JP4162733B2 - Manufacturing method of metal base substrate - Google Patents

Manufacturing method of metal base substrate Download PDF

Info

Publication number
JP4162733B2
JP4162733B2 JP04017897A JP4017897A JP4162733B2 JP 4162733 B2 JP4162733 B2 JP 4162733B2 JP 04017897 A JP04017897 A JP 04017897A JP 4017897 A JP4017897 A JP 4017897A JP 4162733 B2 JP4162733 B2 JP 4162733B2
Authority
JP
Japan
Prior art keywords
adhesive material
insulating adhesive
metal
metal plate
base substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04017897A
Other languages
Japanese (ja)
Other versions
JPH10242634A (en
Inventor
禎一 稲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP04017897A priority Critical patent/JP4162733B2/en
Publication of JPH10242634A publication Critical patent/JPH10242634A/en
Application granted granted Critical
Publication of JP4162733B2 publication Critical patent/JP4162733B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明はプリント配線板に用いられる金属ベース基板に関する。
【0002】
【従来の技術】
小型高出力電源、薄型電源モジュールなど、高電圧で駆動するパワートランジスタやハイブリッドICを高密度に実装する電子機器が増加しており、放熱設計の問題が重要になっている。このようなところには、放熱性に優れた金属ベース基板が使用されているが、金属ベース基板に対する放熱性及び絶縁信頼性の要求は厳しくなっている。すなわち、金属ベース基板の放熱性と絶縁信頼性を両立するには、薄い絶縁層で電気的絶縁を確保する必要があるため、金属ベース基板の製造工程において、絶縁接着材料の塗工時や、金属箔、絶縁接着材料、金属板を積層する作業中に混入する異物に対する対策が重要になってきている。
このような金属ベース基板は、半硬化状態の絶縁接着材料付き金属箔と金属板をプレスあるいは真空プレスにより加圧加熱し、絶縁接着材料を完全に硬化させ、積層一体化する方法により成形されるものと、半硬化状態の絶縁接着材料付き金属箔と金属板をホットロールラミネータ、真空ラミネータなどにより仮接着した後、さらにこれをプレスあるいは真空プレスにより加圧加熱し、絶縁接着材料を完全に硬化させ、積層一体化する方法によって成形されていた。
このようにして製造された金属ベース基板は、外観検査や耐電圧特性の検査を行い、規格値に満たないものを除外し信頼性の確保を行っている。
【0003】
【発明が解決しようとする課題】
ところで、従来外観検査や耐電圧特性の検査を行った場合、金属粉、大きな空隙等がある場合は、耐電圧の低下によりこれらを見分け、除外することが可能であったが、樹脂粉や絶縁性の混入物、小さな気泡、空隙等を含んだ製品では、これらの検査では検出しにくかった。その理由として、圧力下で硬化を完了させた場合、これらの異物は絶縁接着材料中に埋没し、外観上凹凸などとして残らないため、外観検査でこれらの不良を選別することは難しく、かつ電気的な検査によっても耐電圧の明確な低下が起こらないためである。
しかしながら、これらの絶縁性の異物を含む製品は、長期間使用された場合、信頼性低下が発生することがあるほか、樹脂と異物、あるいは異物と金属板との界面の密着性が不足しているため、はんだ実装時にふくれなどの不良が発生しやすい等の問題があった。
【0004】
本発明は、絶縁接着材料付き金属箔と金属板を積層してなる金属ベース基板の製造において、金属板と接する絶縁接着材料面層の硬化度が20%〜60%になるようにホットロールラミネータで絶縁接着材料付き金属箔と金属板を連続的に加圧加熱積層した後、荷重を掛けずに絶縁接着材料の硬化を行い、表面のふくれが1mmを越える基板を取り除くことを特徴とする金属ベース基板の製造方法である。また、ホットロールラミネータの積層圧力が30〜60kgf/cmであり、金属箔の厚さが18μm〜150μm、絶縁接着材料の厚さが50μm〜200μmで、かつ金属板の厚さが1〜4mmであると好ましいものである。
【0005】
本発明は、金属板と接する絶縁接着材料面層が半硬化の状態で加圧加熱積層したのち、荷重を掛けない状態で絶縁接着材料の硬化を行うことにより、異物等による不良の選別を可能にすることができるものである。すなわち、絶縁接着材料面層と金属板を半硬化状態で積層したものを無加重の状態で硬化させることにより、荷重下で硬化させる場合に比べて、異物等がある場合、ふくれ等の外観不良が発生しやすいため、異物がある不良品を分別することが可能となる。また、ホットロールラミネータ、真空ラミネータを使用することにより、硬化度のばらつきを小さくできる。さらに、連続的に積層可能であり、プレスを使用した場合に比べて製造に要する時間やクッション紙、フィルム等の副資材をそれぞれ低減でき、製造コストの低減をはかることができる。
【0006】
【発明の実施の形態】
本発明は、絶縁接着材料付き金属箔と金属板を積層してなる金属ベース基板の製造において、金属板と接する絶縁接着材料面層の硬化度が20%〜60%になるようにホットロールラミネータで絶縁接着材料付き金属箔と金属板を連続的に加圧加熱積層した後、荷重を掛けないで絶縁接着材料の硬化を行う金属ベース基板の製造方法であり、また、ホットロールラミネータの積層圧力が30〜60kgf/cmで、金属箔の厚さが18μm〜150μm、絶縁接着材料の厚さが50μm〜200μmであり、かつ金属板の厚さが1〜4mmであると好ましい。
【0007】
ここで、絶縁接着材料面層の硬化度とは、金属箔基材上に絶縁接着材料ワニスを塗布し、加熱乾燥して溶剤を除去して絶縁接着材料が金属箔面に形成された絶縁接着材料付き金属箔を製造するが、これにより得られる接着材料は、半硬化の状態になる。この硬化状態をDSC(示差走査熱分析)を用いて測定した全硬化発熱量の20〜60%の発熱を終えた状態とすることを意味する。溶剤を除去する際に加熱するが、この時、接着材料組成物の硬化反応が進行しゲル化してくる。その際の硬化状態が接着材料の流動性に影響し、接着性や取扱い性を適正化する。
【0008】
DSCは、測定温度範囲内で、発熱、吸熱の無い標準試料との温度差をたえず打ち消すように熱量を供給または除去するゼロ位法を測定原理とするものであり、測定装置が市販されておりそれを用いて測定できる。接着材料組成物の反応は、発熱反応であり、一定の昇温速度で試料を昇温していくと、試料が反応し熱量が発生する。その発熱量をチャートに出力し、ベースラインを基準として発熱曲線とベースラインで囲まれた面積を求め、これを発熱量とする。室温から250℃まで5〜10℃/分の昇温速度で測定し、上記した発熱量を求める。これらは、全自動で行なうものもあり、それを使用すると容易に行なうことができる。つぎに、上記金属箔に塗布し、乾燥して得た接着材料の発熱量は、つぎのようにして求める。まず、25℃で真空乾燥器を用いて溶剤を乾燥させた未硬化試料の全発熱量を測定し、これをA(J/g)とする。つぎに、塗工、乾燥した試料の発熱量を測定し、これをBとする。試料の硬化度C(%)(加熱、乾燥により発熱を終えた状態)は、つぎの数1で与えられる。
【0009】
【数1】
C(%)=(A−B)×100/A
【0010】
ホットロールラミネータで積層後の絶縁接着材料付き金属箔の金属板と接する絶縁接着材料面層の硬化度は、DSCを用いて測定した場合の全硬化発熱量の20〜60%の発熱を終えた状態にすることが必要である。好ましくは30〜50%である。硬化度が20%未満の場合、絶縁接着材料と金属板との界面の密着性が不十分なため、その後に加重を掛けずに行う硬化時に異物等の無い正常な部分にもふくれが発生するため好ましくない。硬化度が60%を超えると絶縁接着材料と金属板との界面の密着性が良好であり、その後に行う硬化時に異物等のある部分にふくれが発生せず、異物等の不良品を分別することが十分にできないためである。絶縁接着材料付き金属箔に形成された絶縁接着材料面層の硬化度は、絶縁接着材料面層をカッター等で削りDSCにより測定する。絶縁接着材料ワニスをプラスチックフィルム基材に塗布、乾燥し、これを金属箔に転写する方法で得られる絶縁接着材料付き金属箔、あるいは絶縁接着材料フィルムとしこれを金属箔に張り付けた絶縁接着材料付き金属箔でも同様に行う。絶縁接着材料面層は、金属板と接する面であり、絶縁接着材料と金属板との界面の密着性に関与する部分であるので少なくとも表面から20μm付近までである。
【0011】
本発明に使用される絶縁接着材料については、絶縁信頼性、耐熱性が良好である必要があり、エポキシ樹脂、ビスマレイミド、フェノール等の熱硬化性樹脂を主成分とするものであることが好ましい。副成分として、ゴム、ポリイミド、フェノキシ樹脂等の高分子量樹脂を含んでもよい。以下に挙げるエポキシ樹脂系は耐熱性、耐湿性が良い点で好ましい。 エポキシ樹脂は、硬化して接着作用を呈するものであればよく、二官能以上で、分子量が5,000未満、好ましくは3,000未満のエポキシ樹脂が使用される。特に、分子量が500以下のビスフェノールA型またはビスフェノールF型液状樹脂を用いると積層時の流動性を向上することができて好ましい。高Tg化を目的に多官能エポキシ樹脂を加えてもよい。多官能エポキシ樹脂としては、フェノールノボラック型エポキシ樹脂やクレゾールノボラック型エポキシ樹脂などのフェノール類ノボラックエポキシ樹脂が例示される。
【0012】
エポキシ樹脂の硬化剤は、特に制限するものではないが、フェノール性水酸基を1分子中に2個以上有する化合物であるフェノールノボラック樹脂、ビスフェノールノボラック樹脂、クレゾールノボラック樹脂を用いるのが吸湿時の接着性、耐電食性に優れるため好ましい。
【0013】
異種材料間の界面結合をよくするために、カップリング剤を配合することが好ましい。カップリング剤としては、シランカップリング剤が好ましい。シランカップリング剤としては、γ−グリシドキシプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−ウレイドプロピルトリエトキシシラン、N−β−アミノエチル−γ−アミノプロピルトリメトキシシランが挙げられる。
【0014】
さらに、絶縁接着材料の熱伝導性の向上、難燃性の付与、溶融粘度調整及びチクソトロピック性の付与、表面硬度の向上などを目的として、無機フィラーを接着樹脂組成物100体積部に対して1〜300体積部配合してもよい。300体積部を超えて配合すると、絶縁接着材料の可とう性の低下、接着性の低下、ボイド残存による耐電圧の低下等の問題が発生するおそれがある。なお、100体積部以上を添加する場合には、パッキングのよい適切な粒度分布や粒子形状を有するものを使用する必要がある。
【0015】
無機フィラーとしては、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグネシウム、アルミナ粉末、窒化アルミニウム、ほう酸アルミウイスカ、窒化ホウ素、結晶性シリカ、非晶性シリカなどが挙げられる。
特に、熱伝導性をよくするためには、アルミナ、窒化アルミニウム、窒化ホウ素、結晶性シリカ、非晶性シリカが好ましい。この中でも、アルミナが、絶縁性、樹脂との親和性に優れる点で好ましい。
【0016】
ワニスに使用する溶剤は、比較的低沸点の、メチルエチルケトン、アセトン、メチルイソブチルケトン、2−エトキシエタノール、トルエン、ブチルセルソルブ、メタノール、エタノール、2−メトキシエタノールなどを用いるのが好ましい。
【0017】
上記成分を含有するワニスの製造法としては、撹拌モータ、らいかい機、3本ロール及びビーズミルなどを組み合わせて行う事が出来る。なお、接着材料を構成する樹脂や無機フィラーの分散を十分に行うことが出来る混練法ならばどのような方法でもよく制限されない。また、ワニス作製後、真空脱気によりワニス中の気泡を除去することが好ましい。
【0018】
金属板と接する絶縁接着材料面層の硬化度が20%〜60%になるようにするための形成方法としては、まずワニスを金属箔に塗工する方法がある。塗工方法としては、バーコータ、リップコータ、ロールコータなどであるが、クレータ、ボイドなどの欠陥が少なくほぼ均一に塗工できる方法ならばどのような方法でもよい。クレータ、ボイド、異物混入による塗膜不良による絶縁性低下を防止する等の目的で2層以上に分けて絶縁接着材料を塗工することができる。この場合、絶縁接着材料のうち、金属箔と直接接していない層が、AまたはBステージ状態の硬化度であることが必要である。なおこの場合の、ステージは、絶縁接着材料の硬化の程度を示し、A、B、Cステージがある。Aステージはほぼ未硬化でゲル化していない状態であり、DSCを用いて測定した場合の全硬化発熱量の0から20%の発熱を終えた状態である。Bステージは若干硬化、ゲル化が進んだ状態であり全硬化発熱量の20%から60%の発熱を終えた状態である。Cステージは、全硬化発熱量の61%から100%の発熱を終えた状態である。
【0019】
本発明で使用する金属箔の厚さは18μm〜150μmが好ましい。18μm未満では積層時に金属箔の破断が起こりやすい点で好ましくない。また、150μmを越えると、硬化後の基板表面のふくれが発生し難いため不良品の識別ができず、本発明の効果を得難いいために好ましくない。絶縁接着材料の厚さは50μm〜200μmが好ましい。50μm未満では積層時の圧力を均一にできないため、金属板との接着性が不良となる部分が発生するため好ましくない。200μmを越えると、積層時の基板の温度が不均一になるため、基板の厚さ方向で硬化度のばらつきが大きくなる点で好ましくない。金属板の厚さは、1mm〜4mmが好ましい。金属板の厚さが1mm未満の場合、硬化後の基板のそりが大きくなる点で好ましくない。金属板の厚さが4mmを越えると、積層時の基板の温度が不均一になり基板の厚さ方向で硬化度のばらつきが大きくなる点で好ましくない。
【0020】
次に、金属板と絶縁接着材料付き金属箔を積層する方法について説明する。この方法は、本発明では、ホットロールラミネータを用いて積層するもので、絶縁接着材料付き金属箔と金属板を重ね合わせ、ホットロールラミネータや真空式ホットロールラミネータなどにより加圧加熱一体化する。このときのラミネータの積層圧力は、30〜60kgf/cmであることが好ましい。30kgf/cm未満では絶縁接着材料と金属板の密着性が不十分であり硬化時にふくれ等の不良が起きやすくなるため好ましくない。一方、60kgf/cmを越えると積層時の絶縁接着材料の流動性が大きくなり、絶縁接着材料の厚みが不均一になる点で好ましくない。ホットロールラミネータのロール温度、回転速度等は絶縁接着材料面層の硬化度が本発明の20%〜60%の範囲になるように、調整する必要がある。硬化度が小さい場合は、ロール温度を高めるか、回転速度を遅くするなどして調整する。一方、硬化度が高い場合は、ロール温度を低くするか、回転速度を高めるなどして調整する。また、絶縁接着材料の配合を調整することにより、調整することもできる。
【0021】
本発明では、ホットロールラミネータで絶縁接着材料付き金属箔と金属板を連続して加熱加圧積層した後、さらに硬化させるが、その硬化については圧力を掛けないで無荷重下で行う。これには半硬化した基板を空気または窒素等の不活性ガス雰囲気中で加熱することにより行うことができる。通常加熱温度は150℃〜230℃程度が好ましく、硬化時間は、15分〜90分程度行う。また2種以上の異なる加熱温度で多段階に加熱を行っても良い。装置は特に限定されるものではないが、連続的に投入及び取り出しができるものが、自動化によるコスト低減が可能となるので好ましい。
絶縁接着材料が半硬化状態で絶縁接着材料付き金属箔と金属板を積層する工程とその後の硬化工程は連続して行うことが好ましい。そして、金属ベース基板を製造後、金属ベース基板の外観検査で、表面凹凸の評価、耐電圧試験等を行い、一定値以上基板表面の金属箔がふくれているものや耐電圧が正常品と比べて一定値以上低下しているものは不良品として除外する。以下、本発明を実施例に基づいて具体的に説明する。
【0022】
【実施例】
(実施例1)
下記に示した絶縁接着材料をらいかい器で混合したのち、さらに有機溶剤で粘度を調整し真空脱気してワニスAを得た。
(エポキシ樹脂)
エピコート1001(油化シェルエポキシ株式会社製商品名、エポキシ当量=480) 30重量部
エピコート828(油化シェルエポキシ株式会社製商品名、エポキシ当量=190) 50重量部
(高分子量樹脂)
フェノキシ樹脂YP−50(東都化成株式会社製商品名) 20重量部
(硬化剤)
フェノールノボラック樹脂LF−2882(大日本インキ化学工業株式会社製商品名、水酸基当量=118) 40重量部
(硬化促進剤)
1−シアノエチル−2−フェニルイミダゾール 0.5重量部
(シランカップリング剤)
NUC A187(日本ユニカー株式会社製商品名、γ−グリシドキシプロピルトリメトキシシラン) 3.5重量部
(無機フィラー)
アルミナAS−50(昭和電工株式会社製商品名) 400重量部
【0023】
厚さ70μmの銅箔に上記ワニスAを塗布し、140℃、15分間加熱乾燥することにより厚さ80μmのBステージ状態の塗膜第1層を形成した。さらにこの塗膜第1層の表面に、さらにワニスAを再度塗布し、110℃、15分間乾燥しAステージ状態の塗膜第2層を形成し塗膜第1層と塗膜第2層の合計厚みが150μmの絶縁接着材料付き銅箔を得た。上記絶縁接着材料付き銅箔と厚さ2mmのアルミニウム板をロール温度150℃のロールラミネータを用い、積層圧力が35kgf/cmとなるように圧力を調整し、加圧加熱一体化した。このときの絶縁接着材料面層の硬化度は、30%であった。さらにこれを170℃の炉内で60分間、さらに200℃炉内で15分間放置することにより金属ベース基板を得た。この際ふくれ等が発生したものが製造した金属ベース基板100枚に対して2枚あり、これを除外した。
【0024】
(比較例1)
実施例1の絶縁接着材料付き銅箔を金属板上に重ね、170℃、圧力2MPaで60分間、加圧加熱一体化ものをさらに、200℃の炉内で15分間放置することにより金属ベース基板を得た。この際ふくれ等が発生したものは皆無であった。
【0025】
(比較例2)
実施例1の絶縁接着材料付き銅箔とアルミ板を100℃のホットロールラミネータで、積層圧力が35kgf/cmとなるように調整して加圧加熱一体化した。このときの金属板と接する絶縁接着材料面層の硬化度は5%であった。以下は実施例1と同様に金属ベース基板を作製した。この際ふくれ等が発生したものは、100枚の金属ベース基板に対して12枚あり、これを除外した。
【0026】
(比較例3)
実施例1の絶縁接着材料付き銅箔とアルミ板を200℃のロールラミネータで、積層圧力が35kgf/cmとなるように調整して加圧加熱一体化した。このときの金属板と接する絶縁接着材料面層の硬化度は75%であった。以下は実施例1と同様に金属ベース基板を作製した。この際ふくれ等が発生したものは、100枚の金属ベース基板に対して1枚あり、これを除外した。
【0027】
実施例、比較例1から比較例3で得られた金属ベース基板を以下の方法で評価し、その結果を表1に示した。
【0028】
(評価方法)
30cm×30cmの試料を100枚を用い、初期状態の試料について、ふくれ、耐電圧特性を評価し、表面のふくれが1mmを越えるものまたは耐電圧が5kV未満のものを不良と評価した。続いて、初期状態で不良とされたものは除外し、た試料を150℃の高温雰囲気中に10日間放置し、前記と同様にふくれ、耐電圧特性を評価し、表面のふくれが1mmを越えるものまたは耐電圧が5kV未満のものを不良と評価した。
【0029】
【表1】
――――――――――――――――――――――――――――――――――
項目 実施例1 比較例1 比較例2 比較例3
――――――――――――――――――――――――――――――――――
初期状態の不良数 2 0 12 1
150℃、10日処理後の不良数 0 4 2 3
――――――――――――――――――――――――――――――――――
【0030】
実施例1及び比較例1〜3について初期状態及び150℃、10日間放置後の不良数を表に示したが、実施例1では初期に若干数の不良があるが、150℃、10日間放置後不良発生がない。これに対して、比較例1は荷重を掛けて硬化したものであり、初期特性は良好であるが、高温放置後の不良数が実施例に比べると多くなっている。比較例2は、金属板と接する絶縁接着材料面層の硬化度が低いため、その後の硬化時にふくれによる不良が多数発生した。比較例3は、金属板と接する絶縁接着材料面層の硬化度が高いため、初期特性は良好であるが、高温放置後の耐電圧の不良発生数が実施例に比べると多い。
【0031】
【発明の効果】
金属ベース基板において金属板と絶縁接着材料付き金属箔を半硬化状態で積層し、かつ荷重を掛けずに絶縁接着材料の硬化を行うことにより、異物等による初期不良の検査を簡易にし、金属ベース基板の信頼性の向上をはかることができた。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a metal base substrate used for a printed wiring board.
[0002]
[Prior art]
Electronic devices that mount high-voltage driven power transistors and hybrid ICs at high density, such as small high-power power supplies and thin power supply modules, are increasing, and the problem of heat dissipation design is becoming important. In such a place, a metal base substrate having excellent heat dissipation is used, but requirements for heat dissipation and insulation reliability with respect to the metal base substrate are becoming strict. That is, in order to achieve both heat dissipation and insulation reliability of the metal base substrate, it is necessary to ensure electrical insulation with a thin insulating layer, so in the manufacturing process of the metal base substrate, when applying an insulating adhesive material, Measures against foreign matters mixed during the work of laminating metal foil, insulating adhesive material, and metal plate have become important.
Such a metal base substrate is formed by a method in which a semi-cured metal foil with an insulating adhesive material and a metal plate are pressed and heated by a press or vacuum press, the insulating adhesive material is completely cured, and laminated and integrated. Semi-cured metal foil with insulating adhesive material and metal plate are temporarily bonded with a hot roll laminator, vacuum laminator, etc., and then pressed and heated with a press or vacuum press to completely cure the insulating adhesive material. And formed by a method of stacking and integrating.
The metal base substrate manufactured as described above is subjected to appearance inspection and inspection of withstand voltage characteristics, and those not meeting the standard value are excluded to ensure reliability.
[0003]
[Problems to be solved by the invention]
By the way, in the conventional appearance inspection and withstand voltage characteristics inspection, when there is metal powder, large voids, etc., it was possible to distinguish and exclude them by the decrease in withstand voltage. These inspections made it difficult to detect products that contained sexual contaminants, small bubbles, or voids. The reason for this is that when the curing is completed under pressure, these foreign substances are buried in the insulating adhesive material and do not remain as irregularities on the appearance. This is because a clear decrease in the withstand voltage does not occur even by a physical inspection.
However, products containing these insulative foreign matter may deteriorate in reliability when used for a long period of time, and lack of adhesion at the interface between resin and foreign matter or foreign matter and metal plate. Therefore, there is a problem that defects such as blisters are likely to occur during solder mounting.
[0004]
The present invention relates to a hot roll laminator in the production of a metal base substrate in which a metal foil with an insulating adhesive material and a metal plate are laminated so that the degree of cure of the insulating adhesive material surface layer in contact with the metal plate is 20% to 60%. in after the insulating adhesive material with the metal foil and the metal plate was continuously heated under pressure laminate, have rows curing of the insulating adhesive material without a load, blistering of the surface is characterized by removing the substrate exceeding 1mm It is a manufacturing method of a metal base substrate. Moreover, the lamination pressure of the hot roll laminator is 30 to 60 kgf / cm, the thickness of the metal foil is 18 μm to 150 μm, the thickness of the insulating adhesive material is 50 μm to 200 μm, and the thickness of the metal plate is 1 to 4 mm. It is preferable to have it.
[0005]
In the present invention, the insulating adhesive material surface layer in contact with the metal plate is pressed and heated in a semi-cured state, and then the insulating adhesive material is cured without applying a load, so that it is possible to sort out defects due to foreign matters. It can be made. In other words, by laminating an insulating adhesive material surface layer and a metal plate in a semi-cured state in an unweighted state, if there are foreign objects etc. compared to curing under load, poor appearance such as blistering Since it is easy to generate | occur | produce, it becomes possible to sort out the inferior goods with a foreign material. Further, by using a hot roll laminator or a vacuum laminator, variation in the degree of curing can be reduced. Furthermore, it can be continuously laminated, and the time required for production and auxiliary materials such as cushion paper and film can be reduced as compared with the case where a press is used, and the production cost can be reduced.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to a hot roll laminator in the production of a metal base substrate in which a metal foil with an insulating adhesive material and a metal plate are laminated so that the degree of cure of the insulating adhesive material surface layer in contact with the metal plate is 20% to 60%. This is a method for manufacturing a metal base substrate in which a metal foil with an insulating adhesive material and a metal plate are continuously pressed and heated and laminated, and then the insulating adhesive material is cured without applying a load, and the lamination pressure of the hot roll laminator Is 30 to 60 kgf / cm, the thickness of the metal foil is 18 μm to 150 μm, the thickness of the insulating adhesive material is 50 μm to 200 μm, and the thickness of the metal plate is preferably 1 to 4 mm.
[0007]
Here, the degree of cure of the insulating adhesive material surface layer means that the insulating adhesive material varnish is applied on the metal foil base material, heated and dried to remove the solvent, and the insulating adhesive material is formed on the metal foil surface. Although the metal foil with a material is manufactured, the adhesive material obtained by this will be in a semi-hardened state. This means that the cured state is a state where heat generation of 20 to 60% of the total curing calorific value measured using DSC (Differential Scanning Calorimetry) is completed. Heating is performed when the solvent is removed. At this time, the curing reaction of the adhesive material composition proceeds and gelation occurs. The cured state at that time affects the fluidity of the adhesive material and optimizes the adhesiveness and handleability.
[0008]
DSC is based on the zero position method in which the amount of heat is supplied or removed so that the temperature difference from a standard sample that does not generate heat or endotherm is constantly canceled within the measurement temperature range. It can be measured using it. The reaction of the adhesive material composition is an exothermic reaction, and when the sample is heated at a constant rate of temperature increase, the sample reacts to generate heat. The calorific value is output to a chart, the area surrounded by the calorific curve and the base line is obtained with the baseline as a reference, and this is defined as the calorific value. Measure from the room temperature to 250 ° C. at a rate of temperature increase of 5 to 10 ° C./min to obtain the heat generation amount described above. Some of these are performed automatically, and can be easily performed by using them. Next, the calorific value of the adhesive material obtained by applying to the metal foil and drying is determined as follows. First, the total calorific value of an uncured sample obtained by drying the solvent using a vacuum dryer at 25 ° C. is measured, and this is defined as A (J / g). Next, the calorific value of the coated and dried sample is measured. The degree of cure C (%) of the sample (a state in which heat generation is completed by heating and drying) is given by the following equation (1).
[0009]
[Expression 1]
C (%) = (A−B) × 100 / A
[0010]
The degree of cure of the surface layer of the insulating adhesive material in contact with the metal plate of the metal foil with the insulating adhesive material after lamination by the hot roll laminator finished heat generation of 20 to 60% of the total curing calorific value when measured using DSC. It is necessary to be in a state. Preferably it is 30 to 50%. When the degree of cure is less than 20%, the adhesion at the interface between the insulating adhesive material and the metal plate is insufficient, so that blisters also occur in normal parts free from foreign matters during curing performed without applying a load thereafter. Therefore, it is not preferable. When the degree of cure exceeds 60%, the adhesiveness at the interface between the insulating adhesive material and the metal plate is good, and no blistering occurs at the part with foreign matter during subsequent curing, so that defective products such as foreign matter are separated. This is because it cannot do enough. The degree of cure of the insulating adhesive material surface layer formed on the metal foil with the insulating adhesive material is measured by DSC after shaving the insulating adhesive material surface layer with a cutter or the like. Insulating adhesive varnish is applied to a plastic film substrate, dried, and then transferred to a metal foil with a metal foil with an insulating adhesive material, or an insulating adhesive material film with an insulating adhesive material attached to the metal foil. The same applies to metal foil. The insulating adhesive material surface layer is a surface in contact with the metal plate, and is a part related to the adhesion at the interface between the insulating adhesive material and the metal plate, and is therefore at least from the surface to around 20 μm.
[0011]
The insulating adhesive material used in the present invention needs to have good insulation reliability and heat resistance, and is preferably composed mainly of a thermosetting resin such as an epoxy resin, bismaleimide, or phenol. . As a minor component, a high molecular weight resin such as rubber, polyimide, or phenoxy resin may be included. The epoxy resin system listed below is preferable in terms of good heat resistance and moisture resistance. The epoxy resin is not particularly limited as long as it cures and exhibits an adhesive action. An epoxy resin having a bifunctional or higher molecular weight of less than 5,000, preferably less than 3,000 is used. In particular, it is preferable to use a bisphenol A type or bisphenol F type liquid resin having a molecular weight of 500 or less because the fluidity during lamination can be improved. A polyfunctional epoxy resin may be added for the purpose of increasing the Tg. Examples of the polyfunctional epoxy resin include phenol novolac epoxy resins such as phenol novolac epoxy resins and cresol novolac epoxy resins.
[0012]
The curing agent for the epoxy resin is not particularly limited, but the use of a phenol novolak resin, bisphenol novolak resin, or cresol novolak resin, which is a compound having two or more phenolic hydroxyl groups in one molecule, provides adhesiveness when absorbing moisture. It is preferable because of its excellent electric corrosion resistance.
[0013]
In order to improve interfacial bonding between different materials, it is preferable to add a coupling agent. As the coupling agent, a silane coupling agent is preferable. As the silane coupling agent, γ-glycidoxypropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-ureidopropyltriethoxysilane, N-β-aminoethyl-γ- Aminopropyltrimethoxysilane is mentioned.
[0014]
Furthermore, the inorganic filler is added to 100 parts by volume of the adhesive resin composition for the purpose of improving the thermal conductivity of the insulating adhesive material, imparting flame retardancy, adjusting melt viscosity and thixotropic properties, and improving surface hardness. You may mix | blend 1-300 volume parts. When the amount exceeds 300 parts by volume, problems such as a decrease in flexibility of the insulating adhesive material, a decrease in adhesion, and a decrease in withstand voltage due to remaining voids may occur. In addition, when adding 100 volume parts or more, it is necessary to use what has an appropriate particle size distribution and particle shape with good packing.
[0015]
As the inorganic filler, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, alumina powder, aluminum nitride, aluminum borate whisker, boron nitride, crystalline silica, Examples thereof include amorphous silica.
In particular, alumina, aluminum nitride, boron nitride, crystalline silica, and amorphous silica are preferable for improving thermal conductivity. Among these, alumina is preferable in that it has excellent insulating properties and affinity with resin.
[0016]
As the solvent used for the varnish, it is preferable to use methyl ethyl ketone, acetone, methyl isobutyl ketone, 2-ethoxyethanol, toluene, butyl cellosolve, methanol, ethanol, 2-methoxyethanol and the like having a relatively low boiling point.
[0017]
As a manufacturing method of the varnish containing the said component, it can carry out combining a stirring motor, a raking machine, 3 rolls, a bead mill, etc. Note that any method may be used as long as the kneading method can sufficiently disperse the resin and the inorganic filler constituting the adhesive material. Moreover, it is preferable to remove bubbles in the varnish by vacuum degassing after the varnish is produced.
[0018]
As a method for forming the insulating adhesive material surface layer in contact with the metal plate so as to have a degree of cure of 20% to 60%, there is a method of first applying varnish to the metal foil. As a coating method, a bar coater, a lip coater, a roll coater or the like is used, but any method may be used as long as it can be applied almost uniformly with few defects such as craters and voids. Insulating adhesive material can be applied in two or more layers for the purpose of preventing insulation deterioration due to coating failure due to craters, voids, and foreign matter mixing. In this case, it is necessary that the layer of the insulating adhesive material that is not in direct contact with the metal foil has a degree of cure in the A or B stage state. In this case, the stage indicates the degree of curing of the insulating adhesive material, and there are A, B, and C stages. The A stage is almost uncured and not gelled, and is a state in which heat generation of 0 to 20% of the total curing heat generation amount measured using DSC is completed. The B stage is a state in which the curing and gelation have progressed slightly, and the heat generation of 20% to 60% of the total curing heat generation amount is finished. The C stage is in a state where the heat generation from 61% to 100% of the total curing heat generation amount is finished.
[0019]
The thickness of the metal foil used in the present invention is preferably 18 μm to 150 μm. If it is less than 18 μm, it is not preferable in that the metal foil is easily broken during lamination. On the other hand, if the thickness exceeds 150 μm, it is difficult to cause blistering on the substrate surface after curing, so that defective products cannot be identified, and it is difficult to obtain the effects of the present invention. The thickness of the insulating adhesive material is preferably 50 μm to 200 μm. If the thickness is less than 50 μm, the pressure at the time of lamination cannot be made uniform. If it exceeds 200 μm, the temperature of the substrate at the time of lamination becomes non-uniform, which is not preferable in that variation in the degree of curing increases in the thickness direction of the substrate. The thickness of the metal plate is preferably 1 mm to 4 mm. When the thickness of the metal plate is less than 1 mm, it is not preferable in that the warpage of the substrate after curing becomes large. If the thickness of the metal plate exceeds 4 mm, it is not preferable in that the temperature of the substrate during lamination becomes non-uniform and the variation in the degree of curing increases in the thickness direction of the substrate.
[0020]
Next, a method for laminating a metal plate and a metal foil with an insulating adhesive material will be described. In this method, the present invention uses a hot roll laminator to laminate, and a metal foil with an insulating adhesive material and a metal plate are overlapped, and are heated and integrated with a hot roll laminator or a vacuum hot roll laminator. The lamination pressure of the laminator at this time is preferably 30 to 60 kgf / cm. If it is less than 30 kgf / cm, the adhesiveness between the insulating adhesive material and the metal plate is insufficient, and blistering and other defects are liable to occur during curing. On the other hand, if it exceeds 60 kgf / cm, the fluidity of the insulating adhesive material at the time of lamination increases, which is not preferable in that the thickness of the insulating adhesive material becomes non-uniform. The roll temperature, rotation speed, etc. of the hot roll laminator must be adjusted so that the degree of cure of the insulating adhesive material surface layer is in the range of 20% to 60% of the present invention. If the degree of cure is small, adjust by increasing the roll temperature or slowing the rotational speed. On the other hand, when the degree of cure is high, adjustment is made by lowering the roll temperature or increasing the rotation speed. It can also be adjusted by adjusting the blend of the insulating adhesive material.
[0021]
In the present invention, a metal foil with an insulating adhesive material and a metal plate are continuously heated and pressed by a hot roll laminator and then further cured, but the curing is performed under no load without applying pressure. This can be done by heating the semi-cured substrate in an inert gas atmosphere such as air or nitrogen. Usually, the heating temperature is preferably about 150 to 230 ° C., and the curing time is about 15 to 90 minutes. Further, heating may be performed in multiple stages at two or more different heating temperatures. The apparatus is not particularly limited, but an apparatus that can be continuously inserted and removed is preferable because it can reduce the cost by automation.
It is preferable that the step of laminating the metal foil with the insulating adhesive material and the metal plate in the semi-cured state of the insulating adhesive material and the subsequent curing step are continuously performed. After manufacturing the metal base substrate, the surface inspection of the metal base substrate is evaluated, withstand voltage test, withstand voltage test, etc. Products that have fallen above a certain value are excluded as defective products. Hereinafter, the present invention will be specifically described based on examples.
[0022]
【Example】
(Example 1)
The insulating adhesive materials shown below were mixed with a sieve, and the viscosity was adjusted with an organic solvent and vacuum evacuated to obtain varnish A.
(Epoxy resin)
Epicoat 1001 (trade name made by Yuka Shell Epoxy Co., Ltd., epoxy equivalent = 480) 30 parts by weight Epicoat 828 (trade name made by Yuka Shell Epoxy Co., Ltd., epoxy equivalent = 190) 50 parts by weight (high molecular weight resin)
Phenoxy resin YP-50 (trade name, manufactured by Toto Kasei Co., Ltd.) 20 parts by weight (curing agent)
Phenol novolac resin LF-2882 (trade name, hydroxyl equivalent = 118, manufactured by Dainippon Ink & Chemicals, Inc.) 40 parts by weight (curing accelerator)
0.5 parts by weight of 1-cyanoethyl-2-phenylimidazole (silane coupling agent)
NUC A187 (trade name, γ-glycidoxypropyltrimethoxysilane, manufactured by Nippon Unicar Co., Ltd.) 3.5 parts by weight (inorganic filler)
Alumina AS-50 (trade name, manufactured by Showa Denko KK) 400 parts by weight [0023]
The above-mentioned varnish A was applied to a copper foil having a thickness of 70 μm, and was heated and dried at 140 ° C. for 15 minutes to form a first layer of a coating film in a B-stage state having a thickness of 80 μm. Furthermore, varnish A is applied again on the surface of this coating film first layer, dried at 110 ° C. for 15 minutes to form a coating film second layer in the A stage state, and the coating film first layer and coating film second layer A copper foil with an insulating adhesive material having a total thickness of 150 μm was obtained. Using the roll laminator with a roll temperature of 150 ° C., the pressure was adjusted so that the laminating pressure was 35 kgf / cm, and the pressure-heating integrated with the copper foil with the insulating adhesive material and the aluminum plate having a thickness of 2 mm. The degree of cure of the insulating adhesive material surface layer at this time was 30%. Further, this was left in a furnace at 170 ° C. for 60 minutes and further in a furnace at 200 ° C. for 15 minutes to obtain a metal base substrate. At this time, there were two sheets with blistering or the like with respect to 100 manufactured metal base substrates, which were excluded.
[0024]
(Comparative Example 1)
The copper foil with an insulating adhesive material of Example 1 is stacked on a metal plate, and the metal base substrate is left by being left in a furnace at 200 ° C. for 15 minutes after being further heated at 170 ° C. and a pressure of 2 MPa for 60 minutes. Got. At this time, no blistering occurred.
[0025]
(Comparative Example 2)
The copper foil with an insulating adhesive material of Example 1 and the aluminum plate were integrated with pressure and heating by adjusting the lamination pressure to 35 kgf / cm with a hot roll laminator at 100 ° C. The degree of cure of the insulating adhesive material surface layer in contact with the metal plate at this time was 5%. In the following, a metal base substrate was produced in the same manner as in Example 1. In this case, there were 12 blisters on 100 metal base substrates, which were excluded.
[0026]
(Comparative Example 3)
The copper foil with an insulating adhesive material of Example 1 and an aluminum plate were adjusted with a roll laminator at 200 ° C. so that the lamination pressure was 35 kgf / cm, and integrated under pressure and heating. The degree of cure of the insulating adhesive material surface layer in contact with the metal plate at this time was 75%. In the following, a metal base substrate was produced in the same manner as in Example 1. At this time, there was one sheet with blistering or the like for 100 metal base substrates, and this was excluded.
[0027]
The metal base substrates obtained in Examples and Comparative Examples 1 to 3 were evaluated by the following methods, and the results are shown in Table 1.
[0028]
(Evaluation methods)
100 samples of 30 cm × 30 cm were used, and the blistering and withstand voltage characteristics of the sample in the initial state were evaluated, and those having a surface blister exceeding 1 mm or having a withstand voltage of less than 5 kV were evaluated as defective. Subsequently, samples that were judged to be defective in the initial state were excluded, and the samples were left in a high-temperature atmosphere at 150 ° C. for 10 days. The blistering and withstand voltage characteristics were evaluated in the same manner as described above, and the blistering on the surface exceeded 1 mm. Those with a withstand voltage of less than 5 kV were evaluated as defective.
[0029]
[Table 1]
――――――――――――――――――――――――――――――――――
Item Example 1 Comparative example 1 Comparative example 2 Comparative example 3
――――――――――――――――――――――――――――――――――
Number of defects in the initial state 2 0 12 1
Number of defects after 10 days treatment at 150 ℃ 0 4 2 3
――――――――――――――――――――――――――――――――――
[0030]
The initial state and the number of defects after standing at 150 ° C. for 10 days are shown in the table for Example 1 and Comparative Examples 1 to 3, but in Example 1, there are a few defects at the initial stage, but they are left at 150 ° C. for 10 days. There is no post-defect occurrence. On the other hand, Comparative Example 1 is cured by applying a load and has good initial characteristics, but the number of defects after being left at high temperature is larger than that of the example. In Comparative Example 2, since the degree of curing of the insulating adhesive material surface layer in contact with the metal plate was low, many defects due to blistering occurred during subsequent curing. In Comparative Example 3, since the degree of curing of the insulating adhesive material surface layer in contact with the metal plate is high, the initial characteristics are good. However, the number of defective withstand voltages after standing at high temperature is higher than that in Examples.
[0031]
【The invention's effect】
By laminating a metal plate and a metal foil with an insulating adhesive material in a semi-cured state on a metal base substrate and curing the insulating adhesive material without applying a load, it is easy to inspect initial defects due to foreign matters, etc. The reliability of the substrate could be improved.

Claims (3)

絶縁接着材料付き金属箔と金属板を積層してなる金属ベース基板の製造において、金属板と接する絶縁接着材料面層の硬化度が20%〜60%になるようにホットロールラミネータで絶縁接着材料付き金属箔と金属板を連続的に加圧加熱積層した後、荷重を掛けずに絶縁接着材料の硬化を行い、表面のふくれが1mmを越える基板を取り除くことを特徴とする金属ベース基板の製造方法。In the production of a metal base substrate made by laminating a metal foil with an insulating adhesive material and a metal plate, an insulating adhesive material with a hot roll laminator so that the degree of curing of the insulating adhesive material surface layer in contact with the metal plate is 20% to 60% attached after the metal foil and the metal plate was continuously heated under pressure laminate, it has rows curing of the insulating adhesive material without a load, blistering of the surface of the metal base substrate, wherein removing the substrate exceeding 1mm Production method. ホットロールラミネータの積層圧力が30〜60kgf/cmである請求項1に記載の金属ベース基板の製造方法。The method for producing a metal base substrate according to claim 1, wherein the lamination pressure of the hot roll laminator is 30 to 60 kgf / cm. 金属箔の厚さが18μm〜150μm、絶縁接着材料の厚さが50μm〜200μmであり、かつ金属板の厚さが1〜4mmである請求項1または請求項2に記載の金属ベース基板の製造方法。The metal base substrate according to claim 1 or 2, wherein the metal foil has a thickness of 18 µm to 150 µm, the insulating adhesive material has a thickness of 50 µm to 200 µm, and the metal plate has a thickness of 1 to 4 mm. Method.
JP04017897A 1997-02-25 1997-02-25 Manufacturing method of metal base substrate Expired - Fee Related JP4162733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04017897A JP4162733B2 (en) 1997-02-25 1997-02-25 Manufacturing method of metal base substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04017897A JP4162733B2 (en) 1997-02-25 1997-02-25 Manufacturing method of metal base substrate

Publications (2)

Publication Number Publication Date
JPH10242634A JPH10242634A (en) 1998-09-11
JP4162733B2 true JP4162733B2 (en) 2008-10-08

Family

ID=12573535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04017897A Expired - Fee Related JP4162733B2 (en) 1997-02-25 1997-02-25 Manufacturing method of metal base substrate

Country Status (1)

Country Link
JP (1) JP4162733B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5027576B2 (en) * 2007-07-06 2012-09-19 京セラケミカル株式会社 High voltage transformer and manufacturing method thereof
JP5504064B2 (en) * 2010-06-16 2014-05-28 日本発條株式会社 Circuit board laminate and metal base circuit board manufacturing method

Also Published As

Publication number Publication date
JPH10242634A (en) 1998-09-11

Similar Documents

Publication Publication Date Title
JP3209132B2 (en) Metal base substrate
JP3792327B2 (en) Thermally conductive adhesive composition and thermally conductive adhesive film using the composition
JP5738274B2 (en) Heat-resistant adhesive
KR101023844B1 (en) Adhesive resin composition, adhesive film, dicing die bonding film and semiconductor device using the same
US20120296010A1 (en) Encapsulating sheet and electronic device
JPH10237410A (en) Thermally conductive adhesive composition and thermally conductive adhesive film prepared by using the same
JP4258984B2 (en) Manufacturing method of semiconductor device
JP2008545869A (en) B-stageable film, electronic equipment and related processes
JP2009060146A (en) Epoxy resin inorganic composite sheet for sealing semiconductor, and molded product
JP2007001266A (en) Epoxy resin inorganic composite sheet, and molded article
JP3646890B2 (en) Metal body with insulating adhesive material and manufacturing method thereof
JPH09298369A (en) Multilayer wiring board and its manufacture
JP4994743B2 (en) Film adhesive and method of manufacturing semiconductor package using the same
JP2014179593A (en) Sealing sheet for semiconductor elements, semiconductor device, and method for manufacturing semiconductor device
KR20080050189A (en) Adhesive composition for a semiconductor packing, adhesive film, dicing die bonding film and semiconductor device using the same
JP5771988B2 (en) Thermosetting resin composition
JP2002275433A (en) Adhesive film
JPH10242635A (en) Manufacturing method of metal-based board
WO2018168005A1 (en) Resin composition, resin sheet, laminate, and semiconductor element
JP4162733B2 (en) Manufacturing method of metal base substrate
JP2000290613A (en) Thermosetting adhesive sheet
JP3820668B2 (en) Metal base substrate and manufacturing method thereof
CN112771123A (en) Resin composition, cured resin, and composite molded article
JP5821845B2 (en) Resin composition used for formation of resin layer constituting metal base substrate, metal base substrate, and method of manufacturing metal base substrate
JP2008177432A (en) Heat curing resin sheet for sealing, electronic component device, and method of manufacturing electronic component device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050831

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees