JP4164622B2 - 電子回路、半導体装置、電子機器および時計 - Google Patents

電子回路、半導体装置、電子機器および時計 Download PDF

Info

Publication number
JP4164622B2
JP4164622B2 JP2001035697A JP2001035697A JP4164622B2 JP 4164622 B2 JP4164622 B2 JP 4164622B2 JP 2001035697 A JP2001035697 A JP 2001035697A JP 2001035697 A JP2001035697 A JP 2001035697A JP 4164622 B2 JP4164622 B2 JP 4164622B2
Authority
JP
Japan
Prior art keywords
voltage
circuit
constant
control transistor
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001035697A
Other languages
English (en)
Other versions
JP2001312320A (ja
JP2001312320A5 (ja
Inventor
忠雄 門脇
佳樹 牧内
信二 中宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2001035697A priority Critical patent/JP4164622B2/ja
Publication of JP2001312320A publication Critical patent/JP2001312320A/ja
Publication of JP2001312320A5 publication Critical patent/JP2001312320A5/ja
Application granted granted Critical
Publication of JP4164622B2 publication Critical patent/JP4164622B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Electrical Variables (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電子回路、半導体装置、電子機器および時計に関する。
【0002】
【背景技術及び発明が解決しようとする課題】
従来より、定電圧を出力する定電圧発生回路と、前記定電圧により駆動される水晶発振回路とを含んで構成される電子回路が知られている。このような電子回路は、時計、電話、コンピュータ端末などに広く用いられている。
【0003】
特に、近年の電子機器の小型化に伴い、このような電子回路は、小型で低消費電力型のICとして形成されることが多い。
【0004】
しかし、ICとして形成さる電子回路は、定電圧発生回路から出力される定電圧が、温度による影響を受けて変動してしまうという問題がある。
【0005】
特に、定電圧発生回路の出力する定電圧によって駆動される水晶発振回路では、前記定電圧が変動すると、水晶発振回路の発振周波数も変動してしまう。このため、この水晶発振回路の発振周波数を元に、動作用の基準クロックを生成している電子回路においては、正確な計時動作を行うことができないという問題が生ずる。例えば、腕時計等を例に取ると、腕時計の使用環境は、低温から高温にわたり広範囲に及んでいる。従って、従来の電子回路をこのような腕時計に使用すると、定電圧発生回路の出力する定電圧の電圧変動が、表示する時刻の誤差となって現れてしまう。
【0006】
また、定電圧発生回路から出力される定電圧の絶対値は、これによって駆動される水晶発振回路の発振停止電圧の絶対値より、常に大きな値に設定する必要がある。発振停止電圧を下回ると、水晶発振回路が動作できなくなるからである。
【0007】
ところが、水晶発振回路の消費電力は、定電圧発生回路から供給される定電圧の二乗に比例する。このため、電子回路の消費電力を低減するという観点からは、定電圧発生回路から出力される定電圧の値を、前記水晶発振回路の発振停止電圧を上回るという条件を満たす範囲で、できるだけ小さな値に設定することが必要となる。
【0008】
このような電子回路を半導体回路として形成すると、不純物の打ち込み誤差等の影響により、定電圧発生回路から出力される定電圧の値や、水晶発振回路の発振停止電圧の値も微妙に変動する。
【0009】
しかし、従来の電子回路では、定電圧発生回路から出力される定電圧の値を微調整することができなかったため、このような変動分のリスクを考慮して、前記定電圧の値を、予想される発振停止電圧の値より十分余裕を持って大きく設定する必要があった。このため、水晶発振回路を必要以上に高い電圧で駆動してしまうこととなり、この面からも電子回路の消費電力の低減を図ることが難しいという問題があった。
【0010】
本発明は、このような課題に鑑みて成されたものであり、その第1の目的は、定電圧発生回路から出力される定電圧の値の、温度変化に伴う変動の少ない電子回路、半導体装置、電子機器および時計を提供することにある。
【0011】
本発明の他の目的は、定電圧発生回路から出力される定電圧の値を微調整することができる電子回路、半導体装置、電子機器および時計を提供することにある。
【0012】
【課題を解決するための手段】
本発明は、所定の定電圧を生成する定電圧発生回路と、
前記定電圧発生回路から供給される定電圧により発振駆動される水晶発振回路を含む電子回路において、
前記定電圧発生回路は、
基準電圧を生成する第1の電圧生成回路と、
前記定電圧と所定の相関をもつ参照電圧及び前記定電圧を生成する第2の電圧生成回路とを含み、
前記第2の電圧生成回路は、
前記基準電圧と前記参照電圧とを差動増幅する差動増幅器と、
定電流を供給する第2の定電流源と、
前記定電流が供給される第2の電圧制御用トランジスタを用いた回路と、
前記第2の電圧制御用トランジスタを用いた回路と直列接続され前記定電流が供給されるとともに、
前記差動増幅器の出力により抵抗値が制御される出力用トランジスタとを含み、
所定の電位を基準として、前記第2の電圧制御用トランジスタを用いた回路の一端側から前記参照電圧を出力し、他端側から前記定電圧を出力するように形成され、
前記定電流は、前記第2の電圧制御用トランジスタの飽和動作領域の値に設定され、
かつ前記第2の電圧制御用トランジスタの動作保証温度範囲において、前記第2の電圧制御用トランジスタの両端電位である前記参照電圧と前記定電圧間の電位差変動量が、
動作保証温度範囲における前記水晶発振回路の発振停止電圧の変動量とほぼ同じとなるように、その電流値が設定されていることを特徴とする。
【0013】
【発明の実施の形態】
前記第1の目的を達成するため、本実施の形態は、
定電圧を生成する定電圧発生回路を含む電子回路において、
前記定電圧発生回路は、
基準電圧を生成する第1の電圧生成回路と、
前記基準電圧と所定の相関をもつ前記定電圧を生成する第2の電圧生成回路と、
を含み、
前記第1の電圧生成回路は、
定電流を供給する第1の定電流源と、
前記定電流が通電され、所定の電位を基準とした前記基準電圧を出力する第1の電圧制御用トランジスタを用いた回路とを含み、
前記定電流は、
前記第1の電圧制御用トランジスタの飽和動作領域の値に設定されたことを特徴とする。
【0014】
ここにおいて、
前記第2の電圧生成回路は、
前記基準電圧と参照電圧とを差動増幅する差動増幅器と、
定電流を供給する第2の定電流源と、
前記定電流が供給される第2の電圧制御用トランジスタを用いた回路と、
前記第2の電圧制御用トランジスタを用いた回路と直列接続され前記定電流が供給されるとともに、前記差動増幅器の出力により抵抗値が制御される出力用トランジスタと、
を含み、所定の電位を基準として、前記第2の電圧制御用トランジスタを用いた回路の一端側から前記参照電圧を出力し、他端側から前記定電圧を出力するように形成され、
前記定電流は、
前記第2の電圧制御用トランジスタの飽和動作領域の値に設定することが好ましい。
【0015】
また、本実施の形態は、
定電圧を生成する定電圧発生回路を含む電子回路において、
前記定電圧発生回路は、
基準電圧を生成する第1の電圧生成回路と、
前記定電圧と所定の相関をもつ参照電圧及び前記定電圧を生成する第2の電圧生成回路と、
を含み、
前記第2の電圧生成回路は、
前記基準電圧と参照電圧とを差動増幅する差動増幅器と、
定電流を供給する第2の定電流源と、
前記定電流が供給される第2の電圧制御用トランジスタを用いた回路と、
前記第2の電圧制御用トランジスタを用いた回路と直列接続され前記定電流が供給されるとともに、前記差動増幅器の出力により抵抗値が制御される出力用トランジスタと、
を含み、所定の電位を基準として、前記第2の電圧制御用トランジスタを用いた回路の一端側から前記参照電圧を出力し、他端側から前記定電圧を出力するように形成され、
前記定電流は、
前記第2の電圧制御用トランジスタの飽和動作領域の値に設定されたことを特徴とする。
【0016】
本実施の形態のように、定電流源が供給される定電流の値を、電圧制御用トランジスタの飽和動作領域の値に設定することにより、電子回路が使用される環境に多少の温度変化が発生し、定電流源から供給される定電流の値が多少変動したとしても、電圧制御用トランジスタの両端電圧の変動量は無視する程度の値となる。従って、第1の電圧生成回路及び第2の電圧生成回路の少なくとも一方から出力される基準電圧及び参照電圧の少なくとも一方の値は、温度変化の影響を受けることなくほぼ一定の値となり、この結果、定電圧発生回路は、常に一定の定電圧を出力することができる。
【0017】
このように、本実施の形態の電子回路によれば、定電圧発生回路から、周囲の温度が変化しても、その値の変動の少ない定電圧を生成し出力することが可能となる。
【0018】
特に、前記定電圧発生回路から出力される定電圧を、水晶発振回路駆動用の電圧として用いることにより、周囲の温度が変動しても発振回路から出力される発振周波数を常に一定に保つことが可能となり、この結果、発振回路の発振出力から正確な動作基準信号を生成することが可能となる。
【0019】
ここにおいて、前記電圧制御用トランジスタとしては、電界効果トランジスタを用いることが好ましい。さらに好ましくは、ゲートとドレインとを短絡した電界効果トランジスタを用いることが好ましい。
【0020】
また、前記他の目的を達成するため、本実施の形態は、
定電圧を生成する定電圧発生回路を含む電子回路において、
前記定電圧発生回路は、
基準電圧を生成する第1の電圧生成回路と、
前記基準電圧と所定の相関をもつ前記定電圧を生成する第2の電圧生成回路と、
を含み、
前記第1の電圧生成回路は、
定電流を供給する第1の定電流源と、
前記定電流が通電され、所定の電位を基準とした前記基準電圧を出力する第1の電圧制御用トランジスタを用いた回路とを含み、
前記第1の電圧制御用トランジスタは、
電流増幅率が夫々異なる複数のトランジスタの中から、いずれか1つのトランジスタを前記第1の電圧制御用トランジスタとして選択使用するように形成されたことを特徴とする。
【0021】
ここにおいて、
前記第2の電圧生成回路は、
前記基準電圧と参照電圧とを差動増幅する差動増幅器と、
定電流を供給する第2の定電流源と、
前記定電流が供給される第2の電圧制御用トランジスタを用いた回路と、
前記第2の電圧制御用トランジスタを用いた回路と直列接続され前記定電流が供給されるとともに、前記差動増幅器の出力により抵抗値が制御される出力用トランジスタと、
を含み、前記第2の電圧制御用トランジスタを用いた回路の一端側及び他端側から所定の電位を基準とした前記参照電圧及び前記定電圧を出力するように形成され、
前記第2の電圧制御用トランジスタは、
電流増幅率が夫々異なる複数のトランジスタの中から、いずれか1つのトランジスタを前記第2の電圧制御用トランジスタとして選択使用するように形成されることが好ましい。
【0022】
また、本実施の形態は、
定電圧を生成する定電圧発生回路を含む電子回路において、
前記定電圧発生回路は、
基準電圧を生成する第1の電圧生成回路と、
前記定電圧と所定の相関をもつ参照電圧及び前記定電圧を生成する第2の電圧生成回路と、
を含み、
前記第2の電圧生成回路は、
前記基準電圧と参照電圧とを差動増幅する差動増幅器と、
定電流を供給する第2の定電流源と、
前記定電流が供給される第2の電圧制御用トランジスタを用いた回路と、
前記第2の電圧制御用トランジスタを用いた回路と直列接続され前記定電流が供給されるとともに、前記差動増幅器の出力により抵抗値が制御される出力用トランジスタと、
を含み、前記第2の電圧制御用トランジスタを用いた回路の一端側及び他端側から所定の電位を基準とした前記参照電圧及び前記定電圧を出力するように形成され、
前記第2の電圧制御用トランジスタは、
電流増幅率が夫々異なる複数のトランジスタの中から、いずれか1つのトランジスタを前記第2の電圧制御用トランジスタとして選択使用するように形成されたことを特徴とする。
【0023】
本実施の形態の電子回路は、電流増幅率が異なる複数のトランジスタの中から、任意のトランジスタを電圧制御用トランジスタとして選択使用する。これにより、前記基準電圧及び参照電圧の少なくとも一方の値を微調整し、電圧生成回路から出力される定電圧の値を、微調整することが可能となる。
【0024】
従って、本実施の形態の定電圧発生回路から出力される定電圧を、水晶発振回路の駆動用の電圧として用いることにより、前記駆動用の電圧を、水晶発振回路の発振停止電圧に合わせて必要最低限の値に微調整することができる。このため、電子回路、特に水晶発振回路を低消費電力で安定して駆動することが可能となる。
【0025】
特に、本実施の形態によれば、電子回路の製造段階において、水晶発振回路の発振停止電圧に応じた最適な定電圧を出力するように形成することもできる。このような構成を採用することにより、半導体装置の製造工程において、定電圧発生回路の特性や、水晶発振回路の発振停止電圧等に多少なばらつきが発生した場合でも、定電圧発生回路から出力される定電圧の値を、前記発振停止電圧より大きく、しかも必要最小限の値に微調整することができる。このように、本実施の形態によれば、前述した微調整を、電子回路の製造段階、より具体的にいえば半導体装置の製造段階において行うことができるため、水晶発振回路を安定して駆動でき、しかも消費電力の小さな電子回路を具備した半導体装置を、歩留まりよく製造することが可能となる。
【0026】
ここにおいて、前記トランジスタは、電界効果トランジスタを用いることが好ましい。さらに好ましくは、ゲートとドレインとが短絡された電界効果トランジスタを用いることが好ましい。
【0027】
本実施の形態の電子回路は、
所定の定電圧を出力する定電圧発生回路と、
前記定電圧発生回路から供給される定電圧により発振駆動される水晶発振回路を含み、
前記水晶発振回路の発振停止電圧と、前記定電圧発生回路の出力する定電圧の温度特性を同じに設定したことを特徴とする。
【0028】
従って、この定電圧発生回路から出力される定電圧を、水晶発振回路の駆動用として用いることにより、水晶発振回路を、より少ない消費電力で安定して駆動することが可能な電子回路を実現することができる。
【0029】
ここにおいて、前記定電圧発生回路は、
所定の定電流が供給され、出力する定電圧を制御するための基準電圧及び参照電圧の少なくとも一方を出力する少なくとも一つの電圧制御用トランジスタを含み、
前記定電流は、
前記電圧制御用トランジスタの動作保証温度範囲における電圧変動量の合計が、動作保証温度範囲における前記発振停止電圧の変動量とほぼ同じとなるように、その電流値が設定されることが好ましい。
【0030】
このようにすることにより、水晶発振回路の使用環境として要求される全温度範囲内において、定電圧発生回路から出力される定電圧の値を、水晶発振回路の発振停止電圧より少しだけ高い値に設定することができ、この結果、どのような温度環境の下においても、水晶発振回路を長期間安定してかつ低消費電力で駆動することが可能となる。
【0031】
また、前記定電流は、
前記第1及び第2の電圧制御用トランジスタの動作保証温度範囲における電圧変動量が、動作保証温度範囲における前記発振停止電圧の変動量の1/2となるように、その電流値が設定されることが好ましい。
【0032】
これにより、定電圧発生回路から出力される定電圧の値は、発振回路が発振可能な最小電圧に設定される。これにより、水晶発振回路を、長期間安定して、しかもより低消費電力で駆動することができる。
【0033】
また、前記定電圧の絶対値は、この定電圧が供給される発振回路の発振停止電圧の絶対値よりも大きな値に設定することが好ましい。
【0034】
また、定電圧発生回路に使用される定電流源は、負の温度特性をもつ定電流を供給するように形成することが好ましい。これにより、周囲の温度が上昇した場合に、定電流の値が大きくなりすぎ、回路が破壊されるという事態の発生を防止することができる。
【0035】
また、本実施の形態の半導体装置は、前述した電子回路を含むことを特徴とする。
【0036】
また、本実施の形態の電子機器は、前述した電子回路または半導体装置を含み、前記発振回路の発振出力から動作基準信号を生成することを特徴とする。
【0037】
また、本実施の形態の時計は、前述した電子回路または半導体装置を含み、前記発振回路の発振出力から時計信号を形成することを特徴とする。
【0038】
【実施例】
次に、本発明の具体的な実施の形態を図面に基づき詳細に説明する。
【0039】
(第一実施例)
図1には、本発明が適用された電子回路の一例が示されている。実施例の電子回路は、所定の定電圧Vregを信号出力ライン200を介して出力する定電圧発生回路100と、前記定電圧Vregにより発振駆動される水晶発振回路10とを含んで構成される。
【0040】
前記水晶発振回路10は、信号反転増幅器14と、フィードバック回路とを含んで構成される。前記フィードバック回路は、水晶振動子12、抵抗20、位相補償用のコンデンサCD、CGを含んで構成され、信号反転増幅器14のドレイン出力を、180度位相反転し信号反転増幅器14のゲートへフィードバック入力する。
【0041】
前記信号反転増幅器14は、一対のP型電界効果トランジスタ(以下PMOSFETと記す)16、N型電界効果トランジスタ(以下NMOSFETと記す)18を含む。
【0042】
そして、信号反転増幅器14は、それぞれ第1の電位側と、これより低い電圧の第2の電位側に接続され、両電位の電位の電位差により電力供給を受け駆動される。ここで、第1の電位は接地電位Vddに設定され、第2の電位は負の定電圧Vregに設定されている。
【0043】
以上の構成の水晶発振回路10は、信号反転増幅器14に定電圧Vregが印加されると、前記信号反転増幅器14から信号が出力され、この出力信号が180度位相反転されてゲートにフィードバック入力される。これにより、信号反転増幅器14を構成するPMOSFET16、NMOSFET18が交互にオンオフ駆動され、水晶発振回路10の発振出力が次第に増加し、ついには水晶振動子12が安定した発振動作を行うようになる。
【0044】
これにより、この水晶発振回路10の出力端子11からは、所定の周波数をもつ発振信号が出力されることになる。
【0045】
このような水晶発振回路10を含む電子回路を、少ない消費電力で駆動するためには、水晶発振回路10の駆動電圧Vregの絶対値を、できるだけ小さく設定することが必要となる。実験によれば、水晶発振回路10の消費電力は、電源電圧Vregの絶対値の二乗に比例することが知られている。
【0046】
しかし、このような水晶発振回路10には、発振停止電圧Vstoが存在し、前記電源電圧Vregの絶対値が、この発振停止電圧Vstoの絶対値を下回ると、発振回路10の発振動作が停止してしまう。
【0047】
従って、定電圧発生回路10から供給される定電圧Vregは、この発振停止電圧Vstoの絶対値より大きいという次式で示す条件を満足し、かつできるだけ小さな値に設定することが必要となる。
【0048】
|Vreg|≧|Vsto| …(1)
【0049】
これら定電圧発生回路100および水晶発振回路10を含む電子回路は、半導体製造技術を用いて半導体装置として形成されることが多い。従って、前記定電圧発生回路100は、水晶発振回路10を安定して駆動でき、しかも水晶発振回路10の安定発振時における消費電力をできるだけ小さくする低電圧Vregを出力することが必要となる。
【0050】
図2には、前記定電圧発生回路100の具体的な回路構成が示されている。
【0051】
実施例の定電圧発生回路100は、基準電圧Vref1を生成する第1の電圧生成回路110と、前記基準電圧Vref1と所定の相関を持つ定電圧Vregを出力ライン200から出力する第2の電圧生成回路130とを含む。そして、この定電圧発生回路100は、第1の電位側と、これより低い第2の電位側との間に接続され、両電位の電位差により電力供給を受け駆動される。ここで、前記第1の電位は接地電位Vddに設定され、第2の電位は所定の電源電圧Vssに設定される。ここで、電源電圧Vssは、その絶対値が、前記定電圧Vregの絶対値より大きなものを用いる。
【0052】
前記第1の電圧生成回路110は、図中矢印で示す定電流IDを供給する第1の定電流源150−1と、この定電流源150−1と直列に接続され、第1の電圧制御用トランジスタとして機能するP型電界効果トランジスタ(以下PMOSFETと記す)112とを含んで構成される。
【0053】
前記電圧制御用FET112は、そのゲートとドレインとが短絡されている。そして、このFET112のソースは、接地電位Vdd側に接続され、ドレイン側は定電流源150−1を介して電源Vss側に接続されると共に、基準電圧出力ライン210に接続されている。
【0054】
従って、この第1の電圧生成回路110では、定電流源150−1から定電流IDを流すことによって、FET112のソース・ドレイン間に、このFET112の閾値電圧VTPに依存した電圧α|VTP|の電位差が発生する。従って、出力ライン210には、接地電位Vddを基準とした次式で示す基準電圧Vref1が出力されることになる。
【0055】
ref1=α|VTP| …(2)
但し、VTPはFET112の閾値電圧、αは、所定の定数を表す。
【0056】
また、前記第2の電圧生成回路130は、接地電位Vddと電源Vssとの間に直列接続された第2の定電流源150−2と、第2の電圧制御用トランジスタとして機能するN型電界効果トランジスタ(以下NMOSFETと記)132と、出力用トランジスタとして機能するNMOSFET134とを含む。
【0057】
前記定電流源150−2は、前記第1の定電流源150−1と同一の定電流IDを供給するように形成されている。
【0058】
前記FET132は、そのゲートとドレインとが短絡されている。そして、このFET132のドレインは、第2の定電流源150−2を介して接地電位Vdd側へ接続され、ソース側は出力ライン200へ接続されている。
【0059】
出力用トランジスタとして機能するFET134は、そのドレイン側が出力ライン200へ接続され、そのソース側が電源Vss側へ接続されている。
【0060】
さらに、この第2の電圧生成回路130は、信号反転増幅器140を含む。この信号反転増幅器140は、前記FET132のドレイン側に接続された参照信号出力ライン220から出力される参照信号Vref2を+入力端子へ入力し、前記基準電圧Vref1を−入力端子へ入力し、両電圧Vref2およびVref1を差動増幅し、その出力信号を前記出力用FET134のゲートへフィードバック入力する。
【0061】
このような、信号反転増幅器140と、出力用FET134との働きにより、参照電圧出力ライン220の参照電圧Vref2は、出力ライン210の基準電圧Vref1と同じ値になるようにフィードバック制御される。すなわち、電圧制御用FET132のドレイン電圧Vref2は、次式で示すようにα|VTP|の値となる。
【0062】
ref2=α|VTP| …(3)
【0063】
このとき、FET132には、第2の定電流源150−2から供給される定電流IDが通電されているため、出力ライン220と200との間には、FET132の閾値電圧VTNに依存した電位差αVTNが発生する。
【0064】
この結果、出力ライン200と、接地電位Vddとの間には|VTP|+VTNに依存した、次式に示す定電圧Vregが出力されることになる。
【0065】
reg=α(|VTP|+VTN) …(4)
但し、VTNはFET132の閾値電圧。
【0066】
このようにして、実施例の定電圧発生回路100は、所定の定電圧Vregを出力ライン200へ出力し、水晶発振回路10を駆動することができる。
【0067】
本実施例の定電圧発生回路100の特徴は、第1,第2の定電流源150−1,150−2から供給される定電流IDの値を、前記第1および第2の制御用トランジスタとして機能するFET112,132の飽和動作領域の値に設定したことにある。これにより、定電圧発生回路100から出力される定電圧Vregの値を、温度変化の影響の少ない良好なものとすることができる。
【0068】
以下、そのための構成を具体的に説明する。
【0069】
図3には、実施例の定電圧発生回路100に使用される第1,第2の定電流源150−1,150−2の一例が示されている。なお、両定電流源150−1,150−2の構成は同一であるので、ここでは定電流源150−2の構成を例に取り、他の定電流源150−1の構成の説明は省略する。
【0070】
実施例の定電流源150は、ディプリーションタイプのPMOSFET152と、抵抗154とを含んで構成されている。
【0071】
前記FET152は、そのゲートとソースとが短絡されており、そのソース側が接地電位Vdd側に接続され、そのドレイン側が抵抗154側に接続されている。
【0072】
このように構成された定電流源150は、図4に示すように温度Tの変化に対して、負の温度特性を有するように動作する。
【0073】
ここにおいて、ta、tbは、定電流源100および水晶発振回路10に要求される動作保証温度範囲の上限および下限をそれぞれ表している。また、ΔIは、この保証範囲内で変動する定電流源150の電流変動幅を表している。
【0074】
本実施例において、前記第1および第2の定電流源150−1,150−2は、各FET152の製造工程において、ゲート幅、ゲート長などのサイズや、不純物打ち込み濃度が同一となるように、素子のレイアウトや、素子の製造条件が設定されている。これにより、両定電流源150−1,150−2は、図4に示すように、同一の負の温度特性をもつように形成される。
【0075】
図5には、前記第1および第2の電圧制御用トランジスタとして用いられるFET112,132のゲート・ソース間電圧VGSと、通電される定電流IDとの関係が示されている。
【0076】
同図に示すように、これら各FET112,132は、供給される定電流IDの値が変化すると、ゲート・ソース間電圧(すなわちα|VTP|の値またはα|VTN|の値)が変動する。
【0077】
前記図3に示すように、各定電流源150から供給される定電流IDの値は、動作保証温度範囲内にて△Iだけ変動する。従って、各FET112,132を、その閾値電圧Vth以下の非飽和動作領域で動作させると、VGSの変化量は△V1と大きな値となってしまう。
【0078】
これに対して、定電流源150から供給されいる電流IDの値を、FET112,132の飽和動作領域の値に設定することにより、温度変化によって定電流IDの値が△I変動しても、VGSの変動量ははるかに小さい△V2の値となる。
【0079】
従って、本実施例の定電圧発生回路100では、各定電流源150−1,150−2から供給される定電流IDを、各FET112,132の飽和動作領域の値に設定する。これにより、温度変化による影響の少ない定電圧Vregを出力し、発振回路10を安定して駆動することが可能となる。
【0080】
なお、本実施例の定電圧発生回路100において使用する定電流源150は、図3に示す構成に限らず、必要に応じて他の構成のものを用いてもよい。
【0081】
本実施例の定電圧発生回路100からは、前述したように温度変化の影響の少ない定電圧Vregが供給される。このため、この定電圧Vregの絶対値を、前述した発振停止電圧Vstoの絶対値より大きく、かつ必要最低限の大きさに設定しても、温度変化の影響により、定電圧Vregの絶対値が発振停止電圧Vstoの絶対値を下回り、発振動作が停止してしまうというような事態の発生を効果的に防止することができる。
【0082】
次に、前述した定電圧と、発振停止電圧との関係をより具体的に説明する。
【0083】
まず、発振回路10の発振停止電圧Vstoは次式で表される。
【0084】
|Vsto|=K(|Vthp|+Vthn) …(5)
但し、Vthp,Vthnは、FET16,18の閾値電圧であり、Kは、0.8〜0.9の値をとる。
【0085】
このように、発振停止電圧Vstoは、それぞれFET16,18の各閾値電圧の和に比例した値として与えられる。従って、この発振停止電圧Vstoはこれら各FET16,18の閾値電圧の温度特性の影響を受ける。
【0086】
また、前述したように、定電圧発生回路100から出力される定電圧Vregも負の温度特性を有する。
【0087】
従って、両電圧Vsto,Vregの温度特性を同一にすることが、発振回路10を低電力で安定して駆動する上で重要である。
【0088】
本実施例の電子回路では、定電圧発生回路100から供給される定電圧Vregの温度特性を、発振回路10の発振停止電圧Vstoの温度特性と同一にすることもできる。以下その構成を詳述する。
【0089】
図6には、定電圧Vregと発振停止電圧Vstoの温度特性が異なる場合の一例が示されている。同図において横軸は温度、縦軸は電圧をそれぞれ表す。
【0090】
このような温度特性のもとでは、前記(1)式の条件を確保するために、動作保証温度の上限値taにおいて、Vreg>Vstoの条件を満足しなければならない。
【0091】
しかし、このような条件設定を行うと、保証範囲で温度が最も低いtbにおいて、定電圧Vregの絶対値が、発振停止電圧Vstoに比べ必要以上に大きくなってしまう。この結果、発振回路10が電力を無駄に消費するという問題が生ずる。
【0092】
これに対し、本実施例の回路では、図7に示すように、定電圧Vregと、発振停止電圧Vstoとが同一の温度特性を示すよう形成できるため、回路を、低消費電力で駆動することが可能となる。
【0093】
すなわち、実施例の水晶発振回路10は、信号反転増幅器14を構成する各FET16,18が、飽和動作領域で動作を行うように形成されている。このために、前記各FET16,18のゲート・ソース間電圧VGSは、図5に示すようにFET112、132の飽和動作領域での特性と同様な特性を示すことになる。
【0094】
すなわち、前記(4),(5)式に示す定電圧Vreg、発振停止電圧Vstoを求める式において、各係数α、Kの温度係数をほぼ等しい値とすることができる。この結果、図7に示すように、定電圧Vregと、発振停止電圧Vstoは、同一の負の温度係数をもつものとなる。
【0095】
ここにおいて、前記各FET16,18,112,132は、それぞれ同一のサイズのトランジスタとして形成することが望ましい。
【0096】
以上説明したように、本実施例によれば、定電圧発生回路100の各電圧制御用トランジスタ112,132を、飽和動作領域の定電流IDで駆動させることにより、定電圧発生回路100から安定した定電圧Vregを出力することができる。
【0097】
これに加えて、本実施例によれば、発振回路10の信号反転増幅器14を構成する各FET16,18を、飽和動作領域で駆動するように構成することより、発振停止電圧Vstoの温度特性と、定電圧発生回路100の出力する定電圧Vregの温度特性と同一のものとすることができる。
【0098】
これにより図7に示すように、回路の動作保証温度範囲全域において、定電圧Vregの値を前記(1)式を満足する最低限の値に設定することができ、この結果、全動作保証温度領域において、発振回路10を必要最低限の電圧で良好に駆動することが可能となる。
【0099】
(変形例)
次に、第1実施例の変形例を説明する。
【0100】
前記実施例では、定電圧発生回路100を、2つの定電流源150−1,150−2を用いて形成する場合を例により説明したが、この発明はこれに限らず、例えば定電圧発生回路100を図8に示すように構成してもよい。
【0101】
この定電圧発生回路100において、第2の電圧生成回路130は、信号反転増幅器140と、この信号反転増幅器140の出力をそのまま参照電圧Vref2としてその−端子へフィードバック入力するライン220とを含んで構成される。そして、信号反転増幅器140の出力電圧が、そのまま出力ライン200から定電圧Vregとして出力される。
【0102】
従って、出力ライン200から出力される定電圧Vregの値は、信号反転増幅器140の+端子に入力される基準電圧Vref1の値と同一の値となる。
【0103】
この基準電圧を生成するために、第1の電圧生成回路110は、基準電位Vdd側とライン210との間に、複数の電圧制御用トランジスタを直列接続している。ここでは、PMOSFET112と、NMOSFET114とを用いている。これら各FET112,114は、それぞれゲートとドレインとが短絡されている。さらに、これら各FET112,114は、それぞれのドレイン端子が接続されている。
【0104】
以上の構成とすることにより、第1の電圧生成回路110からは、基準電圧として次式の電圧が出力される。
【0105】
ref1=α(|VTP|+VTN) …(6)
【0106】
従って、定電圧発生回路100からは、前記第1実施例と同一の値をもつ定電圧Vregが出力されることになる。
【0107】
このとき、図8に示す回路においても、各FET112,114に供給される定電流IDは、これら各FET112,114の飽和動作領域の値に設定されている。これにより、前記実施例と同様の作用効果を奏することができる。
【0108】
(第2実施例)
図9には、本発明が適用された定電圧発生回路100の第2実施例が示されている。なお前記実施例と対応する部材には同一号を付しその説明は省略する。
【0109】
実施例の定電圧発生回路100の第1の特徴は、前記第1の電圧制御用トランジスタとして、電流増幅率βが異なる複数のトランジスタを用意し、これら複数のトランジスタの中からいずれか1つのトランジスタを前記第1の電圧制御用トランジスタ112として選択使用する構成を採用したことにある。
【0110】
本実施例の他の特徴は、前記第2の電圧制御用トランジスタ132として、それぞれ電流増幅率βが異なる複数のトランジスタを用意し、これら各トランジスタの中からいずれか1つのトランジスタを前記第2の電圧制御用トランジスタ132として選択使用する構成を採用したことにある。
【0111】
これにより、前記第1および第2の電圧制御用トランジスタ112,132として、最適な電流増幅率の組み合わせのトランジスタを選択することができる。このため、前記(4)式に基づき出力される定電圧の値を、よりきめ細かに微調整することが可能となる。すなわち、定電圧Vregの値を、前記(1)式を満足する範囲で、できるだけその絶対値の小さな値に設定することができ、これにより回路全体の消費電力をより低減することが可能となる。
【0112】
以下にその構成を詳細に説明する。
【0113】
実施例の定電圧発生回路100は、電流増幅率β1,β2,β3がそれぞれ異なる複数のPMOSFET112−1,112−2,112−3を含んだ第1のFET群160と、前記第1のFET群160の中から任意のFET112を使用可能に選択する複数のスイッチング用FET164−1,164−2,164−3を含む第1の選択回路162とを有する。
【0114】
前記第1のFET群160を構成する各FET112は、そのゲートおよびドレインが短絡され、そのドレイン側が定電流源150−1にそれぞれ接続されている。
【0115】
また、前記スイッチング用のFET164−1,164−2,164−3は、それぞれ対応するFET112−1,112−2,112−3と接地電位Vddとの間に直列に接続されいる。そして、これら各FET164−1,164−2,164−3は、そのゲートに印加される選択信号SELにより、いずれか1つがオンされ、これと対応するFET112を、選択使用可能に設定する。
【0116】
ここで、前記各FET112−1,112−2,112−3の、各電流増幅率βは、次式を満足するように設定されている。
【0117】
β1<β2<β3 …(7)
【0118】
図10には、前記各FET112−1,112−2,112−3のゲート・ソース間電圧VGSと、通電される電流IDとの関係が示されている。
【0119】
同図に示すように、同一の電流IDを通電する場合には、電流増幅率βの大きなFETほど、そのゲート・ソース間電圧VGSが小さくなる。ここで、FET112のゲート・ソース間電圧VGSは、次式で表される。
【0120】
GS=αVTP …(8)
【0121】
このゲート・ソース間電圧は、前記(4)式から明らかなように、定電圧Vregの値の一部となる。
【0122】
従って、選択回路160を用いて、所望の電流増幅率βのFET112を選択することにより、定電圧発生回路100から出力される定電圧Vregの値を微調整することができる。
【0123】
また、前記第2のFET群170は、電流増幅率β11,β12,β13がそれぞれ異なる複数のNMOSFET132−1,132−2,132−3を含んで構成される。各FET132−1,132−2,132−3は、そのゲートとドレインが短絡され、そのドレイン側が第2の定電流源150−2と接続されている。
【0124】
また、前記第2の選択回路172は、複数のスイッチング用FET172−1,172−2,172−3を含んで構成され、各FET172−1,172−2,172−3は、対応するFET132−1,132−2,132−3のソースと、出力ライン200との間に接続されている。
【0125】
前記複数のFET132−1,132−2,132−3は、前記第1のFET群160と同様に、同一の定電流IDが通電された場合には、電流増幅率βの大きいものほどそのゲート・ソース間電圧VGSが小さくなる。ここで、前記各FET132−1,132−2,132−3の各電流増幅率βは、次式で示すように設定されている。
【0126】
β11<β12<β13 …(9)
【0127】
従って、選択信号SEL11〜SEL13を用いて、いずれか1つのスイッチング用のFET172をオンすることにより、これと対応するFET132が第2の電圧制御用トランジスタとして機能するように設定される。
【0128】
このとき、選択されたFET132のゲート・ソース間電圧は、次式で与えられる。
【0129】
GS=αVTN …(10)
【0130】
従って、第2の選択回路172を用いて、所望の電流増幅率βのFET132を選択することにより、前記(4)式からも明らかなように、出力される定電圧Vregの値を微調整することができる。
【0131】
特に、本実施例の定電圧発生回路100は、第1のFET群160および第2のFET群170から、それぞれ所望の電流増幅率βをもつトランジスタを第1および第2の電圧制御用トランジスタ112,132として選択できるため、これらトランジスタ112,132の電流増幅率の組み合わせにより、出力される定電圧Vregの値をよりきめ細やかに微調整することができる。
【0132】
すなわち、前記(4)式から明らかなように、電流増幅率βの小さなFET112,132を選択するほど、出力される定電圧Vregの絶対値は大きくなり、電流増幅率βの大きなFET112,132を選択するほど、出力される定電圧Vregの絶対値が小さくなるように、定電圧Vregの値を微調整することができる。
【0133】
ここにおいて、各FET112−1,112−2,112−3,132−1,132−2,132−3は、電流増幅率βに応じて、ゲート幅、ゲート長をそれぞれ変えて素子のレイアウトの設計を行い、この設計されたレイアウトに基づいて製造される。
【0134】
本実施例においては、電流増幅率β1とβ2の差、およびβ2とβ3の差がそれぞれ2〜5倍程度に設定されている。さらに、電流増幅率β11とβ12の差、β12とβ13の差も、2〜5倍程度に設定されている。
【0135】
また、前述したように、本実施例の回路は、電流増幅率βの異なる複数のトランジスタから任意のトランジスタを選択し、これを第1,第2の電圧制御用トランジスタ112,132として使用する構成を採用する。これより、閾値電圧の異なる複数のトランジスタを複数用意し、この中から所望のトランジスタを選択して第1,第2の電圧制御用トランジスタとして使用する回路に比べ、出力する定電圧Vregの値をよりきめ細かに微調整することができる。
【0136】
すなわち、FETの閾値電圧の調整は、半導体のプロセス上0.1ボルト程度が限界となる。
【0137】
これに対して、FETの電流増幅率βは、FETのゲート幅W、ゲート長LのW/Lのサイズを変更することによって、任意の値に設定することができる。
【0138】
従って、本実施例のように電流増幅率βの異なる複数のFETを用意しておき、この中から所望の電流増幅率βのFETを、電圧制御用FETとして用いることにより、出力される定電圧Vregの値をよりきめ細やかに微調整可能であることが理解される。
【0139】
なお、図9に示す実施例では、第1の電圧制御用FET112と、第2の電圧制御用FET132を、それぞれ電流増幅率の異なる複数のトランジスタの中から選択する場合を例にとり説明したが、本発明はこれに限らず、いずれか一方の電圧制御用FETのみを、電流増幅率と異なる複数のトランジスタの中から選択するような構成を採用してもよい。例えば、第1のFET群160または第2のFET群170のいずれか一方を用意し、FET112,132のいずれか一方のみを、電流増幅率の異なる複数のトランジスタの中から選択使用可能に形成してもよい。
【0140】
また、本実施例の定電圧発生回路100において、第1および第2の定電流源150−1,150−2は、それぞれ対応する電圧制御用FET112,132の飽和動作領域の範囲の値に、供給する定電流IDの値を設定するように構成されている。これにより、前記第1実施例の作用効果に加え、前述した第2実施例の作用効果をも奏することができるため、前記第1実施例よりさらにきめ細やかに出力電圧Vregの値を調整し、回路全体の低消費電力化を図ることが可能となる。
【0141】
また、この第2実施例の特徴的な構成は、図8に示す定電圧発生回路100にも適用することができる。この場合には、前記FET112を、第1のFET群160の中から選択使用するように構成し、前記FET114を、前記第2のFET群170の中から選択使用する構成を採用すればよい。このようにすることによっても、出力される定電圧Vregの値を、第2実施例と同様にきめ細やかに微調整することができる。
【0142】
[選択信号SELの生成方法]
次に、選択信号の生成方法について詳細に説明する。
【0143】
図11には、前記選択信号SELを生成するための回路が示されており、この回路は、前記各選択信号SEL1,2…SEL13に対応して複数設けられている。ここで、説明を簡単にするために、3つの選択信号SEL1〜3に対応して設けられた3個の単位回路U1,U2,U3のみを図示し、その他の説明は省略する。なお、これら各単位回路Uの構成は基本的には同一であるので、同一符号を付しその説明は省略する。
【0144】
この単位回路Uは、対応するパッドPを有し、このパッドPはフューズfを介して接地電位Vdd側に接続されると共に、抵抗R10を介して電源電位Vss側に接続されている。そして、パッドPの電位は、信号反転増幅器308,309を介して、選択信号SELとして対応するFETのゲートへ入力される。
【0145】
このとき、対応するFET164を、オン状態に制御するための選択信号を出力するためには、パッドPに高電圧の電位を印加しフューズfを切断し、その後この電位をオフする。これにより、パッドPの電位は、接地電位Vddから、Vss側に切り替わるため、この単位回路Uからは出力される選択信号は対応するFET164をオン制御するように機能することになる。
【0146】
図12(A)には、発振回路10の信号反転増幅器14に流れるショート電流Isの測定方法が示され、図12(B)には、発振停止電圧Vstoとショート電流Isとの関係が示されている。
【0147】
図12(A)に示すように、FET16,18の共通ゲートと共通ドレインをショートさせた状態で、信号反転増幅器14に、接地電位Vddと定電圧発生回路100から出力される電圧Vregを印加する。そして、このとき流れるVdd−Vreg間の電流を、ショート電流Isとして測定する。
【0148】
定電圧発生回路100から出力される定電圧Vregの絶対値の値は、発振停止電圧Vstoの絶対値より大きく、かつできるだけ小さな値と設定する必要があることは前述した。
【0149】
従って、異なるトランジスタ112および132の組み合わせを順次選択し、このときに流れるショート電流Isと、ライン200から出力される電圧の値を測定する。そして、信号反転増幅器14を構成するFET16の電圧がオン電流以上の値となるようなショート電流Isが供給でき、しかもこの状態で発振回路10が発振状態を維持することが確認された電圧Vregを検出する。そして、この定電圧Vregを供給するための、FET112および132の組み合わせを特定する。
【0150】
そして、このような特定が終了した後、対応する単位回路Uのフューズfを切断し、特定されたFETが前記第1の電圧制御用トランジスタ112,第2の電圧制御用トランジスタ132として使用されるように設定すればよい。
【0151】
このようなショート電流Isの測定や、使用するFET112,132の選択は、ICの検査工程において、水晶振動子12が基板へ装着される前に行われる。そして、前述した処理は、図示しないテスト回路および前記テスト回路とを接続されたテスト用パッドPを使用して行われる。
【0152】
このようなICのテストは、ウエハ状態で行う。それぞれのICチップ内に設けられたテスト回路およびテスト用パッドを使用して、それぞれのICチップについて前記ショート電流の測定および出力ライン200の電圧測定が行われる。このとき前記テストは、信号反転増幅器14および定電圧発生回路100のみをアクティブとし、他の素子は非アクティブ状態にして行われる。
【0153】
このようにすることにより、ICの製造段階において、発振回路10の発振停止電圧の絶対値以上の値で、かつ必要最低限の値をもつ定電圧Vregを出力する定電圧発生回路100を形成することができる。これにより、半導体装置の歩留まりを向上させることができる。
【0154】
(他の実施例)
なお、前記各実施例では、定電流源150−1,150−2から供給する定電流IDの値を、電圧制御用トランジスタとして機能するFET112,132の飽和動作領域の値に設定することにより、図7に示すように、定電圧Vregと発振停止電圧Vstoの温度特性を同一にする場合を例に取り説明した。
【0155】
本発明はこれに限らず、これ以外にも、次のような手法を採用してVregとVstoの温度特性を同一にすることもできる。
【0156】
例えば、図2に示す定電圧発生回路100を例に取ると、この定電圧発生回路100から出力される定電圧Vregの値は、前記(4)式で与えられる。
【0157】
さらに、前記(8)、(10)式から、この定電圧Vregの値は、各電圧制御用FET112,132の各ゲート・ソース間電圧VGSの値の和として与えられることが理解される。
【0158】
従って、図7に示す、動作保証温度範囲内における、これら各FET112,132のゲート・ソース間電圧の変動量△VGSの和(ΔVreg)が、この動作保証温度範囲内における発振停止電圧Vstoの変動量△Vstoと一致するように設定すれば、VregとVstoの温度係数を図7に示すように同一とすることが可能となる。
【0159】
図13には、前記各電圧制御用FET112,132の、ゲート・ソース間電圧VGSと、供給される定電流IDとの関係が示されている。各定電流源150−1,150−2から供給される定電流IDは、前述した動作保証温度範囲内において△Iだけ変動する。従って、この△Iの変動量に対応して、各FET112,132のゲート・ソース間電圧の変動量△VGSの値を、前記発振停止電圧の変動量△Vstoの1/2となるように設定すればよい。すなわち、動作保証温度範囲内における各FET112,132のゲート・ソース間電圧の変動量△VGSの値が、次式を満足するように定電流IDの値を設定することにより、定電圧発生回路100からは発振停止電圧と同一の温度特性をもつ定電圧Vregを出力することが可能となる。
【0160】
△VGS=(1/2)|△Vsto| …(11)
【0161】
<適用例>
図14には、本発明が適用された腕時計に用いられる電子回路の一例が示されている。
【0162】
この腕時計は、図示しない発電機構を内蔵している。使用者が腕時計を装着し腕を動かすと、発電機構の回転錘が回転し、そのときの運動エネルギーにより発電ロータが高速回転され、発電ステータ側に設けられた発電コイル400から交流電圧が出力される。
【0163】
この交流電圧が、ダイオード404で整流され、二次電池402を充電する。この二次電池402は、昇圧回路406および補助コンデンサ408と共に主電源を構成する。
【0164】
二次電池402の電圧が低くて時計の駆動電圧に満たないときには、昇圧回路406により二次電池402の電圧を時計駆動可能な高電圧に変換し、補助コンデンサ408に蓄電する。そして、この補助コンデンサ408の電圧を電源として時計回路440が動作する。
【0165】
この時計回路440は、前記いずれかの実施例に記載された発振回路10および定電圧発生回路100を含む半導体装置として構成されている。この半導体装置は、端子を介して接続された水晶振動子12を用いて、予め設定された発振周波数、ここで32768Hzの周波数の発振出力を生成し、この発振出力を分周し、一秒ごとに極性の異なる駆動パルスを出力する。この駆動パルスは、時計回路440に接続されたステップモータの駆動コイル422へ入力される。これにより、図示しないステップモータは、駆動パルスが通電されるごとにロータを回転駆動し、図示しない時計の秒針、分針、時針を駆動し、時刻を表示板にアナログ表示することになる。
【0166】
ここで、本実施例の時計回路440は、前述した主電源から供給される電圧Vssにより駆動される電源電圧回路部420と、この電源電圧からこの値よりも低い所定の一定電圧Vregを生成する定電圧発生回路100と、この定電圧Vregにより駆動される定電圧動作回路部410とを含んで構成される
図15には、前記時計回路440のより詳細な機能ブロック図が示されている。
【0167】
定電圧動作回路部410は、外部接続された水晶振動子12を一部に含んで構成された水晶発振回路10と、波形整形回路409と、高周波分周回路411とを含んで構成される。
【0168】
前記電源電圧回路部420は、レベルシフタ412と、中低周波分周回路414と、その他の回路416とを含んで構成される。なお、本実施例の時計回路440では、前記電源電圧回路部420と、定電圧発生回路100とは、主電源から供給される電圧により駆動される電源電圧動作回路部430を構成している。
【0169】
前記水晶発振回路10は、水晶振動子12を用いて基準周波数fs=32768Hzの正弦波出力を波形整形ゲート409に出力する。
【0170】
前記波形整形回路409は、この正弦波出力を矩形波に整形した後、高周波分周回路411へ出力する。
【0171】
前記高周波分周回路411は、基準周波数32768Hzを2048Hzまで分周し、その分周出力をレベルシフタ412を介して中低周波数分周回路414へ出力する。
【0172】
前記中低周波数分周回路414は、2048Hzまで分周された信号を、さらに1Hzまで分周し、その他の回路416へ入力する。
【0173】
前記その他の回路416は、1Hzの分周信号に同期してコイルを通電駆動するドライバ回路を含んで構成され、この1Hzの分周信号に同期して時計用駆動用ステップモータを駆動する。
【0174】
本実施例の時計回路において、主電源から供給される電源電圧Vssにより回路全体が駆動される電源電圧動作回路部430以外に、これにより低い定電圧Vregで駆動される定電圧動作回路部410を設けたのは以下の理由による。
【0175】
すなわち、このような時計回路では、長期間安定した動作を確保するために、その消費電力を低減することが必要となる。
【0176】
通常、回路の消費電力は、信号の周波数、回路の容量に比例し、さらに供給電源電圧の二乗に比例して増大する。
【0177】
ここで、時計回路に着目してみると、回路全体の消費電力を低減するためには、回路各部に供給する電源電圧を低い値、例えばVregに設定すれば良い。この定電圧発生回路100は、前記水晶発振回路10の発振動作を補償する範囲で最小の定電圧Vregを形成することができる。
【0178】
次に、信号周波数に着目してみると、時計回路は、信号周波数が高い水晶発振回路10、波形整形回路409、高周波分周回路411と、それ以外の回路420とに大別することができる。この信号の周波数は、前述したように回路の消費電力と比例関係がある。
【0179】
そこで、本実施例の定電圧発生回路100は、主電源から供給される電源電圧Vssから、それより低い定電圧Vregを生成し、これを高周波信号を扱う回路部410へ供給している。このように、前記高周波信号を扱う回路410に対して供給する駆動電圧を低くすることにより、定電圧発生回路100の負担をさほど増加させることなく、時計回路全体の消費電力を効果的に低減することができる。
【0180】
以上述べたように、本実施例の時計回路およびこれを含む電子回路は、前記実施例のいずれかに記載の水晶発振回路10、それと接続された定電圧発生回路100を含んでいる。このために、製造ばらつきによらず、信号反転増幅器の動作マージンを確保しつつ、最小の定電圧を前記水晶発振回路10に供給することができるため、電子回路、時計回路の低消費電力化が図れる。従って、前述したような、携帯用の電子機器または時計において、発振動作を安定して行なうことができるだけでなく、使用電池の長寿命化を図ることができ、携帯用電子機器または時計の使い勝手を向上することができる。
【0181】
また、前記した理由により、銀電池が内蔵された時計または携帯用電子機器においても、製造上のMOSFETのばらつきが生じても、動作マージンが確保できる。更に、リチウムイオンにより構成される2次電池を電源とした充電式腕時計においても、製造上のMOSFETのばらつきが生じても、動作マージンが確保できると共に、充電時間を短縮化することが可能となる。
【図面の簡単な説明】
【図1】本発明が適用された電子回路の好適な第1実施例の説明図である。
【図2】前記第1実施例の電子回路に用いられる定電圧発生回路の一例を示す説明図である。
【図3】前記定電圧発生回路に用いられる定電流源の一例を示す説明図である。
【図4】定電流源から供給される定電流IDの温度特性の説明図である。
【図5】定電流供給源から供給される定電流と、電圧制御用トランジスタとして用いられるFETのゲート・ソース間電圧VGSとの関係を示す説明図である。
【図6】定電圧発生回路から出力される定電圧Vregと、発振回路の発振停止電圧Vstoの温度特性の説明図である。
【図7】定電圧Vregと発振停止電圧Vstoの温度特性が同一である場合の説明図である。
【図8】図1に示す電子回路に用いられる定電圧発生回路の変形例の説明図である。
【図9】本発明の電子回路に用いられる定電圧発生回路の好適な第2実施例の説明図である。
【図10】第2実施例の定電圧発生回路に用いられる電圧制御用トランジスタのゲート・ソース間電圧VGSと、定電流IDとの関係を、各FETの電流増幅率をパラメータとして表した特性図である。
【図11】異なる電流増幅率のFETを選択するための信号を出力するための回路の説明図である。
【図12】図12(A)は、発振回路のショート電流Isを測定する場合の説明図であり、図12(B)は測定されたショート電流Isと発振停止電圧との関係を示す説明図である。
【図13】第1実施例とは別の手法を用いて定電圧Vregと発振停止電圧の温度特性を同一に設定するための手法を示す説明図である。
【図14】図14は、本実施例の電子回路が用いられた時計回路の説明図である。
【図15】図15は、時計回路の詳細な機能ブロック図である。
【符号の説明】
10 水晶発振回路
100 定電圧発生回路
400 発電コイル
402 二次電池
404 ダイオード
406 昇圧回路
408 補助コンデンサ
411 高周波分周回路
412 レベルシフタ
414 中低周波分周回路
416 その他の回路
420 電源電圧回路部
430 電源電圧動作回路部

Claims (15)

  1. 所定の定電圧を生成する定電圧発生回路と、
    前記定電圧発生回路から供給される定電圧により発振駆動される水晶発振回路を含む電子回路において、
    前記定電圧発生回路は、
    基準電圧を生成する第1の電圧生成回路と、
    前記定電圧と所定の相関をもつ参照電圧及び前記定電圧を生成する第2の電圧生成回路とを含み、
    前記第2の電圧生成回路は、
    前記基準電圧と前記参照電圧とを差動増幅する差動増幅器と、
    定電流を供給する第2の定電流源と、
    前記定電流が供給される第2の電圧制御用トランジスタを用いた回路と、
    前記第2の電圧制御用トランジスタを用いた回路と直列接続され前記定電流が供給されるとともに、
    前記差動増幅器の出力により抵抗値が制御される出力用トランジスタとを含み、
    所定の電位を基準として、前記第2の電圧制御用トランジスタを用いた回路の一端側から前記参照電圧を出力し、他端側から前記定電圧を出力するように形成され、
    前記定電流は、前記第2の電圧制御用トランジスタの飽和動作領域の値に設定され、
    かつ前記第2の電圧制御用トランジスタの動作保証温度範囲において、前記第2の電圧制御用トランジスタの両端電位である前記参照電圧と前記定電圧間の電位差変動量が、
    動作保証温度範囲における前記水晶発振回路の発振停止電圧の変動量とほぼ同じとなるように、その電流値が設定されていることを特徴とする電子回路。
  2. 所定の定電圧を生成する定電圧発生回路と、
    前記定電圧発生回路から供給される定電圧により発振駆動される水晶発振回路を含む電子回路において、
    前記定電圧発生回路は、
    基準電圧を生成する第1の電圧生成回路と、
    前記定電圧と所定の相関をもつ参照電圧及び前記定電圧を生成する第2の電圧生成回路とを含み、
    前記第2の電圧生成回路は、
    前記基準電圧と前記参照電圧とを差動増幅する差動増幅器と、
    定電流を供給する第2の定電流源と、
    前記定電流が供給される第2の電圧制御用トランジスタを用いた回路と、
    前記第2の電圧制御用トランジスタを用いた回路と直列接続され前記定電流が供給されるとともに、
    前記差動増幅器の出力により抵抗値が制御される出力用トランジスタとを含み、
    所定の電位を基準として、前記第2の電圧制御用トランジスタを用いた回路の一端側から前記参照電圧を出力し、他端側から前記定電圧を出力するように形成され、
    前記定電流は、前記第2の電圧制御用トランジスタの飽和動作領域の値に設定され、
    かつ前記第2の電圧制御用トランジスタの動作保証温度範囲において、前記第2の電圧制御用トランジスタの一端電位である前記参照電圧の変動量と、
    前記第2の電圧制御用トランジスタの両端電位である前記参照電圧と前記定電圧間の電位差変動量の合計が、
    動作保証温度範囲における前記水晶発振回路の発振停止電圧の変動量とほぼ同じとなるように、その電流値が設定されていることを特徴とする電子回路。
  3. 所定の定電圧を生成する定電圧発生回路と、
    前記定電圧発生回路から供給される定電圧により発振駆動される水晶発振回路を含む電子回路において、
    前記定電圧発生回路は、
    基準電圧を生成する第1の電圧生成回路と、
    前記基準電圧と所定の相関をもつ前記定電圧を生成する第2の電圧生成回路とを含み、
    前記第1の電圧生成回路は、
    第1の定電流を供給する第1の定電流源と、
    前記第1の定電流が通電され、所定の電位を基準とした前記基準電圧を出力する第1の電圧制御用トランジスタを用いた回路とを含み、
    前記第2の電圧生成回路は、
    前記基準電圧と参照電圧とを差動増幅する差動増幅器と、
    第2の定電流を供給する第2の定電流源と、
    前記第2の定電流が供給される第2の電圧制御用トランジスタを用いた回路と、
    前記第2の電圧制御用トランジスタを用いた回路と直列接続され前記第2の定電流が供給されるとともに、前記差動増幅器の出力により抵抗値が制御される出力用トランジスタとを含み、
    所定の電位を基準として、前記第2の電圧制御用トランジスタを用いた回路の一端側から前記参照電圧を出力し、他端側から前記定電圧を出力するように形成され、
    前記第1の定電流は、
    前記第1の電圧制御用トランジスタの飽和動作領域の値に設定され、
    前記第2の定電流は、
    前記第2の電圧制御用トランジスタの飽和動作領域の値に設定され、
    前記第1の電圧制御用トランジスタの動作保証温度範囲における前記基準電圧の変動量と、
    前記第2の電圧制御用トランジスタの動作保証温度範囲において、前記第2の電圧制御用トランジスタの両端電位である前記参照電圧と前記定電圧間の電位差変動量の合計が、
    動作保証温度範囲における前記水晶発振回路の発振停止電圧の変動量とほぼ同じとなるように、前記第1及び第2の定電流の値が設定されていることを特徴とする電子回路。
  4. 所定の定電圧を生成する定電圧発生回路と、
    前記定電圧発生回路から供給される定電圧により発振駆動される水晶発振回路を含む電子回路において、
    前記定電圧発生回路は、
    基準電圧を生成する第1の電圧生成回路と、
    前記定電圧と所定の相関をもつ参照電圧及び前記定電圧を生成する第2の電圧生成回路とを含み、
    前記第2の電圧生成回路は、
    前記基準電圧と前記参照電圧とを差動増幅する差動増幅器と、
    定電流を供給する第2の定電流源と、
    前記定電流が供給される第2の電圧制御用トランジスタを用いた回路と、
    前記第2の電圧制御用トランジスタを用いた回路と直列接続され前記定電流が供給されるとともに、
    前記差動増幅器の出力により抵抗値が制御される出力用トランジスタとを含み、
    所定の電位を基準として、前記第2の電圧制御用トランジスタを用いた回路の一端側から前記参照電圧を出力し、他端側から前記定電圧を出力するように形成され、
    前記第2の電圧制御用トランジスタは、
    電流増幅率が夫々異なる複数のトランジスタの中から、前記第2の電圧制御用トランジスタの動作保証温度範囲において、前記第2の電圧制御用トランジスタの両端電位である前記参照電圧と前記定電圧間の電位差変動量が、
    動作保証温度範囲における前記水晶発振回路の発振停止電圧の変動量とほぼ同じとなるトランジスタが、前記第2の電圧制御用トランジスタとして選択使用されることを特徴とする電子回路。
  5. 所定の定電圧を生成する定電圧発生回路と、
    前記定電圧発生回路から供給される定電圧により発振駆動される水晶発振回路を含む電子回路において、
    前記定電圧発生回路は、
    基準電圧を生成する第1の電圧生成回路と、
    前記定電圧と所定の相関をもつ参照電圧及び前記定電圧を生成する第2の電圧生成回路とを含み、
    前記第2の電圧生成回路は、
    前記基準電圧と前記参照電圧とを差動増幅する差動増幅器と、
    定電流を供給する第2の定電流源と、
    前記定電流が供給される第2の電圧制御用トランジスタを用いた回路と、
    前記第2の電圧制御用トランジスタを用いた回路と直列接続され前記定電流が供給されるとともに、
    前記差動増幅器の出力により抵抗値が制御される出力用トランジスタとを含み、
    所定の電位を基準として、前記第2の電圧制御用トランジスタを用いた回路の一端側から前記参照電圧を出力し、他端側から前記定電圧を出力するように形成され、
    前記第2の電圧制御用トランジスタは、
    電流増幅率が夫々異なる複数のトランジスタの中から、前記第2の電圧制御用トランジスタの動作保証温度範囲において、前記第2の電圧制御用トランジスタの一端電位である前記参照電圧の変動量と、
    前記第2の電圧制御用トランジスタの両端電位である前記電圧と前記定電圧間の電位差変動量の合計が、
    動作保証温度範囲における前記水晶発振回路の発振停止電圧の変動量とほぼ同じとなるトランジスタが、前記第2の電圧制御用トランジスタとして選択使用されることを特徴とする電子回路。
  6. 所定の定電圧を生成する定電圧発生回路と、
    前記定電圧発生回路から供給される定電圧により発振駆動される水晶発振回路を含む電子回路において、
    前記定電圧発生回路は、
    基準電圧を生成する第1の電圧生成回路と、
    前記基準電圧と所定の相関をもつ前記定電圧を生成する第2の電圧生成回路とを含み、
    前記第1の電圧生成回路は、
    定電流を供給する第1の定電流源と、
    前記第1の定電流が通電され、所定の電位を基準とした前記基準電圧を出力する第1の電圧制御用トランジスタを用いた回路とを含み、
    前記第2の電圧生成回路は、
    前記基準電圧と参照電圧とを差動増幅する差動増幅器と、
    定電流を供給する第2の定電流源と、
    前記第2の定電流が供給される第2の電圧制御用トランジスタを用いた回路と、
    前記第2の電圧制御用トランジスタを用いた回路と直列接続され前記第2の定電流が供給されるとともに、前記差動増幅器の出力により抵抗値が制御される出力用トランジスタとを含み、
    所定の電位を基準として、前記第2の電圧制御用トランジスタを用いた回路の一端側から前記参照電圧を出力し、他端側から前記定電圧を出力するように形成され、
    前記第1の電圧制御用トランジスタは、
    電流増幅率が夫々異なる第1の複数のトランジスタの中から選択し、
    また前記第2の電圧制御用トランジスタは、
    電流増幅率が夫々異なる第2の複数のトランジスタの中から選択し、
    選択した前記第1の電圧制御用トランジスタの動作保証温度範囲における前記基準電圧の変動量と選択した前記第2の電圧制御用トランジスタの動作保証温度範囲において、前記第2の電圧制御用トランジスタの両端電位である前記参照電圧と前記定電圧間の電位差変動量の合計が、
    動作保証温度範囲における前記水晶発振回路の発振停止電圧の変動量とほぼ同じとなる ことを特徴とする電子回路。
  7. 請求項3において、
    前記第1の電圧制御用トランジスタは、
    電流増幅率が夫々異なる複数のトランジスタの中から、いずれか1つのトランジスタを前記第1の電圧制御用トランジスタとして選択使用するように形成されることを特徴とする電子回路。
  8. 請求項1〜3、請求項3に従属する請求項7のいずれかにおいて、
    前記第2の電圧制御用トランジスタは、
    電流増幅率が夫々異なる複数のトランジスタの中から、いずれか1つのトランジスタを前記第2の電圧制御用トランジスタとして選択使用するように形成されることを特徴とする電子回路。
  9. 請求項3、6、請求項3に従属する請求項7、請求項3に従属する請求項8、請求項3に従属する請求項7に従属する請求項8のいずれかにおいて、
    前記第1の定電流源及び前記第2の定電流源は、
    同一の製造条件で形成されたものであることを特徴とする電子回路。
  10. 請求項3、6、請求項3に従属する請求項7、請求項3に従属する請求項8、請求項3に従属する請求項7に従属する請求項8、請求項9のいずれかにおいて、
    前記基準電位の変動量と、前記参照電圧と前記定電圧間の電位差変動量の各々が、発振停止電圧の変動量の1/2となることを特徴とする電子回路。
  11. 請求項2、5のいずれかにおいて、
    前記参照電圧の変動量と、前記参照電圧と前記定電圧間の電位差変動量の各々が、発振停止電圧の変動量の1/2となることを特徴とする電子回路。
  12. 請求項1〜11のいずれかにおいて、
    前記定電圧の絶対値は、この定電圧が供給される発振回路の発振停止電圧の絶対値よりも大きいことを特徴とする電子回路。
  13. 請求項1〜12のいずれかの電子回路を含むことを特徴とする半導体装置。
  14. 請求項1〜12のいずれかの電子回路又は請求項13の半導体装置を含み、前記発振回路の発振出力から動作基準信号を生成することを特徴とする電子機器。
  15. 請求項1〜12のいずれかの電子回路又は請求項13の半導体装置を含み、前記発振回路の発振出力から時計基準信号を形成することを特徴とする時計。
JP2001035697A 1997-03-04 2001-02-13 電子回路、半導体装置、電子機器および時計 Expired - Fee Related JP4164622B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001035697A JP4164622B2 (ja) 1997-03-04 2001-02-13 電子回路、半導体装置、電子機器および時計

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6550297 1997-03-04
JP9-65502 1997-03-04
JP2001035697A JP4164622B2 (ja) 1997-03-04 2001-02-13 電子回路、半導体装置、電子機器および時計

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP53835898A Division JP3416949B2 (ja) 1997-03-04 1998-03-03 電子回路、半導体装置、電子機器および時計

Publications (3)

Publication Number Publication Date
JP2001312320A JP2001312320A (ja) 2001-11-09
JP2001312320A5 JP2001312320A5 (ja) 2005-09-02
JP4164622B2 true JP4164622B2 (ja) 2008-10-15

Family

ID=26406649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001035697A Expired - Fee Related JP4164622B2 (ja) 1997-03-04 2001-02-13 電子回路、半導体装置、電子機器および時計

Country Status (1)

Country Link
JP (1) JP4164622B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4524688B2 (ja) * 2007-01-23 2010-08-18 エルピーダメモリ株式会社 基準電圧発生回路及び半導体集積回路装置
JP5068154B2 (ja) * 2007-12-12 2012-11-07 株式会社リコー 電圧源回路及び電圧源回路を使用した温度検出回路
JP6416650B2 (ja) 2015-02-06 2018-10-31 エイブリック株式会社 定電圧回路及び発振装置

Also Published As

Publication number Publication date
JP2001312320A (ja) 2001-11-09

Similar Documents

Publication Publication Date Title
JP3416949B2 (ja) 電子回路、半導体装置、電子機器および時計
US7042299B2 (en) Crystal oscillation circuit
EP0905877B1 (en) Oscillation circuit, electronic circuit, semiconductor device, electronic equipment and clock
JP3738280B2 (ja) 内部電源電圧生成回路
US11012067B2 (en) Compensation device for compensating PVT variations of an analog and/or digital circuit
JP6658112B2 (ja) 温度補償機能付き時計
GB2097969A (en) Electronic timepiece
US20020070792A1 (en) Electronic circuit, semiconductor device, electronic equipment, and timepiece
KR100753666B1 (ko) 초저전력 rc 발진기
JPS6242283B2 (ja)
JP4164622B2 (ja) 電子回路、半導体装置、電子機器および時計
US4112670A (en) Electronic timepiece
US6727769B2 (en) Crystal oscillator circuit using CMOSFETs
GB2084421A (en) Oscillator Circuit With Low Current Consumption
JP3365292B2 (ja) 発振回路、電子回路、半導体装置、電子機器および時計
US10868495B2 (en) Auto-compensation for control voltage range of VCO at low power supply
JP2001313529A (ja) 発振回路、定電圧発生回路、半導体装置、及びこれらを具備した携帯用電子機器および時計
JP3539110B2 (ja) 発振回路、半導体装置、及びこれらを具備した携帯用電子機器および時計
JP6536449B2 (ja) 定電流回路、温度センサーおよび温度補償機能付き時計
US4433920A (en) Electronic timepiece having improved primary frequency divider response characteristics
JP3644247B2 (ja) 定電圧制御回路、半導体装置、及びこれらを具備した携帯用電子機器
KR20060099428A (ko) 기준 전압 발생 회로, 및 기준 전류 발생 회로
JP2001298326A (ja) 発振回路、電子回路、半導体装置、電子機器および時計
JP2000349621A (ja) 発振回路、半導体装置および電子機器
JP2006084382A (ja) 電子時計

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050302

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050302

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080702

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080715

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees