JP4165677B2 - Non-aqueous secondary battery - Google Patents

Non-aqueous secondary battery Download PDF

Info

Publication number
JP4165677B2
JP4165677B2 JP37746498A JP37746498A JP4165677B2 JP 4165677 B2 JP4165677 B2 JP 4165677B2 JP 37746498 A JP37746498 A JP 37746498A JP 37746498 A JP37746498 A JP 37746498A JP 4165677 B2 JP4165677 B2 JP 4165677B2
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
negative electrode
electrolyte
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP37746498A
Other languages
Japanese (ja)
Other versions
JP2000200622A5 (en
JP2000200622A (en
Inventor
房次 喜多
直樹 篠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP37746498A priority Critical patent/JP4165677B2/en
Publication of JP2000200622A publication Critical patent/JP2000200622A/en
Publication of JP2000200622A5 publication Critical patent/JP2000200622A5/ja
Application granted granted Critical
Publication of JP4165677B2 publication Critical patent/JP4165677B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、非水二次電池に関し、さらに詳しくは、高容量で、かつ安全性が高い非水二次電池に関する。
【0002】
【従来の技術】
リチウムイオン二次電池に代表される非水二次電池は、容量が大きく、かつ高電圧、高エネルギー密度、高出力であることから、ますます需要が増える傾向にある。
【0003】
しかしながら、この非水二次電池について、本発明者らは、さらに検討を進めていくうちに、電池の容量が増加するにつれ、特に電極積層体の単位体積当たりの充電容量が140mAh/cm3 以上の高容量の電池になると、昇温試験での高い安全性確保が問題になることがわかってきた。すなわち、高容量の電池になると、この非水二次電池では、電解質として有機溶媒を構成溶媒とする液状電解質(以下、「電解液」という)が多用されていることから、電池内の温度が上昇するにつれて電池内の電解液と電極との発熱反応がしだいに大きくなるために、電池が外気温よりも20℃以上も高い温度に発熱するおそれがある。従って、そのような温度上昇が生じることを想定して人為的に電池を昇温させ、その安全性を確認しておく、いわゆる昇温試験を行って、安全性を調べた上で、高い安全性を確保できるようにしておく必要がある。
【0004】
【発明が解決しようとする課題】
本発明は、上記のような事情に鑑み、電極積層体の単位体積当たりの充電容量が140mAh/cm3 以上の高容量の非水二次電池においても、昇温試験での安全性を確保できるようにすることを目的とする。
【0005】
【課題を解決するための手段】
本発明は、正極、負極および電解質を有し、電極積層体の単位体積当たりの充電容量が140mAh/cm以上の非水二次電池において、一般式C(ただし、3≦a≦15、1≦b≦5、5≦c≦20、0≦d≦3)で表され、かつアルキル基の水素がフッ素置換された割合であって、〔(c/b+c)×100〕で示されるフッ素化率50%以上90%以下の含フッ素溶媒およびC=C不飽和結合とエステル結合とを有する化合物を電解質中に含有させることによって、恒温槽中で5℃/minのプログラムモードで昇温し、150℃に達した後に定温150℃に保持する試験において、試験開始から35分経過するまでの電池表面の温度が160℃以下に抑えられるように、昇温試験での安全性を確保して、上記課題を解決したものである。
【0006】
【発明の実施の形態】
また、本発明においては、負極に炭素系材料を用い、その負極の負極合剤層の密度が1.5g/cm 3 で、かつ上記炭素系材料の(002)面の面間距離(d002 )が、3.5Å以下で、c軸方向の結晶子の大きさ(Lc)が30Åである場合や、充電時の正極の電位がリチウム基準で4.4V以上になる場合があることを好ましい態様とする。
【0007】
本発明において、電解質中に含有させるフッ素化率50%以上の含フッ素溶媒の好適な具体例としては、例えば、CF3 CHFCHFCF2 CF3 、CF3 CHFCHFCF2 CF2 CF3 、CF3 CF2 CF2 COOOCH3 、CF3 CF2 CF2 OCHFCF3 、CF3 CF2 CH2 OCF2 CF2 H、HCF2 CF2 CH2 OCF2 CF2 Hなどが好適に挙げられる。
【0008】
上記のフッ素化率とはアルキル鎖の水素がフッ素置換された割合のことであり、例えば、CF3 CHFCHFCF2 CF3 の場合は、HまたはFで置換可能な数が12であり、フッ素置換数は10であるから、フッ素化率は83%である。
【0009】
フッ素化率50%以上の含フッ素溶媒が高容量の非水二次電池において安全性を高め得る理由は、現在のところ必ずしも明確ではないが、負極表面と電解液との反応を抑制することによるものと考えられる。これを詳しく説明すると、含フッ素溶媒が負極に吸着または一部反応して負極の表面に良好な被膜を形成し、昇温試験時に高温で負極と電解液とが反応するのを抑制することによるものと考えられる。そして、このフッ素化率としては、65%以上が好ましく、80%以上がより好ましい。ただし、フッ素化率が高くなりすぎると、電解液が分離することがあるので、フッ素化率は90%以下が好ましく、より好ましくは85%以下である。
【0010】
上記フッ素化率50%以上の含フッ素溶媒の電解質中の含有量(電解質中への添加量)としては、上記含フッ素溶媒が少なすぎると、負極と電解液との反応を抑制する効果が充分に発現しなくなる傾向があることから、体積比で2%以上が好ましく、より好ましくは5%以上、さらに好ましくは10%以上である。また、上記フッ素化率50%以上の含フッ素溶媒の電解質中の含有量が多くなりすぎると、電解液中にリチウム塩が溶解しにくくなる傾向があることから、体積比で99%以下が好ましく、より好ましくは95%以下、さらに好ましくは90%以下である。
【0011】
本発明において用いる含フッ素溶媒は、一般にCで表され、C、H、F、Oは、それぞれ、炭素、水素、フッ素、酸素であるが、a、b、c、dは、それぞれ次の通りであることが好ましい。
a:3以上、より好ましくは4以上、さらに好ましくは5以上、また、15以下、より好ましくは10以下、さらに好ましくは8以下
b:1以上、より好ましくは2以上、また、5以下、より好ましくは3以下
c:5以上、より好ましくは7以上、さらに好ましくは9以上、また、20以下、より好ましくは15以下、さらに好ましくは10以下
d:0以上、また、3以下、より好ましくは1以下で、0が最も好ましい。
そして、アルキル鎖の水素がフッ素置換された割合である〔c/(b+c)〕×100が50以上であることが好ましく、より好ましくは65以上、さらに好ましくは80以上で、また、90以下であることが好ましく、より好ましくは85以下である。従って、含フッ素溶媒としてはCで表されるものが最も好ましい。
【0012】
本発明は、電極積層体の単位体積当たりの充電容量が140mAh/cm3 以上の非水二次電池を対象としているが、これは高容量化を図るという理由に基づいている。本発明において、電極積層体の体積とは、正極、負極およびセパレータを積層したものまたは正極、負極およびセパレータを巻回したものの電池内における嵩体積であって、後者のように巻回したものにあっては、巻回に際して使用した巻き軸に基づく巻回体中心部の透孔などは体積として含まない。要は正極、負極およびセパレータが占める嵩体積を合計したものである。これら正極、負極、セパレータの3つの体積は電池の容量を決定する重要な因子であり、電池の大きさにかかわらず、電極積層体の単位体積当たりの充電容量(充電容量/電極積層体の体積)を計算することによって、電池の容量密度を比較することができる。また、ここでいう充電容量とは、その電池を0.1Cの充電条件で標準使用上限電圧(実施例のものは4.3Vであるが、市販品は一般に4.1〜4.2Vである)まで充電し、その後、上記電圧に保ち合計で15時間充電させた場合の充電容量である。そして、より高容量化を図るという観点からは、電極積層体単位体積当たりの充電容量は150mAh/cm3 以上が好ましく、より好ましくは160mAh/cm3 以上である。
【0013】
本発明において、電解質としては、液状電解質、ゲル状電解質、固体電解質のいずれであってもよいが、本発明においては、特に液状電解質を用いることが多いことから、この液状電解質を当業者間で慣用されている「電解液」という表現を用い、それを中心に詳細に説明する。
【0014】
本発明において、電解液の溶媒としてはエステルが好適に用いられる。特に鎖状エステルは、電解液の粘度を下げ、イオン伝導度を高めることから好適に用いられる。このような鎖状エステルとしては、例えば、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、プロピオン酸メチルなどの鎖状のCOO−結合を有する有機溶媒、リン酸トリメチルなどの鎖状リン酸トリエステルなどが挙げられ、それらの中でも特に鎖状のカーボネート類が好ましい。
【0015】
また、上記鎖状エステルなどに下記の誘電率が高いエステル(誘電率30以上)を混合して用いると、溶質となるリチウム塩の解離性などが向上するので好ましい。このような誘電率が高いエステルとしては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ガンマーブチロラクトン(γ−BL)、エチレングリコールサルファイト(EGS)などが挙げられる。特に環状構造のものが好ましく、とりわけ環状のカーボネートが好ましく、エチレンカーボネート(EC)が最も好ましい。
【0016】
上記高誘電率エステルによる特性の向上は、上記エステルが電解液の全溶媒中で体積比で1%以上になると顕著になり、2%に達するとより顕著になる。ただし、高誘電率エステルが電解液中で占める量が多くなりすぎると、高温での電極との反応性が高くなるので、電解液の全溶媒中で体積比で40%未満が好ましく、より好ましくは20%以下、さらに好ましくは10%以下である。
【0017】
上記エステル以外に併用可能な溶媒としては、例えば、1,2−ジメトキシエタン(DME)、1,3−ジオキソラン(DO)、テトラヒドロフラン(THF)、2−メチル−テトラヒドロフラン(2Me−THF)、ジエチルエーテル(DEE)などが挙げられる。そのほか、アミン系またはイミド系有機溶媒や、含イオウ系または含フッ素系有機溶媒なども用いることができる。また、ポリエチレンオキサイドやポリメタクリル酸メチルなどのポリマーを含んでゲル状になっていてもよい。
【0018】
電解液において溶質となるリチウム塩としては、例えば、LiClO4 、LiPF6 、LiBF4 、LiAsF6 、LiSbF6 、LiCF3 SO3 、LiC4 9 SO3 、LiCF3 CO2 、Li2 2 4 (SO3 2 、LiCn 2n+1SO3 (n≧2)、LiN(RfSO2 2 、LiC(RfSO2 3 、LiN(RfOSO2 2 〔ここでRfはフルオロアルキル基〕などが単独でまたは2種以上混合して用いられるが、とりわけLiPF6 や炭素数2以上の有機含フッ素リチウム塩が好ましく、なかでも、後者の有機含フッ素リチウム塩が特に好ましい。これは含フッ素溶媒への溶解性が優れているからである。電解液中におけるリチウム塩の濃度は、特に限定されるものではないが、濃度を1mol/l以上の多めにすると安全性がよくなるので好ましい。1.2mol/l以上がより好ましい。また、1.7mol/lより少ないと電気特性が良くなるので好ましく、1.5mol/lより少ないとさらに好ましい。
【0019】
また、添加剤としてC=C不飽和結合を有する化合物を含有させると、さらに安全性が向上するので好ましい。特にフッ素化された化合物が好ましく、さらにエステル結合を有する場合がさらに好ましい。このような化合物の具体例としては、例えば、H(CF2 4 CH2 OOCCH=CH2 、F(CF2 8 CH2 CH2 OOCCH=CH2 などが挙げられる。
【0020】
また、本発明の非水二次電池においては、上記電解液以外に、ゲル状電解質や固体電解質も用いることができる。それらのゲル状電解質や固体電解質としては、無機系電解質のほか、ポリエチレンオキサイド、ポリプロピレンオキサイド、またはそれらの誘導体などを主材にした有機系電解質を挙げることができる。
【0021】
本発明において、正極活物質として4V級のものを用いるが、この4V級の正極活物質とは充電時の開路電圧がリチウム(Li)基準で4V以上を示すものをいい、このような4V級の正極活物質としては、例えばLiNiO2 、LiCoO2 、LiMn2 4 などのリチウム複合酸化物や、さらには、それらをベースに他の元素で一部置換した、例えば、LiNi0.7 Co0.2 Al0.1 2 などのようなものが挙げられ、なかでも、充電時に正極電位がリチウム基準で4.4V以上になり得るLiCoO2 系、LiMn2-f f 2 系(M=Ni、Co、Cu、Cn、Feなどの金属)などが特に好適に用いられる。そして、本発明において、正極活物質として4V級のものを用いるのは、それらを正極活物質として用いることにより、高エネルギー密度の電池が得られるなどの理由によるものである。
【0022】
正極は、例えば、上記正極活物質に、必要に応じて、例えば鱗片状黒鉛などの導電助剤やポリフッ化ビニリデン、ポリテトラフルオロエチレンなどのバインダを加え、混合して正極合剤を調製し、それを溶剤で分散させてペーストにし(バインダはあらかじめ溶剤に溶解させてから正極活物質などと混合してもよい)、その正極合剤含有ペーストを金属箔などからなる正極集電材に塗布し、乾燥して、正極集電材の少なくとも一部に正極合剤層を形成することによって作製される。ただし、正極の作製方法は、上記例示の方法に限られることなく、他の方法によってもよい。
【0023】
正極に用いる正極集電材は、アルミニウムを主成分とする金属箔が好ましく、その純度は98重量%以上99.9重量%未満が好ましい。通常のリチウムイオン二次電池では純度が99.9重量%以上のアルミニウム箔が正極集電材として用いられているが、本発明においては高容量化を図るため厚さが15μm以下の薄い金属箔を用いるのが好ましい。そのため、薄くても使用に耐え得る強度にしておくことが好ましく、そのような強度を確保するためには純度が99.9重量%未満であることが好ましい。アルミニウムに添加する金属として特に好ましいのは、鉄とシリコンである。鉄は0.5重量%以上が好ましく、さらに好ましくは0.7重量%以上であり、また、2重量%以下が好ましく、より好ましくは1.3重量%以下である。シリコンは0.1重量%以上が好ましく、より好ましくは0.2重量%以上であり、また1.0重量%以下が好ましく、より好ましくは0.3重量%以下である。これらの鉄やシリコンはアルミニウムと合金化していることが必要であり、アルミニウム中に不純物として存在するものではない。
【0024】
そして、正極集電材の引張り強度としては150N/mm2 以上が好ましく、より好ましくは180N/mm2 以上である。また、本発明において用いる正極集電材は、伸びが2%以上であることが好ましく、より好ましくは3%以上である。これは電極積層体の単位体積当たりの放電容量が大きくなるにつれて正極合剤層の充電時の膨張が大きくなるため、その膨張によって正極集電材に応力が発生し、それによって、正極集電材に亀裂や切断などが発生しやすくなるが、正極集電材の伸びを大きくしておくと、その伸びによって応力を緩和し、正極集電材の亀裂や切断などを防止できるようになるからである。
【0025】
本発明においては、上記のように、正極集電材として厚みが15μm以下のアルミニウムを主成分とする金属箔を用いることが好ましいとしているが、これは厚みが薄いほど電池の高容量化に好都合であるという理由によるものである。しかし、あまりにも薄くなりすぎると、製造時に正極集電材の強度不足による切断などが生じるおそれがあるため、正極集電材の厚みとしては、上記のように15μm以下であって、5μm以上、特に8μm以上が実用上適している。
【0026】
また、正極集電材の表面は片面が粗面化していることが好ましい。そして、その粗な面が巻回体において外周側の面にあることが好ましい。これは、巻回体の場合、外周側の面が巻回中心部に近くなるほど対向する負極が多く存在しているので正極が劣化しやすいため、外周側に粗な面を用いて接着性を高めることにより正極の劣化を低減できるからである。粗な面の好ましい平均粗度はRaで0.1〜0.5μmであり、より好ましくは0.2〜0.3μmである。そして、光沢面の好ましい平均粗度はRaで0.2μm以下で、より好ましくは0.1μm以下である。
【0027】
また、正極集電材の濡れ性が悪い場合、電池をサイクル(充放電)させた場合にサイクル特性の低下が生じやすい傾向にある。そのような場合には正極集電材の濡れ性を37dyne/cm以上にすることが好ましい。
【0028】
負極に用いる材料は、リチウムイオンをドープ、脱ドープできるものであればよく、本発明においては、それを負極活物質と呼んでいるが、そのような負極活物質の具体例としては、例えば、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭などの炭素系材料が挙げられる。特に2500℃以上で焼成したメソカーボンマイクロビーズは、負極合剤層を高密度に作製してもサイクル特性が良好であることから好ましい。また、Si、Sn、Inなどの合金あるいはLiに近い低電圧で充放電できる酸化物などの化合物なども負極活物質として用いることができる。
【0029】
負極活物質として炭素系材料を用いる場合、該炭素系材料は下記の特性を持つものが好ましい。すなわち、その(002)面の面間距離(d002 )に関しては、3.5Å以下が好ましく、より好ましくは3.45Å以下、さらに好ましくは3.4Å以下である。またc軸方向の結晶子の大きさ(Lc)は30Å以上が好ましく、より好ましくは80Å以上、さらに好ましくは250Å以上である。そして、上記炭素系材料の平均粒径は8〜20μm、特に10〜15μmが好ましく、純度は99.9重量%以上が好ましい。
【0030】
負極は、例えば、上記負極活物質に、必要に応じ、正極の場合と同様の導電助剤やバインダなどを加え、混合して負極合剤を調製し、それを溶剤に分散させてペーストにし(バインダはあらかじめ溶剤に溶解させておいてから負極活物質などと混合してもよい)、その負極合剤含有ペーストを銅箔などからなる負極集電材に塗布し、乾燥して、負極集電材の少なくとも一部に負極合剤層を形成することによって作製される。ただし、負極の作製方法は上記例示の方法に限られることなく、他の方法によってもよい。
【0031】
上記負極集電材としては、例えば、銅箔、アルミニウム箔、ニッケル箔、ステンレス鋼箔などの金属箔や、それらの金属を網状にしたものなどが用いられるが、特に銅箔が適している。
【0032】
負極に炭素系材料を用いる場合は、その負極の負極合剤層の密度を1.45g/cm3 以上にすることが高容量化を図る上で好ましく、より好ましくは1.5g/cm3 以上である。通常、負極合剤層を高密度にすると、高容量は得られやすくなるが、電解液の浸透が遅くなり、また活物質の利用度も不均一になりやすいため、サイクル特性が低下しやすくなるが、そのような場合には、電解液中にC=C不飽和結合を有する化合物を含有させておくと、上記のように負極合剤層を高密度にした場合にもサイクル特性の低下を抑制することができる。
【0033】
セパレータとしては、特に限定されることはないが、厚みが20μm以下の微孔性ポリエチレンフィルム、微孔性ポリプロピレンフィルム、微孔性エチレン−プロピレンコポリマーフィルムなどのポリオレフィン系セパレータは、薄くても充分な強度を有しているので、正極活物質や負極活物質などの充填量を高めることができるため、本発明において好適に使用される。特に電極積層体と電池ケースとの間に上記のセパレータが介在する場合は他の厚みの大きいセパレータよりも電極内部の熱をより多く放熱する効果がある。
【0034】
【実施例】
つぎに、実施例をあげて本発明により具体的に説明する。ただし、本発明はそれらの実施例のみに限定されるものではない。
【0035】
実施例1
エチレンカーボネートとジエチルカーボネートとCF3 CHFCHFCF2 CF3 とH(CF2 4 CH2 OOCCH=CH2 とを体積比30:45:20:5で混合し、その混合溶媒に(C2 5 SO2 2 NLiを1.0mol/l溶解させて、組成が1.0mol/l(C2 5 SO2 2 NLi/EC:DEC:HFC:TFPA(30:45:20:5体積比)で示される電解液を調製した。
【0036】
上記電解液におけるECはエチレンカーボネートの略称で、DECはジエチルカーボネートの略称であり、HFCはCF3 CHFCHFCF2 CF3 の略称、TFPAはH(CF2 4 CH2 OOCCH=CH2 の略称である。従って、1.0mol/l(C2 5 SO2 2 NLi/EC:DEC:HFC:TFPA(30:45:20:5体積比)は、エチレンカーボネート30体積%とジエチルカーボネート45体積%とCF3 CHFCHFCF2 CF3 20体積%とH(CF2 4 CH2 OOCCH=CH2 5体積%との混合溶媒に(C2 5 SO2 2 NLiを1.0mol/l溶解させたものであることを示している。
【0037】
上記とは別に、LiCoO2 に導電助剤として鱗片状黒鉛を重量比100:6で加えて混合し、この混合物と、ポリフッ化ビニリデンをN−メチルピロリドンに溶解させた溶液とを混合してペーストにした。この正極合剤含有ペーストを70メッシュの網を通過させて大きなものを取り除いた後、厚さ15μmのアルミニウムを主成分とする金属箔からなる正極集電材の両面に塗布量が24.6mg/cm2 (ただし、乾燥後の正極合剤量)となるように均一に塗布し、乾燥して正極合剤層を形成し、その後、ローラプレス機により圧縮成形し、切断した後、リード体を溶接して、帯状の正極を作製した。
【0038】
上記正極集電材として用いたアルミニウムを主成分とする金属箔は、鉄を1重量%、シリコンを0.15重量%含んでおり、アルミニウムの純度は98重量%以上であった。また、正極集電材として用いたアルミニウムを主成分とする金属箔の引張り強度は185N/mm2 であり、濡れ性は38dyne/cmで、伸びは3%であった。
【0039】
つぎに、メソカーボンマイクロビーズの黒鉛系炭素系材料〔ただし、(002)面の面間距離(d002 )が3.37Åで、c軸方向の結晶子の大きさ(Lc)が950Åであり、平均粒径15μm、純度99.9重量%以上という特性を持つ黒鉛系炭素系材料〕を、ポリフッ化ビニリデンをN−メチルピロリドンに溶解させた溶液と混合してペーストにした。この負極合剤含有ペーストを70メッシュの網を通過させて大きなものを取り除いた後、厚さ10μmの帯状の銅箔からなる負極集電材の両面に塗布量が12.0mg/cm2 (ただし、乾燥後の負極合剤量)となるように均一に塗布し、乾燥して負極合剤層を形成し、その後、ローラプレス機により圧縮成形し、切断した後、リード体を溶接して、帯状の負極を作製した。なお、負極の負極合剤層の密度は1.5g/cm3 であった。
【0040】
前記帯状の正極を厚さ20μmの微孔性ポリエチレンフィルムを介して上記帯状の負極に重ね、渦巻状に巻回して渦巻状巻回構造の電極積層体にした。上記電極積層体の体積は11.5cm3 であった。その後、この電極積層体を外径18mmの有底円筒状の電池ケース内に充填し、正極および負極のリード体の溶接を行った。
【0041】
つぎに、上記電解液を電池ケース内に注入し、電解液がセパレータなどに充分に浸透した後、封口し、予備充電、エイジングを行い、図1の模式図に示すような構造の筒形の非水二次電池を作製した。
【0042】
図1に示す電池について説明すると、1は前記の正極で、2は前記の負極である。ただし、図1では、繁雑化を避けるため、正極1や負極2の作製にあたって使用された集電体などは図示していない。そして、これらの正極1と負極2はセパレータ3を介して渦巻状に巻回され、渦巻状電極積層体にして、上記の特定電解液からなる電解質4と共に電池ケース5内に収容されている。
【0043】
電池ケース5は前記のようにステンレス鋼製で、その底部には上記渦巻状電極積層体の挿入に先立って、ポリプロピレンからなる絶縁体6が配置されている。封口板7は、アルミニウム製で円板状をしていて、その中央部に薄肉部7aを設け、かつ上記薄肉部7aの周囲に電池内圧を防爆弁9に作用させるための圧力導入口7bとしての孔が設けられている。そして、この薄肉部7aの上面に防爆弁9の突出部9aが溶接され、溶接部分11を構成している。なお、上記の封口板7に設けた薄肉部7aや防爆弁9の突出部9aなどは、図面上での理解がしやすいように、切断面のみを図示しており、切断面後方の輪郭線は図示を省略している。また、封口板7の薄肉部7aと防爆弁9の突出部9aの溶接部分11も、図面上での理解が容易なように、実際よりは誇張した状態に図示している。
【0044】
端子板8は、圧延鋼製で表面にニッケルメッキが施され、周縁部が鍔状になった帽子状をしており、この端子板8にはガス排出口8aが設けられる。防爆弁9は、アルミニウム製で円板状をしており、その中央部には発電要素側(図1では、下側)に先端部を有する突出部9aが設けられ、かつ薄肉部9bが設けられ、上記突出部9aの下面が、前記したように、封口板7の薄肉部7aの上面に溶接され、溶接部分11を構成している。絶縁パッキング10は、ポリプロピレン製で環状をしており、封口板7の周縁部の上部に配置され、その上部に防爆弁9が配置していて、封口板7と防爆弁9とを絶縁するとともに、両者の間から液状の電解質が漏れないように両者の間隙を封止している。環状ガスケット12はポリプロピレン製で、リード体13はアルミニウム製で、前記封口板7と正極1とを接続し、渦巻状電極積層体の上部には絶縁体14が配置され、負極2と電池ケース5の底部とはニッケル製のリード体15で接続されている。
【0045】
実施例2
正極合剤含有ペーストの塗布量を23.6mg/cm2 (ただし、乾燥後の正極合剤量)とし、負極合剤含有ペーストの塗布量を11.49mg/cm2 (ただし、乾燥後の負極合剤量)とし、セパレータとして従来から汎用されている厚さ25μmの微孔性ポリエチレンフィルムを用いた以外は、実施例1と同様に筒形の非水二次電池を作製した。この実施例2の負極合剤層の密度は1.5g/cm3 であり、また、電極積層体の体積は11.5cm3 であって、いずれも、実施例1の場合と同様であった。
【0046】
参考例
TFPA〔すなわち、H(CFCHOOCCH=CH〕を添加せず、電解液の溶媒組成をEC:DEC:HFC(30:50:20体積比)にした以外は、実施例1と同様に筒形の非水二次電池を作製した。
【0047】
比較例1
HFC〔すなわち、CF3 CHFCHFCF2 CF3 〕およびTFPAを添加せず、電解液の溶媒組成をEC:DEC(30:70)にした以外は、実施例1と同様に筒形の非水二次電池を作製した。
【0048】
比較例2
HFCおよびTFPAを添加せず、電解液の溶媒組成をEC:DEC(30:70)とし、かつ、正極合剤含有ペーストの塗布量を21.8mg/cm2 (ただし、乾燥後の正極合剤量)とし、負極合剤含有ペーストの塗布量を11.8mg/cm2 (ただし、乾燥後の負極合剤量)とし、負極合剤層の密度を1.4g/cm 3 にした以外は、実施例2と同様に筒形の非水二次電池を作製した。この比較例2の電極積層体の体積も11.5cm3 であった。
【0049】
比較例3
HFCおよびTFPAを添加せず、電解液の溶媒組成をEC:DEC(30:70)とし、正極集電材として従来同様の厚さ20μmのアルミニウムを主成分とする金属箔を用い、正極合剤含有ペーストの塗布量を23.9mg/cm2 (ただし、乾燥後の正極合剤量)とし、負極合剤含有ペーストの塗布量を11.0mg/cm2 (ただし、乾燥後の負極合剤量)とし、セパレータとして実施例2と同様に厚さ25μmの微孔性ポリエチレンフィルムを用いた以外は、実施例1と同様に筒形の非水二次電池を作製した。なお、上記正極集電材として用いたアルミニウムを主成分とする金属箔は、鉄を0.03重量%、シリコンを0.2重量%含んでおり、アルミニウムの純度は99.94重量%以上であった。また、上記正極集電材は引っ張り強度が140N/mm2 (15μm換算値)であり、濡れ性が36dyne/cmで、伸びが3%であった。
【0050】
上記実施例1〜2、参考例および比較例1〜3の電池を、0.2A(約0.1C)で2.75Vまで放電した後、0.2Aで充電し、4.3Vに達した後は、4.3Vの定電圧に保つ条件で15時間充電を行い、電極積層体の単位体積あたりの充電容量を求めた後、電池を防爆型恒温槽中で5℃/minのプログラムモードで昇温し、150℃に達した後は定温150℃に保持し、試験開始から35分経過するまでに電池表面の温度が170℃以上に発熱する現象の有無を調べた。その結果を表1に示す。この昇温試験にあたって試験に供した電池個数は各電池とも5個であり、表1には括弧内において、試験に供した電池個数を分母に示し、発熱の有った電池個数を分子に示している。
【0051】
【表1】

Figure 0004165677
【0052】
表1に示す結果から明らかなように、フッ素化率50%以上の含フッ素溶媒であるHFC(すなわち、CFCHFCHFCFCF)を電解質中に含有させた実施例1〜2および参考例は、昇温試験での安全性が向上しており、比較例1〜3のように、フッ素化率50%以上の含フッ素溶媒を含有させていない場合には、電池電圧や電極積層体の単位体積あたりの充電容量を低くしない限り高い安全性を確保できず、電極積層体の単位体積あたりの充電容量が140mAh/cm未満の比較例2ではじめて高い安全性が確保できることがわかる。なお、実施例1〜2および参考例の電池についてさらに説明すると、C=C不飽和二重結合を有する化合物であるTFPA〔すなわち、H(CFCHOOCCH=CH〕を含有させた実施例1〜2の電池では、発熱温度が160℃以下に抑えられていたが、上記TFPAを含有させていない参考例の電池は170℃以上の発熱は無かったものの160℃を越える発熱が5個中3個有り、C=C不飽和二重結合を有する化合物を添加することが発熱抑制にさらに効果的であることが明らかであった。
【0053】
【発明の効果】
以上説明したように、本発明では、電極積層体の単位体積あたりの充電容量が140mAh/cm3 以上の非水二次電池において、フッ素化率50%以上の含フッ素溶媒を電解質中に含有させることによって、昇温試験での安全性が高い非水二次電池を提供することができた。また、添加剤としてC=C不飽和結合を有する化合物を添加すると、発熱をさらに抑制でき、安全性の確保にあたって、さらに好ましい結果が得られた。
【図面の簡単な説明】
【図1】本発明の非水二次電池の一例を模式的に示す断面図である。
【符号の説明】
1 正極
2 負極
3 セパレータ
4 電解質[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous secondary battery, and more particularly to a non-aqueous secondary battery with high capacity and high safety.
[0002]
[Prior art]
Non-aqueous secondary batteries typified by lithium ion secondary batteries have a large capacity, high voltage, high energy density, and high output, and therefore there is an increasing demand.
[0003]
However, with regard to this non-aqueous secondary battery, as the battery capacity increases, the inventors of the present invention have made further studies, and in particular, the charge capacity per unit volume of the electrode laminate is 140 mAh / cm. Three It has been found that securing a high safety in the temperature rising test becomes a problem when the battery has a high capacity as described above. That is, in a high-capacity battery, in this non-aqueous secondary battery, a liquid electrolyte (hereinafter referred to as “electrolytic solution”) containing an organic solvent as an electrolyte is frequently used. As the temperature rises, the exothermic reaction between the electrolyte in the battery and the electrode gradually increases, so that the battery may generate heat to a temperature 20 ° C. higher than the outside air temperature. Therefore, it is assumed that such a temperature rise will occur, the temperature of the battery is raised artificially, and the safety is confirmed by conducting a so-called temperature rise test. It is necessary to ensure the sex.
[0004]
[Problems to be solved by the invention]
In view of the above circumstances, the present invention has a charge capacity per unit volume of the electrode laminate of 140 mAh / cm. Three An object of the present invention is to ensure the safety in the temperature increase test even in the high capacity non-aqueous secondary battery described above.
[0005]
[Means for Solving the Problems]
The present invention has a positive electrode, a negative electrode, and an electrolyte, and the charge capacity per unit volume of the electrode laminate is 140 mAh / cm. 3 In the above non-aqueous secondary battery, the general formula C a H b F c O d (Where 3 ≦ a ≦ 15, 1 ≦ b ≦ 5, 5 ≦ c ≦ 20, 0 ≦ d ≦ 3), and the ratio of hydrogen in the alkyl group being fluorine-substituted, [(c / b + c) × 100], and a fluorinated solvent having a fluorination rate of 50% or more and 90% or less and a compound having a C═C unsaturated bond and an ester bond in the electrolyte are contained in an oven at 5 ° C. In a test in which the temperature is increased in a program mode of / min and maintained at a constant temperature of 150 ° C. after reaching 150 ° C., the temperature of the battery surface is suppressed to 160 ° C. or less until 35 minutes have elapsed from the start of the test. The above-mentioned problems are solved by ensuring safety in the test.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, a carbon-based material is used for the negative electrode, and the density of the negative electrode mixture layer of the negative electrode is 1.5 g / cm. Three And the inter-surface distance (d) of the (002) plane of the carbon-based material. 002 ) Is 3.5 Å or less and the crystallite size (Lc) in the c-axis direction is 30 Å, or the positive electrode potential during charging may be 4.4 V or more on the basis of lithium. Let it be an aspect.
[0007]
In the present invention, suitable specific examples of the fluorinated solvent having a fluorination rate of 50% or more to be contained in the electrolyte include, for example, CF Three CHFCHFCF 2 CF Three , CF Three CHFCHFCF 2 CF 2 CF Three , CF Three CF 2 CF 2 COOOCH Three , CF Three CF 2 CF 2 OCHFCF Three , CF Three CF 2 CH 2 OCF 2 CF 2 H, HCF 2 CF 2 CH 2 OCF 2 CF 2 H and the like are preferred.
[0008]
The above fluorination rate is the rate at which hydrogen in the alkyl chain is substituted with fluorine. For example, CF Three CHFCHFCF 2 CF Three In this case, the number that can be substituted with H or F is 12, and the number of fluorine substitutions is 10. Therefore, the fluorination rate is 83%.
[0009]
The reason why a fluorine-containing solvent having a fluorination rate of 50% or more can improve safety in a high-capacity non-aqueous secondary battery is not necessarily clear at present, but is by suppressing the reaction between the negative electrode surface and the electrolytic solution. It is considered a thing. To explain this in detail, the fluorine-containing solvent adsorbs or partially reacts with the negative electrode to form a good film on the surface of the negative electrode, and suppresses the reaction between the negative electrode and the electrolyte at a high temperature during the temperature rise test. It is considered a thing. And as this fluorination rate, 65% or more is preferable and 80% or more is more preferable. However, if the fluorination rate becomes too high, the electrolytic solution may be separated, so the fluorination rate is preferably 90% or less, more preferably 85% or less.
[0010]
As the content of the fluorinated solvent having a fluorination rate of 50% or more (addition amount to the electrolyte), if the amount of the fluorinated solvent is too small, the effect of suppressing the reaction between the negative electrode and the electrolytic solution is sufficient. Therefore, the volume ratio is preferably 2% or more, more preferably 5% or more, and still more preferably 10% or more. Further, if the content of the fluorinated solvent having a fluorination rate of 50% or more in the electrolyte is excessively increased, the lithium salt tends to be hardly dissolved in the electrolytic solution. More preferably, it is 95% or less, More preferably, it is 90% or less.
[0011]
The fluorine-containing solvent used in the present invention is generally C. a H b F c O d C, H, F, and O are respectively carbon, hydrogen, fluorine, and oxygen, and a, b, c, and d are preferably as follows.
a: 3 or more, more preferably 4 or more, still more preferably 5 or more, and 15 or less, more preferably 10 or less, still more preferably 8 or less
b: 1 or more, more preferably 2 or more, and 5 or less, more preferably 3 or less
c: 5 or more, more preferably 7 or more, more preferably 9 or more, and 20 or less, more preferably 15 or less, and even more preferably 10 or less
d: 0 or more, 3 or less, more preferably 1 or less, and 0 is most preferable.
[C / (b + c)] × 100, which is the ratio of alkyl-substituted hydrogen substituted with fluorine, is preferably 50 or more, more preferably 65 or more, still more preferably 80 or more, and 90 or less. It is preferable that there is, more preferably 85 or less. Therefore, the fluorine-containing solvent is C a H b F c Most preferred are those represented by
[0012]
In the present invention, the charge capacity per unit volume of the electrode laminate is 140 mAh / cm. Three The non-aqueous secondary battery described above is targeted, but this is based on the reason for increasing the capacity. In the present invention, the volume of the electrode laminate is the volume of the positive electrode, the negative electrode and the separator laminated or the positive electrode, the negative electrode and the separator wound in the battery, and the volume wound like the latter. In this case, the through hole in the center of the wound body based on the winding shaft used for winding is not included as a volume. In short, the total volume occupied by the positive electrode, the negative electrode and the separator. These three volumes of the positive electrode, the negative electrode, and the separator are important factors that determine the capacity of the battery. Regardless of the size of the battery, the charge capacity per unit volume of the electrode stack (charge capacity / volume of the electrode stack) ) Can be compared to compare the capacity densities of the batteries. In addition, the charge capacity here is the standard upper limit voltage of the battery under the charging condition of 0.1 C (in the example, it is 4.3 V, but the commercial product is generally 4.1 to 4.2 V). ) And then charged at the above voltage for a total of 15 hours. From the viewpoint of achieving higher capacity, the charge capacity per unit volume of the electrode laminate is 150 mAh / cm. Three Or more, more preferably 160 mAh / cm Three That's it.
[0013]
In the present invention, the electrolyte may be any of a liquid electrolyte, a gel electrolyte, and a solid electrolyte. However, in the present invention, since a liquid electrolyte is often used, this liquid electrolyte is used by those skilled in the art. The commonly used expression “electrolyte” will be used to explain in detail.
[0014]
In the present invention, an ester is suitably used as the solvent for the electrolytic solution. In particular, chain esters are preferably used because they lower the viscosity of the electrolyte and increase the ionic conductivity. Examples of such chain esters include organic solvents having a chain COO-bond such as dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, and methyl propionate, chain phosphate triesters such as trimethyl phosphate, and the like. Among them, chain carbonates are particularly preferable.
[0015]
In addition, it is preferable to use an ester having a high dielectric constant described below (dielectric constant of 30 or more) in combination with the chain ester because the dissociation property of a lithium salt as a solute is improved. Examples of the ester having a high dielectric constant include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), gamma-butyrolactone (γ-BL), ethylene glycol sulfite (EGS), and the like. . In particular, those having a cyclic structure are preferred, cyclic carbonates are particularly preferred, and ethylene carbonate (EC) is most preferred.
[0016]
The improvement in characteristics due to the high dielectric constant ester becomes significant when the ester content is 1% or more by volume in the total solvent of the electrolytic solution, and becomes more prominent when it reaches 2%. However, if the amount of the high dielectric constant ester in the electrolytic solution becomes too large, the reactivity with the electrode at high temperature becomes high, so that the volume ratio in the total solvent of the electrolytic solution is preferably less than 40%, more preferably. Is 20% or less, more preferably 10% or less.
[0017]
Examples of solvents that can be used in addition to the ester include 1,2-dimethoxyethane (DME), 1,3-dioxolane (DO), tetrahydrofuran (THF), 2-methyl-tetrahydrofuran (2Me-THF), diethyl ether. (DEE). In addition, amine-based or imide-based organic solvents, sulfur-containing or fluorine-containing organic solvents, and the like can also be used. Moreover, it may be gelatinous including polymers, such as polyethylene oxide and polymethyl methacrylate.
[0018]
Examples of the lithium salt that becomes a solute in the electrolyte include LiClO. Four , LiPF 6 , LiBF Four , LiAsF 6 , LiSbF 6 , LiCF Three SO Three , LiC Four F 9 SO Three , LiCF Three CO 2 , Li 2 C 2 F Four (SO Three ) 2 , LiC n F 2n + 1 SO Three (N ≧ 2), LiN (RfSO 2 ) 2 , LiC (RfSO 2 ) Three , LiN (RfOSO 2 ) 2 [Wherein Rf is a fluoroalkyl group] or the like may be used alone or in combination of two or more. 6 Or an organic fluorine-containing lithium salt having 2 or more carbon atoms, and the latter organic fluorine-containing lithium salt is particularly preferable. This is because the solubility in a fluorine-containing solvent is excellent. The concentration of the lithium salt in the electrolytic solution is not particularly limited, but it is preferable to increase the concentration to 1 mol / l or more because safety is improved. 1.2 mol / l or more is more preferable. Moreover, when it is less than 1.7 mol / l, electrical characteristics are improved, which is preferable.
[0019]
Moreover, it is preferable to contain a compound having a C═C unsaturated bond as an additive because the safety is further improved. In particular, a fluorinated compound is preferred, and a case having an ester bond is more preferred. Specific examples of such compounds include, for example, H (CF 2 ) Four CH 2 OOCCH = CH 2 , F (CF 2 ) 8 CH 2 CH 2 OOCCH = CH 2 Etc.
[0020]
Moreover, in the non-aqueous secondary battery of this invention, a gel electrolyte and a solid electrolyte can also be used besides the said electrolyte solution. Examples of the gel electrolyte and solid electrolyte include inorganic electrolytes and organic electrolytes mainly composed of polyethylene oxide, polypropylene oxide, or derivatives thereof.
[0021]
In the present invention, a 4V class positive electrode active material is used as the positive electrode active material, and this 4V class positive electrode active material is one whose open circuit voltage during charging is 4 V or more on the basis of lithium (Li). As the positive electrode active material, for example, LiNiO 2 LiCoO 2 , LiMn 2 O Four Lithium composite oxide such as, and further, partially substituted with other elements based on them, for example, LiNi 0.7 Co 0.2 Al 0.1 O 2 Among them, LiCoO in which the positive electrode potential can be 4.4 V or more on the basis of lithium during charging. 2 System, LiMn 2-f M f O 2 A system (M = metal such as Ni, Co, Cu, Cn, Fe) or the like is particularly preferably used. In the present invention, the reason why the 4V class materials are used as the positive electrode active material is that a high energy density battery can be obtained by using them as the positive electrode active material.
[0022]
The positive electrode, for example, to the positive electrode active material, if necessary, for example, a conductive auxiliary such as flaky graphite and a binder such as polyvinylidene fluoride and polytetrafluoroethylene are added and mixed to prepare a positive electrode mixture, Disperse it with a solvent to make a paste (the binder may be dissolved in a solvent in advance and then mixed with the positive electrode active material), and apply the positive electrode mixture-containing paste to a positive electrode current collector made of metal foil, It is produced by drying and forming a positive electrode mixture layer on at least a part of the positive electrode current collector. However, the method for manufacturing the positive electrode is not limited to the above-described method, and other methods may be used.
[0023]
The positive electrode current collector used for the positive electrode is preferably a metal foil containing aluminum as a main component, and its purity is preferably 98% by weight or more and less than 99.9% by weight. In an ordinary lithium ion secondary battery, an aluminum foil having a purity of 99.9% by weight or more is used as a positive electrode current collector, but in the present invention, a thin metal foil having a thickness of 15 μm or less is used in order to increase the capacity. It is preferable to use it. Therefore, it is preferable to have a strength that can be used even if it is thin. In order to ensure such strength, the purity is preferably less than 99.9% by weight. Particularly preferred as metals to be added to aluminum are iron and silicon. Iron is preferably 0.5% by weight or more, more preferably 0.7% by weight or more, and preferably 2% by weight or less, more preferably 1.3% by weight or less. Silicon is preferably 0.1% by weight or more, more preferably 0.2% by weight or more, and preferably 1.0% by weight or less, more preferably 0.3% by weight or less. These iron and silicon need to be alloyed with aluminum and do not exist as impurities in aluminum.
[0024]
The tensile strength of the positive electrode current collector is 150 N / mm. 2 Or more, more preferably 180 N / mm 2 That's it. The positive electrode current collector used in the present invention preferably has an elongation of 2% or more, more preferably 3% or more. This is because, as the discharge capacity per unit volume of the electrode stack increases, the positive electrode mixture layer expands during charging, and this expansion causes stress in the positive electrode current collector, thereby cracking the positive electrode current collector. This is because, if the elongation of the positive electrode current collector is increased, the stress is relieved by the elongation, and cracking or cutting of the positive electrode current collector can be prevented.
[0025]
In the present invention, as described above, it is preferable to use a metal foil whose main component is aluminum having a thickness of 15 μm or less as the positive electrode current collector. However, the thinner the thickness, the better the capacity of the battery. It is because there is. However, if the thickness is too thin, there is a risk of cutting due to insufficient strength of the positive electrode current collector during production. Therefore, the thickness of the positive electrode current collector is 15 μm or less as described above, and is 5 μm or more, particularly 8 μm. The above is suitable for practical use.
[0026]
Moreover, it is preferable that the surface of the positive electrode current collector is roughened on one side. And it is preferable that the rough surface exists in the surface of the outer peripheral side in a wound body. This is because in the case of a wound body, the more the negative electrode facing the closer the outer peripheral surface is to the center of the winding, the more the positive electrode tends to deteriorate. It is because deterioration of a positive electrode can be reduced by raising. The preferable average roughness of the rough surface is 0.1 to 0.5 μm in Ra, and more preferably 0.2 to 0.3 μm. And the preferable average roughness of a glossy surface is Ra of 0.2 micrometer or less, More preferably, it is 0.1 micrometer or less.
[0027]
Moreover, when the wettability of the positive electrode current collector is poor, the cycle characteristics tend to deteriorate when the battery is cycled (charged / discharged). In such a case, the wettability of the positive electrode current collector is preferably 37 dyne / cm or more.
[0028]
The material used for the negative electrode may be any material that can be doped and dedoped with lithium ions. In the present invention, it is called a negative electrode active material. As a specific example of such a negative electrode active material, for example, Examples thereof include carbon-based materials such as graphite, pyrolytic carbons, cokes, glassy carbons, fired bodies of organic polymer compounds, mesocarbon microbeads, carbon fibers, and activated carbon. In particular, mesocarbon microbeads fired at 2500 ° C. or higher are preferable because the cycle characteristics are good even when the negative electrode mixture layer is formed at a high density. Further, an alloy such as Si, Sn, or In or a compound such as an oxide that can be charged and discharged at a low voltage close to Li can be used as the negative electrode active material.
[0029]
When a carbon-based material is used as the negative electrode active material, the carbon-based material preferably has the following characteristics. That is, the distance between the (002) planes (d 002 ) Is preferably 3.5 mm or less, more preferably 3.45 mm or less, and still more preferably 3.4 mm or less. The crystallite size (Lc) in the c-axis direction is preferably 30 mm or more, more preferably 80 mm or more, and further preferably 250 mm or more. And the average particle diameter of the said carbonaceous material is 8-20 micrometers, 10-15 micrometers is especially preferable, and purity is 99.9 weight% or more.
[0030]
For example, the negative electrode active material may be added to the negative electrode active material, if necessary, as in the case of the positive electrode, and mixed to prepare a negative electrode mixture, which is then dispersed in a solvent to form a paste ( The binder may be dissolved in a solvent in advance and then mixed with the negative electrode active material, etc.), and the negative electrode mixture-containing paste is applied to a negative electrode current collector made of copper foil and dried. It is produced by forming a negative electrode mixture layer at least partially. However, the manufacturing method of the negative electrode is not limited to the above-described method, and other methods may be used.
[0031]
Examples of the negative electrode current collector include metal foils such as copper foil, aluminum foil, nickel foil, and stainless steel foil, and those made of these metals in a net shape. Copper foil is particularly suitable.
[0032]
When a carbon-based material is used for the negative electrode, the density of the negative electrode mixture layer of the negative electrode is 1.45 g / cm. Three It is preferable to increase the capacity, more preferably 1.5 g / cm. Three That's it. Usually, when the negative electrode mixture layer has a high density, it is easy to obtain a high capacity, but the penetration of the electrolytic solution is slowed, and the utilization of the active material is likely to be uneven, so that the cycle characteristics are likely to deteriorate. However, in such a case, if a compound having a C═C unsaturated bond is contained in the electrolytic solution, the cycle characteristics are lowered even when the negative electrode mixture layer is made dense as described above. Can be suppressed.
[0033]
The separator is not particularly limited, but a polyolefin-based separator such as a microporous polyethylene film having a thickness of 20 μm or less, a microporous polypropylene film, or a microporous ethylene-propylene copolymer film may be thin. Since it has intensity | strength, since the filling amount of a positive electrode active material, a negative electrode active material, etc. can be raised, it is used suitably in this invention. In particular, when the above separator is interposed between the electrode laminate and the battery case, there is an effect of dissipating more heat inside the electrode than other thick separators.
[0034]
【Example】
Next, the present invention will be specifically described with reference to examples. However, this invention is not limited only to those Examples.
[0035]
Example 1
Ethylene carbonate, diethyl carbonate and CF Three CHFCHFCF 2 CF Three And H (CF 2 ) Four CH 2 OOCCH = CH 2 Are mixed at a volume ratio of 30: 45: 20: 5, and (C 2 F Five SO 2 ) 2 NLi was dissolved at 1.0 mol / l, and the composition was 1.0 mol / l (C 2 F Five SO 2 ) 2 An electrolyte solution represented by NLi / EC: DEC: HFC: TFPA (30: 45: 20: 5 volume ratio) was prepared.
[0036]
EC in the above electrolyte is an abbreviation for ethylene carbonate, DEC is an abbreviation for diethyl carbonate, and HFC is CF. Three CHFCHFCF 2 CF Three The abbreviation TFPA is H (CF 2 ) Four CH 2 OOCCH = CH 2 Is an abbreviation. Therefore, 1.0 mol / l (C 2 F Five SO 2 ) 2 NLi / EC: DEC: HFC: TFPA (30: 45: 20: 5 volume ratio) is 30% by volume of ethylene carbonate, 45% by volume of diethyl carbonate and CF Three CHFCHFCF 2 CF Three 20% by volume and H (CF 2 ) Four CH 2 OOCCH = CH 2 In a mixed solvent of 5% by volume (C 2 F Five SO 2 ) 2 It shows that NLi is dissolved at 1.0 mol / l.
[0037]
Apart from the above, LiCoO 2 In addition, flake graphite as a conductive assistant was added at a weight ratio of 100: 6 and mixed, and this mixture was mixed with a solution in which polyvinylidene fluoride was dissolved in N-methylpyrrolidone to obtain a paste. The paste containing the positive electrode mixture was passed through a 70-mesh net to remove a large one, and then the coating amount was 24.6 mg / cm on both sides of the positive electrode current collector made of a metal foil mainly composed of 15 μm thick aluminum. 2 (However, the amount of the positive electrode mixture after drying) is uniformly applied and dried to form a positive electrode mixture layer, and then compression-molded and cut with a roller press, and then the lead body is welded. Thus, a belt-like positive electrode was produced.
[0038]
The metal foil mainly composed of aluminum used as the positive electrode current collector contained 1% by weight of iron and 0.15% by weight of silicon, and the purity of aluminum was 98% by weight or more. The tensile strength of the metal foil mainly composed of aluminum used as the positive electrode current collector is 185 N / mm. 2 The wettability was 38 dyne / cm and the elongation was 3%.
[0039]
Next, the mesocarbon microbead graphite-based carbon-based material [however, the interplanar distance (d) 002 ) Is 3.37 mm, the crystallite size in the c-axis direction (Lc) is 950 mm, the average particle size is 15 μm, and the purity is 99.9 wt% or more. A vinylidene was mixed with a solution in N-methylpyrrolidone to make a paste. This negative electrode mixture-containing paste was passed through a 70-mesh net to remove a large one, and then the coating amount was 12.0 mg / cm on both surfaces of a negative electrode current collector made of a strip-shaped copper foil having a thickness of 10 μm. 2 (However, the amount of the negative electrode mixture after drying) is uniformly applied and dried to form a negative electrode mixture layer, and then compression molded with a roller press, cut, and then welded to the lead body. Thus, a strip-shaped negative electrode was produced. The density of the negative electrode mixture layer of the negative electrode is 1.5 g / cm. Three Met.
[0040]
The belt-like positive electrode was overlapped on the belt-like negative electrode through a microporous polyethylene film having a thickness of 20 μm and wound in a spiral shape to form an electrode laminate having a spiral winding structure. The volume of the electrode laminate is 11.5 cm. Three Met. Thereafter, the electrode laminate was filled in a bottomed cylindrical battery case having an outer diameter of 18 mm, and the positive and negative lead bodies were welded.
[0041]
Next, the electrolyte solution is poured into the battery case, and after the electrolyte solution has sufficiently penetrated into the separator and the like, it is sealed, precharged, and subjected to aging, and has a cylindrical shape as shown in the schematic diagram of FIG. A non-aqueous secondary battery was produced.
[0042]
Referring to the battery shown in FIG. 1, 1 is the positive electrode and 2 is the negative electrode. However, in FIG. 1, in order to avoid complication, the current collector used for manufacturing the positive electrode 1 and the negative electrode 2 is not illustrated. The positive electrode 1 and the negative electrode 2 are spirally wound via a separator 3 to form a spiral electrode laminate and are accommodated in a battery case 5 together with the electrolyte 4 made of the specific electrolyte.
[0043]
The battery case 5 is made of stainless steel as described above, and an insulator 6 made of polypropylene is disposed at the bottom of the battery case 5 prior to the insertion of the spiral electrode laminate. The sealing plate 7 is made of aluminum and has a disk shape. The sealing plate 7 is provided with a thin portion 7a at the center thereof, and serves as a pressure inlet 7b for allowing the battery internal pressure to act on the explosion-proof valve 9 around the thin portion 7a. Holes are provided. And the protrusion part 9a of the explosion-proof valve 9 is welded to the upper surface of this thin part 7a, and the welding part 11 is comprised. Note that the thin-walled portion 7a provided on the sealing plate 7 and the protruding portion 9a of the explosion-proof valve 9 are shown only on the cut surface for easy understanding on the drawing, and the contour line behind the cut surface is shown. Is not shown. In addition, the welded portion 11 of the thin-walled portion 7a of the sealing plate 7 and the protruding portion 9a of the explosion-proof valve 9 is also illustrated in an exaggerated state so as to facilitate understanding on the drawing.
[0044]
The terminal plate 8 is made of rolled steel, has a nickel plating on the surface, and has a hat shape with a peripheral edge portion having a hook shape. The terminal plate 8 is provided with a gas discharge port 8a. The explosion-proof valve 9 is made of aluminum and has a disk shape, and a central portion is provided with a protruding portion 9a having a tip portion on the power generation element side (lower side in FIG. 1) and a thin portion 9b. As described above, the lower surface of the protruding portion 9a is welded to the upper surface of the thin portion 7a of the sealing plate 7 to constitute the welded portion 11. The insulating packing 10 is made of polypropylene and has an annular shape. The insulating packing 10 is arranged at the upper part of the peripheral edge of the sealing plate 7. The explosion-proof valve 9 is arranged on the upper part, and the sealing plate 7 and the explosion-proof valve 9 are insulated. The gap between the two is sealed so that the liquid electrolyte does not leak between the two. The annular gasket 12 is made of polypropylene, the lead body 13 is made of aluminum, the sealing plate 7 and the positive electrode 1 are connected, an insulator 14 is disposed on the upper part of the spiral electrode laminate, and the negative electrode 2 and the battery case 5 are connected. Are connected by a nickel lead body 15.
[0045]
Example 2
The coating amount of the positive electrode mixture-containing paste was 23.6 mg / cm 2 (However, the amount of the positive electrode mixture after drying) and the coating amount of the negative electrode mixture-containing paste was 11.49 mg / cm 2 (However, the amount of the negative electrode mixture after drying) and a cylindrical non-aqueous secondary battery as in Example 1 except that a conventionally used microporous polyethylene film having a thickness of 25 μm was used as a separator. Was made. The density of the negative electrode mixture layer of Example 2 is 1.5 g / cm. Three The volume of the electrode laminate is 11.5 cm. Three All of them were the same as those in Example 1.
[0046]
Reference example
TFPA [ie, H (CF 2 ) 4 CH 2 OOCCH = CH 2 A non-aqueous secondary battery having a cylindrical shape was produced in the same manner as in Example 1 except that the solvent composition of the electrolytic solution was EC: DEC: HFC (30:50:20 volume ratio).
[0047]
Comparative Example 1
HFC [ie CF Three CHFCHFCF 2 CF Three ] And TFPA were not added, and a cylindrical non-aqueous secondary battery was produced in the same manner as in Example 1 except that the solvent composition of the electrolytic solution was EC: DEC (30:70).
[0048]
Comparative Example 2
HFC and TFPA were not added, the solvent composition of the electrolyte was EC: DEC (30:70), and the coating amount of the positive electrode mixture-containing paste was 21.8 mg / cm 2 (However, the amount of the positive electrode mixture after drying), and the coating amount of the negative electrode mixture-containing paste is 11.8 mg / cm 2 (However, the negative electrode mixture amount after drying) and the density of the negative electrode mixture layer is 1.4 g / cm. Three A cylindrical non-aqueous secondary battery was produced in the same manner as in Example 2 except that. The volume of the electrode laminate of Comparative Example 2 is also 11.5 cm. Three Met.
[0049]
Comparative Example 3
HFC and TFPA are not added, the solvent composition of the electrolyte is EC: DEC (30:70), and a positive electrode current collector is used as a positive electrode current collector with a metal foil mainly composed of 20 μm thick aluminum as in the past. The amount of paste applied is 23.9 mg / cm 2 (However, the amount of the positive electrode mixture after drying) and the coating amount of the negative electrode mixture-containing paste is 11.0 mg / cm 2 (However, the amount of the negative electrode mixture after drying) and a cylindrical non-aqueous secondary battery as in Example 1 except that a microporous polyethylene film having a thickness of 25 μm was used as a separator in the same manner as in Example 2. Was made. The metal foil mainly composed of aluminum used as the positive electrode current collector contains 0.03% by weight of iron and 0.2% by weight of silicon, and the purity of aluminum is 99.94% by weight or more. It was. The positive electrode current collector has a tensile strength of 140 N / mm. 2 (15 μm equivalent), wettability was 36 dyne / cm, and elongation was 3%.
[0050]
The batteries of Examples 1-2, Reference Example and Comparative Examples 1-3 were discharged to 0.25 V at 0.2 A (about 0.1 C) and then charged at 0.2 A to reach 4.3 V. Then, after charging for 15 hours under the condition of maintaining a constant voltage of 4.3 V, the charge capacity per unit volume of the electrode laminate was determined, and the battery was then programmed in an explosion-proof thermostat at a program mode of 5 ° C./min. After the temperature was raised and reached 150 ° C., the temperature was kept at 150 ° C., and the presence or absence of a phenomenon in which the temperature of the battery surface generated heat of 170 ° C. or more was examined by 35 minutes after the start of the test. The results are shown in Table 1. The number of batteries used in this temperature rise test is 5 for each battery. In Table 1, the number of batteries used for the test is shown in parentheses in parentheses, and the number of batteries with heat generation is shown in the numerator. ing.
[0051]
[Table 1]
Figure 0004165677
[0052]
As is apparent from the results shown in Table 1, HFC (that is, CF) that is a fluorinated solvent having a fluorination rate of 50% or more. 3 CHFCHFCF 2 CF 3 In Examples 1-2 and Reference Example, in which an electrolyte is contained in an electrolyte, safety in a temperature increase test is improved, and a fluorinated solvent having a fluorination rate of 50% or more as in Comparative Examples 1-3. In the case where it is not contained, high safety cannot be secured unless the battery voltage and the charge capacity per unit volume of the electrode laminate are lowered, and the charge capacity per unit volume of the electrode laminate is 140 mAh / cm. 3 It can be seen that high safety can be ensured only in Comparative Example 2 below. The batteries of Examples 1 and 2 and the reference example will be further described. TFPA [that is, H (CF 2 ) 4 CH 2 OOCCH = CH 2 In the batteries of Examples 1 and 2 containing the above, the exothermic temperature was suppressed to 160 ° C. or lower, but the battery of the reference example not containing TFPA did not generate heat of 170 ° C. or higher, but 160 ° C. It was clear that there were 3 out of 5 exotherms and the addition of a compound having a C═C unsaturated double bond was more effective in suppressing the exotherm.
[0053]
【The invention's effect】
As described above, in the present invention, the charge capacity per unit volume of the electrode laminate is 140 mAh / cm. Three In the above non-aqueous secondary battery, a non-aqueous secondary battery with high safety in the temperature increase test could be provided by containing a fluorine-containing solvent having a fluorination rate of 50% or more in the electrolyte. Further, when a compound having a C═C unsaturated bond was added as an additive, heat generation could be further suppressed, and a more preferable result was obtained in ensuring safety.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing an example of a nonaqueous secondary battery of the present invention.
[Explanation of symbols]
1 Positive electrode
2 Negative electrode
3 Separator
4 electrolyte

Claims (6)

正極、負極および電解質を有し、正極に4V級の活物質を用い、電極積層体の単位体積当たりの充電容量が140mAh/cm以上の非水二次電池において、一般式C (ただし、3≦a≦15、1≦b≦5、5≦c≦20、0≦d≦3)で表され、かつアルキル鎖の水素がフッ素置換された割合であって、〔(c/b+c)×100〕で示されるフッ素化率50%以上90%以下の含フッ素溶媒およびC=C不飽和結合とエステル結合とを有する化合物を電解質中に含有し、恒温槽中で5℃/minのプログラムモードで昇温し、150℃に達した後に定温150℃に保持する試験において、試験開始から35分経過するまでの電池表面の温度が160℃以下に抑えられることを特徴とする非水二次電池。In a non-aqueous secondary battery having a positive electrode, a negative electrode, and an electrolyte, using a 4V class active material for the positive electrode and having a charge capacity per unit volume of the electrode laminate of 140 mAh / cm 3 or more, a general formula C a H b F c O d (where 3 ≦ a ≦ 15, 1 ≦ b ≦ 5, 5 ≦ c ≦ 20, 0 ≦ d ≦ 3), and the proportion of hydrogen in the alkyl chain replaced with fluorine, (C / b + c) × 100] containing a fluorine-containing solvent having a fluorination rate of 50% to 90% and a compound having a C═C unsaturated bond and an ester bond in the electrolyte, and containing 5 in a thermostatic bath. The temperature of the battery surface is suppressed to 160 ° C. or lower until 35 minutes have elapsed from the start of the test in a test in which the temperature is raised at 150 ° C./min and maintained at a constant temperature of 150 ° C. after reaching 150 ° C. Non-aqueous secondary battery. 負極に炭素系材料を用い、その負極の負極合剤層の密度が1.5g/cm以上であり、かつ上記炭素系材料の(002)面の面間距離(d002 )が3.5Å以下で、c軸方向の結晶子の大きさ(Lc)が30Å以上である請求項1記載の非水二次電池。A carbon-based material is used for the negative electrode, the density of the negative electrode mixture layer of the negative electrode is 1.5 g / cm 3 or more, and the inter-surface distance (d 002 ) of the (002) plane of the carbon-based material. The non-aqueous secondary battery according to claim 1, wherein the crystallite size in the c-axis direction (Lc) is 30 Å or more. C=C不飽和結合とエステル結合とを有する化合物がフッ素化された化合物である請求項1または2に記載の非水二次電池。The nonaqueous secondary battery according to claim 1 or 2, wherein the compound having a C = C unsaturated bond and an ester bond is a fluorinated compound. 充電時に正極電位がリチウム基準で4.4V以上になり得る請求項1〜のいずれかに記載の非水二次電池。The nonaqueous secondary battery according to any one of claims 1 to 3 , wherein the positive electrode potential can be 4.4 V or more based on lithium during charging. 正極集電材として厚さが15μm以下のアルミニウムを主成分とする金属箔を用いた請求項1〜のいずれかに記載の非水二次電池。The nonaqueous secondary battery according to any one of claims 1 to 4 , wherein a metal foil mainly composed of aluminum having a thickness of 15 µm or less is used as the positive electrode current collector. セパレータとして厚みが20μm以下の微孔性のポリオレフィン系セパレータを用いた請求項1〜のいずれかに記載の非水二次電池。The nonaqueous secondary battery according to any one of claims 1 to 5 , wherein a microporous polyolefin-based separator having a thickness of 20 µm or less is used as the separator.
JP37746498A 1998-12-29 1998-12-29 Non-aqueous secondary battery Expired - Fee Related JP4165677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37746498A JP4165677B2 (en) 1998-12-29 1998-12-29 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37746498A JP4165677B2 (en) 1998-12-29 1998-12-29 Non-aqueous secondary battery

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2007029101A Division JP2007157735A (en) 2007-02-08 2007-02-08 Nonaqueous secondary battery
JP2007029099A Division JP5004217B2 (en) 2007-02-08 2007-02-08 Non-aqueous secondary battery

Publications (3)

Publication Number Publication Date
JP2000200622A JP2000200622A (en) 2000-07-18
JP2000200622A5 JP2000200622A5 (en) 2004-10-28
JP4165677B2 true JP4165677B2 (en) 2008-10-15

Family

ID=18508858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37746498A Expired - Fee Related JP4165677B2 (en) 1998-12-29 1998-12-29 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP4165677B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009099448A (en) * 2007-10-18 2009-05-07 Sony Corp Non-aqueous electrolytic liquid secondary battery and non-aqueous electrolytic liquid composition
JP6413347B2 (en) 2014-05-26 2018-10-31 株式会社Gsユアサ Electricity storage element

Also Published As

Publication number Publication date
JP2000200622A (en) 2000-07-18

Similar Documents

Publication Publication Date Title
JP3957415B2 (en) Non-aqueous secondary battery
CN113644317B (en) Lithium ion battery
JP5693222B2 (en) Lithium secondary battery
JP5343665B2 (en) Solvent for non-aqueous electrolyte of lithium secondary battery
WO2007043624A1 (en) Nonaqueous electrolyte solution and lithium secondary battery using same
US20070141471A1 (en) Lithium ion secondary cell
JP3953207B2 (en) Non-aqueous secondary battery
JP2020064873A (en) Nonaqueous electrolyte solution for secondary battery and nonaqueous electrolyte secondary battery using the same
JP3938442B2 (en) Non-aqueous secondary battery
JP3916116B2 (en) Non-aqueous secondary battery
JP3928756B2 (en) Non-aqueous secondary battery
JP4530289B2 (en) Non-aqueous secondary battery
JP4553468B2 (en) Non-aqueous secondary battery and charging method thereof
JP4439070B2 (en) Non-aqueous secondary battery and charging method thereof
JP4159005B2 (en) Non-aqueous secondary battery
JP4165677B2 (en) Non-aqueous secondary battery
JP5004217B2 (en) Non-aqueous secondary battery
JP3825571B2 (en) Non-aqueous electrolyte battery
JP7264899B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
JP4767156B2 (en) Non-aqueous secondary battery
JP2000243439A (en) Nonaqueous secondary battery
JP4711319B2 (en) Non-aqueous secondary battery
JP3712250B2 (en) Non-aqueous secondary battery
JP4215263B2 (en) Non-aqueous secondary battery
JP3969551B2 (en) Non-aqueous secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080723

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080723

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees