JP4163364B2 - Engine lead screw tensioner - Google Patents

Engine lead screw tensioner Download PDF

Info

Publication number
JP4163364B2
JP4163364B2 JP2000101274A JP2000101274A JP4163364B2 JP 4163364 B2 JP4163364 B2 JP 4163364B2 JP 2000101274 A JP2000101274 A JP 2000101274A JP 2000101274 A JP2000101274 A JP 2000101274A JP 4163364 B2 JP4163364 B2 JP 4163364B2
Authority
JP
Japan
Prior art keywords
pressing member
casing
slipper
tensioner
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000101274A
Other languages
Japanese (ja)
Other versions
JP2001280435A (en
Inventor
義博 手塚
浩隆 枦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2000101274A priority Critical patent/JP4163364B2/en
Publication of JP2001280435A publication Critical patent/JP2001280435A/en
Application granted granted Critical
Publication of JP4163364B2 publication Critical patent/JP4163364B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/024Belt drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • F16H2007/0802Actuators for final output members
    • F16H2007/081Torsion springs

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Devices For Conveying Motion By Means Of Endless Flexible Members (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、エンジン、たとえば自動二輪車用エンジンの調時伝動装置に用いられるテンショナーに関するものである。
【0002】
【従来の技術】
従来、自動二輪車用等のエンジンでは、クランク軸により動弁カム軸を調時駆動するための調時伝動装置の伝動チエンに所定の張力を付与するためのテンショナーとして、送りネジ式のものが、屡々採用されており、かかる送りネジ式テンショナーは、たとえば、特開平10−110795号公報に開示されるものが既によく知られている。
【0003】
【発明が解決しようとする課題】
ところで、かかる、送りねじ式テンショナーでは、図10に示すように、エンジンの運転により調時伝動装置が作動したとき、伝動チエンCの張力変動により、該伝動チエンCの緩み側に添設されるスリッパーSは、伝動チエンCの変動方向すなわち図10の矢印A方向に撓み振動し、これにより、テンショナーTの、スリッパーSへの押圧点Pが、スリッパーSの長手方向すなわち図10の矢印B方向に変位し、これにより、テンショナーTの押圧部材は、その径方向に揺すられて、テンショナーTの押圧部材とこれを支持する軸受部材間に存するクリアランスにより、それらが衝突し合い、これに起因して騒音を発生するという問題がある。
【0004】
そこで、本発明は、前記テンショナーに改良を加えて前記騒音の発生を可及的に低減できるようにした、新規なエンジン用送りねじ式テンショナーを提供することを目的とするものである。
【0005】
【課題を解決するための手段】
前記目的達成のため、本請求項1記載の発明によれば、エンジンブロックに固定されるケーシングに回転止め部材を嵌合し、この回転止め部材に押圧部材を、その軸線まわりには回転しないが、その軸線方向に移動できるように支持し、この押圧部材に、前記ケーシングに回転自在にスラスト支持される回転軸を螺合し、前記ケーシングと回転軸間には、前記押圧部材をケーシングから突出する方向に付勢するばねを設け、押圧部材の先端を、エンジンブロックに軸支されるスリッパーを介して調時伝動装置の伝動帯に当接し、その伝動帯に張力を付与するようにした、送りねじ式テンショナーにおいて、前記押圧部材は、ケーシング内に設けられる円筒体と、その突出端にスプリングピンをもって結合されるキャップとからなり、前記スプリングピンは前記スリッパーの長手方向に対して略直交方向に設置され、前記キャップは、前記スリッパーに当接する先端を有すると共にこの先端とは反対側の面の周縁に前記円筒体の端面と向かい合う段部を有し、前記押圧部材と回転止め部材間の相対回転止め部に形成される平坦面および円周面のうちの平坦面を前記スリッパーの長手方向に沿わせる一方、前記円周面(26b,26b,30b,30b)間および前記ケーシング(15)と前記回転止め部材(29)との嵌合面間に、0.02mm以上0.15mm未満の第1,第2の間隙(Ca,Cb)をそれぞれ設け、前記回転止め部材は、前記ケーシングとの嵌合部に、前記平坦面と円周面とにそれぞれ対向して半径方向外方に突出する各一対の係合爪を有し、前記平坦面に対向する係合爪の幅を前記円周面に対向する係合爪の幅よりも大きく形成したことを特徴としており、かかる特徴によれば、押圧部材の揺すり振動を、該押圧部材と回転止め部材間の、旋盤等による高精度な加工が可能な円周面で受けることができ、テンショナーの押圧部材の揺すり振動を抑制して、騒音の発生を可及的に低減することができる。
【0006】
また、前記目的達成のため、本請求項2記載の発明によれば、エンジンブロックに固定されるケーシングに、回転止め部材を介して押圧部材を、その軸線まわりには回転しないが、その軸線方向に移動できるように支持し、この押圧部材に、前記ケーシングに回転自在にスラスト支持される回転軸を螺合し、前記ケーシングと回転軸間には、前記押圧部材をケーシングから突出する方向に付勢するばねを設け、押圧部材の先端を、エンジンブロックに軸支されるスリッパーを介して調時伝動装置の伝動帯に当接し、その伝動帯に張力を付与するようにした、送りねじ式テンショナーにおいて、前記押圧部材の先端には栓部材が固着されると共に、前記スリッパーに当接する円弧状のトップ部を有するキャップが設けられ、前記キャップはその底面中央に形成した膨出部を前記栓部材に当接し、該膨出部を支点として前記スリッパーの長手方向に回動可能であることを特徴としており、かかる特徴によれば、伝動帯の張力変動に起因するスリッパーの撓み振動で、テンショナーの押圧部材が、スリッパーの長手方向に沿う揺すり力を受けたときには、キャップが回動して、その揺すり力を吸収することができ、これにより、前記押圧部材の、スリッパーの変位に起因する揺れを抑制し、押圧部材の、他の部品との衝突による騒音の発生を可及的に低減することができる。
【0007】
【発明の実施の形態】
以下、本発明の実施の形態を、添付図面に示した本発明の実施例に基づいて説明する。
【0008】
まず、図1〜5を参照して本発明の第1実施例について説明する。
【0009】
図1は、本発明テンショナーを備えたエンジンの調時伝動装置の側面図、図2は、図3の2−2線に沿うテンショナーの縦断側面図、図3は、図2の3−3線に沿う断面図、図4は、図2の4−4線に沿う端面図、図5は、図2の一部拡大図である。
【0010】
図1において、全体を符号Eで示される、自動二輪車用の走行用エンジンEは、DOHC型の四サイクルエンジンであり、そのエンジンブロックBeは、シリンダブロック1と、そのデッキ面上に固定されるシリンダヘッド2と、その下面に固定されるオイルパン3とを備えており、シリンダヘッド2の上面は、ヘッドカバー4により被覆される。シリンダブロック1の下部には、燃料の爆発燃焼により、往復駆動されるピストン(図示せず)を介して回転駆動されるクランク軸5が回転自在に支承され、また、シリンダヘッド2の上部には、動弁機構(図示せず)に連動される一対の動弁カム軸6,6が回転自在に支承される。
【0011】
前記クランク軸5と、一対の動弁カム軸6,6とは、調時伝動装置Tiを介して連動、連結されており、以下に、その調時伝動装置Tiの構造について説明するに、クランク軸5の一端には、駆動輪としての駆動スプロケット7が固定され、また、一対の動弁カム軸6,6の一端には、従動輪としての従動スプロケット8,8がそれぞれ固定されており、前記駆動および従動スプロケット7,8,8間には、伝動帯としての無端状伝動チエン9が巻き掛けられている。そして、クランク軸5の回転は、前記調時伝動装置Tiを介して1/2の変速比をもって一対の動弁カム軸6,6に調時伝動される。
【0012】
前記無端状伝動チエン9の緩み側において、駆動スプロケット7と、一方の従動スプロケット8との間で、伝動チエン9の外側をガイドする弓形のスリッパー10の一端が支持軸11を介してシリンダヘッド2に揺動可能に支承されている。
【0013】
シリンダブロック1には、本発明に従うテンショナーTが取り付けられている。このテンショナーTは、前記伝動チエン9の緩み側を、前記スリッパー10を介して押圧し、その伝動チエン9に一定の張力を付与するものである。
【0014】
つぎに、図2〜5を参照して、テンショナーTの構造を詳細に説明する。
【0015】
このテンショナーTは、基端部を一対の結合ボルト12をもってシリンダブロック1の側部に固定される円筒状のケーシング15と、このケーシング15に軸線まわりの回転を不能とするが軸線方向の移動を可能となるように支承される押圧部材16と、押圧部材16と同軸に配置されて該押圧部材16に螺挿される回転軸17と、ケーシング15に固定されて回転軸17をスラスト支持するスラスト軸受部材18と、回転軸17およびケーシング15間に設けられて回転軸17を回転付勢する捩りばね19とを備え、前記押圧部材16の先端は、前記スリッパー10の自由端部側の外面に当接される。
【0016】
前記ケーシング15は、径方向に張り出したフランジ15aを先端寄りの部分(図2の右端寄りの部分)に有して全体が円筒状に形成されており、該フランジ15aが一対の結合ボルト12によりシリンダブロック1に締結される。
【0017】
前記ケーシング15内には、その先端側(図2右端側)から順に、円筒状の収納孔21と、その収納孔21よりも小径の取付孔22と、その取付孔22よりも小径のねじ孔23とが同一軸線上に設けられる。そして前記ねじ孔23の端部には、栓部材24が螺合される。また図4に示すように、ねじ孔23の開口縁には、4つの係止凹部25が90°の間隔をあけて形成されている。
【0018】
押圧部材16は、前記収納孔21内に同軸に配置されると共に先端部がケーシング15の先端から突出される円筒体26と、その円筒体26の先端に前記スリッパー10の長手方向に対して略直交方向に設置されるスプリングピン20をもって結合されるキャップ27とからなり、そのキャップ27が、前記スリッパー10の自由端部外面に当接される。また、押圧部材16の後端側すなわち円筒体26の後端側の内周面には、雌ねじ28が刻設されている。
【0019】
押圧部材16の円筒体26は、ケーシング15に嵌合された回転止め部材29を介して軸方向には移動可能であるが、回転はできないように支持される。図3に示すように、前記回転止め部材29は、皿状に形成されて、後に述べる固定構造により、ケーシング15の先部に固定され、その中央部に開口した挿通孔30に、円筒体26の先部が、その軸方向に移動可能であるが、相対的な回転ができないように支持される。円筒体26は、その軸線に沿って平行に延びる一対の平坦面26a,26aと、円筒体26の外周面よりなる一対の円周面26b,26bとより、横断面小判状に形成され、一方、この円筒体26に挿通される、前記回転止め部材29の挿通孔30もその円筒体26の外面形状に対応して一対の平坦面30a,30aおよび円周面30b,30bを有して小判形状に形成される。そして、円筒体26は、回転止め部材29を介してケーシング15に、その軸線に沿う方向への移動を可能とするが、その軸線まわりの回転を阻止するように支持され、これにより、円筒体26と回転止め部材29との実質的な支持面は、後に述べるように、円周面26b,26bおよび30b,30bとなるので、それらの支持面の加工精度を高めることができ、図5に示すように、それらの支持面間の隙間Caを、0.02mm〜0.15mmとすることができる。
【0020】
しかして、後に述べるように、本発明に従うテンショナーTをエンジンEに組み付けるときは、図3に示すように、前記円筒体26および回転止め部材29の挿通孔30間の一対の平坦面26a,26aおよび30a,30aをスリッパー10の長手方向に沿わせ、それらの円周面26b,26bおよび30b,30bをスリッパーの長手方向を横切るように配置することにより、後に述べるように、テンショナーTの作動時における、スリッパー10の挙動により、押圧部材16がその軸線と直交方向に揺すられても、押圧部材16と回転止め部材29との衝突に起因する打音、振動音の発生が低減される。
【0021】
つぎに、回転止め部材29の、ケーシング15に対する固定構造について説明すると、図2,3,5に示すように、前記回転止め部材29の周縁部には、その周方向に180°に間隔をあけた一対の係合爪29a,29aと、それらの係合爪29a,29aとは周方向に90°の間隔をあけると共にその係合爪29a,29aよりも周方向に幅狭に形成された一対の他の係合爪29b,29bとが半径方向外方に突出するように連設され、一方、前記ケーシング15の先端部には、それらの係合爪29a,29a,29b,29bを係合させる4つの係合凹部31a,31a,31b,31bが形成されている。而して、各係合凹部31a,31a,31b,31bにそれぞれ係合された係合爪29a,29a,29b,29bには、ケーシング15に先端部外周に嵌着された止め輪32が共通に係合され、これにより、回転止め部材29がケーシング15の先端に着脱可能に固定されることになる。すなわち回転止め部材29に対して軸線まわりの相対回転が不能である押圧部材26は、その軸線まわりの回転を不能とするが、その軸線方向の移動を可能としてケーシング15に支承される。
【0022】
前記回転止め部材29の、各係合爪29a,29b間の4つの円周部29cは、ケーシング15の収納孔21先端部の内周面に嵌合され、それらの嵌合面は、円周面であることにより、それらの嵌合面の加工精度を高めることが可能となり、その嵌合面間の間隙Cbを狭めることができ、具体的には、図3,5に示すように、その間隙Cbを0.02mm〜0.15mmとすることができる。
【0023】
図2に示すように、前記回転軸17は、その先端側(図2右端側)から順に、押圧部材16の雌ねじ28に螺合する雄ネジ部17aと、この雄ねじ部17aよりも大径である連結部17bと、その連結部17bよりも大径にして円筒体26の外形と略同径に形成される嵌合部17cと、その嵌合部17cよりも大径である大径部17dと、その大径部17dよりも小径の支持部17eとが同軸上に一体に連設されてなるものであり、一方、ケーシング15における取付孔22には、前記スラスト軸受部材18が圧入、固定され、回転軸17の基端すなわち支持部17aの端面がそのスラスト軸受部材18でスラスト支持される。すなわち、スラスト軸受部材18は、取付孔22に圧入されると共に回転軸17の基端部すなわち支持部17aを回転自在に挿入させる円筒部18aと、その円筒部18aの一端から半径方向内方に延びる内鍔部18bとからなり、この内鍔部18bに支持部17eの端面が摺接、支持される。
【0024】
さらに、図2に示すように、ケーシング15内には、前記円筒体26を囲繞して中空円筒状のスペーサ33が設けられ、このスペーサ33は、その一端を、皿状の回転止め部材29の内面に当接させる一方、その他端部を、回転軸17の嵌合部17cに嵌合させ、その他端を、回転軸17における嵌合部17cおよび大径部17d間の段部に当接させる。したがって、押圧部材16の先端すなわちキャップ27がスリッパー10に接触していない状態で、回転軸17および押圧部材16が前進移動することは、スペーサ33により阻止される。
【0025】
回転軸17における支持部17eには、その支持部17eの端面に開口する係止スリット34が設けられており、回転軸17における支持部17eの一部および大径部17dと、スペーサ33の大部分を囲繞する捩りばね19の一端が、その係止スリット34に係合される。また、ケーシング15の先端側には、4つの係止凹部31a,31a,31b,31bの一つ、たとえば係止凹部31aに連なって軸方向に延びる係止溝35が設けられると共に、回転止め部材29の係合爪29aとの間で係止溝35に通じる孔を形成する凹部36が設けられており、捩りばね19の他端は、前記孔を通って係止溝35に係合される。
【0026】
そして、この捩りばね19のばね力により回転軸17が回転付勢されるが、その回転付勢方向は、回転軸17の雄ねじ部17aが、押圧部材16の雌ねじ28に螺合していることに伴って押圧部材16を前進させる方向、すなわち、前記キャップ27をスリッパー10に押し付ける方向に設定されている。
【0027】
ところで、押圧部材16の先端がスリッパー10に接触していない状態では、回転軸17の係止スリット34には、板状のストッパ37の一端が係合されており、そのストッパ37の他端は、ねじ孔23の後端開口縁に設けられた4つの係止凹部25…(図4)のうちの2つに係合される。これにより、捩りばね19の付勢力によっても回転軸17は回転することなく、押圧部材16が前進することもない。
【0028】
つぎに、この第1実施例の作用について説明する。
【0029】
前述のように構成されるテンショナーTを、エンジンに組み付けるには、図1に示すように、そのテンショナーTのケーシング15を、シリンダブロック1の所定の位置に結合ボルト12により固定すると共にその押圧部材16の前端のキャップ27を、伝動チエン9の緩み側の外面に沿って設けられるスリッパー10の自由端側の外側に当接配置させる。この場合、図3に示すように、押圧部材16の先端部の、回転止め部材29による挿通支持部において、それらの相対回転止め用の、一対の平坦面26a,26a,30a,30aをスリッパー10の長手方向に沿わせ、その平坦面26a,26a,30a,30aを挟んで対向する一対の円周面26b,26b,30b,30bを、スリッパー10の長手方向を横切る方向に向くように、スリッパー10および伝動チエン9に対するテンショナーTの相対位置を決定する。
【0030】
ここで、前記板状のストッパ37を回転軸17から外すと、その回転軸17が捩りばね19のばね力により回転駆動され、それに応じて押圧部材16が、その先端のキャップ27をスリッパー10に当接させるまで前進してスリッパー10に、テンショナーTの推進力を作用させることになり、これにより、無端状の伝動チエンに一定の張力が付与される。
【0031】
そして、調時伝動装置Tiの運転により、伝動チエン9に伸びが生じたときは、捩りばね19のばね力による回転軸17の回転で、押圧部材16が伝動チエン9の伸びに相当して軸方向に前進し、伝動チエン9に付与する張力を一定に維持する。
【0032】
ところで、エンジンEの運転により、調時伝動装置Tiが作動されているとき、通常弾性体により構成される弓形のスリッパー10は、伝動チエン9の張力変動をうけて、図10の矢印Aに示すように、撓み振動し、この撓み振動に起因してスリッパー10の、テンショナーTによる押圧点が、図10の矢印Bに示すように、そのスリッパー10の長手方向に変位する。これによりテンショナーTの押圧部材16は、スリッパー10の長手方向に揺すられるが、押圧部材16は、その回転止め部において、平坦面26a,26a,30a,30aは、スリッパー10の長手方向に沿う方向にあり、かつ、円周面26b,26b,30b,30bはスリッパー10の長手方向、すなわち押圧部材16の揺すり方向に対して直交する方向にあって、その揺すり力を受ける。
【0033】
しかして、前記押圧部材16と回転止め部材29との、平坦面26a,26a,30a,30aと円周面26b,26b,30b,30bとを有する断面小判状の回り止め挿通支持部を、仕上げ加工するにあたっては、円周面の方が旋盤等により加工精度を出し易い上に加工がし易く、しかも、それら間の隙間を縮小することが可能であり、さらに円周面26b,26b,30b,30bの方が、平坦面26a,26a,30a,30aよりも受圧面積を大きくとり易いことから、前記押圧部材16と回転止め部材29との回り止め挿通支持部では、スリッパー10から受ける押圧部材16の揺すり振動を、円周面26b,26b,30b,30bで受けるようにしたことにより、該押圧部材16の揺すり振動が軽減され、その振動に起因する打音、振動音の発生を大幅に低減することができる。
【0034】
つぎに、本発明に従うテンショナーの参考例を、図6,7を参照して説明する。
【0035】
図6は、テンショナーの先端部の縦側面図、図7は、図6の7線矢視平面図であり、前記第1実施例と同じ要素には同じ符号が付される。
【0036】
テンショナーTの、ケーシング15より突出する押圧部材16の先端部に、スプリングピン20を介して結合されるキャップ127の前面には、ホーク部127aが形成され、このホーク部127aに、回動部材としてのローラー140が支持軸141を介して、スリッパー10の長手方向に回動転自在に軸支され、このローラー140の外周面は、スリッパー10の外面に当接される。そして、このローラー140は、スリッパー10の長手方向の変位に追従するように回転する。
【0037】
テンショナーTの押圧部材16に伝達される推進力は、ローラー140を介してスリッパー10に伝達され、これにより伝動チエン9に一定の張力を付与することができる。
【0038】
しかして、伝動チエン9の張力変動に起因するスリッパー10の撓み振動で、テンショナーTの押圧部材16が、スリッパーの長手方向に沿う揺すり力を受けたときには、ローラー140が回動して、その揺すり力を吸収することができ、これにより、前記押圧部材16の、スリッパー10の変位に起因する揺れを抑制し、押圧部材16の、他の部品との衝突による騒音の発生を可及的に低減することができる。
【0039】
つぎに、本発明に従うテンショナーの第2実施例を、図8,9を参照して説明する。
【0040】
図8は、テンショナーの先端部の縦断面図、図9は、図8の9−9線に沿う断面図であり、前記第1実施例と同じ要素には、同じ符号が付される。
【0041】
テンショナーTの、ケーシング15より突出する押圧部材16の先端の内周部には、栓部材240が固着され、また、押圧部材16の先端部外周面には、180°の位相差をもって一対の係合凹部241が形成されている。一方、回動部材としてのキャップ227は、鍛造、プレス等により帽状に形成され、その径大な基部内周面に同じく180°の位相差をもって一対の突部227cが突設され、そして、突部227cは、前記係合凹部241に、キャップ227の、後述する回動を許容するように遊合保持される。キャップ227の底面中央部に形成した膨出227bは、前記栓部材240に当接され、キャップ227は、この膨出部227bを支点としてスリッパー10の長手方向に回動可能である。キャップ227の円弧状のトップ部227aは、スリッパー10に当接される。そして、キャップ227は、前記膨出部227bを支点として、スリッパー10の長手方向の変位に追従するように回動する。
【0042】
しかして、伝動チエン9の張力変動に起因するスリッパー10の撓み振動で、テンショナーTの押圧部材16が、スリッパーの長手方向に沿う揺すり力を受けたときには、キャップ227が回動して、その揺すり力を吸収することができ、これにより、前記押圧部材16の、スリッパー10の変位に起因する揺れを抑制し、押圧部材16の、他の部品との衝突による騒音の発生を可及的に低減することができる。
【0043】
なお、この第2実施例に基づく発明は、前記第1実施例の、押圧部材16の支持構造をもつテンショナーに実施した場合を説明したが、押圧部材16の支持構造は従来公知のものを採用してもよい。
【0044】
以上、本発明の実施例及び参考例について説明したが、本発明はその実施例に限定されることなく、本発明の範囲内で種々の実施例が可能である。たとえば、前記実施例では、本発明ねじ式テンショナーを、自動二輪車用エンジンに実施した場合を説明したが、これを他の車両用等のエンジンにも実施でき、また、前記実施例では、本発明ねじ式テンショナーを、チエン式調時伝動装置に実施した場合を説明したが、これをベルト式、その他の調時伝動装置にも実施できるることは勿論である。
【0045】
【発明の効果】
以上のように本請求項1記載の発明によれば、送りねじ式テンショナーにおいて、スリッパーに推進力を付与する押圧部材の、スリッパーへの押圧点の変位に起因する騒音の発生を可及的に低減することができる。また、請求項2の発明によれば、伝動帯の張力変動に起因するスリッパーの撓み振動で、テンショナーの押圧部材が、スリッパーの長手方向に沿う揺すり力を受けたときには、キャップが回動して、その揺すり力を吸収することができ、これにより、前記押圧部材の、スリッパーの変位に起因する揺れを抑制し、押圧部材の、他の部品との衝突による騒音の発生を可及的に低減することができる。
【図面の簡単な説明】
【図1】 本発明テンショナーを備えたエンジンの調時伝動装置の側面図(第1実施例)
【図2】 図3の2−2線に沿うテンショナーの縦断側面図(第1実施例)
【図3】 図2の3−3線に沿う断面図(第1実施例)
【図4】 図2の4−4線に沿う端面図(第1実施例)
【図5】 図2の一部拡大図(第1実施例)
【図6】 テンショナーの先端部の縦側面図(参考例)
【図7】 図6の7線矢視平面図(参考例)
【図8】 テンショナーの先端部の縦側面図(第2実施例)
【図9】 図8の9−9線に沿う断面図(第2実施例)
【図10】 伝動帯の張力変動によるスリッパーの撓み振動の状態を示す図
【符号の説明】
1・・・・・・・・シリンダブロック
9・・・・・・・・伝動帯(伝動チエン)
10・・・・・・・スリッパー
15・・・・・・・ケーシング
16・・・・・・・押圧部材
17・・・・・・・回転軸
19・・・・・・・捩りばね
26・・・・・・・円筒体
26a・・・・・・平坦面
26b・・・・・・円周面
27・・・・・・・キャップ
29・・・・・・・回転止め部材
29a・・・・・・係合爪
29b・・・・・・係合爪
30・・・・・・・挿通孔
30a・・・・・・平坦面
30b・・・・・・円周面
227・・・・・・キャップ
227a・・・・・トップ部
227b・・・・・膨出部
240・・・・・・栓部材
・・・・・・・調時伝動装置
Ca・・・・・・・間隙
Cb・・・・・・・間隙
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a tensioner used in a timing transmission device of an engine, for example, a motorcycle engine.
[0002]
[Prior art]
Conventionally, in engines for motorcycles and the like, as a tensioner for applying a predetermined tension to a transmission chain of a timing transmission device for timing driving a valve camshaft by a crankshaft, a feed screw type is used. As such a feed screw type tensioner, which is often employed, for example, one disclosed in Japanese Patent Application Laid-Open No. 10-110955 is already well known.
[0003]
[Problems to be solved by the invention]
By the way, in such a feed screw type tensioner, as shown in FIG. 10, when the timing transmission device is operated by the operation of the engine, it is attached to the loose side of the transmission chain C due to the tension variation of the transmission chain C. The slipper S bends and vibrates in the changing direction of the transmission chain C, that is, in the direction of the arrow A in FIG. 10, so that the pressing point P of the tensioner T against the slipper S is the longitudinal direction of the slipper S, that is, in the direction of the arrow B in FIG. As a result, the pressing member of the tensioner T is swayed in the radial direction, and they collide with each other due to the clearance existing between the pressing member of the tensioner T and the bearing member that supports the tensioning member T. There is a problem of generating noise.
[0004]
Accordingly, an object of the present invention is to provide a new feed screw tensioner for an engine which can improve the tensioner to reduce the generation of the noise as much as possible.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, a rotation stopping member is fitted into a casing fixed to the engine block, and the pressing member is not rotated around the axis of the rotation stopping member. The shaft is supported so as to be movable in the axial direction, and a rotating shaft rotatably supported by the casing is screwed into the pressing member, and the pressing member protrudes from the casing between the casing and the rotating shaft. Provided a spring that urges in the direction to make contact with the transmission band of the timing transmission device through the slipper that is pivotally supported by the engine block, and to apply tension to the transmission band. In the feed screw type tensioner, the pressing member includes a cylindrical body provided in the casing and a cap coupled to the protruding end with a spring pin. The pin is installed in a direction substantially orthogonal to the longitudinal direction of the slipper, and the cap has a tip that contacts the slipper and a step portion facing the end surface of the cylindrical body at the periphery of the surface opposite to the tip. has a while be along the flat surface of the flat surface and a circumferential surface which is formed in the relative rotation stop portion between the rotation stop member and the pressing member in the longitudinal direction of the slipper, before Symbol circumferential surface (26b 26b, 30b, 30b) and between the fitting surfaces of the casing (15) and the rotation stop member (29) , the first and second gaps (Ca, Cb) of 0.02 mm or more and less than 0.15 mm ) the set only each, the rotation stopping member, the fitting portion between the casing and having respective pair of engaging claws which project radially outwardly facing respectively to the said flat surface and a circumferential surface Facing the flat surface The engaging claw is formed to have a width larger than that of the engaging claw opposed to the circumferential surface. According to such a feature, the vibration of the pressing member is caused by the pressing member and the rotation stopping member. In the meantime, it can be received by a circumferential surface that can be processed with high precision by a lathe or the like, and the vibration of the pressing member of the tensioner can be suppressed, and the generation of noise can be reduced as much as possible.
[0006]
In order to achieve the above object, according to the present invention, the pressing member is not rotated around the axis of the casing fixed to the engine block via the rotation stop member, but the axial direction of the pressing member is not rotated. A rotating shaft that is thrust-supported rotatably on the casing is screwed onto the pressing member, and the pressing member is attached between the casing and the rotating shaft in a direction protruding from the casing. A feed screw type tensioner provided with a spring for biasing, with the tip of the pressing member abutting on the transmission band of the timing transmission device via a slipper supported by the engine block and applying tension to the transmission band A cap member is fixed to the tip of the pressing member, and a cap having an arcuate top portion that abuts against the slipper is provided. The bulging portion formed in the center of the surface is in contact with the plug member, and can be rotated in the longitudinal direction of the slipper with the bulging portion as a fulcrum. When the pressing member of the tensioner receives a shaking force along the longitudinal direction of the slipper due to the bending vibration of the slipper caused by the fluctuation, the cap can be rotated to absorb the shaking force. The vibration of the pressing member due to the slipper displacement can be suppressed, and the generation of noise due to the collision of the pressing member with other components can be reduced as much as possible.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described based on examples of the present invention shown in the accompanying drawings.
[0008]
First, a first embodiment of the present invention will be described with reference to FIGS.
[0009]
1 is a side view of an engine timing transmission device including a tensioner according to the present invention, FIG. 2 is a longitudinal side view of the tensioner taken along line 2-2 in FIG. 3, and FIG. 3 is a line 3-3 in FIG. 4 is an end view taken along line 4-4 of FIG. 2, and FIG. 5 is a partially enlarged view of FIG.
[0010]
In FIG. 1, a traveling engine E for a motorcycle, indicated as a whole by E, is a DOHC type four-cycle engine, and its engine block Be is fixed on the cylinder block 1 and its deck surface. A cylinder head 2 and an oil pan 3 fixed to the lower surface thereof are provided. The upper surface of the cylinder head 2 is covered with a head cover 4. A crankshaft 5 that is rotationally driven by a reciprocating piston (not shown) due to explosive combustion of fuel is rotatably supported at the lower part of the cylinder block 1, and at the upper part of the cylinder head 2. A pair of valve camshafts 6 and 6 interlocked with a valve mechanism (not shown) are rotatably supported.
[0011]
The crankshaft 5 and the pair of valve gear camshafts 6 and 6 are linked and connected via a timing transmission device Ti. The structure of the timing transmission device Ti will be described below. A drive sprocket 7 as a drive wheel is fixed to one end of the shaft 5, and driven sprockets 8 and 8 as driven wheels are fixed to one end of the pair of valve camshafts 6 and 6, respectively. An endless transmission chain 9 serving as a transmission band is wound between the drive and driven sprockets 7, 8, 8. The rotation of the crankshaft 5 is timed and transmitted to the pair of valve camshafts 6 and 6 with a 1/2 gear ratio through the timed transmission device Ti.
[0012]
On the loose side of the endless transmission chain 9, one end of an arcuate slipper 10 that guides the outside of the transmission chain 9 between the drive sprocket 7 and one driven sprocket 8 is connected to the cylinder head 2 via the support shaft 11. It is supported so that it can swing.
[0013]
A tensioner T according to the present invention is attached to the cylinder block 1. The tensioner T presses the loose side of the transmission chain 9 via the slipper 10 and applies a certain tension to the transmission chain 9.
[0014]
Next, the structure of the tensioner T will be described in detail with reference to FIGS.
[0015]
The tensioner T has a cylindrical casing 15 whose base end is fixed to the side of the cylinder block 1 with a pair of coupling bolts 12, and the casing 15 cannot be rotated around its axis, but it can move in the axial direction. A pressing member 16 that is supported so that it can be; a rotating shaft 17 that is arranged coaxially with the pressing member 16 and screwed into the pressing member 16; and a thrust bearing that is fixed to the casing 15 and thrust-supports the rotating shaft 17. A member 18 and a torsion spring 19 provided between the rotary shaft 17 and the casing 15 to rotate and urge the rotary shaft 17 are provided, and the tip of the pressing member 16 abuts on the outer surface of the slipper 10 on the free end side. Be touched.
[0016]
The casing 15 has a flange 15a projecting in the radial direction in a portion near the tip (portion near the right end in FIG. 2) and is formed in a cylindrical shape, and the flange 15a is formed by a pair of coupling bolts 12. Fastened to the cylinder block 1.
[0017]
In the casing 15, a cylindrical storage hole 21, a mounting hole 22 having a smaller diameter than the storage hole 21, and a screw hole having a smaller diameter than the mounting hole 22, in order from the front end side (the right end side in FIG. 2). 23 are provided on the same axis. A plug member 24 is screwed into the end of the screw hole 23. As shown in FIG. 4, four locking recesses 25 are formed at an opening edge of the screw hole 23 with an interval of 90 °.
[0018]
The pressing member 16 is coaxially disposed in the storage hole 21 and has a cylindrical body 26 whose tip is projected from the tip of the casing 15, and a substantially longitudinal direction of the slipper 10 at the tip of the cylindrical body 26. The cap 27 is coupled with a spring pin 20 installed in an orthogonal direction, and the cap 27 is brought into contact with the outer surface of the free end portion of the slipper 10. An internal thread 28 is engraved on the inner peripheral surface of the rear end side of the pressing member 16, that is, the rear end side of the cylindrical body 26.
[0019]
The cylindrical body 26 of the pressing member 16 can be moved in the axial direction via a rotation stop member 29 fitted to the casing 15, but is supported so as not to rotate. As shown in FIG. 3, the anti-rotation member 29 is formed in a dish shape, and is fixed to the front portion of the casing 15 by a fixing structure described later, and the cylindrical body 26 is inserted into the insertion hole 30 opened at the center thereof. The tip of the slab is movable in its axial direction but is supported so that it cannot rotate relative to it. The cylindrical body 26 is formed in a cross-sectional oval shape by a pair of flat surfaces 26a and 26a extending in parallel along the axis and a pair of circumferential surfaces 26b and 26b formed by the outer peripheral surface of the cylindrical body 26. The insertion hole 30 of the anti-rotation member 29 inserted through the cylindrical body 26 also has a pair of flat surfaces 30a, 30a and circumferential surfaces 30b, 30b corresponding to the outer surface shape of the cylindrical body 26. It is formed into a shape. The cylindrical body 26 is supported by the casing 15 via the rotation stop member 29 so as to be movable in the direction along the axis, but is prevented from rotating around the axis, thereby the cylindrical body. As will be described later, the substantial support surfaces of the anti-rotation member 26 and the anti-rotation member 29 become the circumferential surfaces 26b, 26b and 30b, 30b. Therefore, the processing accuracy of these support surfaces can be increased, and FIG. As shown, the gap Ca between the support surfaces can be 0.02 mm to 0.15 mm.
[0020]
As will be described later, when the tensioner T according to the present invention is assembled to the engine E, as shown in FIG. 3, a pair of flat surfaces 26a, 26a between the cylindrical body 26 and the insertion hole 30 of the rotation stop member 29 are provided. And 30a, 30a along the longitudinal direction of the slipper 10, and the circumferential surfaces 26b, 26b and 30b, 30b are arranged so as to cross the longitudinal direction of the slipper. Due to the behavior of the slipper 10, even when the pressing member 16 is swung in the direction orthogonal to the axis thereof, the generation of hitting sound and vibration sound due to the collision between the pressing member 16 and the rotation stopping member 29 is reduced.
[0021]
Next, the structure for fixing the rotation stopper member 29 to the casing 15 will be described. As shown in FIGS. 2, 3, and 5, the peripheral edge portion of the rotation stopper member 29 is spaced by 180 ° in the circumferential direction. The pair of engaging claws 29a, 29a, and the engaging claws 29a, 29a are spaced apart by 90 ° in the circumferential direction and are formed to be narrower in the circumferential direction than the engaging claws 29a, 29a. The other engaging claws 29b, 29b are connected so as to protrude outward in the radial direction. On the other hand, the engaging claws 29a, 29a, 29b, 29b are engaged with the tip of the casing 15. Four engaging recesses 31a, 31a, 31b, and 31b are formed. Thus, the engaging claws 29a, 29a, 29b, and 29b engaged with the engaging recesses 31a, 31a, 31b, and 31b have the same retaining ring 32 that is fitted to the outer periphery of the tip portion of the casing 15, respectively. Thus, the rotation preventing member 29 is detachably fixed to the tip of the casing 15. That is, the pressing member 26 that cannot rotate about the axis with respect to the rotation stop member 29 cannot be rotated about the axis, but is supported by the casing 15 so as to be movable in the axial direction.
[0022]
Four circumferential portions 29c between the engaging claws 29a and 29b of the rotation stopping member 29 are fitted to the inner circumferential surface of the distal end portion of the housing hole 21 of the casing 15, and the fitted surfaces are circumferential. By being a surface, it becomes possible to improve the processing accuracy of those fitting surfaces, and the gap Cb between the fitting surfaces can be narrowed. Specifically, as shown in FIGS. The gap Cb can be set to 0.02 mm to 0.15 mm.
[0023]
As shown in FIG. 2, the rotating shaft 17 has a male screw portion 17a screwed into the female screw 28 of the pressing member 16 in order from the tip side (right end side in FIG. 2), and a larger diameter than the male screw portion 17a. A connecting portion 17b, a fitting portion 17c having a diameter larger than that of the connecting portion 17b and substantially the same diameter as the outer shape of the cylindrical body 26, and a large diameter portion 17d having a larger diameter than the fitting portion 17c. And a support portion 17e having a diameter smaller than that of the large-diameter portion 17d are coaxially and continuously provided. On the other hand, the thrust bearing member 18 is press-fitted and fixed in the mounting hole 22 in the casing 15. Then, the base end of the rotating shaft 17, that is, the end surface of the support portion 17 a is thrust supported by the thrust bearing member 18. That is, the thrust bearing member 18 is press-fitted into the mounting hole 22, and the base end of the rotating shaft 17, that is, the cylindrical portion 18a into which the support portion 17a is rotatably inserted, and radially inward from one end of the cylindrical portion 18a. The inner flange portion 18b extends, and the end surface of the support portion 17e is slidably supported by the inner flange portion 18b.
[0024]
Further, as shown in FIG. 2, a hollow cylindrical spacer 33 is provided in the casing 15 so as to surround the cylindrical body 26, and one end of the spacer 33 is disposed on the end of the dish-shaped anti-rotation member 29. While making contact with the inner surface, the other end is fitted into the fitting portion 17c of the rotating shaft 17, and the other end is brought into contact with the step portion between the fitting portion 17c and the large diameter portion 17d of the rotating shaft 17. . Therefore, the forward movement of the rotary shaft 17 and the pressing member 16 in a state where the tip of the pressing member 16, that is, the cap 27 is not in contact with the slipper 10 is prevented by the spacer 33.
[0025]
The supporting portion 17e of the rotating shaft 17 is provided with a locking slit 34 that opens to the end surface of the supporting portion 17e. A part of the supporting portion 17e and the large diameter portion 17d of the rotating shaft 17 and the spacer 33 are large. One end of the torsion spring 19 surrounding the portion is engaged with the locking slit 34. Further, one end of the four locking recesses 31a, 31a, 31b, and 31b, for example, a locking groove 35 that extends in the axial direction in connection with the locking recess 31a is provided on the front end side of the casing 15, and a rotation stopper member. A recess 36 is formed to form a hole that leads to the locking groove 35 with the 29 engaging claws 29a, and the other end of the torsion spring 19 is engaged with the locking groove 35 through the hole. .
[0026]
The rotating shaft 17 is rotationally biased by the spring force of the torsion spring 19, and the rotational biasing direction is that the male screw portion 17 a of the rotating shaft 17 is screwed with the female screw 28 of the pressing member 16. Accordingly, the pressing member 16 is set to advance, that is, the cap 27 is pressed against the slipper 10.
[0027]
By the way, in a state where the tip of the pressing member 16 is not in contact with the slipper 10, one end of a plate-like stopper 37 is engaged with the locking slit 34 of the rotating shaft 17, and the other end of the stopper 37 is , Are engaged with two of the four locking recesses 25 (FIG. 4) provided at the opening edge of the rear end of the screw hole 23. Thereby, the rotating shaft 17 does not rotate even by the urging force of the torsion spring 19, and the pressing member 16 does not move forward.
[0028]
Next, the operation of the first embodiment will be described.
[0029]
In order to assemble the tensioner T configured as described above to the engine, as shown in FIG. 1, the casing 15 of the tensioner T is fixed to a predetermined position of the cylinder block 1 by the connecting bolt 12 and the pressing member thereof. Sixteen front end caps 27 are disposed in contact with the outer side of the free end of the slipper 10 provided along the outer surface of the transmission chain 9 on the loose side. In this case, as shown in FIG. 3, the pair of flat surfaces 26 a, 26 a, 30 a, and 30 a for preventing the relative rotation are inserted into the slipper 10 at the insertion support portion by the rotation stop member 29 at the tip end portion of the pressing member 16. A pair of circumferential surfaces 26 b, 26 b, 30 b, 30 b facing each other across the flat surfaces 26 a, 26 a, 30 a, 30 a along the longitudinal direction of the slipper 10 so as to face the direction crossing the longitudinal direction of the slipper 10. 10 and the relative position of the tensioner T with respect to the transmission chain 9 is determined.
[0030]
Here, when the plate-shaped stopper 37 is removed from the rotary shaft 17, the rotary shaft 17 is rotationally driven by the spring force of the torsion spring 19, and in response thereto, the pressing member 16 causes the cap 27 at the tip thereof to the slipper 10. It advances until it abuts, and the propulsion force of the tensioner T is applied to the slipper 10, whereby a constant tension is applied to the endless transmission chain.
[0031]
When the transmission chain 9 is extended due to the operation of the timing transmission device Ti, the rotation of the rotary shaft 17 by the spring force of the torsion spring 19 causes the pressing member 16 to correspond to the extension of the transmission chain 9. The tension applied to the transmission chain 9 is kept constant.
[0032]
By the way, when the timing transmission device Ti is operated by the operation of the engine E, the bow-shaped slipper 10 which is usually formed of an elastic body is subjected to the tension variation of the transmission chain 9 and is indicated by an arrow A in FIG. Thus, the bending vibration is generated, and the pressing point of the slipper 10 by the tensioner T is displaced in the longitudinal direction of the slipper 10 as shown by an arrow B in FIG. As a result, the pressing member 16 of the tensioner T is swung in the longitudinal direction of the slipper 10, but the flat surface 26 a, 26 a, 30 a, and 30 a is in the direction along the longitudinal direction of the slipper 10. The circumferential surfaces 26b, 26b, 30b, 30b are in the longitudinal direction of the slipper 10, that is, in the direction orthogonal to the rocking direction of the pressing member 16, and receive the rocking force.
[0033]
Thus, the anti-rotation insertion support portion having an oblong cross section having the flat surfaces 26a, 26a, 30a, 30a and the circumferential surfaces 26b, 26b, 30b, 30b of the pressing member 16 and the rotation preventing member 29 is finished. In machining, the circumferential surface can be easily machined with a lathe or the like, and the machining can be easily performed, and the gap between them can be reduced, and the circumferential surfaces 26b, 26b, and 30b can be reduced. , 30b has a larger pressure receiving area than the flat surfaces 26a, 26a, 30a, 30a, so that the rotation member insertion support portion between the pressing member 16 and the rotation stopping member 29 receives the pressing member received from the slipper 10. 16 vibration vibration is received by the circumferential surfaces 26b, 26b, 30b, and 30b, so that the vibration vibration of the pressing member 16 is reduced and the vibration is caused by the vibration. Tapping sound, it is possible to greatly reduce the occurrence of vibration sound.
[0034]
Next, a reference example of a tensioner according to the present invention will be described with reference to FIGS.
[0035]
FIG. 6 is a vertical side view of the tip portion of the tensioner, and FIG. 7 is a plan view taken in the direction of the arrow 7 in FIG. 6. The same elements as those in the first embodiment are denoted by the same reference numerals.
[0036]
A fork 127a is formed on the front surface of the cap 127 that is coupled to the tip of the pressing member 16 protruding from the casing 15 of the tensioner T via the spring pin 20, and the fork 127a is formed as a rotating member. The roller 140 is pivotally supported in the longitudinal direction of the slipper 10 via the support shaft 141, and the outer peripheral surface of the roller 140 is in contact with the outer surface of the slipper 10. The roller 140 rotates to follow the displacement of the slipper 10 in the longitudinal direction.
[0037]
The propulsive force transmitted to the pressing member 16 of the tensioner T is transmitted to the slipper 10 via the roller 140, whereby a constant tension can be applied to the transmission chain 9.
[0038]
Therefore, when the pressing member 16 of the tensioner T receives a shaking force along the longitudinal direction of the slipper due to the bending vibration of the slipper 10 caused by the fluctuation of the tension of the transmission chain 9, the roller 140 rotates and shakes. The force can be absorbed, thereby suppressing the vibration of the pressing member 16 due to the displacement of the slipper 10 and reducing the generation of noise due to the collision of the pressing member 16 with other parts as much as possible. can do.
[0039]
Next, a second embodiment of the tensioner according to the present invention will be described with reference to FIGS.
[0040]
FIG. 8 is a longitudinal sectional view of the tip portion of the tensioner, and FIG. 9 is a sectional view taken along line 9-9 of FIG. 8. The same reference numerals are given to the same elements as those in the first embodiment.
[0041]
A stopper member 240 is fixed to the inner peripheral portion of the tip of the pressing member 16 protruding from the casing 15 of the tensioner T, and a pair of engagement members with a 180 ° phase difference is provided on the outer peripheral surface of the distal end portion of the pressing member 16. A concavity 241 is formed. On the other hand, the cap 227 as a rotating member is formed in a cap shape by forging, pressing or the like, and a pair of protrusions 227c are similarly provided on the inner peripheral surface of the large diameter base with a phase difference of 180 °, and The protrusion 227c is loosely held in the engagement recess 241 so as to allow the cap 227 to rotate as described later. A bulge 227b formed at the center of the bottom surface of the cap 227 is brought into contact with the plug member 240, and the cap 227 is rotatable in the longitudinal direction of the slipper 10 with the bulge 227b serving as a fulcrum. The arc-shaped top portion 227 a of the cap 227 is in contact with the slipper 10. The cap 227 rotates so as to follow the displacement of the slipper 10 in the longitudinal direction with the bulging portion 227b as a fulcrum.
[0042]
Therefore, when the pressing member 16 of the tensioner T receives a shaking force along the longitudinal direction of the slipper due to the bending vibration of the slipper 10 caused by the fluctuation of the tension of the transmission chain 9, the cap 227 rotates and shakes. The force can be absorbed, thereby suppressing the vibration of the pressing member 16 due to the displacement of the slipper 10 and reducing the generation of noise due to the collision of the pressing member 16 with other parts as much as possible. can do.
[0043]
Although the invention based on the second embodiment has been described for the tensioner having the support structure for the pressing member 16 of the first embodiment, the support structure for the pressing member 16 is a conventionally known one. May be.
[0044]
As mentioned above, although the Example and reference example of this invention were described, this invention is not limited to the Example, A various Example is possible within the scope of the present invention. For example, in the above embodiment, the case where the screw type tensioner of the present invention is implemented in an engine for a motorcycle has been described. However, the present invention can also be implemented in an engine for other vehicles. Although the case where the screw type tensioner is implemented in the chain type timing transmission device has been described, it is needless to say that this can also be implemented in the belt type and other timing transmission devices.
[0045]
【The invention's effect】
As described above, according to the first aspect of the present invention, in the feed screw tensioner, the generation of noise caused by the displacement of the pressing point of the pressing member to the slipper of the pressing member that imparts the propulsive force to the slipper is made as much as possible. Can be reduced. Further, according to the invention of claim 2, when the pressing member of the tensioner receives a shaking force along the longitudinal direction of the slipper due to the bending vibration of the slipper caused by the fluctuation in the tension of the transmission band, the cap rotates. The vibration can be absorbed, thereby suppressing the vibration of the pressing member due to the displacement of the slipper and reducing the generation of noise due to the collision of the pressing member with other parts as much as possible. can do.
[Brief description of the drawings]
FIG. 1 is a side view of an engine timing transmission equipped with a tensioner of the present invention (first embodiment).
FIG. 2 is a longitudinal side view of the tensioner taken along line 2-2 of FIG. 3 (first embodiment).
3 is a sectional view taken along line 3-3 in FIG. 2 (first embodiment).
4 is an end view taken along line 4-4 of FIG. 2 (first embodiment).
5 is a partially enlarged view of FIG. 2 (first embodiment).
[Figure 6] Vertical side view of the tip of the tensioner (reference example)
7 is a plan view taken along line 7 in FIG. 6 (reference example).
FIG. 8 is a vertical side view of a tip portion of a tensioner (second embodiment).
9 is a sectional view taken along line 9-9 in FIG. 8 (second embodiment).
FIG. 10 is a diagram showing the state of slipper bending vibration caused by fluctuations in transmission band tension.
1 ... Cylinder block 9 ... Transmission band (transmission chain)
10 .... slipper 15 ... casing 16 ... pressing member 17 ... rotating shaft 19 ... torsion spring 26 ... ······························································································· Cap 29 .......... engagement claw 29b .... engagement claw 30 .... insertion hole 30a ... flat surface 30b ... circumferential surface 227 ... ... cap 227a ····· top portion 227b ····· bulging portion 240 ...... plug member T i ······· timing transmission apparatus Ca ······・ Gap Cb ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Gap

Claims (2)

エンジンブロック(Be)に固定されるケーシング(15)に回転止め部材(29)を嵌合し、この回転止め部材(29)に押圧部材(16)を、その軸線まわりには回転しないが、その軸線方向に移動できるように支持し、この押圧部材(16)に、前記ケーシング(15)に回転自在にスラスト支持される回転軸(17)を螺合し、前記ケーシング(15)と回転軸(17)間には、前記押圧部材(16)をケーシング(15)から突出する方向に付勢するばね(19)を設け、押圧部材(16)の先端を、エンジンブロック(Be)に軸支されるスリッパー(10)を介して調時伝動装置(Ti)の伝動帯(9)に当接し、その伝動帯(9)に張力を付与するようにした、送りねじ式テンショナーにおいて、
前記押圧部材(16)は、ケーシング(15)内に設けられる円筒体(26)と、その突出端にスプリングピン(20)をもって結合されるキャップ(27)とからなり、前記スプリングピン(20)は前記スリッパー(10)の長手方向に対して略直交方向に設置され、前記キャップ(27)は、前記スリッパー(10)に当接する先端を有すると共にこの先端とは反対側の面の周縁に前記円筒体(26)の端面と向かい合う段部を有し、
前記押圧部材(16)と回転止め部材(29)間の相対回転止め部に形成される平坦面(26a,26a,30a,30a)および円周面(26b,26b,30b,30b)のうちの平坦面(26a,26a,30a,30a)を前記スリッパー(10)の長手方向に沿わせる一方、前記円周面(26b,26b,30b,30b)間および前記ケーシング(15)と前記回転止め部材(29)との嵌合面間に、0.02mm以上0.15mm未満の第1,第2の間隙(Ca,Cb)をそれぞれ設け、
前記回転止め部材(29)は、前記ケーシング(15)との嵌合部に、前記平坦面(30a,30a)と円周面(30b,30b)とにそれぞれ対向して半径方向外方に突出する各一対の係合爪(29a,29a,29b,29b)を有し、前記平坦面(30a,30a)に対向する係合爪(29a,29a)の幅を前記円周面(30b,30b)に対向する係合爪(29b,29b)の幅よりも大きく形成したことを特徴とする、エンジン用送りねじ式テンショナー。
The rotation stop member (29) is fitted to the casing (15) fixed to the engine block (Be), and the pressure stop member (16) is not rotated around the axis line of the rotation stop member (29). A rotary shaft (17) that is rotatably supported by the casing (15) is screwed onto the pressing member (16) so as to be movable in the axial direction, and the casing (15) and the rotary shaft ( 17) is provided with a spring (19) for urging the pressing member (16) in a direction protruding from the casing (15), and the tip of the pressing member (16) is pivotally supported by the engine block (Be). In the lead screw type tensioner, which is in contact with the transmission band (9) of the timing transmission device (Ti) through the slipper (10) and applies tension to the transmission band (9).
The pressing member (16) includes a cylindrical body (26) provided in the casing (15), and a cap (27) coupled to a protruding end of the pressing member (16) with a spring pin (20), and the spring pin (20). Is installed in a direction substantially orthogonal to the longitudinal direction of the slipper (10), and the cap (27) has a tip abutting on the slipper (10) and is arranged on the periphery of the surface opposite to the tip. A step portion facing the end surface of the cylindrical body (26);
Of the flat surface (26a, 26a, 30a, 30a) and the circumferential surface (26b, 26b, 30b, 30b) formed in the relative rotation stop portion between the pressing member (16) and the rotation stop member (29) flat surface (26a, 26a, 30a, 30a) longitudinally while allowing direction along the front Symbol circumferential surface (26b, 26b, 30b, 30b) and between the said detent and the casing (15) of the slipper (10) between the mating surfaces of the member (29), first below 0.15mm than 0.02 mm, the second gap (Ca, Cb) to set each
The anti-rotation member (29) protrudes outward in the radial direction at the fitting portion with the casing (15), facing the flat surface (30a, 30a) and the circumferential surface (30b, 30b), respectively. Each of the engaging claws (29a, 29a, 29b, 29b) and the width of the engaging claws (29a, 29a) facing the flat surface (30a, 30a) is set to the circumferential surface (30b, 30b). The feed screw tensioner for an engine is formed so as to be larger than the width of the engaging claws (29b, 29b) that face each other.
エンジンブロック(Be)に固定されるケーシング(15)に、回転止め部材(29)を介して押圧部材(16)を、その軸線まわりには回転しないが、その軸線方向に移動できるように支持し、この押圧部材(16)に、前記ケーシング(15)に回転自在にスラスト支持される回転軸(17)を螺合し、前記ケーシング(15)と回転軸(17)間には、前記押圧部材(16)をケーシング(15)から突出する方向に付勢するばね(19)を設け、押圧部材(16)の先端を、エンジンブロック(Be)に軸支されるスリッパー(10)を介して調時伝動装置(Ti)の伝動帯(9)に当接し、その伝動帯(9)に張力を付与するようにした、送りねじ式テンショナーにおいて、
前記押圧部材(16)の先端には栓部材(240)が固着されると共に、前記スリッパー(10)に当接する円弧状のトップ部(227a)を有するキャップ(227)が設けられ、前記キャップ(227)はその底面中央に形成した膨出部(227b)を前記栓部材(240)に当接し、該膨出部(227b)を支点として前記スリッパー(10)の長手方向に回動可能であることを特徴とするエンジン用送りねじ式テンショナー。
A pressing member (16) is supported on a casing (15) fixed to the engine block (Be) via a rotation stopping member (29) so that it does not rotate around its axis but can move in its axial direction. Then, a rotating shaft (17) rotatably supported by the casing (15) is screwed into the pressing member (16), and the pressing member is interposed between the casing (15) and the rotating shaft (17). A spring (19) for biasing (16) in a direction protruding from the casing (15) is provided, and the tip of the pressing member (16) is adjusted via a slipper (10) pivotally supported by the engine block (Be). In the lead screw type tensioner which is in contact with the transmission band (9) of the time transmission device (Ti) and applies tension to the transmission band (9),
A cap member (240) is fixed to the tip of the pressing member (16), and a cap (227) having an arcuate top portion (227a) that comes into contact with the slipper (10) is provided. 227) abuts the bulging portion (227b) formed at the center of the bottom surface thereof with the plug member (240), and is rotatable in the longitudinal direction of the slipper (10) with the bulging portion (227b) as a fulcrum. This is a feed screw tensioner for engines.
JP2000101274A 2000-03-31 2000-03-31 Engine lead screw tensioner Expired - Fee Related JP4163364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000101274A JP4163364B2 (en) 2000-03-31 2000-03-31 Engine lead screw tensioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000101274A JP4163364B2 (en) 2000-03-31 2000-03-31 Engine lead screw tensioner

Publications (2)

Publication Number Publication Date
JP2001280435A JP2001280435A (en) 2001-10-10
JP4163364B2 true JP4163364B2 (en) 2008-10-08

Family

ID=18615356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000101274A Expired - Fee Related JP4163364B2 (en) 2000-03-31 2000-03-31 Engine lead screw tensioner

Country Status (1)

Country Link
JP (1) JP4163364B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3336337B1 (en) 2001-11-14 2002-10-21 株式会社椿本チエイン Plastic movable guide for transmission
JP6605424B2 (en) 2016-09-30 2019-11-13 本田技研工業株式会社 Saddle riding
JP6924172B2 (en) * 2018-08-01 2021-08-25 日本発條株式会社 Tensioner
CN113412380B (en) * 2019-03-28 2024-05-17 本田技研工业株式会社 Tensioning regulator
JP2022011785A (en) * 2020-06-30 2022-01-17 株式会社クボタ Chain tensioner and tensioner releasing tool

Also Published As

Publication number Publication date
JP2001280435A (en) 2001-10-10

Similar Documents

Publication Publication Date Title
US10337611B2 (en) Variable-speed drive device for power unit
JP4163364B2 (en) Engine lead screw tensioner
JP3201147B2 (en) Valve train for 4-cycle 4-cylinder engine
KR20040028512A (en) Cam chain detachment preventive structure for internal combustion engine
JP2008082297A (en) Decompression device of internal combustion engine
JP3995439B2 (en) Inspection method for tensioner propulsion device
JP4286647B2 (en) Rotational force transmission member mounting structure
JP2008019737A (en) Valve gear of internal combustion engine
JP4230255B2 (en) Internal combustion engine cam chain fall-off prevention structure
JP4047923B2 (en) Cam chain guide mounting structure
JP5342314B2 (en) Fuel pump drive unit
JP2008025487A (en) Valve gear and internal combustion engine having the valve gear
JP4243679B2 (en) Tensioner
JP2813185B2 (en) Chain tensioner
JP3837595B2 (en) Tensioner
JP7504955B2 (en) Pulley device
JP2010019191A (en) Engine
JP2024046061A (en) pulley device
JPS58211514A (en) Rocker arm fixing device for internal-combustion engine
JP2871194B2 (en) Cam shaft scissors gear mechanism
JPH0610088Y2 (en) Cam shaft support structure
JP5212652B2 (en) Valve operating device for internal combustion engine
JP7124630B2 (en) Valve train with decompression device
JP5712025B2 (en) Rocker arm support structure in valve gear mechanism for engine
JPH07103068A (en) Cam cap for engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080407

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080709

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080724

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees