JP4165914B2 - Automotive bumper reinforcement - Google Patents

Automotive bumper reinforcement Download PDF

Info

Publication number
JP4165914B2
JP4165914B2 JP23330897A JP23330897A JP4165914B2 JP 4165914 B2 JP4165914 B2 JP 4165914B2 JP 23330897 A JP23330897 A JP 23330897A JP 23330897 A JP23330897 A JP 23330897A JP 4165914 B2 JP4165914 B2 JP 4165914B2
Authority
JP
Japan
Prior art keywords
web
thickness
flange
flange side
compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23330897A
Other languages
Japanese (ja)
Other versions
JPH1159296A (en
Inventor
正和 柏木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP23330897A priority Critical patent/JP4165914B2/en
Publication of JPH1159296A publication Critical patent/JPH1159296A/en
Application granted granted Critical
Publication of JP4165914B2 publication Critical patent/JP4165914B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Body Structure For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車衝突事故時(軽衝突)に車体を保護する自動車用バンパーリーンフォースメント(以下、バンパーR/Fという)に関する。
【0002】
【従来の技術】
自動車用のバンパーR/Fは、軽衝突(8km/h以下)においてバンパーR/F背面に置かれている補機類(ラジエータ、オルタネータなど)を保護する目的で設けられている。そのため衝突時にはできる限りたわまないように設計する必要がある。この軽衝突を模擬した試験は、北米向けに関してはFMVSS−Part581で決められており、図3に示すように、振り子1を、サイドメンバ2に所定の取付スパンで支持されたバンパーR/F3に衝突させ、バンパーR/F3の変形量を測定している。満たすべき強度レベルの違いはあるが、おおむね世界的に使用されている試験方法である(ペンデュラム試験とよばれている)。
【0003】
図3からも分かるように、試験時にはバンパーR/F3の中央部に大きな曲げ変形を受けることになり、この変形量を抑えることがバンパーとしての性能を左右することになる。曲げ変形を抑えるためには、単純に厚肉化したバンパーR/Fを使用すればよいのだが、バンパーR/Fが設置される場所はホイールから離れた場所でいわゆるオーバーハング部分と呼ばれ、重量的に軽くすることが最も求められている場所である。そのため、できる限り薄肉化したバンパーR/Fを設計する必要がある。
【0004】
従来の鋼板プレス製のバンパーR/Fは加工上の制約から口型断面をしたものが多く、アルミ押出材製のものでは口型断面、日型断面、目型断面、田型断面のものがある。これら矩形断面のアルミ押出材製バンパーR/Fの例を図4に示す。図4において矢印は衝突の方向を表し、その方向に垂直な部分をフランジ、平行な部分をウエブという。
【0005】
また、曲げ変形を効率よく抑えるために、圧縮(衝突面側)フランジの肉厚を引張側フランジよりも厚くし、曲げ変形時にフランジ面が座屈しにくくしたものがある(特開平8−99591号公報参照)。この場合、圧縮フランジが厚肉化されるが、その分他の部分(引張側フランジ、ウエブ)を薄肉化することができ、全体として軽量化に効果があると考えられる。
【0006】
【発明が解決しようとする課題】
ところで、バンパーR/Fの圧縮(衝突面側)フランジの肉厚を引張側フランジよりも厚くすることは、特に日型、目型断面を持つバンパーR/Fにおいて大きな効果がある。その理由は、中ウエブ(中リブ)によってフランジが分断されているため、これに区切られた個々のフランジ面の座屈効率が高くなるためである。なお、ここでいう座屈効率(座屈係数)とは圧縮を受ける板の境界条件で決まるもので、弾性座屈応力σcr(この応力を越えると座屈する応力)とその板要素がオイラー座屈するときの応力σeとの比で、
k=σcr/σe
(k;座屈効率)
で表せる。
【0007】
高強度のバンパーR/Fを設計する場合、圧縮フランジ部又はウエブ部(ウエブは曲げによる引張・圧縮を受ける)で、この座屈効率kをいかに大きくするか(最大k=1)がカギとなる。座屈効率kは、圧縮フランジ部の板要素においてはフランジ幅厚比Rfの関数として、圧縮と曲げを受けるウエブ部分の板要素においてはウエブ幅厚比Rwの関数として表すことができる。図5(a)、(b)は、多数の実験に基づいて、その関係を整理したものである。なお、このフランジ幅厚比Rf及びウエブ幅厚比Rwは次式の通り定義される。
【数1】

Figure 0004165914
ここで、b;フランジ幅、TF1;圧縮フランジ厚、h;ウエブ幅、Tw;ウエブ厚(以上、図6参照)、ν;ポアソン比、σy;降伏応力、E;縦弾性係数である。
【0008】
幅厚比Rf、Rwは座屈限度の程度を表すパラメータであり、これが小さいほど座屈効率k(フランジ)、座屈効率k(ウエブ)が大きくなり、その面は座屈しにくいことになる。日型、目型、田型断面のように圧縮フランジ面が中リブによって区切られると、図6(b)に例示するように、その区切られた個々の圧縮フランジ面のフランジ幅bが小さくなり、幅厚比Rfが小さくなるため、座屈効率k(フランジ)を大きくする方向に働くことになる。一方、口型断面のように中リブがないものは、幅厚比Rfがそれほど小さくならず、座屈効率k(フランジ)を大きくしにくい。
【0009】
バンパーR/F全体としては、フランジの座屈効率k(フランジ)とウエブの座屈効率k(ウエブ)が大きいほど高強度になる。従って、各種断面のバンパーR/Fにおいて、バンパーR/F全体の曲げ強度を大きくするのに、次の2つの方法がある。
一つは、圧縮フランジの板厚TF1を厚肉化してフランジ幅厚比Rfを小さくすることである。これは結果的に、前記特開平8−99591号公報にみられた従来のバンパーR/Fの特徴と一致する。しかし、これは日型、目型断面のように中リブのある断面では有効であるが、口型断面のように中リブのない断面の場合、フランジ幅bに比べてフランジ板厚TF1が小さい(b/TF1が大きい)ため、フランジ幅厚比Rfを小さくする効果に乏しく、無理にTF1を大きくして高強度化をはかろうとすると、バンパーR/F全体が重くなるという問題がある。
【0010】
【課題を解決するための手段】
もう一つの方法として考えられるのは、ウエブ部の板厚Twを厚肉化しウエブ幅厚比Rwを小さくすることによって、座屈効率k(ウエブ)を1に近づけようとするものである。これは、特に口型断面のように、圧縮フランジ厚TF1を大きくしてフランジ幅厚比Rfを小さくするのが困難なものに効果が大きいと考えられる。
一方、バンパーR/Fが曲げを受けたとき、形材のウエブ部全体に圧縮力を受けるのではなく、図7に示すように、曲げ中立軸(必ずしもR/Fの中心線とは一致しないが、ほぼ一致すると考える)を境として、ウエブの半分の領域のみに圧縮力を受ける。従って、圧縮フランジ側のみを厚肉にすれば、強度を確保しつつウエブ部分全体を厚肉化するよりも効率的にR/Fを軽量化することができるはずである。また、ウエブの圧縮率は断面に対して一様ではなく、圧縮フランジ側に近づくほど大きくなっているため、厚肉化部分をテーパ状にすれば高強度化を達成しつつ、さらに効率よく軽量化できるはずである。
【0011】
本発明は、以上の考察をもとに、フランジ及びウエブからなる中空構造を有する自動車用バンパーR/F全体の曲げ強度と軽量化を両立できる断面形状として、得られたものである。
【0012】
すなわち、本発明は、フランジ及びウエブからなる中空構造を有する自動車用バンパーR/Fにおいて、ウエブの曲げ中立軸より圧縮フランジ側の肉厚を引張フランジ側の肉厚より厚肉としたことを特徴とする。ここで、フランジは衝突面及びその反対側に向く面のことを意味する。また、ウエブの中立軸nより圧縮フランジ側、あるいは引張フランジ側、それぞれの肉厚は一定である。
また、本発明は、フランジ及びウエブからなる中空構造を有する自動車用バンパーR/Fにおいて、ウエブの曲げ中立軸より圧縮フランジ側の肉厚を引張フランジ側の肉厚より厚肉とし、かつウエブの曲げ中立軸より圧縮フランジ側の肉厚を圧縮フランジ側に行く程厚肉になるようにテーパー状に板厚を変化させたことを特徴とする。前記と同じく、フランジは衝突面及びその反対側に向く面のことを意味する。また、ウエブの中立軸nより引張フランジ側の肉厚は一定である。
上記バンパーR/Fはいずれもアルミ押出形材からなる。
【0013】
【発明の実施の形態】
本発明に係る中空構造は、典型的には、フランジが衝突方向に垂直な面、ウエブが平行な面であり、外形が矩形断面をなす。まず、図1に例示した断面を参照してより具体的に説明すると、(a)は口型断面の例であり、ウエブの中立軸nより圧縮フランジ側の肉厚が引張フランジ側の肉厚より厚肉とされている。(b)は日型断面の例であり、外ウエブの中立軸nより圧縮フランジ側の肉厚が引張フランジ側の肉厚より厚肉とされたもの、(c)は中ウエブの中立軸nより圧縮フランジ側の肉厚が引張フランジ側の肉厚より厚肉とされたものである。
【0014】
そして、図2は本発明に係る中空構造の別の具体例を示すもので、(a)は口型断面の例であり、ウエブの中立軸nより圧縮フランジ側の肉厚が引張フランジ側の肉厚より厚肉とされ、かつ圧縮フランジ側に行く程肉厚になるようにテーパー状に板厚が変化している。(b)は日型断面の例であり、外ウエブの中立軸nより圧縮フランジ側の肉厚が引張フランジ側の肉厚より厚肉とされ、かつ圧縮フランジ側に行く程肉厚になるようにテーパー状に板厚を変化させ、(c)は外ウエブ、中ウエブとも中立軸nより圧縮フランジ側の肉厚が引張フランジ側の肉厚より厚肉とされ、かつ圧縮フランジ側に行く程厚肉になるようにテーパー状に板厚を変化させたものである。
図2の例ではテーパー状に厚肉にするため、図1の例に比べ、少ない重量アップ分で圧縮フランジとの接続部の肉厚を厚くすることができ(実施例参照)、そのため圧縮フランジ面の拘束が大きくなり、より高強度のバンパーR/Fを得ることができる。
【0015】
本発明に係るバンパーR/Fではウエブの一部を厚肉化するので、素材としては、鋼板のプレス成形品よりアルミ押出形材が適している。
なお、先に挙げた特開平8−99591号公報には、中ウエブの肉厚を圧縮フランジ側に向かって次第に厚肉にしたバンパーR/Fが記載されているが、本発明では、前記の考察に基づき、曲げ中立軸より圧縮フランジ側のみテーパー状に厚肉にしたため、同じ強度アップをより少ない重量で実現できる利点がある。
【0016】
【実施例】
次に、実施例及び比較例として、図8(a)〜(c)に示す口型断面のアルミ押出形材を用い、図9(a)に示す3点曲げ試験を行って、同図(b)に示すような荷重−たわみ量の関係を測定し、曲げ強度Mcrを求め、また、重量当りの曲げ強度(Mcr/A)を求めた。これらの結果を表1に示す。なお、曲げ強度Mcrは次式で定義される。
Mcr=Pmax・L/4
Pmax;最大荷重
L;スパン
【0017】
【表1】
Figure 0004165914
【0018】
表1に示すように、通常の口型断面のバンパーR/Fである図8(a)よりもウエブの一部を厚肉化した図8(b)、図8(c)の方が曲げ強度Mcrが大きく、重量当たりの曲げ強度Mcr/Aも大きく、軽量化効果が大きいことが分かる。特に厚肉化した部分をテーパー状に形成した(最大厚2.2mm)図8(c)の軽量化効果が大きい。
【0019】
【発明の効果】
本発明によれば、ウエブの一部を厚肉化することでバンパーR/Fの曲げ強度を大きな重量増なしに高めることができる。
【図面の簡単な説明】
【図1】 本発明に係るバンパーR/Fの断面形状の例である。
【図2】 本発明に係るバンパーR/Fの断面形状の例である。
【図3】 軽衝突試験(ペンデュラム試験)の模式図である。
【図4】 従来の矩形断面のアルミ押出形材製バンパーR/Fの例である。
【図5】 フランジ幅厚比Rfと座屈効率kの関係図(a)及びウエブ幅厚比Rwと座屈効率kの関係図(b)である。
【図6】 フランジ幅厚比Rfとウエブ幅厚比Rwの定義に用いた記号の意味を説明する図である。
【図7】 曲げ荷重Pがかかったときのウエブ面の応力状態を説明する図である。
【図8】 実施例に用いたアルミ押出形材の断面の図である。
【図9】 実施例の3点曲げ試験を説明する図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a bumper reinforcement for automobiles (hereinafter referred to as bumper R / F) that protects a vehicle body at the time of an automobile collision accident (light collision).
[0002]
[Prior art]
The bumper R / F for automobiles is provided for the purpose of protecting auxiliary equipment (a radiator, an alternator, etc.) placed on the back surface of the bumper R / F in a light collision (8 km / h or less). Therefore, it is necessary to design so as not to bend as much as possible in the event of a collision. The test that simulates this light collision is determined by FMVSS-Part 581 for North America. As shown in FIG. 3, the pendulum 1 is mounted on a bumper R / F3 supported by a side member 2 with a predetermined mounting span. The amount of deformation of the bumper R / F3 is measured by collision. Although there are differences in the strength levels that must be met, this is a test method that is generally used worldwide (called the Pendulum test).
[0003]
As can be seen from FIG. 3, during the test, the central portion of the bumper R / F 3 is subjected to a large bending deformation, and suppressing the amount of deformation affects the performance of the bumper. In order to suppress bending deformation, a thicker bumper R / F may be used, but the place where the bumper R / F is installed is called a so-called overhang part at a place away from the wheel. This is the place where the most weight reduction is required. Therefore, it is necessary to design a bumper R / F that is as thin as possible.
[0004]
Many bumpers R / F made of conventional steel plate press have a mouth-shaped cross section due to processing restrictions, and those made of aluminum extruded material have a mouth-shaped cross section, a daily cross section, an eye-shaped cross section, and a rice field cross section. is there. Examples of these rectangular extruded aluminum bumper R / F are shown in FIG. In FIG. 4, an arrow indicates the direction of collision, and a portion perpendicular to the direction is called a flange and a portion parallel to the direction is called a web.
[0005]
Further, in order to efficiently suppress bending deformation, there is a structure in which the thickness of the compression (impact surface side) flange is made thicker than that of the tension side flange so that the flange surface is less likely to buckle during bending deformation (Japanese Patent Laid-Open No. 8-99591 See the official gazette). In this case, although the compression flange is thickened, it is considered that other portions (tensile side flange, web) can be thinned accordingly, and the overall weight can be reduced.
[0006]
[Problems to be solved by the invention]
By the way, making the thickness of the compression (impact surface side) flange of the bumper R / F thicker than that of the tension side flange has a great effect especially in the bumper R / F having a cross section of the day shape and the eye shape. The reason is that since the flange is divided by the intermediate web (medium rib), the buckling efficiency of the individual flange surfaces partitioned by this is increased. The buckling efficiency (buckling coefficient) here is determined by the boundary condition of the plate subjected to compression. The elastic buckling stress σcr (the stress that buckles when this stress is exceeded) and the plate element buckle Euler. Is the ratio to the stress σe when
k = σcr / σe
(K; buckling efficiency)
It can be expressed as
[0007]
When designing a high-strength bumper R / F, the key is how to increase this buckling efficiency k (maximum k = 1) at the compression flange or web (the web is subjected to bending and tension). Become. The buckling efficiency k can be expressed as a function of the flange width / thickness ratio Rf in the plate element of the compression flange portion and as a function of the web width / thickness ratio Rw in the plate element of the web portion subjected to compression and bending. 5 (a) and 5 (b) summarize the relationship based on many experiments. The flange width / thickness ratio Rf and the web width / thickness ratio Rw are defined as follows.
[Expression 1]
Figure 0004165914
Where b: flange width, TF1; compression flange thickness, h: web width, Tw: web thickness (see FIG. 6), ν: Poisson's ratio, σy: yield stress, E: longitudinal elastic modulus.
[0008]
The width-to-thickness ratios Rf and Rw are parameters representing the degree of buckling limit. The smaller the ratio, the higher the buckling efficiency k (flange) and the buckling efficiency k (web), and the surface is less likely to buckle. When the compression flange surface is divided by the middle rib as in the case of the day shape, the eye shape, and the rice field cross section, as illustrated in FIG. 6B, the flange width b of each divided compression flange surface is reduced. Since the width-to-thickness ratio Rf is reduced, the buckling efficiency k (flange) is increased. On the other hand, when there is no middle rib as in the mouth section, the width-to-thickness ratio Rf is not so small, and it is difficult to increase the buckling efficiency k (flange).
[0009]
As the entire bumper R / F, the higher the buckling efficiency k (flange) of the flange and the buckling efficiency k (web) of the web, the higher the strength. Therefore, in the bumper R / F of various cross sections, there are the following two methods for increasing the bending strength of the entire bumper R / F.
One is to increase the plate thickness TF1 of the compression flange to reduce the flange width-to-thickness ratio Rf. As a result, this is consistent with the characteristics of the conventional bumper R / F found in the above-mentioned Japanese Patent Application Laid-Open No. 8-99591. However, this is effective in a cross section with a medium rib such as a cross section of a day shape or an eye mold, but in a cross section without a medium rib such as a mouth mold cross section, the flange plate thickness TF1 is smaller than the flange width b. Since (b / TF1 is large), the effect of reducing the flange width-to-thickness ratio Rf is poor, and if the TF1 is forcibly increased to increase the strength, there is a problem that the entire bumper R / F becomes heavy.
[0010]
[Means for Solving the Problems]
Another possible method is to make the buckling efficiency k (web) closer to 1 by increasing the thickness Tw of the web portion and reducing the web width-to-thickness ratio Rw. This is considered to be particularly effective for the case where it is difficult to increase the compression flange thickness TF1 and decrease the flange width-to-thickness ratio Rf, such as the mouth section.
On the other hand, when the bumper R / F is bent, the entire web portion of the profile is not subjected to a compressive force, but as shown in FIG. 7, the bending neutral axis (not necessarily coincident with the center line of the R / F). However, only half of the web receives compression force. Therefore, if only the compression flange side is made thick, it should be possible to reduce the R / F weight more efficiently than securing the entire web portion while ensuring the strength. In addition, the compression rate of the web is not uniform with respect to the cross-section, and increases as it approaches the compression flange side. Therefore, if the thickened part is tapered, high strength is achieved and lighter and more efficient. Should be possible.
[0011]
Based on the above considerations, the present invention has been obtained as a cross-sectional shape that can achieve both the bending strength and weight reduction of the entire automotive bumper R / F having a hollow structure including a flange and a web.
[0012]
That is, the present invention is characterized in that in the automotive bumper R / F having a hollow structure composed of a flange and a web, the thickness on the compression flange side from the bending neutral axis of the web is thicker than the thickness on the tension flange side. And Here, the flange means a collision surface and a surface facing the opposite side. Further, the thickness of each of the compression flange side and the tension flange side from the neutral axis n of the web is constant.
Further, according to the present invention, in an automotive bumper R / F having a hollow structure including a flange and a web, the thickness on the compression flange side from the bending neutral axis of the web is thicker than the thickness on the tension flange side, and the web The plate thickness is changed in a taper shape so that the thickness on the compression flange side from the bending neutral axis becomes thicker toward the compression flange side. As described above, the flange means a collision surface and a surface facing the opposite side. The wall thickness on the tension flange side from the neutral axis n of the web is constant.
The bumper R / F is made of an extruded aluminum material.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
In the hollow structure according to the present invention, typically, the flange is a surface perpendicular to the collision direction, the web is a parallel surface, and the outer shape has a rectangular cross section. More specifically, referring to the cross section illustrated in FIG. 1, (a) is an example of a mouth cross section, and the thickness on the compression flange side from the neutral shaft n of the web is the thickness on the tension flange side. It is said to be thicker. (B) is an example of a cross section of the mold, and the thickness on the compression flange side is greater than the thickness on the tension flange side from the neutral axis n of the outer web, and (c) is the neutral axis n of the intermediate web. The thickness on the compression flange side is made thicker than the thickness on the tension flange side.
[0014]
FIG. 2 shows another specific example of the hollow structure according to the present invention, in which (a) is an example of a mouth-shaped cross section, and the wall thickness on the compression flange side from the neutral shaft n of the web is on the tension flange side. The plate thickness is changed to a taper shape so that it is thicker than the wall thickness and becomes thicker toward the compression flange side. (B) is an example of a cross section of the mold, so that the thickness on the compression flange side from the neutral axis n of the outer web is thicker than the thickness on the tension flange side, and becomes thicker toward the compression flange side. (C) shows that the thickness of the outer flange and the intermediate web on the compression flange side from the neutral shaft n is larger than the thickness on the tension flange side and goes to the compression flange side. The plate thickness is changed in a tapered shape so as to be thick.
In the example of FIG. 2, since it is thickened in a tapered shape, the thickness of the connecting portion with the compression flange can be increased with a small weight increase compared to the example of FIG. 1 (see the embodiment). The restraint of the surface becomes large, and a higher strength bumper R / F can be obtained.
[0015]
In the bumper R / F according to the present invention, since a part of the web is thickened, an aluminum extruded shape is more suitable as a material than a press-formed product of a steel plate.
In the above-mentioned JP-A-8-99591, a bumper R / F in which the thickness of the intermediate web is gradually increased toward the compression flange side is described. Based on the consideration, only the compression flange side of the bending neutral shaft is thickened in a tapered shape, so that there is an advantage that the same strength increase can be realized with a smaller weight.
[0016]
【Example】
Next, as an example and a comparative example, a three-point bending test shown in FIG. 9A was performed using an aluminum extruded section having a mouth-shaped cross section shown in FIGS. 8A to 8C. The relationship between the load and the amount of deflection as shown in b) was measured to determine the bending strength Mcr, and the bending strength per weight (Mcr / A) was determined. These results are shown in Table 1. The bending strength Mcr is defined by the following equation.
Mcr = Pmax · L / 4
Pmax; maximum load L; span
[Table 1]
Figure 0004165914
[0018]
As shown in Table 1, FIG. 8 (b) and FIG. 8 (c), in which a part of the web is thickened, are bent more than FIG. 8 (a) which is a bumper R / F having a normal mouth cross section. It can be seen that the strength Mcr is large, the bending strength per unit weight Mcr / A is also large, and the lightening effect is great. In particular, the thickened portion is formed in a tapered shape (maximum thickness: 2.2 mm), and the lightening effect of FIG.
[0019]
【The invention's effect】
According to the present invention, the bending strength of the bumper R / F can be increased without greatly increasing the weight by thickening a part of the web.
[Brief description of the drawings]
FIG. 1 is an example of a cross-sectional shape of a bumper R / F according to the present invention.
FIG. 2 is an example of a cross-sectional shape of a bumper R / F according to the present invention.
FIG. 3 is a schematic diagram of a light collision test (pendulum test).
FIG. 4 is an example of a conventional aluminum extruded bumper R / F having a rectangular cross section.
FIG. 5 is a relationship diagram (a) between the flange width / thickness ratio Rf and the buckling efficiency k, and a relationship diagram (b) between the web width / thickness ratio Rw and the buckling efficiency k.
FIG. 6 is a diagram for explaining the meaning of symbols used to define the flange width / thickness ratio Rf and the web width / thickness ratio Rw.
FIG. 7 is a diagram illustrating a stress state of the web surface when a bending load P is applied.
FIG. 8 is a cross-sectional view of an aluminum extruded profile used in Examples.
FIG. 9 is a diagram illustrating a three-point bending test of an example.

Claims (2)

フランジ及びウエブからなる中空構造を有する自動車用バンパーリーンフォースメントにおいて、アルミ押出形材からなり、ウエブの曲げ中立軸より圧縮フランジ側の肉厚を引張フランジ側の肉厚より厚肉とし、かつウエブの曲げ中立軸より圧縮フランジ側の肉厚と引張フランジ側の肉厚をそれぞれ一定としたことを特徴とする自動車用バンパーリーンフォースメント。A bumper reinforcement for automobiles having a hollow structure consisting of a flange and a web, which is made of extruded aluminum, has a thickness on the compression flange side that is thicker than that on the tension flange side from the bending neutral axis of the web, and the web A bumper reinforcement for automobiles characterized in that the wall thickness on the compression flange side and the wall thickness on the tension flange side are constant from the bending neutral axis of each . フランジ及びウエブからなる矩形断面の中空構造を有する自動車用バンパーリーンフォースメントにおいて、アルミ押出形材からなり、ウエブの曲げ中立軸より圧縮フランジ側の肉厚を引張フランジ側の肉厚より厚肉とし、かつウエブの曲げ中立軸より圧縮フランジ側の肉厚を圧縮フランジ側に行く程厚肉になるようにテーパー状に板厚を変化させ、ウエブの曲げ中立軸より引張フランジ側の肉厚を一定としたことを特徴とする自動車用バンパーリーンフォースメント。A bumper reinforcement for automobiles with a hollow structure with a rectangular cross section consisting of a flange and a web, which is made of extruded aluminum and has a thickness on the compression flange side that is thicker than that on the tension flange side from the bending neutral axis of the web. In addition, the thickness on the compression flange side of the web bending neutral axis is changed to a taper shape so that the thickness increases toward the compression flange side, and the thickness on the tension flange side of the web bending neutral axis is constant. and the automotive bumper reinforcement, characterized in that was.
JP23330897A 1997-08-13 1997-08-13 Automotive bumper reinforcement Expired - Lifetime JP4165914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23330897A JP4165914B2 (en) 1997-08-13 1997-08-13 Automotive bumper reinforcement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23330897A JP4165914B2 (en) 1997-08-13 1997-08-13 Automotive bumper reinforcement

Publications (2)

Publication Number Publication Date
JPH1159296A JPH1159296A (en) 1999-03-02
JP4165914B2 true JP4165914B2 (en) 2008-10-15

Family

ID=16953095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23330897A Expired - Lifetime JP4165914B2 (en) 1997-08-13 1997-08-13 Automotive bumper reinforcement

Country Status (1)

Country Link
JP (1) JP4165914B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000318549A (en) * 1999-05-14 2000-11-21 Fuji Heavy Ind Ltd Bumper beam and bumper device for vehicle
DE10150624B4 (en) * 2001-10-12 2005-08-11 Suspa Holding Gmbh Protective device for motor vehicles
DE10239919B4 (en) * 2002-08-02 2009-04-09 Suspa Holding Gmbh Protective device for a motor vehicle
JP4301017B2 (en) * 2004-01-29 2009-07-22 トヨタ自動車株式会社 Bumper reinforcement
JP4759497B2 (en) * 2006-11-29 2011-08-31 東海ゴム工業株式会社 Shock absorber for automobile
JP5367972B2 (en) * 2007-10-23 2013-12-11 株式会社神戸製鋼所 Under lamp protector for vehicles
JP4324240B1 (en) 2008-02-27 2009-09-02 株式会社神戸製鋼所 Bumper structure
JP4542602B2 (en) * 2008-07-30 2010-09-15 株式会社神戸製鋼所 Bending strength member and bumper reinforcement
JP2010228685A (en) * 2009-03-30 2010-10-14 Kobe Steel Ltd Bumper beam for vehicle
JP5133297B2 (en) 2009-05-14 2013-01-30 株式会社神戸製鋼所 Bumper structure
JP5387759B2 (en) 2010-04-09 2014-01-15 トヨタ自動車株式会社 Bumper reinforcement structure
DE102010050960A1 (en) * 2010-11-10 2012-05-10 Gm Global Technology Operations Llc (N.D.Ges.D. Staates Delaware) A bumper cross member for a motor vehicle, a reinforcing member for a bumper cross member, and a method of manufacturing a bumper cross member
CN103260961B (en) * 2010-12-15 2016-06-29 Ud卡车株式会社 The brill of vehicle touches preventer
KR101631437B1 (en) * 2014-02-13 2016-06-17 엘지전자 주식회사 A front side member of a vehicle
JP6692222B2 (en) * 2016-06-21 2020-05-13 三菱アルミニウム株式会社 Exterior beam for vehicle
JP6722069B2 (en) 2016-09-16 2020-07-15 アイシン精機株式会社 Automotive bumper reinforcements

Also Published As

Publication number Publication date
JPH1159296A (en) 1999-03-02

Similar Documents

Publication Publication Date Title
JP4165914B2 (en) Automotive bumper reinforcement
US6540276B2 (en) Bumper reinforcement structure
KR100676948B1 (en) Hood structure for vehicle
EP2565489B1 (en) Shock-absorbing member
JP4845020B2 (en) Bumper structure and manufacturing method thereof
KR100619295B1 (en) Automobile strength member
JP3967926B2 (en) Automotive door impact beam
JPH06199193A (en) Automobile bumper reinforcing material
JP2002127762A (en) Engine mount
JP3167212B2 (en) Side member
JP6125466B2 (en) Structural members for automobiles
JPH0820297A (en) Bumper reinforcement
EP1055588A2 (en) Structure for front part of automotive vehicle body
JP3029514B2 (en) Aluminum alloy car door reinforcement
JP2012030624A (en) Automobile bumper
JP3223733B2 (en) Automotive bumper
JP7207452B2 (en) Automobile structural member and manufacturing method thereof
JPH11314521A (en) Door beam member made of aluminum
WO2022034878A1 (en) Vehicular structural member
EP3932750B1 (en) Structural member for vehicle
JP2001114044A (en) Energy absorbing member
JP4214851B2 (en) Vehicle hood structure
JPH06278458A (en) Square pipe for automobile door reinforcing material
JP4143015B2 (en) Automotive reinforcement
JPH0691325A (en) Steel tube for reinforcing material of automobile door

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080729

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

EXPY Cancellation because of completion of term