JP4168542B2 - Acrylic fiber suitable for nonwoven fabric processing - Google Patents

Acrylic fiber suitable for nonwoven fabric processing Download PDF

Info

Publication number
JP4168542B2
JP4168542B2 JP22764499A JP22764499A JP4168542B2 JP 4168542 B2 JP4168542 B2 JP 4168542B2 JP 22764499 A JP22764499 A JP 22764499A JP 22764499 A JP22764499 A JP 22764499A JP 4168542 B2 JP4168542 B2 JP 4168542B2
Authority
JP
Japan
Prior art keywords
acrylonitrile
acrylic fiber
fiber
tensile strength
nonwoven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22764499A
Other languages
Japanese (ja)
Other versions
JP2001055620A (en
Inventor
義弘 渡辺
孝一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Exlan Co Ltd
Original Assignee
Japan Exlan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Exlan Co Ltd filed Critical Japan Exlan Co Ltd
Priority to JP22764499A priority Critical patent/JP4168542B2/en
Publication of JP2001055620A publication Critical patent/JP2001055620A/en
Application granted granted Critical
Publication of JP4168542B2 publication Critical patent/JP4168542B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Nonwoven Fabrics (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Artificial Filaments (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、不織布加工に適したアクリル繊維及びその製造方法に関し、更に詳しくは不織布加工に適した物性を有する高アクリロニトリル含有率で耐熱性のアクリル繊維及びその製造方法に関する。
【0002】
【従来の技術】
従来、天然、合成を問わず繊維は紡績工程を経て紡績糸として用いられることが一般的であった。しかしながら、不織布化技術が発達するにつれ、また、国内外の紡績賃金格差が大きくなるにつれ、繊維の加工形態として紡績糸から不織布への移行が年々強まりつつある。殊に要求性能さえ満足すれば比較的形態を問わない産業資材用途では、コストの点から今後飛躍的に紡績糸から不織布への移行が進むものと予想されている。
【0003】
一方、アクリル繊維はその優れた風合い及び染色性を活かして衣料用に大量に使用されているものの、産業資材用としては機械的特性が不充分であるためほとんど使用されていないのが現状であり、産業資材用繊維として使用可能な機械的特性を有するアクリル繊維を製造する試みが数多く提案されてきた。
【0004】
例えば特開昭57−51819号公報には、湿式または乾湿式紡糸法により得られた繊維を湿式延伸し、無緊張下で乾燥し引続いて加熱板上にて接触延伸して有効延伸倍率を9倍以上25倍以下にして高弾性率のアクリル繊維とすることが提案されている。また特開昭57−161117号公報には相対粘度が2.5〜6.0のアクリロニトリル系重合体を乾式または湿式紡糸し洗浄中もしくは洗浄後に湿式延伸し、緊張下に加熱ロール上で乾燥し、乾熱下に熱処理する方法が提案されている。しかしながら、これらの公知技術では引張強度を向上させることは出来ても、不織布を製造する際に必要な適性を付与することは困難である。
【0005】
ところで、産業資材用途には上述してきた高弾性率、高引張強度の他に、耐熱性を有する繊維であることを要求されるケースが多く、さらに加えて最近では不織布加工への適性を備えることも必要となって来たのは既述の通りである。かかる特に耐熱性への要求に応えるものとして、例えば特開平1−104818号公報には95重量%以上のアクリロニトリルを含有する重量平均分子量50万以上のアクリロニトリル系重合体を有機溶媒に溶解して得られる紡糸原液を、凝固浴中に乾湿式紡糸し、得られた凝固糸を温水中で延伸した後、150℃以上に保たれた加熱ローラーを用いて乾熱延伸することにより、引張強度15g/d以上、結節強度4g/d以上のアクリル繊維が得られることが記載されている。
【0006】
しかしながら、該アクリル繊維は高引張強度・高結節強度で耐熱性もそれなりに有するものの、不織布加工性は単繊維がフィブリル化する等の点で劣っている。一方、特開平5−279912号公報には95重量%以上のアクリロニトリルを含有するアクリロニトリル系重合体の紡糸原液を乾式紡糸し、得られた繊維を1.5〜4倍の範囲で一次延伸し、次いで乾燥及び緩和熱処理を施して10〜50%の収縮を与え、更に湿熱下で1.1〜1.8倍二次延伸した直後、160〜200℃にて定長熱処理することにより、引張強度1〜3g/d、結節強度(g/d)と結節伸度(%)の積が50以下の抗ピリング性アクリル繊維が得られることが記載されている。
【0007】
該アクリル繊維は、耐熱性はそれなりに有しているが、低引張強度・低結節強度であり「抗ピリング性」には優れているものの、不織布加工に耐えるものではない。以上2例から理解されるように、アクリル繊維の耐熱性は重合体のアクリロニトリル含有率を高めることで向上するが、耐熱性と不織布加工適性を充すものは得られていないのが現状である。不織布加工適性は、高い機械的特性のもの(前者)も低いもの(後者)もいずれも備えておらず、これを解決する為の技術的な障壁の高いことを示している。
【0008】
繊維の断面形状を繭状や三角状といった異形断面とすることにより、繊維の結節強度が向上することは公知である。しかしながら、このような方法で結節強度を向上させても、引張伸度は何ら向上しておらず、かかる繊維は依然として脆弱で不織布化に適した機械的特性を有しているとは言い難い。即ち、かかる繊維の結節強度向上自体が、該繊維の断面形状に基づく見掛け上のものに過ぎないからである。
【0009】
【発明が解決しようとする課題】
本発明の課題は、上記問題点を解消し、不織布化に必要な機械的特性及び耐熱性に優れたアクリル繊維、及びその製造方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明者は、アクリル繊維について耐熱性を維持しつつ不織布加工適性を付与すべく鋭意検討を続けて来た。その結果、アクリル繊維に耐熱性を与える為に重合体のアクリロニトリル含有率を高める程通常の製法であれば該繊維の結晶化が進み剛直なものとなること、不織布加工を有利に行うのに剛直なだけの繊維は不向きで一定の強伸度バランスを有するものでなければならないこと、高アクリロニトリル含有率の繊維でも製造条件の選定により左記強伸度バランスが付与出来ること、を見出し本発明に到達した。
【0011】
本発明は、アクリロニトリルを少なくとも98重量%以上含有するアクリロニトリル系重合体からなり、3g/dを超える引張強度、50%以上の引張伸度、0.9以上の結節強度/引張強度比を有するアクリル繊維にあり、かかる繊維は、アクリロニトリルを少なくとも98重量%以上含有するアクリロニトリル系重合体を、湿式あるいは乾湿式紡糸法で紡糸し、水洗、延伸処理を施した後、先ず110〜130℃の湿熱雰囲気中で弛緩湿熱処理を施し、次いで弛緩乾燥処理を施すことによりトータルとして25〜40%の収縮を与えることを特徴とする製造方法によって製造しうる。
【0012】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明で採用するアクリル繊維の原料であるアクリロニトリル系重合体とは、アクリロニトリル単独重合体、もしくはアクリロニトリル98重量%以上とアクリロニトリルと共重合可能なビニル系モノマー2重量%以下の共重合体であり、周知の重合開始剤、重合度調整のための連鎖移動剤を使用した重合により得られた適宜な重合度のものが用いられる。アクリロニトリルと共重合可能なビニル系モノマーとしては、例えばC1〜C4のアルキルアクリレートやアルキルメタクリレート、アクリル酸、メタクリル酸、メタクリロニトリル、アクリルアミド、臭化ビニル、弗化ビニル、酢酸ビニル、臭化ビニリデン、スチレン、エチレン、プロピレン等が挙げられるが、アクリロニトリルと共重合させうるものであれば特に限定されるものではなく、2種類以上のビニル系モノマーを併用することも出来る。アクリロニトリルが98重量%未満では、産業資材用途で必要とされる耐熱性をアクリル繊維に付与することが出来ず発明が達成されない。
【0013】
該アクリロニトリル系重合体をアクリロニトリル系重合体の溶剤に溶解し、紡糸原液を作成する。かかる溶剤としては、特に限定されるものではなく、例えばジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド等の有機系溶剤、硝酸、ロダン塩、塩化亜鉛等の無機系溶剤等が使用できる。しかしながら、本発明のアクリル繊維として不織布加工適性をより高度に達成するには、繊維の断面形状が不織布化に際し過度なフィブリル化、微粉末化を生じにくい円状である方が好ましく、従って本発明のアクリル繊維の断面形状を円状とする点において、かかる溶剤としては無機系溶剤が優れており、中でもロダン塩が好ましい。
【0014】
該紡糸原液を湿式あるいは乾湿式紡糸法で凝固浴中へ紡糸し、次いで水洗、延伸処理を施すことによりゲル糸條を得る。尚、言う迄もないが、湿式紡糸とは紡糸口金を凝固浴中に浸漬して糸條を吐出する方法、乾湿式紡糸とは紡糸口金から吐出した糸條を一旦非凝固性の媒体…一般には不活性気体…中を経由して凝固浴中に導入する紡糸方法を言う。かくして得られるゲル糸條は発明の繊維の中間原料と言うべきものであり、重合体と凝固性非溶剤、場合によっては残留しているわずかの溶剤でなる湿潤膨潤体である。かかるゲル糸條の製造方法の詳細は、一般に知られる湿式あるいは乾湿式紡糸方法によるアクリル繊維の製造方法であって、紡糸、水洗、延伸処理の工程を経るものであれば特に限定されるものではないが、例えば特開昭60−139809号、特開昭60−139810号、特開昭61−167013号、特開昭62−57910号等の公報に開示されている方法が挙げられる。
【0015】
かくして得られたゲル糸條を先ず110〜130℃の湿熱雰囲気中で弛緩湿熱処理を施し、次いで弛緩乾燥処理を施すことによりトータルとして25〜40%の収縮を与え、発明のアクリル繊維を得る。ここで、トータル25〜40%の収縮とは、弛緩湿熱処理による収縮と弛緩乾燥処理による収縮の合計であり、弛緩湿熱処理前のゲル糸條の長さをXcm、弛緩乾燥処理後の繊維の長さをYcmとしたとき、(X−Y)/X×100 で与えられる値である。
【0016】
本発明に記載の弛緩湿熱処理方法としては、例えばキヤーまたはオートクレーブを使用して、本発明のゲル糸條を湿熱雰囲気中でリラックスさせる方法が挙げられる。湿熱雰囲気の媒体としては、飽和水蒸気、過熱水蒸気等が挙げられるが、特に限定されるものではない。湿熱雰囲気温度が110℃未満の場合には、ゲル糸條に十分な収縮を与えることが出来ない為、本発明のアクリル繊維が特徴とする結節強度/引張強度比、及び引張伸度を繊維に付与することが出来ず、逆に130℃を超える場合には、繊維が極度に収縮する為、本発明のアクリル繊維が特徴とする引張強度を繊維に付与することが出来なかったり、ゲル糸條同士の部分的な融着が発生したりする。また、湿熱雰囲気中のゲル糸條の滞留時間としては3〜30分が好ましい。滞留時間が3分未満の場合には、ゲル糸條間で収縮に不均一が生じる為、得られるアクリル繊維の機械的物性が不均一となり、逆に30分を超える場合には、既にゲル糸條の収縮が完全に終了している為、徒に湿熱雰囲気を浪費しアクリル繊維の生産性を低めることになる。
【0017】
また、本発明に記載の弛緩乾燥処理方法としては、例えばトンネル乾燥機あるいはドラム乾燥機を用い、繊維をリラックスさせた状態で、湿度40%以下、温度110〜160℃の高温低湿雰囲気中で乾燥処理する方法が挙げられるが、上述の弛緩湿熱処理における収縮と、弛緩乾燥処理における収縮のトータルの収縮が25〜40%となる方法であれば、特に限定されるものではない。
【0018】
上述のごとくして得られたアクリル繊維は、3g/dを超える引張強度、50%以上の引張伸度、0.9以上の結節強度/引張強度比、即ち不織布の製造に十分な機械的特性を有している。尚、本発明のアクリル繊維は、不織布の製造に好適に用いられるようにする為、必要に応じて機械捲縮を付与し、切断してステープルとすることも可能であることは言うまでもない。
【0019】
本発明が採用するアクリル繊維は3g/dを超える引張強度、50%以上の引張伸度、0.9以上の結節強度/引張強度比を有している。引張強度が3g/d以下だと結節強度/引張強度比は高くても、繊維は脆い性状を示す。そのためかかる繊維は不織布を作成する際、繊維同士を絡み合わせる為に加えられる強いせん断力により繊維が微粉末化しやすく、結果として不織布強度が低くなるため、不織布の製造に十分な機械的特性を有しているとは言い難い。また、引張伸度が50%未満、もしくは結節強度/引張強度比が0.9未満の繊維は繊維軸方向への配向が強くなる為、該繊維は剛直な性状を示す。この場合も、不織布を作成する際、繊維同士を絡み合わせる為に加えられる強いせん断力により繊維が過度にフィブリル化してフェルト状になる等、不織布の製造には不適である。
【0020】
【実施例】
以下に本発明の理解を容易にするため実施例を示すが、これらはあくまで例示的なものであり、本発明の要旨はこれに限定されるものではない。
【0021】
実施例1
アクリロニトリルをアンモニウムパーサルファイト/ピロ亜硫酸ソーダからなるレドックス系重合開始剤を使用し水系連続重合法にて重合し、重量平均分子量15万のアクリロニトリル単独重合体を得た。該アクリロニトリル単独重合体を53重量%のチオシアン酸ナトリウム水溶液に溶解、紡糸原液を作成し、孔径が0.125mmで、孔形状が円状である紡糸口金を介して−5℃に調整された15重量%のチオシアン酸ナトリウム水溶液からなる凝固浴中で凝固させ、次いで水洗、12倍の延伸処理を施すことにより、該アクリロニトリル単独重合体からなるゲル糸條を得た。該ゲル糸條をオートクレーブに入れ、110℃の飽和水蒸気でなる湿熱雰囲気中で15分間弛緩湿熱処理を施した後、トンネル乾燥機を用い125℃、相対湿度40%の加熱雰囲気中で15分間弛緩乾燥処理を施すことにより、トータルとして27.5%の収縮を付与したアクリル繊維を得た。採用した条件、および得られたアクリル繊維の評価結果を表1に示す。実施例1のアクリル繊維は引張強度が3.88g/d、引張伸度が51.3%で、且つ結節強度/引張強度比が0.93と不織布化に好適な機械的特性を示した。
【0022】
【表1】

Figure 0004168542
【0023】
実施例2
オートクレーブを用い130℃の飽和水蒸気でなる湿熱雰囲気中で15分間弛緩湿熱処理を施した他は実施例1と同様に実施しトータルとして39.5%の収縮を付与したアクリル繊維を得た。採用した条件、および得られたアクリル繊維の評価結果を表1に併記する。実施例2のアクリル繊維は引張強度が3.17g/d、引張伸度が60.5%で、且つ結節強度/引張強度比が0.99と不織布化に好適な機械的特性を示した。
【0024】
実施例3
アクリロニトリル98重量%とメチルアクリレート2重量%をアンモニウムパーサルファイト/ピロ亜硫酸ソーダからなるレドックス系重合開始剤を使用し、水系連続重合法にて重合して得た重量平均分子量15万のアクリロニトリル系重合体を使用した他は実施例1と同様に実施しトータルとして28.0%の収縮を付与したアクリル繊維を得た。採用した条件、および得られたアクリル繊維の評価結果を表1に併記する。実施例3のアクリル繊維は引張強度が3.72g/d、引張伸度が52.7%で、且つ結節強度/引張強度比が0.96と不織布化に好適な機械的特性を示した。
【0025】
実施例4
オートクレーブを用い130℃の飽和水蒸気でなる湿熱雰囲気中で15分間弛緩湿熱処理を施した他は実施例3と同様に実施しトータルとして40.0%の収縮を付与したアクリル繊維を得た。採用した条件、および得られたアクリル繊維の評価結果を表1に併記する。実施例4のアクリル繊維は引張強度が3.14g/d、引張伸度が61.5%で、且つ結節強度/引張強度比が0.99と不織布化に好適な機械的特性を示した。
【0026】
実施例5
紡糸口金として孔面積が0.032mm2で、孔形状が蝶ネクタイ状の紡糸口金を用いた他は実施例2と同様に実施し、トータルとして39.0%の収縮を付与したアクリル繊維を得た。採用した条件、および得られたアクリル繊維の評価結果を表1に併記する。実施例5のアクリル繊維は、引張強度が3.10g/d、引張伸度が60.0%、結節強度/引張強度比が1.00と十分採用可能なレベルであったものの、断面形状が繭状であるため実施例2のアクリル繊維に比して不織布化に際し若干フィブリル化しやすい傾向が観られた。
【0027】
比較例1
オートクレーブを用い105℃の飽和水蒸気でなる湿熱雰囲気中で15分間弛緩湿熱処理を施した他は実施例1と同様に実施しトータルとして24.5%の収縮を付与したアクリル繊維を得た。採用した条件、および得られたアクリル繊維の評価結果を表2に示す。比較例1のアクリル繊維は、引張強度は4.03g/dを示したものの、引張伸度が34.9%で、且つ結節強度/引張強度比が0.79であるため不織布化に際し過度にフィブリル化しやすく満足の出来ない結果であった。
【0028】
【表2】
Figure 0004168542
【0029】
比較例2
オートクレーブを用い135℃の飽和水蒸気でなる湿熱雰囲気中で15分間弛緩湿熱処理を施した他は実施例1と同様に実施しトータルとして41.0%の収縮を付与したアクリル繊維を得た。採用した条件、および得られたアクリル繊維の評価結果を表2に併記する。比較例2のアクリル繊維は、引張伸度は63.0%で、且つ結節強度/引張強度比は1.00を示したものの、引張強度が2.92g/dであるため不織布化に際し微粉末化しやすく満足の出来ない結果であった。
【0030】
比較例3
実施例3で得られたアクリロニトリル系重合体からなるゲル糸條に対し、先ずトンネル乾燥機を用い125℃、相対湿度40%の加熱雰囲気中で15分間弛緩乾燥処理を施した後、オートクレーブを用い130℃の飽和水蒸気でなる湿熱雰囲気中で15分間弛緩湿熱処理を施すことにより、トータルとして24.0%の収縮を付与したアクリル繊維を得た。採用した条件、および得られたアクリル繊維の評価結果を表2に併記する。比較例3のアクリル繊維は、引張強度は4.77g/dを示したものの、引張伸度が31.2%で、且つ結節強度/引張強度比が0.42であるため不織布化に際し過度にフィブリル化しやすく満足の出来ない結果であった。実施例1〜4と比較すれば、後述する比較例4、6とも併せ、本発明の提案するアクリル繊維の製造方法が如何に不織布化に好適な機械的特性を有するアクリル繊維を与えるかが容易に理解される。
【0031】
比較例4
実施例1で得られたアクリロニトリル単独重合体からなるゲル糸條に対し、トンネル乾燥機を用い125℃、相対湿度40%の加熱雰囲気中で15分間弛緩乾燥処理を施した後、オートクレーブを用い130℃の飽和水蒸気でなる湿熱雰囲気中で15分間弛緩湿熱処理を施すことにより、トータルとして23.5%の収縮を付与したアクリル繊維を得た。採用した条件、および得られたアクリル繊維の評価結果を表2に併記する。比較例4のアクリル繊維は、引張強度は4.85g/dを示したものの、引張伸度が30.2%で、且つ結節強度/引張強度比が0.39であるため不織布化に際し過度にフィブリル化しやすく満足の出来ない結果であった。
【0032】
比較例5
アクリロニトリル95重量%とメチルアクリレート5重量%をアンモニウムパーサルファイト/ピロ亜硫酸ソーダからなるレドックス系重合開始剤を使用し、水系連続重合法にて重合して得た重量平均分子量15万のアクリロニトリル系重合体を使用した他は実施例3と同様に実施しトータルとして33.0%の収縮を付与したアクリル繊維を得た。採用した条件、および得られたアクリル繊維の評価結果を表2に併記する。比較例5のアクリル繊維は、アクリロニトリルの含有率が95重量%のアクリロニトリル系重合体を使用しているため耐熱性が十分でなく、弛緩湿熱処理に際し繊維同士の部分的融着を発生し、とても不織布化に供し得る繊維ではなかった。
【0033】
比較例6
実施例5で得られたゲル糸條に対し、トンネル乾燥機を用い125℃、相対湿度40%の加熱雰囲気中で15分間弛緩乾燥処理を施した後、オートクレーブを用い130℃の飽和水蒸気でなる湿熱雰囲気中で15分間弛緩湿熱処理を施すことにより、トータルとして24.0%の収縮を付与したアクリル繊維を得た。採用した条件、および得られたアクリル繊維の評価結果を表2に併記する。比較例6のアクリル繊維は、引張強度は3.72g/dで、且つ断面形状が繭状であるため結節強度/引張強度比は0.92を示したものの、引張伸度は30.8%に過ぎず、不織布化に際し過度にフィブリル化しやすく満足の出来ない結果であった。
【0034】
【発明の効果】
以上述べたように本発明は、アクリロニトリルを少なくとも98重量%以上含有するアクリロニトリル系重合体からなり、不織布化に適した機械的特性、即ち3g/dを超える引張強度、50%以上の引張伸度、0.9以上の結節強度/引張強度比を有するアクリル繊維、及びその製造方法を提供した点が特筆すべき効果であり、工業的意義の大なるものがある。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an acrylic fiber suitable for nonwoven fabric processing and a method for producing the same, and more particularly relates to a high acrylonitrile content heat-resistant acrylic fiber having physical properties suitable for nonwoven fabric processing and a method for producing the same.
[0002]
[Prior art]
Conventionally, fibers, whether natural or synthetic, have been generally used as spun yarns through a spinning process. However, as non-woven fabric technology develops, and as the wage gap between domestic and overseas increases, the transition from spun yarn to non-woven fabric is increasing year by year. In particular, it is expected that the transition from spun yarns to non-woven fabrics will advance dramatically from the viewpoint of cost in industrial material applications that do not require any form as long as the required performance is satisfied.
[0003]
On the other hand, acrylic fibers are used in large quantities for clothing, taking advantage of their excellent texture and dyeability, but they are rarely used due to insufficient mechanical properties for industrial materials. Many attempts have been made to produce acrylic fibers having mechanical properties that can be used as fibers for industrial materials.
[0004]
For example, in JP-A-57-51819, a fiber obtained by a wet or dry-wet spinning method is wet-drawn, dried under no tension, and subsequently contact-drawn on a heating plate to obtain an effective draw ratio. It has been proposed to make acrylic fibers having a high modulus of elasticity by 9 to 25 times. JP-A-57-161117 discloses that an acrylonitrile polymer having a relative viscosity of 2.5 to 6.0 is dry-type or wet-spun and wet-stretched during or after washing, and dried on a heated roll under tension. A method of heat treatment under dry heat has been proposed. However, even though these known techniques can improve the tensile strength, it is difficult to impart the necessary aptitude when producing a nonwoven fabric.
[0005]
By the way, in addition to the high elastic modulus and high tensile strength described above for industrial materials, there are many cases that are required to be heat-resistant fibers, and more recently, it is suitable for non-woven fabric processing. As mentioned above, it has become necessary. In order to meet such a demand for heat resistance, for example, JP-A-1-104818 discloses a acrylonitrile polymer containing 95% by weight or more of acrylonitrile and dissolved in an organic solvent. The resulting spinning dope is subjected to dry and wet spinning in a coagulation bath, and the obtained coagulated yarn is stretched in warm water, and then stretched by dry heat using a heating roller maintained at 150 ° C. or higher to obtain a tensile strength of 15 g / It is described that an acrylic fiber having a d strength of 4 g / d or more can be obtained.
[0006]
However, although the acrylic fiber has high tensile strength, high knot strength and heat resistance as it is, the nonwoven fabric processability is inferior in that the single fiber is fibrillated. On the other hand, in JP-A-5-279912, dry spinning is performed on a spinning stock solution of an acrylonitrile-based polymer containing 95% by weight or more of acrylonitrile, and the obtained fiber is primarily stretched in a range of 1.5 to 4 times, Next, it is subjected to drying and relaxation heat treatment to give a shrinkage of 10 to 50%, and further subjected to a constant length heat treatment at 160 to 200 ° C. immediately after the secondary stretching of 1.1 to 1.8 times under wet heat, thereby obtaining a tensile strength. It is described that an anti-pilling acrylic fiber having a product of 1 to 3 g / d, a knot strength (g / d) and a knot elongation (%) of 50 or less can be obtained.
[0007]
Although the acrylic fiber has heat resistance as it is, it has low tensile strength and low knot strength and is excellent in “anti-pilling”, but is not resistant to nonwoven fabric processing. As can be understood from the above two examples, the heat resistance of acrylic fibers is improved by increasing the acrylonitrile content of the polymer, but there is no material that satisfies heat resistance and suitability for nonwoven fabric processing. . The non-woven fabric processing aptitude has neither a high mechanical property (the former) nor a low one (the latter), which indicates a high technical barrier to solve this.
[0008]
It is known that the knot strength of the fiber is improved by making the cross-sectional shape of the fiber an irregular cross-section such as a bowl shape or a triangular shape. However, even if the knot strength is improved by such a method, the tensile elongation is not improved at all, and it is difficult to say that such fibers are still fragile and have mechanical properties suitable for making a nonwoven fabric. That is, the knot strength improvement of the fiber itself is only an apparent one based on the cross-sectional shape of the fiber.
[0009]
[Problems to be solved by the invention]
The subject of this invention is providing the acrylic fiber excellent in the mechanical characteristics and heat resistance required for nonwoven fabric formation which eliminate the said trouble, and its manufacturing method.
[0010]
[Means for Solving the Problems]
The present inventor has continually studied to provide acrylic fibers with suitability for nonwoven fabric processing while maintaining heat resistance. As a result, the higher the acrylonitrile content of the polymer in order to give heat resistance to the acrylic fiber, the more normal the production method, the more the crystallization of the fiber will proceed and the more rigid the fiber will be. We have found that all fibers must be unsuitable and have a certain strength-stretch balance, and that the strength-strength balance shown on the left can be imparted by selecting manufacturing conditions even for fibers with a high acrylonitrile content. did.
[0011]
The present invention comprises an acrylonitrile-based polymer containing at least 98% by weight of acrylonitrile and has a tensile strength of over 3 g / d, a tensile elongation of over 50%, and a knot strength / tensile strength ratio of over 0.9. In the fiber, such a fiber is prepared by spinning an acrylonitrile-based polymer containing at least 98% by weight of acrylonitrile by a wet or dry-wet spinning method, washing with water and drawing, and then first a wet heat atmosphere at 110 to 130 ° C. It can be produced by a production method characterized by giving a relaxation of 25 to 40% in total by applying a relaxation wet heat treatment and then performing a relaxation drying treatment.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The acrylonitrile-based polymer that is the raw material of the acrylic fiber employed in the present invention is an acrylonitrile homopolymer or a copolymer of 98% by weight or more of acrylonitrile and 2% by weight or less of a vinyl monomer copolymerizable with acrylonitrile, Those having a suitable polymerization degree obtained by polymerization using a known polymerization initiator and a chain transfer agent for adjusting the polymerization degree are used. Examples of vinyl monomers copolymerizable with acrylonitrile include C1-C4 alkyl acrylates and alkyl methacrylates, acrylic acid, methacrylic acid, methacrylonitrile, acrylamide, vinyl bromide, vinyl fluoride, vinyl acetate, vinylidene bromide, Styrene, ethylene, propylene and the like can be mentioned, but there is no particular limitation as long as it can be copolymerized with acrylonitrile, and two or more kinds of vinyl monomers can be used in combination. If acrylonitrile is less than 98% by weight, the heat resistance required for industrial material applications cannot be imparted to the acrylic fiber, and the invention is not achieved.
[0013]
The acrylonitrile polymer is dissolved in an acrylonitrile polymer solvent to prepare a spinning dope. Such a solvent is not particularly limited, and for example, an organic solvent such as dimethyl sulfoxide, dimethylformamide, dimethylacetamide, an inorganic solvent such as nitric acid, a rhodan salt, and zinc chloride can be used. However, in order to achieve a higher degree of non-woven fabric processing suitability as the acrylic fiber of the present invention, it is preferable that the cross-sectional shape of the fiber is a circular shape that does not easily cause excessive fibrillation and fine pulverization upon forming the non-woven fabric. In view of making the cross-sectional shape of the acrylic fiber circular, such a solvent is excellent as an inorganic solvent, and among them, a rhodan salt is preferable.
[0014]
The spinning dope is spun into a coagulation bath by a wet or dry wet spinning method, then washed with water and stretched to obtain a gel yarn. Needless to say, wet spinning is a method in which a spinneret is immersed in a coagulation bath and the yarn is discharged, and dry and wet spinning is a non-solidifying medium once the yarn is discharged from the spinneret. Refers to a spinning method in which the gas is introduced into the coagulation bath via an inert gas. The gel yarn thus obtained should be called an intermediate raw material of the fiber of the invention, and is a wet swollen body composed of a polymer and a solidifying non-solvent, and in some cases, a small amount of remaining solvent. The details of the method for producing the gel yarn basket are not particularly limited as long as it is a generally known wet or dry wet spinning method for producing an acrylic fiber and undergoes spinning, washing and drawing processes. For example, there are methods disclosed in JP-A-60-139809, JP-A-60-139810, JP-A-61-167013, JP-A-62-57910, and the like.
[0015]
The gel yarn thus obtained is first subjected to relaxation wet heat treatment in a humid heat atmosphere of 110 to 130 ° C., and then subjected to relaxation drying treatment to give a total shrinkage of 25 to 40% to obtain the acrylic fiber of the invention. Here, the total shrinkage of 25 to 40% is the sum of the shrinkage due to the relaxation wet heat treatment and the shrinkage due to the relaxation drying treatment. The length of the gel yarn before the relaxation wet heat treatment is Xcm, and the fiber after the relaxation drying treatment When the length is Ycm, the value is given by (X−Y) / X × 100.
[0016]
Examples of the relaxation and wet heat treatment method described in the present invention include a method of relaxing the gel yarn basket of the present invention in a wet and heat atmosphere using, for example, a char or an autoclave. Examples of the medium of the wet heat atmosphere include saturated steam and superheated steam, but are not particularly limited. When the wet heat atmosphere temperature is less than 110 ° C., the gel yarn can not be sufficiently contracted, so that the knot strength / tensile strength ratio and tensile elongation characteristic of the acrylic fiber of the present invention are given to the fiber. In contrast, when the temperature exceeds 130 ° C., the fiber is extremely shrunk, so that the tensile strength characteristic of the acrylic fiber of the present invention cannot be imparted to the fiber, or the gel yarn string There may be partial fusion between them. Further, the residence time of the gel yarn basket in the wet heat atmosphere is preferably 3 to 30 minutes. If the residence time is less than 3 minutes, non-uniform shrinkage occurs between the gel yarns, so that the mechanical properties of the resulting acrylic fiber become non-uniform. Since the shrinkage of the cocoon is completely finished, the wet heat atmosphere is wasted and the productivity of acrylic fiber is lowered.
[0017]
In addition, as the relaxation drying method described in the present invention, for example, a tunnel dryer or a drum dryer is used, and the fiber is relaxed and dried in a high-temperature and low-humidity atmosphere having a humidity of 40% or less and a temperature of 110 to 160 ° C. Although the method of processing is mentioned, it will not specifically limit if the total shrinkage | contraction of the shrinkage | contraction in the above-mentioned relaxation wet heat processing and the shrinkage | contraction in a relaxation drying process will be 25 to 40%.
[0018]
The acrylic fiber obtained as described above has a tensile strength exceeding 3 g / d, a tensile elongation of 50% or more, a knot strength / tensile strength ratio of 0.9 or more, that is, mechanical properties sufficient for producing a nonwoven fabric. have. Needless to say, the acrylic fiber of the present invention can be used as a staple by applying mechanical crimping as necessary and cutting it so as to be suitably used for the production of a nonwoven fabric.
[0019]
The acrylic fiber employed by the present invention has a tensile strength exceeding 3 g / d, a tensile elongation of 50% or more, and a knot strength / tensile strength ratio of 0.9 or more. If the tensile strength is 3 g / d or less, the fiber exhibits brittle properties even if the knot strength / tensile strength ratio is high. For this reason, when producing a nonwoven fabric, such fibers tend to be finely powdered due to the strong shearing force applied to entangle the fibers, and as a result, the strength of the nonwoven fabric is reduced. It ’s hard to say. Further, fibers having a tensile elongation of less than 50% or a knot strength / tensile strength ratio of less than 0.9 have a strong orientation in the fiber axis direction, and thus the fibers exhibit a rigid property. Also in this case, when producing a nonwoven fabric, the fiber is excessively fibrillated by a strong shearing force applied to entangle the fibers to form a felt shape, which is not suitable for the production of the nonwoven fabric.
[0020]
【Example】
Examples are shown below for facilitating the understanding of the present invention. However, these are merely examples, and the gist of the present invention is not limited thereto.
[0021]
Example 1
Acrylonitrile was polymerized by an aqueous continuous polymerization method using a redox polymerization initiator composed of ammonium persulfite / sodium pyrosulfite to obtain an acrylonitrile homopolymer having a weight average molecular weight of 150,000. The acrylonitrile homopolymer was dissolved in a 53% by weight aqueous sodium thiocyanate solution to prepare a spinning stock solution, and adjusted to −5 ° C. through a spinneret having a pore diameter of 0.125 mm and a circular pore shape. The gel yarn was made of the acrylonitrile homopolymer by coagulation in a coagulation bath consisting of an aqueous solution of sodium thiocyanate by weight%, followed by washing with water and a 12-fold stretching treatment. The gel yarn basket is put in an autoclave and subjected to a relaxation heat treatment for 15 minutes in a humid heat atmosphere of 110 ° C. saturated steam, and then relaxed for 15 minutes in a heated atmosphere of 125 ° C. and 40% relative humidity using a tunnel dryer. By applying the drying treatment, acrylic fibers having a total shrinkage of 27.5% were obtained. Table 1 shows the adopted conditions and the evaluation results of the obtained acrylic fibers. The acrylic fiber of Example 1 had a tensile strength of 3.88 g / d, a tensile elongation of 51.3%, and a knot strength / tensile strength ratio of 0.93, showing mechanical properties suitable for forming a nonwoven fabric.
[0022]
[Table 1]
Figure 0004168542
[0023]
Example 2
An acrylic fiber having a total shrinkage of 39.5% was obtained in the same manner as in Example 1 except that a relaxing moist heat treatment was performed for 15 minutes in a moist and hot atmosphere of 130 ° C. saturated steam using an autoclave. Table 1 shows the adopted conditions and the evaluation results of the obtained acrylic fibers. The acrylic fiber of Example 2 had a tensile strength of 3.17 g / d, a tensile elongation of 60.5%, and a knot strength / tensile strength ratio of 0.99, exhibiting mechanical properties suitable for forming a nonwoven fabric.
[0024]
Example 3
Acrylonitrile heavy polymer having a weight average molecular weight of 150,000 obtained by polymerizing 98% by weight of acrylonitrile and 2% by weight of methyl acrylate by an aqueous continuous polymerization method using a redox polymerization initiator composed of ammonium persulfite / sodium pyrosulfite. The same procedure as in Example 1 was performed except that the coalescence was used, and acrylic fibers having a total shrinkage of 28.0% were obtained. Table 1 shows the adopted conditions and the evaluation results of the obtained acrylic fibers. The acrylic fiber of Example 3 had a mechanical strength suitable for forming a nonwoven fabric with a tensile strength of 3.72 g / d, a tensile elongation of 52.7%, and a knot strength / tensile strength ratio of 0.96.
[0025]
Example 4
An acrylic fiber having a total shrinkage of 40.0% was obtained in the same manner as in Example 3 except that a relaxing moist heat treatment was performed for 15 minutes in a moist and hot atmosphere of 130 ° C. saturated steam using an autoclave. Table 1 shows the adopted conditions and the evaluation results of the obtained acrylic fibers. The acrylic fiber of Example 4 had a tensile strength of 3.14 g / d, a tensile elongation of 61.5%, and a knot strength / tensile strength ratio of 0.99, exhibiting mechanical properties suitable for forming a nonwoven fabric.
[0026]
Example 5
The same procedure as in Example 2 was carried out except that a spinneret having a hole area of 0.032 mm 2 and a hole shape of bow tie was used as the spinneret, and an acrylic fiber having a total shrinkage of 39.0% was obtained. It was. Table 1 shows the adopted conditions and the evaluation results of the obtained acrylic fibers. The acrylic fiber of Example 5 had a tensile strength of 3.10 g / d, a tensile elongation of 60.0%, and a knot strength / tensile strength ratio of 1.00, which was a sufficiently employable level, but the cross-sectional shape was Since it was in the shape of a bowl, a tendency to be slightly fibrillated during nonwoven fabric formation was observed as compared with the acrylic fiber of Example 2.
[0027]
Comparative Example 1
An acrylic fiber having a total shrinkage of 24.5% was obtained in the same manner as in Example 1 except that it was subjected to relaxation and moist heat treatment for 15 minutes in a moist and hot atmosphere of 105 ° C. saturated steam using an autoclave. Table 2 shows the adopted conditions and the evaluation results of the obtained acrylic fibers. Although the acrylic fiber of Comparative Example 1 showed a tensile strength of 4.03 g / d, the tensile elongation was 34.9%, and the knot strength / tensile strength ratio was 0.79, so excessively in forming the nonwoven fabric. It was easy to fibrillate and was not satisfactory.
[0028]
[Table 2]
Figure 0004168542
[0029]
Comparative Example 2
An acrylic fiber having a total shrinkage of 41.0% was obtained in the same manner as in Example 1 except that a relaxing moist heat treatment was performed for 15 minutes in a humid heat atmosphere of 135 ° C. saturated steam using an autoclave. The conditions employed and the evaluation results of the resulting acrylic fibers are also shown in Table 2. The acrylic fiber of Comparative Example 2 has a tensile elongation of 63.0% and a knot strength / tensile strength ratio of 1.00, but has a tensile strength of 2.92 g / d. The result was easy to be satisfied and was not satisfactory.
[0030]
Comparative Example 3
The gel yarn basket made of the acrylonitrile polymer obtained in Example 3 was first subjected to a relaxation drying treatment for 15 minutes in a heated atmosphere at 125 ° C. and a relative humidity of 40% using a tunnel dryer, and then an autoclave was used. An acrylic fiber having a total shrinkage of 24.0% was obtained by performing a relaxation wet heat treatment for 15 minutes in a moist and hot atmosphere of saturated steam at 130 ° C. The conditions employed and the evaluation results of the resulting acrylic fibers are also shown in Table 2. Although the acrylic fiber of Comparative Example 3 showed a tensile strength of 4.77 g / d, the tensile elongation was 31.2% and the knot strength / tensile strength ratio was 0.42. It was easy to fibrillate and was not satisfactory. Compared with Examples 1 to 4, it is easy to see how the method for producing acrylic fibers proposed by the present invention gives acrylic fibers having mechanical properties suitable for making into nonwoven fabrics together with Comparative Examples 4 and 6 described later. To be understood.
[0031]
Comparative Example 4
The gel yarn basket made of the acrylonitrile homopolymer obtained in Example 1 was subjected to a relaxation drying treatment for 15 minutes in a heated atmosphere of 125 ° C. and 40% relative humidity using a tunnel dryer, and then 130 using an autoclave. An acrylic fiber having a total shrinkage of 23.5% was obtained by performing a relaxation wet heat treatment for 15 minutes in a moist and hot atmosphere of saturated water vapor at 0 ° C. The conditions employed and the evaluation results of the resulting acrylic fibers are also shown in Table 2. Although the acrylic fiber of Comparative Example 4 showed a tensile strength of 4.85 g / d, the tensile elongation was 30.2%, and the knot strength / tensile strength ratio was 0.39. It was easy to fibrillate and was not satisfactory.
[0032]
Comparative Example 5
Acrylonitrile heavy polymer having a weight average molecular weight of 150,000 obtained by polymerizing 95% by weight of acrylonitrile and 5% by weight of methyl acrylate by an aqueous continuous polymerization method using a redox polymerization initiator composed of ammonium persulfite / sodium pyrosulfite. The same procedure as in Example 3 was performed except that the coalescence was used, and acrylic fibers having a total shrinkage of 33.0% were obtained. The conditions employed and the evaluation results of the resulting acrylic fibers are also shown in Table 2. The acrylic fiber of Comparative Example 5 uses an acrylonitrile-based polymer having an acrylonitrile content of 95% by weight, so that the heat resistance is not sufficient, and partial fusion between the fibers occurs during the relaxation and wet heat treatment. It was not a fiber that could be used for making a nonwoven fabric.
[0033]
Comparative Example 6
The gel yarn obtained in Example 5 was subjected to a relaxation drying process for 15 minutes in a heated atmosphere of 125 ° C. and a relative humidity of 40% using a tunnel drier, and then with saturated steam at 130 ° C. using an autoclave. The acrylic fiber which gave the shrinkage | contraction of 24.0% as a total was obtained by performing the relaxation | moisture-moisture heat processing for 15 minutes in a humid heat atmosphere. The conditions employed and the evaluation results of the resulting acrylic fibers are also shown in Table 2. The acrylic fiber of Comparative Example 6 had a tensile strength of 3.72 g / d and a cross-sectional shape of cocoon, so that the knot strength / tensile strength ratio was 0.92, but the tensile elongation was 30.8%. However, it was an unsatisfactory result because it tends to be excessively fibrillated during the non-woven fabric formation.
[0034]
【The invention's effect】
As described above, the present invention comprises an acrylonitrile-based polymer containing at least 98% by weight of acrylonitrile, and has mechanical properties suitable for making a nonwoven fabric, that is, a tensile strength exceeding 3 g / d, a tensile elongation exceeding 50%. Further, it is a remarkable effect that an acrylic fiber having a knot strength / tensile strength ratio of 0.9 or more and a method for producing the same are provided, and there is a great industrial significance.

Claims (2)

アクリロニトリルを少なくとも98重量%以上含有するアクリロニトリル系重合体からなり、3g/dを超える引張強度、50%以上の引張伸度、0.9以上の結節強度/引張強度比を有するアクリル繊維。An acrylic fiber comprising an acrylonitrile polymer containing at least 98% by weight of acrylonitrile and having a tensile strength of more than 3 g / d, a tensile elongation of 50% or more, and a knot strength / tensile strength ratio of 0.9 or more. アクリロニトリルを少なくとも98重量%以上含有するアクリロニトリル系重合体を、湿式あるいは乾湿式紡糸法で紡糸し、水洗、延伸処理を施した後、先ず110〜130℃の湿熱雰囲気中で弛緩湿熱処理を施し、次いで弛緩乾燥処理を施すことによりトータルとして25〜40%の収縮を与えることを特徴とする請求項1記載のアクリル繊維の製造方法。An acrylonitrile-based polymer containing at least 98% by weight of acrylonitrile is spun by a wet or dry-wet spinning method, washed with water and stretched, and then first subjected to a relaxation and wet heat treatment in a humid and heat atmosphere of 110 to 130 ° C., 2. The method for producing acrylic fiber according to claim 1, wherein a shrinkage of 25 to 40% is given as a total by performing a relaxation drying treatment.
JP22764499A 1999-08-11 1999-08-11 Acrylic fiber suitable for nonwoven fabric processing Expired - Lifetime JP4168542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22764499A JP4168542B2 (en) 1999-08-11 1999-08-11 Acrylic fiber suitable for nonwoven fabric processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22764499A JP4168542B2 (en) 1999-08-11 1999-08-11 Acrylic fiber suitable for nonwoven fabric processing

Publications (2)

Publication Number Publication Date
JP2001055620A JP2001055620A (en) 2001-02-27
JP4168542B2 true JP4168542B2 (en) 2008-10-22

Family

ID=16864117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22764499A Expired - Lifetime JP4168542B2 (en) 1999-08-11 1999-08-11 Acrylic fiber suitable for nonwoven fabric processing

Country Status (1)

Country Link
JP (1) JP4168542B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4911334B2 (en) * 2001-08-03 2012-04-04 日本エクスラン工業株式会社 Fiber base material for wet friction materials
JP5128155B2 (en) * 2007-03-26 2013-01-23 日本バイリーン株式会社 Method for imparting strength to electrospun nonwoven fabric
JP5817942B2 (en) * 2013-11-08 2015-11-18 三菱レイヨン株式会社 Highly shrinkable acrylic fiber and spun yarn containing the same fiber and step pile fabric using the spun yarn

Also Published As

Publication number Publication date
JP2001055620A (en) 2001-02-27

Similar Documents

Publication Publication Date Title
JP4168542B2 (en) Acrylic fiber suitable for nonwoven fabric processing
US4663232A (en) Acrylic fiber having excellent durability and dyeability and process for preparation thereof
JP2008038309A (en) Anti-pilling acrylic fiber and method for producing the same
JPH10237721A (en) Highly shrinkable acrylic fiber and raw stock for pile
US3111366A (en) Method for producing high shrinking acrylonitrile polymer fibres
JPH0310724B2 (en)
JP3756886B2 (en) High shrinkable acrylic fiber
WO2001086040A1 (en) Acrylonitrile-based fiber bundle for carbon fiber precursor and method for preparation thereof
JP3945888B2 (en) Acrylic fiber tow material and manufacturing method thereof
JPH04119114A (en) Quickly skrinkable acrylic synthetic fiber and its production
JPH0364605B2 (en)
JPWO2003072618A1 (en) Synthetic resin for acrylic synthetic fiber, acrylic synthetic fiber comprising the same, and method for producing acrylic synthetic fiber
JP2958056B2 (en) Manufacturing method of anti-pill acrylic fiber
JP3431694B2 (en) Method for producing highly shrinkable acrylic fiber for high pile
JPH0138885B2 (en)
JPS6050883B2 (en) Novel acrylonitrile synthetic fiber and its manufacturing method
JPH0457911A (en) Porous actylic yarn having excellent water retention and its production
JPS6233328B2 (en)
JP2003147630A (en) Acrylic modified cross section fiber and method for producing the same
JPH04272213A (en) Acrylic yarn having pilling resistance and production thereof
JPS6156328B2 (en)
JPS6018333B2 (en) Manufacturing method of heat-resistant acrylonitrile fiber
JPS6059325B2 (en) Method for producing anti-pilling acrylic fiber
WO2018051787A1 (en) Vinylidene fluoride resin fibers and sheet-like structure
JPH0434011A (en) Wet-heat resistant acrylic fiber and production thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080728

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4168542

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term