続して画像信号を入力することにより表示性能に優れたカラー表示を得ることができた。
【0036】
(実施例3)
実施例1、実施例2で画素開口部を長方形ではなく、図20に示す角部の無い形状にした以外は実施例1、実施例2と同様に行なった。
実施例1、実施例2では概ね画素均一発光が達成されたが、画素数が多くなった場合には不良画素が幾らか発生し、いわゆる製品歩留まりが決して高いものは無かった。角部の無い画素開口部形状にすると歩留まりが向上し、VGA以上の画素数を有する実用的な表示装置では更に有効であった。
以上、本発明の実施例について説明したが、本発明はこれに限定されるものではない。
【0037】
【発明の効果】
本発明を用いることにより、従来よりも簡便なプロセスにより溶液状態の有機EL材料(高分子有機EL材料、塗付型低分子有機EL材料等)を均一に成膜し実用的な表示装置を作製することができる。さらには、この表示装置を搭載した実用的な電子機器を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施例の表示装置の断面構成図である。
【図2】本発明の実施例の表示装置の拡大断面構成図である。
【図3】本発明の他の実施例の表示装置の拡大断面構成図である。
【図4】従来の表示装置の断面構成図である。
【図5】従来の表示装置の断面構成図である。
【図6】従来の表示装置の断面構成図である。
【図7】従来の表示装置で表示を行った場合の画素の発光の様子を示す正面図である。
【図8】他の従来の表示装置の断面構成図である。
【図9】他の従来の表示装置で表示を行った場合の画素の発光の様子を示す正面図である。
【図10】改良された従来の表示装置の断面構成図である。
【図11】改良された他の従来の表示装置の断面構成図である。
【図12】改良された従来の表示装置をウエットプロセスによって作製した場合の断面構成図である。
【図13】有機EL素子の断面構成図である。
【図14】有機EL素子の他の断面構成図である。
【図15】インクジェット法による有機EL表示装置の作製方法を示す構成図である。
【図16】アクティブ駆動有機EL表示装置の画素の構成を示す回路図である。
【図17】アクティブ駆動有機EL表示装置のマトリクス画素構成を示す構成図である。
【図18】本発明の表示装置の画素配置の正面図である。
【図19】本発明の表示装置の画素配置の他の正面図である。
【図20】本発明の表示装置の画素配置の他の正面図である。
【図21】本発明の表示装置を搭載した電子機器の例である。
【図22】本発明の実施例の表示装置の断面SEM写真である。
【図23】本発明の他の実施例の表示装置の断面SEM写真である。
【符号の説明】
1 表示部
2 基板
3 電極
4 隔壁
5 EL層
6 開口部
7 対向電極
8 絶縁層
9 ノズル
10 発光
11 走査線G
12 データ信号線D
13 電源供給線V
14 スイッチング用TFT
15 ゲート保持容量
16 EL駆動TFT
17 EL素子
18 画素
19 操作部
20 機器
21 レンズ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an information display device. In particular, the present invention relates to a self-luminous display device, and further relates to an electroluminescence (EL) display device. The present invention also relates to an electronic device using the display device for a display portion.
[0002]
[Prior art]
In recent years, flat display devices (flat displays) have been used in many fields and places, and the importance has been increasing with the progress of computerization. Currently, liquid crystal displays (LCD) are representative of flat displays, but organic EL, inorganic EL, plasma display panels (PDP), light-emitting diode display devices (LCDs) are based on display principles different from LCDs. LED), a fluorescent display tube display (VFD), a field emission display (FED) and the like are being actively developed. Each of these new flat displays is called a self-luminous type, and differs greatly from the LCD in the following points, and has an excellent feature that the LCD does not have.
[0003]
The LCD is called a light-receiving type, and the liquid crystal does not emit light by itself, but operates as a so-called shutter that transmits and blocks external light to constitute a display device. For this reason, a light source is required and generally a backlight is required. In contrast, the self-luminous type does not require a separate light source because the device itself emits light. In a light receiving type such as an LCD, the backlight is always lit regardless of the state of display information, and power that is almost the same as that in the entire display state is consumed. On the other hand, the self-luminous type has an advantage that the power consumption is lower than that of the light receiving type display device because only the portion that needs to be lit according to the display information consumes power.
Similarly, in LCDs, the light from the backlight source is blocked to obtain a dark state, so even if it is a small amount, it is difficult to completely eliminate light leakage. Therefore, an ideal dark state can be easily obtained, and the self-luminous type is overwhelmingly superior in contrast.
[0004]
In addition, since the LCD uses polarization control based on the birefringence of the liquid crystal, the display state changes greatly depending on the viewing direction. The so-called viewing angle dependency is strong, but the self-luminous type has almost no problem.
Furthermore, since the LCD uses an orientation change derived from the dielectric anisotropy of liquid crystal, which is an organic elastic material, in principle, the response time to an electric signal is 1 ms or more. On the other hand, the above-mentioned technology, which is under development, uses so-called carrier transitions such as electrons / holes, electron emission, plasma discharge, etc., so the response time is in the order of ns and is in comparison with liquid crystal. It is so fast that there is no problem of afterimages due to the slow response of the LCD.
[0005]
Of these, research on organic EL is particularly active. The organic EL is also referred to as OEL (Organic EL) or organic light emitting diode (OLED).
OEL elements and OLED elements have a structure in which a layer containing an organic compound (EL layer) is sandwiched between a pair of electrodes of an anode and a cathode, such as Tang et al., “Anode electrode / hole injection layer / light emitting layer / cathode electrode”. "Is a basic structure (Japanese Patent No. 1526026). Further, Tang et al. Uses a low molecular material, whereas Nakano et al. Uses a high molecular material (Japanese Patent Laid-Open No. 3-27087).
In addition, the efficiency is improved by using a hole injection layer or an electron injection layer, or the emission color is controlled by doping a light emitting layer with a fluorescent dye or the like.
[0006]
[Problems to be solved by the invention]
An EL element generally has a configuration in which an EL film is formed on an anode formed for each pixel, and a cathode is formed as a common electrode on the EL film. However, a thin EL film having a thickness of 30 nm to 150 nm is formed on the anode having a thickness of about 200 nm in order to reduce the resistance, so that the EL film is disconnected on the side surface of the anode. End up. When the EL film is disconnected, the anode and the cathode are short-circuited at the disconnected portion, and the EL film does not emit light, resulting in a black spot defect. On the other hand, in the inventor's Japanese Patent Application Laid-Open No. 2002-164181 by Yamasaki et al., When an EL layer is formed by vapor deposition, the EL layer becomes thin at the boundary between the partition wall and the electrode, and current concentrates on this portion. In order to solve the problem of the electrode disconnection and the thinning of the EL layer at the boundary between the partition and the electrode when the partition structure is used, the upper end portions 300 and 400 and the lower end portion 301 of the tapered partition as shown in FIGS. 401 has a curved shape so as to have a convex shape and a concave shape with respect to the substrate, respectively. This solved the problem of electrode disconnection and non-uniform film thickness.
[0007]
However, when the inventor conducted an experiment using the Yamasaki partition, it was confirmed that the problem of electrode disconnection did not occur. However, when the EL layer was formed by the ink jet method, the film thickness was not as shown in FIG. The problem of uniformity has become more prominent than before. This is probably because the liquid pool phenomenon at the concave curved surface shape portion of the lower end portion 301 was observed, and the action of attracting the EL layer ink to the side surface of the partition wall was strengthened.
The formation of an EL layer by a wet process has many advantages and is promising as a method for manufacturing an organic EL display device, but there is no method capable of uniformly controlling the film thickness other than the complicated process of Inoue shown below. As a conventionally well-known method for producing an organic EL display, Vol. 22, no. 11, O plus E, p1433-1440, “Color polymer EL display”, partition wall 4 is formed on insulating layer 8 shown in FIG. , And selectively disposed in the pixel opening 6 (FIG. 15). In order to fix the luminescent material ink, the pixel opening and the insulating layer are processed to be hydrophilic. The insulating layer is provided in order to prevent insulation failure between counter electrodes due to electrolytic concentration at the electrode edge portion, so-called leakage between electrodes. Further, as shown in FIG. 5, the water droplets are water-repellent so that the ink droplets that have landed on the partition wall after sliding off the pixel opening portion slide into the pixel opening portion.
[0008]
Inventor's Japanese Patent Application Laid-Open No. 2001-351787 by Fujita et al. Has a partition wall similar to Yamazaki, which has a triangular, trapezoidal or arcuate tapered shape and has a skirt near the electrode, and the skirt is concave. The organic EL element has an EL layer formed by a printing method, but the problem is an electrode disconnection at a location corresponding to the lower end portions 301 and 401 of the display device of Yamazaki, and mention is made about the uniformity of the film thickness. Not done. However, FIG. 2A, FIG. 2B, and FIG. 2C of Japanese Patent Laid-Open No. 2001-351787 show the shape of the EL layer whose thickness rises along the side wall of the partition wall. The challenge remains.
The present application has been made paying attention to the above points, does not cause electrode disconnection, provides a simple method for forming an EL layer with a uniform film thickness, and has excellent practicality. An object is to provide a display device.
[0009]
[Means for Solving the Problems]
  The present inventionElectroluminescence display deviceIn an electroluminescence display device including at least a substrate, an electrode formed on the substrate, and an EL (electroluminescence) layer, the electrode has a curved cross-sectional shape that is convex with respect to the substrate surface so as to cover the electrode end.In addition, the curved cross-sectional shape is convex outward at the lower end contacting the substrate surface.Has protrusionsThe EL layer is disposed by a wet process, and the EL layer is flat in most of the pixel opening except that the EL layer thickness is slightly increased in the vicinity of the partition wall and the boundary. In addition, a curved surface shape opposite to the curved surface of the projection body is formed in the vicinity of the projection body so as to continuously and smoothly contact the projection body.
  And in said electroluminescent display apparatus, protrusion cross-sectional shape is a part of circular arc, It is characterized by the above-mentioned.
In any of the above electroluminescent display devices, the cross-sectional shape of the protrusion is composed of a part of a circular arc and an upper flat part continuous therewith.
In any one of the above electroluminescent display devices, the thickness of the protrusion is 5 μm or more.
  In addition, the method for producing the electroluminescent display device of the present invention includes an inkjet layer, a printing method, a casting method, an alternate adsorption method, a spin coating method, and an organic layer including at least a light emitting layer on the substrate surface having the protrusions described above. It is formed by a wet process such as a dip method or a dispenser method.
  Furthermore, the electronic apparatus of the present invention uses the display device described above for a display unit.thingIt is characterized by.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described in detail with reference to the drawings.
1 is a cross-sectional configuration diagram of a display device according to an embodiment of the present invention, FIG. 2 is an enlarged cross-sectional configuration diagram of a display device according to an embodiment of the present invention, and FIG. 3 is a diagram illustrating another embodiment of the present invention. It is an expanded section lineblock diagram of a display.
When the light emitting layer is formed by an ordinary ink jet method, the light emitting material ink is ejected in a dot shape for each pixel as shown in FIG. In accordance with this, a partition is also formed. 1, FIG. 2, and FIG. 3 show cross sections A ← → B or C ← → D in the drawing shown in FIG.
[0011]
When a light emitting layer having the same light emission color is formed by a plurality of adjacent pixels, for example, even in the case of a data line of an active matrix display device or an active matrix display device, the same light emission is similarly applied to the data line in the case of a stripe pixel arrangement. A color can be formed. In such a case, the partition opening is also formed in a line shape as shown in FIG. In this case, it is possible to form a light emitting layer by a so-called dispenser method in addition to the ink jet method.
In the method of forming a light emitting layer with these ink solutions, the shape of the pixel is also important. When the pixel has a corner as shown in FIGS. 18 and 19, the ink solution easily breaks at the corner. As shown in FIG. 20, it is preferable that the pixel opening does not have corners such as an ellipse, an oval, or a circle so that the surface tension works uniformly, and it is more preferable to form the partition walls as described above.
[0012]
In this specification, the pixel electrode and the counter electrode correspond to either an anode or a cathode and constitute a pair of electrodes. All layers provided therebetween are collectively referred to as an EL layer, and include the above-described hole injection layer, hole transport layer, light emitting layer, electron transport layer, and electron injection layer.
FIG. 13 shows a cross-sectional structure of the organic EL element.
Organic EL emits light by applying an electric field between electrodes and passing an electric current through the EL layer. Conventionally, only the fluorescence emission when returning from the singlet excited state to the ground state was used. The phosphorescence emission upon returning from the term excited state to the ground state can be used effectively, and the efficiency is improved.
Usually, the light-transmitting electrode 3 is formed on the light-transmitting substrate 2 such as a glass substrate or a plastic substrate, and then the EL layer 5 and the counter electrode 7 are formed in this order. In general, the anode is often a translucent electrode such as ITO, and the cathode is often made of a metal and is a non-translucent electrode.
[0013]
Although not shown in FIG. 13, characteristics of organic EL elements are significantly deteriorated due to moisture and oxygen. Therefore, in general, the element is filled with an inert gas so that the elements do not come into contact with moisture or oxygen. So-called sealing is performed to ensure reliability.
When an organic EL element is used as a display, it can be roughly divided into a passive matrix system and an active matrix system according to an electrode configuration and a driving method as in the LCD. The passive matrix system has a simple structure with a pair of electrodes composed of a horizontal electrode and a vertical electrode that intersect each other with an EL layer in between. However, in order to display an image, scanning is performed by time-division scanning. Instantaneous brightness must be increased by the number of lines, and 10000 cd / m for normal VGA and higher displays2Therefore, there are many practical problems as a display. In the active matrix method, a pixel electrode is formed on a substrate on which a TFT or the like is formed, and an EL layer and a counter electrode are formed. Compared with the passive matrix method, the structure is more complicated, but emission luminance, power consumption, crosstalk, etc. It is advantageous as an organic EL display in many respects.
[0014]
Furthermore, an active matrix display using a polycrystalline silicon (polysilicon) film or a continuous grain boundary silicon (CG silicon) film has a higher charge mobility than an amorphous silicon film, so that a large current can be processed in the TFT. It is suitable for driving an organic EL which is a current driving element. In addition, since polysilicon TFT and CG silicon TFT can operate at high speed, various control circuits that have been processed by external ICs on the same substrate are formed on the same substrate as the display pixels. There are many merits such as downsizing, cost reduction and multi-function.
[0015]
FIG. 16 shows a typical pixel circuit configuration of an active matrix organic EL display device. In addition to the 11 scanning lines G, the 12 data signal lines D, and the 13 power supply lines V, the circuit includes 14 switching TFTs, 15 gate holding capacitors, 16 driving TFTs, and 17 EL elements. When the gate of the switching TFT selected by the scanning line G is opened and a signal voltage corresponding to the light emission intensity is applied from the data signal line D to the TFT source, the gate of the driving TFT corresponds to the magnitude of the signal voltage. It is opened in analog and its state is held by the gate holding capacitor. When a voltage is applied from the power supply line V to the source of the driving TFT, a current corresponding to the degree of opening of the gate flows to the EL element, and light is emitted in a gradation according to the magnitude of the signal voltage. FIG. 17 is a configuration diagram showing a matrix pixel configuration of an actual active drive organic EL display device in which 18 pixels are arranged in a matrix.
[0016]
As another example of the circuit configuration and driving method of the organic EL display device, the number of TFTs is further increased (Yumoto et al., “PixEL-Driving Methods for Large-sized Poly-Si AM-OLED Displays” Asia Display / IDW'01P. 1395-1398), time-division gradation (Mizukami et al., “6-bit Digital VGA OLED” SID'00 P. 912-915), and area division gradation (Miyashita et al., “Full Color Displays Fabricated by Ink-Jet Print Ink-Jet Print” There are digital gradation driving methods such as Asia Display / IDW'01 P. 1399-1402), and any of these techniques may be used.
[0017]
Even in the passive matrix system, a practical device can be realized by taking advantage of the simplicity of the structure if it is a simple display with a small number of scanning lines. Furthermore, in addition to the conventional fluorescent light emitting materials, phosphorescent light emitting materials are being developed, and the light emission efficiency is greatly improved. By using these light emitting materials with high light emission efficiency, there is a possibility that the conventional problems of the passive matrix method may be solved.
As shown in FIG. 14, research is also being conducted on a top emission structure in which the light emission 10 is extracted in the direction opposite to the substrate. For the top emission structure, the structure of FIG. 13 is sometimes referred to as a bottom emission structure. The top emission structure is a promising technology in the future, especially in active matrix display devices, because the light emitting area ratio is not limited by the circuit configuration of TFTs and bus lines, and more complex and complex circuits can be formed. Development is underway.
In the present invention, the organic EL may use any of the above techniques.
[0018]
As a method for achieving colorization, in addition to the three-color juxtaposition method in which the most basic R, G, B organic EL materials are precisely arranged for each pixel of the display device, a white light emitting layer and R, G, There is a CF system combining a B3 color filter (CF) and a CCM (Color Changing Medium) system combining a blue light emitting layer and R and G fluorescence conversion dye filters.
Comparing colorization methods, the CF method requires a white light-emitting material, but an apparent white organic EL material for lighting applications has been realized, but it has a true R, G, B3 spectrum. A white organic EL material has not been realized yet, and since a color filter is used, there is a drawback that the light emission utilization efficiency becomes 1/3.
[0019]
Since only the blue light emitting material is used in the CCM system, the light emission efficiency and the conversion efficiency of the CCM filter to R and G are important. However, obtaining sufficient efficiency is not easy and has not been put into practical use. The CF method is insufficient in terms of color reproducibility, just as the CF method LCD has difficulty in reproducibility of television images. The CCM method is also a kind of filter method, and this is the same. The three-color juxtaposition method is excellent in color reproducibility by finely adjusting the material composition of each color light emitting material. The CF method and CCM method use a filter, so that the three-color juxtaposition method is advantageous in general because the element becomes thicker and the number of parts increases.
[0020]
As a method for forming fine pixels arranged in three colors, a mask vacuum vapor deposition method is used for a low molecular material, and an ink jet method, a printing method, a transfer method, or the like is used for a high molecular material by forming a solution. Recently, low molecular weight materials that can be applied have also been developed.
When considering a color display with three colors juxtaposed, the low-molecular-weight mask vacuum deposition method has a problem that it is difficult to cope with an increase in size and to produce a large number of substrates using a large substrate due to limitations of vacuum devices and deposition masks. There is. This means that there is no problem as long as the prototype is manufactured at the development stage, but it is difficult to meet market demands in terms of tact and cost in the full-scale production stage. On the other hand, high molecular weight materials and low molecular weight materials that can be coated can be deposited by wet processes such as inkjet, printing, casting, alternating adsorption, spin coating, and dipping. There are few problems, and it can be said that it is the most promising method in the future because it is possible to produce a high-definition display particularly by the inkjet method.
[0021]
Further, in the mask vacuum deposition method, in order to selectively dispose the light emitting material in the pixel portion, most of the material adheres to the mask, and the material utilization efficiency is remarkably lowered.
On the other hand, the ink jet method is the method with the highest material utilization efficiency because the effective material can be selectively disposed only in the necessary pixel portion.
[0022]
A method for manufacturing an organic EL display by an inkjet method will be described.
As a well-known method, Vol. 22, no. 11, O plus E, p1433-1440, “Color polymer EL display”, partition wall 4 is formed on insulating layer 8 shown in FIG. , And selectively disposed in the pixel opening 6 (FIG. 15). In order to fix the luminescent material ink, the pixel opening and the insulating layer are processed to be hydrophilic. The insulating layer is provided in order to prevent insulation failure between counter electrodes due to electrolytic concentration at the electrode edge portion, so-called interelectrode leakage.
[0023]
A problem with the ink jet method is when ink droplets land from the opening. In order to accurately form the light emitting layer material in the openings for a large number of pixels, it is important to install ink droplets that land outside the pixels on the pixel openings. Inoue performs water-repellent treatment on the partition walls as shown in FIG. 5 so that the ink droplets that have landed on the partition walls are slipped into the pixel opening portions. Specifically, the electrode is ITO and the insulating layer is SiO.2The partition walls are made of polyimide and the entire surface of the substrate is O.2After making it hydrophilic by plasma treatment, CFFourBy processing with plasma, only the polyimide partition walls are made water-repellent, so that a desired substrate surface state is obtained. ITO electrode surface and SiO2Insulating layer surface is CFFourIt remains hydrophilic even after plasma treatment.
[0024]
If the partition walls are made of an insulator, it is possible to serve both as an insulating layer and a partition wall as shown in FIG. 4, which is advantageous because the number of processes can be reduced. Therefore, the number of processes cannot be reduced. As shown in FIG. 4, in order to accurately fix the ink out of the pixel to the pixel opening, when the partition is made water-repellent and the electrode is made hydrophilic as described above, the electrode is exposed at the boundary between the partition and the electrode, Inter-electrode leakage occurs with the counter electrode.
[0025]
On the other hand, there is a known method for realizing an organic EL display device without making the partition walls water-repellent so as to eliminate the repelling of the EL layer at the boundary between the partition walls and the electrodes without causing interelectrode leakage. In the Inoue method, the partition walls have a height of about 2 μm. In this case, it is desirable that the partition walls have a height of 5 μm or more in order to ensure the landing of the EL layer ink. The height of the partition is indicated by H in the figure. This is because Inoue prevents the EL layer ink from flowing out of the partition due to the water repellency of the partition, whereas the above method prevents the EL layer ink from being broken due to the height of the partition. There are many other problems in the method using this high partition wall.
[0026]
In order to eliminate the repellency of the EL layer at the boundary between the partition wall and the electrode, it is necessary to give a certain degree of hydrophilicity to the side surface of the partition wall as shown in FIG. 6 and hold the EL layer ink on the side surface of the partition wall. As described in Inoue's explanation, polyimide or the like that can be easily patterned is used for the formation of the partition wall. For that purpose, an acrylic resin, a photosensitive resist, or the like can be used. Since these materials are usually water-repellent substances or have a hydrophilic property in many cases unless special water-repellent treatment is performed later, partition walls are formed using these materials. By forming the EL layer ink, it is easy to hold the EL layer ink on the side wall of the partition and eliminate the EL layer repelling at the boundary between the partition and the electrode. However, it is inevitable that a so-called meniscus surface state due to the surface tension of the liquid is formed by holding the EL layer ink on the side wall of the partition wall. If the EL layer ink is dried with the solvent evaporating while maintaining the meniscus surface shape, the meniscus surface shape in the ink state is reflected as it is, and the film thickness of the EL layer becomes nonuniform as shown in FIG. . When an electric field is applied to such an EL layer with a non-uniform film thickness, the current concentrates in the thin film thickness part, and conversely, the current does not flow sufficiently in the thick film pressure part. A difference is made. Actually, when an electric field is applied to an EL layer having a non-uniform film pressure as shown in FIG. 6, a phenomenon occurs in which light is emitted only at the center of a pixel having a low film pressure, as shown in FIG. FIG. 7 shows a case where the pixel opening is rectangular and an ellipse. Thus, if only the pixel central part emits light, sufficient luminance and efficiency as a display device cannot be achieved.
[0027]
Another problem is the disconnection of the counter electrode. Usually, since the counter electrode is formed by vapor deposition of a metal thin film, even if it is thick from 100 nm, there is a limit that 500 nm can be stably formed. If it is thicker than that, it will no longer be a thin film, increasing the risk of flaking up and peeling off due to the tension of the metal itself. With a film thickness in this range, when the partition wall is 5 μm or higher, disconnection is likely to occur at the corner of the partition wall as shown in FIG. 6, and many defective pixels in which no electric field is applied to the EL layer are generated.
[0028]
Conventionally, the partition wall has a tapered shape as shown in FIG. 8 to solve this problem. However, in this case as well, the problem of electrode disconnection is not completely solved, and in Japanese Patent Application Laid-Open No. 2002-164181 by Yamazaki, when an EL layer is formed by evaporation, the EL layer becomes thin at the boundary 202 between the partition walls and the electrode. It has been reported that current concentrates on this part. In this case, as shown in FIG. 9, a phenomenon occurs in which light is emitted only in the vicinity of the pixel opposite to FIG. 7 described above, and in this case too, sufficient luminance and efficiency as a display device cannot be achieved. In order to solve the problem of electrode disconnection and thinning of the EL layer at the boundary between the partition and the electrode when these conventional partition structures are used, Yamazaki has developed an upper end portion 300 of the tapered partition as shown in FIGS. 400 and lower end portions 301 and 401 have curved surfaces so as to be convex and concave with respect to the substrate, respectively. As a result, an organic EL display device that solves the problems of electrode disconnection and film thickness non-uniformity is realized.
[0029]
As 20 devices as shown in FIG. 21 equipped with the display device provided by using the present invention as the display unit 1, a mobile phone having 19 operation units, a PDA (Personal Digital Assistant) type terminal, a PC ( Personal Computers), television receivers, video cameras, digital cameras, and the like can be provided.
[0030]
Although the present application has been described above, the present application will be further described in detail based on the embodiments.
Note that the present application is not limited to this.
【Example】
Example 1
The following solutions were prepared as examples of the present invention.
(Preparation of coating solution for organic EL layer formation)
・ 70 parts by weight of polyvinylcarbazole
・ Oxadiazole compound 30 parts by weight
・ Coumarin 6 (* Fluorescent dye) 1 part by weight
・ 633 parts by weight of 1,1,2-trichloroethane (solvent)
* When the fluorescent dye is coumarin 6, green light emission with a peak at 501 nm is obtained, blue light emission with a peak at 460 to 470 nm is obtained with perylene, and red light emission with a peak at 570 nm is obtained with DCM. Used as luminescent material.
[0031]
(Production of EL display device)
A substrate having electrodes and barrier ribs having the cross-sectional shape of FIG. 1 was prepared. It was set as the arrangement | positioning which covered the electrode end so that a partition may serve as an electrode insulating layer. As the electrode, a transparent electrode such as ITO, Nesa film or IZO was formed and patterned by etching. The partition walls were formed by spin-coating a photosensitive resist OFPR-800 (viscosity 500 cp) manufactured by Tokyo Ohka Co., Ltd. at 1200 rpm, pre-baking at 110 ° C., exposing and developing using a photomask, and post-baking at 240 ° C. Under the above conditions, the partition wall height (film thickness) could be formed to 6 μm. The shape of the partition wall thus formed can be easily confirmed using a scanning electron microscope (SEM) or the like. It was confirmed that the shape of the partition wall had a curved cross-sectional shape that was convex with respect to the substrate surface, and that the cross-sectional shape was a part of an arc. FIG. 22 shows a cross-sectional SEM photograph.
[0032]
A transparent electrode is used for a bottom emission element structure, and a transparent substrate is used. A top emission element structure can be formed by using metal for the electrode. The electrode opening has a rectangular shape of 100 μm × 300 μm.
After washing the substrate, PEDOT / PSS (polythiophene: Bayer CH8000) having a hole injection property as a so-called buffer layer was applied by spin coating at 80 nm and baked at 160 ° C. The organic EL layer forming coating solution was ejected to the pixel opening on PEDOT by an ink jet method and dried at 80 ° C. to form a light emitting layer having a thickness of 100 nm. Subsequently, an MgAg alloy (Mg: Ag = 10: 1) was deposited to a thickness of 150 nm, and Ag was deposited as a protective layer to a thickness of 200 nm thereon to form a negative electrode.
When an active matrix display device is manufactured using a so-called TFT substrate, the negative electrode is formed on the entire surface, and when a passive matrix display device is manufactured, it is formed in a stripe shape so as to be orthogonal to the electrode pattern on the substrate.
[0033]
Separately, the substrate on which the light emitting layer was formed was observed with an SEM and an atomic force microscope (AFM). As shown in FIG. 2, it was confirmed that the EL layer was flat in most of the pixel opening except that the EL layer film thickness was slightly increased in the vicinity of the boundary between the partition wall 1000 and the boundary in FIG. In the vicinity of the boundary between 1000 partition walls and the EL layer in FIG. 2, it was confirmed that the EL layer was in smooth contact with the curved surface shape opposite to the protrusion curved surface in the vicinity of the partition wall.
When a direct current electric field was applied between the electrodes and the state of light emission at the pixel opening was observed, no light emission failure due to non-uniformity of the EL layer thickness occurred as shown in FIGS. By connecting the control circuit and inputting the image signal, it was possible to obtain a color display with excellent display performance.
[0034]
(Example 2)
The same procedure as in Example 1 was performed except that the processing conditions of the resist material were changed in Example 1.
Specifically, the same resist material as used in Example 1 was processed and formed in the same manner as in Example 1 except that the post-baking temperature was 180 ° C. When the shape of the partition wall was confirmed by SEM, as shown in FIG. 3, it had a curved cross-sectional shape that was convex with respect to the substrate surface, and the cross-sectional shape was a part of the protrusion cross-section arc and the upper flat part that continued to it. It was confirmed that the shape was composed of FIG. 23 shows a cross-sectional SEM photograph.
[0035]
Subsequently, an EL display device was produced in the same manner as in Example 1.
Separately, the substrate on which the light emitting layer was formed was observed with an SEM and an atomic force microscope (AFM). As shown in FIG. 3, it was confirmed that the EL layer was flat in most of the pixel opening except that the EL layer film thickness was slightly increased in the vicinity of the partition wall 1001 and the boundary in FIG. In the vicinity of the boundary between the partition wall 1001 and the EL layer 1001 in FIG. 3, it was confirmed that the EL layer was in close contact with the curved surface in the opposite direction to the protrusion curved surface in the vicinity of the partition wall.
When a direct current electric field was applied between the electrodes and the state of light emission at the pixel opening was observed, no light emission failure due to non-uniformity of the EL layer thickness occurred as shown in FIGS. By connecting the control circuit and inputting an image signal, it was possible to obtain a color display with excellent display performance.
[0036]
(Example 3)
Example 1 and Example 2 were carried out in the same manner as Example 1 and Example 2 except that the pixel opening was not rectangular and had a shape with no corners as shown in FIG.
In Example 1 and Example 2, uniform pixel light emission was achieved, but when the number of pixels increased, some defective pixels were generated, and so-called product yields were never high. The pixel opening shape without corners improves the yield, and is more effective for practical display devices having the number of pixels equal to or greater than VGA.
As mentioned above, although the Example of this invention was described, this invention is not limited to this.
[0037]
【The invention's effect】
By using the present invention, an organic EL material in a solution state (polymer organic EL material, coated low molecular organic EL material, etc.) is uniformly formed by a simpler process than before, and a practical display device is manufactured. can do. Furthermore, a practical electronic device equipped with this display device can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional configuration diagram of a display device according to an embodiment of the present invention.
FIG. 2 is an enlarged cross-sectional configuration diagram of a display device according to an embodiment of the present invention.
FIG. 3 is an enlarged cross-sectional configuration diagram of a display device according to another embodiment of the present invention.
FIG. 4 is a cross-sectional configuration diagram of a conventional display device.
FIG. 5 is a cross-sectional configuration diagram of a conventional display device.
FIG. 6 is a cross-sectional configuration diagram of a conventional display device.
FIG. 7 is a front view showing a state of light emission of a pixel when display is performed by a conventional display device.
FIG. 8 is a cross-sectional configuration diagram of another conventional display device.
FIG. 9 is a front view showing a state of light emission of a pixel when display is performed by another conventional display device.
FIG. 10 is a cross-sectional configuration diagram of an improved conventional display device.
FIG. 11 is a cross-sectional configuration diagram of another improved conventional display device.
FIG. 12 is a cross-sectional configuration diagram in the case where an improved conventional display device is manufactured by a wet process.
FIG. 13 is a cross-sectional configuration diagram of an organic EL element.
FIG. 14 is another cross-sectional configuration diagram of an organic EL element.
FIG. 15 is a configuration diagram illustrating a method for manufacturing an organic EL display device by an inkjet method.
FIG. 16 is a circuit diagram showing a configuration of a pixel of an active drive organic EL display device.
FIG. 17 is a configuration diagram showing a matrix pixel configuration of an active drive organic EL display device.
FIG. 18 is a front view of a pixel arrangement of a display device of the present invention.
FIG. 19 is another front view of the pixel arrangement of the display device of the present invention.
FIG. 20 is another front view of the pixel arrangement of the display device of the present invention.
FIG. 21 is an example of an electronic device on which the display device of the present invention is mounted.
FIG. 22 is a cross-sectional SEM photograph of a display device according to an example of the present invention.
FIG. 23 is a cross-sectional SEM photograph of a display device according to another example of the present invention.
[Explanation of symbols]
1 Display section
2 Substrate
3 electrodes
4 Bulkhead
5 EL layer
6 opening
7 Counter electrode
8 Insulation layer
9 nozzles
10 Light emission
11 Scan line G
12 Data signal line D
13 Power supply line V
14 Switching TFT
15 Gate holding capacity
16 EL drive TFT
17 EL element
18 pixels
19 Operation unit
20 equipment
21 Lens

Claims (6)

少なくとも基板と、基板上に形成される電極とEL(エレクトロルミネッセンス)層から構成されるエレクトロルミネッセンス表示装置において、電極端を覆って基板面に対して凸形状の曲面断面形状を有し、且つ、基板面と接する下端部において、該曲面断面形状が外側に凸状である突起体を有し、前記EL層は、ウェットプロセスにより配設されたものであり、隔壁と境界部近傍でEL層膜厚が僅かに厚くなっている他は画素開口部の大部分でEL層が平坦で、且つ、突起体近傍で突起体曲面と逆方向の曲面形状を成して連続して滑らかに突起体に接していることを特徴とするエレクトロルミネッセンス表示装置。And at least a substrate, the electroluminescent display device comprising the electrode and the EL (electroluminescent) layer formed on the substrate, it has a curved cross-sectional shape of the convex to the substrate surface to cover the electrode end, and, at the lower end in contact with the substrate surface, it has a protrusion curved surface cross sectional shape is convex outwardly, the EL layer has been arranged by a wet process, EL-layer film by the partition wall and the boundary vicinity The EL layer is flat in most of the pixel opening except that the thickness is slightly thicker, and a curved surface shape in the opposite direction to the curved surface of the projection is formed in the vicinity of the projection to smoothly and smoothly form the projection. An electroluminescence display device which is in contact with the electroluminescence display device.
突起体断面形状が円弧の一部分であることを特徴とする請求項1に記載のエレクトロルミネッセンス表示装置。

Electroluminescent display device according to claim 1, projections cross section, characterized in that an arc of a portion.
突起体断面形状が円弧の一部分とそれに連続する上部平坦部から構成されることを特徴とする請求項1〜2のいずれか一つに記載のエレクトロルミネッセンス表示装置。Electroluminescent display device according possible to claim 21 to, characterized in consisting of an upper flat portion of protrusion cross-section is continuous therewith and arc portion. 突起体の厚さが5μm以上であることを特徴とする請求項1〜のいずれか一つに記載のエレクトロルミネッセンス表示装置。Electroluminescent display device according to any one of claims 1-3, wherein the thickness of the protrusion is 5μm or more. 前記請求項1〜のいずれか一つに記載の突起体を有する基板表面に少なくとも発光層を含む有機層をインクジェット法、印刷法、キャスト法、交互吸着法、スピン塗布法、ディップ法、ディスペンサ法のウエットプロセスにより形成することを特徴とするエレクトロルミネッセンス表示装置の製造方法。An organic layer including at least a light emitting layer on the substrate surface having the protrusion according to any one of claims 1 to 4 is formed by an inkjet method, a printing method, a casting method, an alternating adsorption method, a spin coating method, a dip method, or a dispenser. A method for manufacturing an electroluminescence display device, characterized in that the electroluminescence display device is formed by a wet process. 前記請求項1〜のいずれか一つに記載の表示装置を表示部に用いたことを特徴とする電子機器。Electronic device characterized by using the display unit to display device according to any one of the claims 1-4.
JP2002222296A 2002-07-31 2002-07-31 Electroluminescence display device and manufacturing method Expired - Fee Related JP4170700B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2002222296A JP4170700B2 (en) 2002-07-31 2002-07-31 Electroluminescence display device and manufacturing method
GB0317863A GB2391686B (en) 2002-07-31 2003-07-30 Electroluminescent display and process for producing the same
GB0519859A GB2416066B (en) 2002-07-31 2003-07-30 Electroluminescent display and process for producing the same
US10/630,089 US7307381B2 (en) 2002-07-31 2003-07-30 Electroluminescent display and process for producing the same
US11/980,273 US7898173B2 (en) 2002-07-31 2007-10-30 Pattern formed object for an electroluminescent display
US12/693,822 US8267735B2 (en) 2002-07-31 2010-01-26 Pattern formation method for electroluminescent element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002222296A JP4170700B2 (en) 2002-07-31 2002-07-31 Electroluminescence display device and manufacturing method

Publications (2)

Publication Number Publication Date
JP2004063359A JP2004063359A (en) 2004-02-26
JP4170700B2 true JP4170700B2 (en) 2008-10-22

Family

ID=31942347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002222296A Expired - Fee Related JP4170700B2 (en) 2002-07-31 2002-07-31 Electroluminescence display device and manufacturing method

Country Status (1)

Country Link
JP (1) JP4170700B2 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7485023B2 (en) 2005-03-31 2009-02-03 Toppan Printing Co., Ltd. Organic electroluminescent device having partition wall and a manufacturing method of the same by relief printing method
JP2007012504A (en) 2005-07-01 2007-01-18 Toppan Printing Co Ltd Method for manufacturing organic el device, and organic el device
JP4872288B2 (en) 2005-09-22 2012-02-08 凸版印刷株式会社 Organic EL device and manufacturing method thereof
TWI517378B (en) * 2005-10-17 2016-01-11 半導體能源研究所股份有限公司 Semiconductor device and manufacturing method thereof
JP2007188779A (en) * 2006-01-13 2007-07-26 Toshiba Matsushita Display Technology Co Ltd Organic el display device
KR101084166B1 (en) * 2006-01-13 2011-11-17 삼성모바일디스플레이주식회사 Pixel structure and organic light emitting device comprising the same
US7696683B2 (en) 2006-01-19 2010-04-13 Toppan Printing Co., Ltd. Organic electroluminescent element and the manufacturing method
US7546803B2 (en) 2006-01-30 2009-06-16 Toppan Printing Co., Ltd. Letterpress printing machine
JP4706845B2 (en) 2006-02-15 2011-06-22 凸版印刷株式会社 Manufacturing method of organic EL element
US7880382B2 (en) 2006-03-08 2011-02-01 Toppan Printing Co., Ltd. Organic electroluminescence panel and manufacturing method of the same
US7687390B2 (en) 2006-03-28 2010-03-30 Toppan Printing Co., Ltd. Manufacturing method of a transparent conductive film, a manufacturing method of a transparent electrode of an organic electroluminescence device, an organic electroluminescence device and the manufacturing method
JP2007273094A (en) 2006-03-30 2007-10-18 Toppan Printing Co Ltd Organic electroluminescence element and manufacturing method therefor
JP2008066567A (en) * 2006-09-08 2008-03-21 Ricoh Co Ltd Wiring pattern, electronic element using it, organic semiconductor element, laminating wiring pattern and laminating wiring substrate
JP2009187898A (en) * 2008-02-08 2009-08-20 Seiko Epson Corp Organic el device and its manufacturing method
KR101480005B1 (en) 2008-02-25 2015-01-08 삼성디스플레이 주식회사 Organic light emitting device and manufacturing method thereof
JP2009259570A (en) * 2008-04-16 2009-11-05 Seiko Epson Corp Organic electroluminescent device and electronic equipment
JP2010108674A (en) * 2008-10-29 2010-05-13 Hitachi Displays Ltd Organic electroluminescent display device and manufacturing method thereof
KR101558293B1 (en) * 2008-12-02 2015-10-07 엘지디스플레이 주식회사 Organic Electro-luminescent Device and method for fabricating thereof
JP5591052B2 (en) * 2010-09-30 2014-09-17 ユー・ディー・シー アイルランド リミテッド Organic electroluminescence device
KR101788285B1 (en) * 2010-10-22 2017-10-20 삼성디스플레이 주식회사 Organic light emitting diode display
US9142598B2 (en) * 2011-06-24 2015-09-22 Semiconductor Energy Laboratory Co., Ltd. Light-emitting panel, light-emitting device using the light-emitting panel, and method for manufacturing the light-emitting panel
JP2016219125A (en) 2015-05-15 2016-12-22 ソニー株式会社 Light-emitting element and display device
WO2019106717A1 (en) * 2017-11-28 2019-06-06 堺ディスプレイプロダクト株式会社 Organic el light-emitting element and manufacturing method thereof
US11101431B2 (en) * 2017-11-28 2021-08-24 Sakai Display Products Corporation Organic EL light-emitting element and manufacturing method thereof
JP6811741B2 (en) 2018-04-18 2021-01-13 株式会社Joled Manufacturing method of organic EL display panel, organic EL display device, and organic EL display panel

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100530758C (en) * 1998-03-17 2009-08-19 精工爱普生株式会社 Thin film pattering substrate and surface treatment
GB9808806D0 (en) * 1998-04-24 1998-06-24 Cambridge Display Tech Ltd Selective deposition of polymer films
JP2001093666A (en) * 1999-09-22 2001-04-06 Sharp Corp Organic led display device and method for manufacturing the same
WO2001074121A1 (en) * 2000-03-31 2001-10-04 Seiko Epson Corporation Organic el device and method of manufacture thereof
JP2001351787A (en) * 2000-06-07 2001-12-21 Sharp Corp Organic led element, its manufacturing method and organic led display
JP2002164181A (en) * 2000-09-18 2002-06-07 Semiconductor Energy Lab Co Ltd Display device and its manufacturing method
KR100656490B1 (en) * 2001-11-26 2006-12-12 삼성에스디아이 주식회사 Full Color OLED and Method for fabricating the Same

Also Published As

Publication number Publication date
JP2004063359A (en) 2004-02-26

Similar Documents

Publication Publication Date Title
JP4170700B2 (en) Electroluminescence display device and manufacturing method
JP4440523B2 (en) Organic EL display device by inkjet method, color filter manufacturing method, manufacturing device
JP4413535B2 (en) Organic EL display device by inkjet method, color filter manufacturing method, manufacturing device
US7368145B2 (en) Method and apparatus for manufacturing organic EL display and color filter by ink jet method
US8267735B2 (en) Pattern formation method for electroluminescent element
US6689632B2 (en) Organic electroluminescence display device and fabricating method of the same
US7696681B2 (en) Stacked organic electroluminescent units for white light emission provided with RGB color conversion portions
US20070200488A1 (en) Display device
JP2007258157A (en) Image display system containing electroluminescent element, and its manufacturing method
EP3832731B1 (en) Electroluminescent display device and method of manufacturing the same
GB2393314A (en) Display and method for manufacturing the same
US11637265B2 (en) Display substrate having pixel definition layer comprises a lyophilic and lyophobic materials
JP4374197B2 (en) Functional element manufacturing method and manufacturing apparatus thereof
JP4459521B2 (en) Electroluminescence display device
JP4391094B2 (en) Organic EL layer forming method
US7619243B2 (en) Color organic electroluminescent display and method for fabricating the same
US20230180531A1 (en) Electroluminescent display device and method of manufacturing the same
US11825693B2 (en) Transparent display device
JP2004152595A (en) Display apparatus
KR100530799B1 (en) Hybrid Structure Organic Electroluminescent Device and method for fabricating the same
KR100488068B1 (en) Organic Electro luminescence Device and fabrication method of thereof
JP2003323976A (en) Display device and electronic equipment
GB2416066A (en) Electroluminescent display

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080807

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees