JP4157404B2 - Method for manufacturing sheet electrode plate and non-aqueous electrolyte battery - Google Patents

Method for manufacturing sheet electrode plate and non-aqueous electrolyte battery Download PDF

Info

Publication number
JP4157404B2
JP4157404B2 JP2003086798A JP2003086798A JP4157404B2 JP 4157404 B2 JP4157404 B2 JP 4157404B2 JP 2003086798 A JP2003086798 A JP 2003086798A JP 2003086798 A JP2003086798 A JP 2003086798A JP 4157404 B2 JP4157404 B2 JP 4157404B2
Authority
JP
Japan
Prior art keywords
active material
electrode
aqueous electrolyte
electrolyte battery
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003086798A
Other languages
Japanese (ja)
Other versions
JP2004296255A (en
Inventor
優治 佐藤
敬 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003086798A priority Critical patent/JP4157404B2/en
Publication of JP2004296255A publication Critical patent/JP2004296255A/en
Application granted granted Critical
Publication of JP4157404B2 publication Critical patent/JP4157404B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は薄膜電極の連続塗布工程を可能とし、大電流放電および急速充電を可能とするシート状極板の製造方法ならびにその極板を用いた非水電解質電池に関する。
【0002】
【従来の技術】
一般に、リチウムイオン電池などの非水電解質電池は、用いる非水電解質の電気伝導度が水系電解質に比べ低いので、集電体である導電性支持体に形成される電極層の厚みを薄くする必要がある。そのため円筒型電池では活物質充填量を上げるためシート状の電極を巻回した渦巻式構造が採用されている。
【0003】
従来、シート状極板の製造方法としては、ロール圧延方式やロールコート方式がシート状極板の製造方法としてあるが、両面同時に塗布できるので効率はよいが、支持体を極板シートの中央に位置させることが難しい、リッビング(うね)やムラと呼ばれる面状が見られ、シート状極板の塗布面を平滑にすることが困難などの問題がある。
【0004】
そこで、特開平4−242071号公報(特許文献1)に開示されるドクターブレード方式が、薄いシート状極板の製造方法として提案された。この方法によれば、塗布されるべき支持体の面に対して所定の間隙をもってドクターブレードを設け、活物質に導電剤を混合し、さらに結着剤などを加えて練合した電極材料塗布液をドクターブレードの前側に貯え、走行する支持体との間隙に見合った量だけ電極材料液が層状に引き出されることによりシート状極板が製造される。
【0005】
本発明者等は、急速充電可能または大電流放電可能な電極塗布膜厚みについては薄膜化が必須であることを見出したが、通常リチウムイオン電池の電極材料塗布においてはドクターブレード方式を用いている。薄膜化のためには、電極材料塗布液は低粘度化ないしは固形分比を低くすることもある。しかしながら、この場合乾燥負荷が大きくなるため塗布速度を遅くする必要がある。この様な遅い乾燥速度で塗布した場合、塗液が低粘度であることから塗布面に液ダレが発生しやすい状態となり、均一厚さで塗布することができない。また、この問題を防止するために塗液の粘度を高くするないしは固形分比を高くする事も考えられるが、その場合、ドクターブレード塗布面で凝集体によるスジが発生し、やはり均一厚さで塗布することができない。この様な液ダレやスジの発生による厚さの薄い活物質層が形成されるとその薄い部分では電池の充放電中に生じるリチウムの析出物・デンドライトが発生しやすくなり、充放電の際にこの析出物に電流が集中し、このリチウムの析出物を介して正極と負極間で短絡が生じやすくなるため、短時間での充電が困難であると言う問題があった。
【0006】
【特許文献1】
特開平4−242071号公報
【0007】
【発明が解決しようとする課題】
急速充電可能または大電流放電可能な電極塗布膜を作成するにおいては、従来のリチウムイオン電池の製造方法であるドクターブレードを使用する方法では、形成される活物質層の厚さに塗布ムラやスジが生じ、不均一な活物質層が形成されるとその塗布ムラやスジ部分では電池の充放電中に生じる析出物に起因して短時間での充電が困難であると言う問題があった。
【0008】
本発明は、上記問題点に鑑みてなされたもので、活物質層の厚さの不均一部分に起因した短時間充電の問題を解決したシート状極板の製造方法及び非水電解質電池の提供を課題とする。
【0009】
【課題を解決するための手段】
上記課題を解決するために、本発明のシート状極板の製造方法は、非水電解質電池用の導電性金属箔体上に活物質材料及び溶剤を含み粘度が10cPS〜500cPSであり加圧・加熱した電極材料塗液を霧状にした状態から塗布層を形成する工程と、この塗布層を乾燥させて活物質層を形成する工程とを具備することを特徴とする。
【0010】
請求項2のシート状極板の製造方法は、請求項1において、前記電極材料塗液の加熱温度が20℃〜70℃であることを特徴とする。
【0012】
本発明の非水電解質電池は、導電性金属箔体上に正極活物質層を形成した正極と、導電性金属箔体上に負極活物質層を形成した負極と、前記正極及び負極間に介在して形成される非水電解液とを有する非水電解質電池において、前記正極活物質層および前記負極活物質層がどちらとも、活物質材料及び溶剤を含み粘度が10cPS〜500cPSであり加圧・加熱した電極材料塗液を、霧状にした状態から導電性金属箔体上に塗布して形成された活物質層を用いたことを特徴とする。
【0013】
【発明の実施の形態】
本発明の骨子は、正極、負極、電解質を有するリチウムイオン電池の製造において、電極材料の塗液に直接加圧しさらに塗液を加熱する事で更なる低粘度化する事でノズル細孔部からの吐出をし易くし塗液を走行する導電性金属箔体上に薄膜状に連続的に塗布することを特徴とするシート状極板の製造方法、及びこの方法によって製造する電池である。
【0014】
本発明に用いる加圧加熱型吐出法は、塗液体吸い上げ加圧式ポンプ(圧力調整器付属)と加熱用ヒータ部と細孔部を有するノズルから形成される。ノズル部には、塗布液を塗液体吸い上げ加圧式ポンプにより加圧され更に加熱用ヒータ部を経由させることで高粘度液体を低粘度液体にして供給され、細孔部のノズルより吐出・噴出される。ノズル部にはシャッター機構を有しており、シャッターは三方シャッター構造となっている。そのシャッターの駆動は外部から信号を与えることで切替わるようシーケンス化され間欠塗布もできるようになっている。この時、加圧ポンプに戻る途中に流量計を取り付けることで流量を調整し吐出量を制御できる。シャッターを開くと(吐出)、塗液はノズル部の細孔部から加圧力で噴出し、吐出された塗布液は導電性金属箔体上に層状に均一塗布される。シャッターを閉じた場合(還流)、塗液はノズル部を通過し加圧ポンプに戻る系を構成する。
【0015】
以下、図面により本発明の実施態様について詳述する。図1は本発明の製造方法についての実施態様である塗布装置の概略図である。図1において導電性金属箔支持体(以下「金属箔」と称する)100が、巻きだしロール5と巻き取りロール7間で乾燥用ヒータ部6を通して連続走行する。細孔部を有するノズル3が金属箔に間隔を保つように設置される。
【0016】
細孔部を有するノズル3は、塗液流路が三方シャッターを内蔵された構造より構成されている。調製され塗液タンク4に保持された電極材料塗布液は直接加圧できる加圧ポンプ1で液体を吸上げると共に加圧し圧力調整器2で任意な圧力に調整、加熱ヒータで塗液の粘度を低粘度化するため適度な温度に維持し、細孔部を有するノズル3内に連続的に供給される。なお、ノズル3内に内蔵されている三方シャッターで還流と吐出に外部信号で切り替える事ができる。
【0017】
塗布液は、ノズル3より吐出噴出され、連続的に走行する金属箔100上に塗布される。塗液に直接圧力を加える方法の噴出方式は、従来噴出方式の塗液出口に高圧空気を吹き付ける方式に較べて飛散が少なく効率よく塗布できる作用である。また、塗布液が均一に吐出されるので厚さの制御も簡便に行える。前記塗布方法において、電極材料塗布液の粘度は、B型粘度計(トキメック社製)による測定で、25℃で10cPS〜500cPSの範囲がよく、好ましくは50cPS〜200cPSがよい。
【0018】
本発明に用いられるノズル3に供給される電極材料塗布液量は、塗布厚み、金属箔の搬送速度などによって決まるが、系内の流量計で調整される、0.1ml/分〜100ml/分が好ましい。本発明によって塗布される電極材料塗布液の塗布膜厚みは、乾燥前の湿潤状態で30μm〜200μmが好ましく、特に50μm〜100μmが好ましい。乾燥後の塗布膜厚みは片面で10μm〜60μmが好ましく、特に20〜40μmが好ましい。本発明に用いられる電極材料塗布液の温度は加熱ヒータにより粘度を低粘度に保つように制御することが出来る。液温度は20℃〜70℃の範囲が好ましく、特に30℃〜50℃が好ましい。
【0019】
また、図3は本発明のシート状極板の製造方法に使用する別の製造装置を示したものである。基本的な構成は図1と同様であるが、異なるのは、図1の装置を2系統用意し、導電性金属箔支持体(以下「金属箔」と称する)100の両面に塗布膜を形成できる様にした点である。従って、図1と同一部分は同一番号を付し、その詳細な説明を省略した。
【0020】
本発明によって塗布される電極材料塗布液は、電極活物質、導電剤、結着剤、溶媒などを含むことが出来る。電極活物質としては、H+ 、Li+ 、Na+ 、K+ が挿入および/または放出できる化合物であればよいが、なかでも、遷移金属酸化物、遷移金属カルコゲナイド、炭素質材料、周期律表IVB、VB族半金属を主体とした酸化物を用いることができ、特に、リチウム含有遷移金属酸化物、遷移金属酸化物、炭素質材料、周期律表IVB、VB族半金属を主体とした酸化物が好ましい。(遷移金属はMn、Co、Ni、V、Feを主体とすることが好ましく、周期律表IVB、VB族はGe、Sn、Pb、Bi、Siを主体とすることが好ましい。)具体的にはLiCoO2 、LiNiO2 、LiCo0.5
Ni0.5 O2 、LiMn2 O4 、LiCoVO4 、LiNiVO4 、LiCo0.9 Sn0.1 O2 、LiCo0.9 Ti0.1O2 、LiCo0.9 Al0.1 O2 、LiCo0.9 In0.1 O2 、LiCo0.9 Y0.1 O2 、LiCo0.9 Ce0.1 O2 、Fe3 O4 、V6 O13、V2 O5 、などがあげられる。好ましい炭素質材料としては、002面の面間隔が3.35〜3.80A(オングストロ−ム)、密度が1.1〜1.7g/m3 のものが好ましく、黒鉛、石油コークス、クレゾール樹脂焼成炭素、フラン樹脂焼成炭素、ポリアクリロニトリル繊維焼成炭素、気相成長炭素、メソフェーズピッチ焼成炭素などを挙げることができる。周期律表IVB、VB族半金属を主体とした酸化物としては、GeO、GeO2 、SnO、SnO2 、PbO、PbO2 、Pb2 O3 、Pb3 O4 、Sb2 O3 、Sb2 O4 、Sb2 O5 、Bi2 O3 、Bi2 O4 、Bi2 O5 、SiSnO3 、Li2 SiO3 、Li4 SiO4 、Li2 Si3 O7 、Li2 Si2 O5 、Li8 SiO6 、Li6 Si2 O7 、Li4 Ge9 O20、Li6 Ge8 O19、Li4 Ge5 O12、Li6 Ge2 O7 、α−Li4 GeO4 、Li4 GeO4 、β−Li8 GeO6 、Li2 Ge7 O15、Li2 GeO3、Li2 Ge4 O9 、Li2 SnO3 、Li8 SnO6 、Li2 PbO3 、β−Li2 PbO3 、Li8 PbO6 、Li4 PbO4 、Li7 SbO6 、LiSbO3 、Li3 SbO4 、Li3 BiO4 、Li7 BiO6 、Li5 BiO5 、LiBiO2 、Li4 Bi6 O11、Li4 MgSn2 O7 、Li2 MgSn2 O5、Li2 MgSn2 O6 、Li2 Mg3 SnO6 、Li4 Mg2 SnO6、Li4Ti5O12 などを挙げることができるが、これに限定されるわけではない。
【0021】
本発明によって塗布される電極材料塗布液は0.01〜100μmの活物質を含むことができる。導電剤は、構成された電池において、化学変化を起こさない電子導伝性材料であれば何でもよい。
【0022】
通常、天然黒鉛(鱗状黒鉛、鱗片状黒鉛など)、人工黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維、金属粉、金属繊維あるいはポリフェニレン誘導体などの導電性材料を1種またはこれらの混合物として含ませることができる。黒鉛とアセチレンブラックの併用が特に好ましい。結着剤としては、多糖類、熱可塑性樹脂及びゴム弾性を有するポリマーを少なくとも1種またはこれらの混合物を用いることができる。結着剤は溶媒に溶けてもよいし、分散または懸濁などのように析出していてもよい。溶媒は、水または少なくとも1種の有機溶剤またはこれらの混合物を用いることができる。溶剤は特に限定されるものではなく、N−メチルピロリドン、キシレン、トルエン、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、エタノール、メタノール、酢酸メチル、酢酸エチル、酢酸ブチル、メチレンクロライド、エチレンクロライド、などが好ましい。本発明において、電極材料塗布液の組成は特に制限されないが、塗布液は通常、電極活物質100重量部に対し、導電剤1〜50重量部、結合剤1〜20重量部、及び溶媒30〜600重量部を含んでなる。
【0023】
また、本発明における導電性金属箔体は特に限定されるものではないが、金属箔(アルミ、銅、ニッケル、ステンレスなど)や、無機酸化物、有機高分子材料、炭素などの導電性フィルムを用いることが出来る。支持体の形態は、連続体、穴あき、ネットでもよいが、特に連続体が好ましい。導電性金属箔体の厚みは5〜50μmが好ましい。さらに、本発明における支持体に働く張力は、特に限定されるものではないが、5g/cm〜100g/cmが好ましく、特に10g/cm〜40g/cmが好ましい。本発明において、金属箔体の塗布面上での位置変動が大きい場合には、走行位置はEPC(エッジ・ポジション・コントローラー)等によって制御される。図に示すように、電極材料を塗布した金属箔は乾燥室に搬送され乾燥される。乾燥は、熱風乾燥、遠赤外線などを用いることができ、熱風乾燥の場合、溶剤、結着剤などにより温度は選定されるが、40〜250℃がよく、特に50〜200℃がよい。
【0024】
a)正極9
正極活物質としてLiCoO2 を88重量部、導電剤としてアセチレンブラック9重量部の割合で混合し、さらに結着剤としポリ弗化ビニリデンを3重量部を加え、溶媒としてN−メチルピロリドンを添加して混練した固形分濃度60%のスラリーを、厚さ20μmのアルミニウム箔の両面に、図1に示すような塗布装置を使い、本発明の方法で片面づつ塗布した。加熱ヒータの温度は50度、塗液の圧力は40kgf/cm2、流量計の流量設定は50ml/分、金属箔体搬送速度は5m/minで塗布を行った。電極材料塗布液の固形分含有率は60重量%で、見かけ粘度は、150cPSであった。塗布物を熱風乾燥後ローラープレス機により圧縮成形し、厚さ80μmの正極シートを作成した。
【0025】
b)負極11
負極11は負極活物質としてリチウムイオンを吸蔵・放出する炭素質、例えばコークス、炭素繊維、熱分解気相炭素物、黒鉛、樹脂焼成体、メソフェーズピッチ系炭素繊維またはメソフェーズ球状カーボンの焼成体などを挙げることができる。中でも、2500℃以上で黒鉛化したメソフェーズピッチ系炭素繊維またはメソフェーズ球状カーボンを用いると電極容量が高くなるため好ましい。ここでは、メソフェーズピッチ系炭素繊維を85重量部、導電剤としてアセチレンブラック6重量部、黒鉛6重量部の割合で混合し、さらに結着剤としてエチルアクリレート、エチレン、無水マレイン酸の共重合化合物を3重量部加え、溶媒としてトルエンを添加して混練・混合した固形分濃度50%のスラリーを、厚さ10μmの銅箔の両面に、正極と同様に本発明にて片面づつ塗布した。スラリー状電極材料塗布液の固形分含有量は50重量%で、見かけ粘度は、150cPSであった。塗布物を乾燥後ローラープレス機により圧縮成形し、厚さ70μmの負極シートを作成した。
【0026】
負極11の活物質材料は、例えばリチウムイオンを吸蔵・放出する炭素質物またはカルコゲン化合物を含むもの、軽金属等からなる。中でもリチウムイオンを吸蔵・放出する炭素質物またはカルコゲン化合物を含む負極は、前記二次電池のサイクル寿命などの電池特性が向上するために好ましい。
【0027】
リチウムイオンを吸蔵・放出する炭素質物としては、例えばコークス、炭素繊維、熱分解気相炭素物、黒鉛、樹脂焼成体、メソフェーズピッチ系炭素繊維またはメソフェーズ球状カーボンの焼成体などを挙げることができる。中でも、2500℃以上で黒鉛化したメソフェーズピッチ系炭素繊維またはメソフェーズ球状カーボンを用いると電極容量が高くなるため好ましい。
【0028】
リチウムイオンを吸蔵・放出するカルコゲン化合物としては、二硫化チタン(TiS2)、二硫化モリブデン(MoS2)、セレン化ニオブ(NbSe2)などを挙げることができる。このようなカルコゲン化合物を負極に用いると、二次電池の電圧は降下するものの負極の容量が増加するため、二次電池の容量が向上される。更に、負極はリチウムイオンの拡散速度が大きいため、二次電池の急速充放電性能が向上される。
【0029】
軽金属としては、アルミニウム、アルミニウム合金、マグネシウム合金、リチウム金属、リチウム合金などを挙げることができる。
【0030】
結着剤としては、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、エチレン−プロピレン−ジエン共重合体(EPDM)、スチレン−ブタジエンゴム(SBR)等を用いることができる。
【0031】
金属箔集電体としては、例えば銅箔、ニッケル箔等を用いることができるが、電気化学的な安定性および捲回時の柔軟性等を考慮すると、銅箔がもっとも好ましく、電解銅・無電解銅、ならびに光沢・無光沢に関わらず使用できる。銅合金で銅と同様に使用することができる。この場合、銅にニッケル、鉄等の金属を0.05重量%程度添加する事で銅合金が得られる。一方、このときの箔の厚さとしては、6μm以上20μm以下であることが好ましい。
c)非水電解液18
非水電解液18は非水溶媒に電解質を溶解した組成を有する。
【0032】
非水溶媒としては、例えばプロピレンカーボネート(PC)、エチレンカーボネート(EC)などの環状カーボネート、例えばジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、ジエチルカーボネート(DEC)などの鎖状カーボネート、1,2−ジメトキシエタン(DME)、ジエトキシエタン(DEE)などの鎖状エーテル、テトラヒドロフラン(THF)や2−メチルテトラヒドロフラン(2−MeTHF)などの環状エーテルやクラウンエーテル、γ−ブチロラクトン(γ−BL)などの脂肪酸エステル、アセトニトリル(AN)などの窒素化合物、スルホラン(SL)やジメチルスルホキシド(DMSO)などの硫黄化合物などから選ばれる少なくとも1種を用いることができる。
【0033】
中でも、EC、PC、γ−BLから選ばれる少なくとも1種からなるものや、EC、PC、γ−BLから選ばれる少なくとも1種とDMC、MEC、DEC、DME、DEE、THF、2−MeTHF、ANから選ばれる少なくとも1種とからなる混合溶媒を用いることが望ましい。また、負極に前記リチウムイオンを吸蔵・放出する炭素質物を含むものを用いる場合に、負極を備えた二次電池のサイクル寿命を向上させる観点から、ECとPCとγ−BL、ECとPCとMEC、ECとPCとDEC、ECとPCとDEE、ECとAN、ECとMEC、PCとDMC、PCとDEC、またはECとDECからなる混合溶媒を用いることが望ましい。
【0034】
電解質としては、例えば過塩素酸リチウム(LiClO4)、六フッ化リン酸リチウム(LiPF6)、ホウフッ化リチウム(LiBF4)、六フッ化砒素リチウム(LiAsF6)、トリフルオロメタスルホン酸リチウム(LiCF3SO3)、四塩化アルミニウムリチウム(LiAlCl4)、ビストリフルオロメチルスルホニルイミドリチウム[LiN(CF3SO22]などのリチウム塩を挙げることができる。中でもLiPF6、LiBF4、LiN(CF3SO22を用いると、導電性や安全性が向上されるために好ましい。
電解質の非水溶媒に対する溶解量は、0.5モル/L〜2.0モル/Lの範囲にすることが好ましい。
【0035】
【実施例】
上記で作成した電極シートを用い図5に示すような内部構成の円筒形リチウムイオン電池18650型を作成した。同図は円筒形電池を切断して示す斜視図である。鉄のニッケルメッキからなる負極端子を兼ねる金属電池容器8内に、急速充電対応電池とするために電極反応面積を広くする構成言い換えれば活物質層の厚みが薄い電極となるように、本発明で示した製造方法によって得られた正極シート9と同様に薄膜負極を塗布形成した負極シート11を正極シート9より大きい負極シート11、負極シート11より大きい幅でしかも薄いセパレータ10を介して渦巻状に積層捲回してなる発電要素である電極群12で構成、正極リードタブ13は電流遮断機構を有する電流遮断弁14を介してラプチャ−、電池蓋を兼ねる正極トップ15に接続するよう構成され、負極リードタブ16は抵抗ロスを極力減らした銅のクラッド材を用い金属缶底に溶接により構成した。
【0036】
セパレータ10は、例えば不織布、ポリプロピレン微多孔フィルム、ポリエチレン微多孔フィルム、ポリエチレン−ポリプロピレン微多孔積層フィルムから形成される。
【0037】
さらに、非水電解液18として1mol/リットル・LiPF6 (エチレンカーボネートとジメチルカーボネートの1:2容量混合液)6.0gを電池缶内に注入した。電極トップを有する電池蓋15をガスケット17を介して機械的にかしめて円筒型リチウムイオン電池を作成した。作成した円筒形リチウムイオン電池の直径は18mm、高さは65mmで0.2C時における公称容量は1600mAhであった。
[比較例]
実施例と同じ正極合剤塗布液を、厚さ20μmのアルミニウム箔の両面に、ドクターブレード方式にて片面づつ塗布した。金属箔の搬送速度は1m/minであった。塗布物を熱風乾燥後ローラープレスにより圧縮成形し、厚さ140μmの正極シ−トを作成した。実施例と同じ負極合剤塗布液を、厚さ10μmの銅箔の両面に、正極と同様にドクタ−ブレード方式にて片面づつ塗布した。塗布物を熱風乾燥後ローラープレス機により圧縮成形し、厚さ125μmの負極シートを作成した。作成した正極シート及び負極シートを実施例と同様の方法で円筒型電池(公称容量は1850mAh)を作成した。
【0038】
図3に実施例の電池と比較例の電池の急速充電性を表す図を示した。比較例であるドクターブレード方式の電極を用いた電池においては満充電(100%)に至る時間が50分(約0.9時間)掛かるのに対し、本発明のシート電極製造方法で得られた電極を用いた電池においては12分(約0.2時間)で満充電に至ることが分かる。一方、レート特性においては図4に示した通り、放電電流値が5C(mA)を超える大きな電流を取り出す場合には特に顕著な差として出てくることが分かる。これらの特性からも明らかなように本発明により作製された電極を用いた電池ではリチウムイオンの伝導性の向上により迅速な拡散が進んでいる事が伺える。
【0039】
以上説明した様に、本実施例により得られる薄膜塗布電極を正負極に用いたリチウムイオン電池はリチウムイオンの伝導性が向上し短時間での充電が行えるいわゆる急速充電性に優れた電池となる。また、放電特性に関しても20Cの大電流放電の可能が見え電動工具などの電力機器への適用も図る事ができる。
【0040】
【発明の効果】
本発明は、上記構成から、活物質層の厚さのムラに起因した電流集中の問題を解決し短時間での充電が行えるいわゆる急速充電性に優れた電池を提供できる。
【図面の簡単な説明】
【図1】 本発明に用いた塗布装置の概略構成を示す図である。
【図2】 本発明に用いた塗布装置で支持体の両面同時塗布構成を示す図である。
【図3】 本発明の電極で構成された円筒型リチウムイオン電池の急速充電特性図である。
【図4】 本発明の電極で構成された円筒型リチウムイオン電池の放電レート特性である。
【図5】 本発明の電極で構成された円筒型リチウムイオン電池を切断して示す斜視図
【符号の説明】
1:加圧吸上げポンプ(圧力調整付属)
2:加熱ヒータ
3:細孔部を有するノズル
4:塗液タンク
5:巻きだしロール
6:乾燥用ヒータ部
7:巻き取りロール
8:外装缶
9:正極
10:セパレータ
11:負極
12:電極群
13:正極リードタブ
14:電流遮断弁
15:正極トップ
16:負極リードタブ
17:シール用絶縁体(ガスケット)
18:非水電解液
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a sheet-like electrode plate that enables a continuous application process of a thin film electrode and enables large current discharge and rapid charge, and a nonaqueous electrolyte battery using the electrode plate.
[0002]
[Prior art]
In general, non-aqueous electrolyte batteries such as lithium ion batteries use a non-aqueous electrolyte that has a lower electrical conductivity than aqueous electrolytes, so it is necessary to reduce the thickness of the electrode layer formed on the conductive support that is the current collector. There is. Therefore, the cylindrical battery employs a spiral structure in which a sheet-like electrode is wound in order to increase the active material filling amount.
[0003]
Conventionally, as a method for producing a sheet-like electrode plate, a roll rolling method or a roll coating method is used as a method for producing a sheet-like electrode plate, but since both sides can be applied simultaneously, efficiency is good, but the support is placed in the center of the electrode plate sheet. There is a problem that it is difficult to position, a surface shape called riving or unevenness is seen, and it is difficult to smooth the application surface of the sheet-like electrode plate.
[0004]
Therefore, the doctor blade method disclosed in Japanese Patent Laid-Open No. 4-242071 (Patent Document 1) has been proposed as a method for producing a thin sheet-like electrode plate. According to this method, the electrode material coating solution is prepared by providing a doctor blade with a predetermined gap with respect to the surface of the support to be coated, mixing the conductive material with the active material, and further kneading the binder. Is stored on the front side of the doctor blade, and the electrode material liquid is drawn out in layers by an amount commensurate with the gap with the traveling support, thereby producing a sheet-like electrode plate.
[0005]
The present inventors have found that it is essential to reduce the thickness of the electrode coating film that can be rapidly charged or discharged with a large current. However, the doctor blade method is usually used for coating the electrode material of a lithium ion battery. . In order to reduce the film thickness, the electrode material coating solution may have a reduced viscosity or a lower solid content ratio. However, in this case, since the drying load becomes large, it is necessary to slow down the coating speed. When coating is performed at such a slow drying rate, the coating liquid has a low viscosity, so that liquid dripping is likely to occur on the coated surface, and coating cannot be performed with a uniform thickness. In order to prevent this problem, it is conceivable to increase the viscosity of the coating liquid or increase the solid content ratio. In this case, however, streaks due to agglomerates occur on the doctor blade application surface, and the thickness is also uniform. Cannot be applied. When a thin active material layer is formed due to the occurrence of such dripping or streaking, lithium deposits and dendrites that occur during battery charging / discharging tend to occur in the thin part, and during charge / discharge Since current concentrates on the precipitate and a short circuit is likely to occur between the positive electrode and the negative electrode through the lithium precipitate, there is a problem that charging in a short time is difficult.
[0006]
[Patent Document 1]
JP-A-4-242071 [0007]
[Problems to be solved by the invention]
In creating an electrode coating film that can be rapidly charged or discharged with a large current, a method using a doctor blade, which is a conventional method of manufacturing a lithium ion battery, involves uneven coating and streaking depending on the thickness of the active material layer to be formed. When a non-uniform active material layer is formed, there is a problem that it is difficult to charge in a short time due to deposits generated during charging / discharging of the battery in the coating unevenness and streaks.
[0008]
The present invention has been made in view of the above problems, and provides a method for manufacturing a sheet-like electrode plate and a non-aqueous electrolyte battery that solves the problem of short-time charging caused by the uneven thickness of the active material layer. Is an issue.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the method for producing a sheet-like electrode plate according to the present invention includes an active material and a solvent on a conductive metal foil for a nonaqueous electrolyte battery, and a viscosity of 10 cPS to 500 cPS. · the heating electrode material coating solution and forming a coating layer from a state of being atomized, characterized by comprising the step of forming an active material layer the coating layer is dried.
[0010]
The method for producing a sheet-like electrode plate according to claim 2 is characterized in that, in claim 1, the heating temperature of the electrode material coating liquid is 20 ° C. to 70 ° C.
[0012]
The nonaqueous electrolyte battery of the present invention includes a positive electrode in which a positive electrode active material layer is formed on a conductive metal foil body, a negative electrode in which a negative electrode active material layer is formed on the conductive metal foil body, and an interposition between the positive electrode and the negative electrode. In the non-aqueous electrolyte battery having the non-aqueous electrolyte formed, the positive electrode active material layer and the negative electrode active material layer both include an active material and a solvent and have a viscosity of 10 cPS to 500 cPS. It is characterized by using an active material layer formed by applying a heated electrode material coating liquid on a conductive metal foil body from a mist state.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
In the manufacture of a lithium ion battery having a positive electrode, a negative electrode, and an electrolyte, the gist of the present invention is that the pressure is directly applied to the coating liquid of the electrode material, and the coating liquid is further heated to further reduce the viscosity, so that And a battery manufactured by this method. The method of manufacturing a sheet-like electrode plate is characterized in that it is continuously applied in a thin film form on a conductive metal foil body that facilitates discharge of the coating liquid and travels the coating liquid.
[0014]
The pressure heating type discharge method used in the present invention is formed from a coating liquid suction pressure pump (attached to a pressure regulator), a heater for heating, and a nozzle having a pore. The nozzle part is supplied with a coating liquid, sucked up by a pressurizing pump, and supplied via a heating heater part to change the high-viscosity liquid to a low-viscosity liquid. The The nozzle part has a shutter mechanism, and the shutter has a three-way shutter structure. The driving of the shutter is sequenced so as to be switched by applying a signal from the outside so that intermittent coating can be performed. At this time, by attaching a flow meter on the way back to the pressurizing pump, the flow rate can be adjusted to control the discharge amount. When the shutter is opened (discharge), the coating liquid is ejected from the fine pores of the nozzle portion with a pressurizing force, and the discharged coating liquid is uniformly applied in layers on the conductive metal foil. When the shutter is closed (reflux), the coating liquid forms a system that passes through the nozzle portion and returns to the pressure pump.
[0015]
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic view of a coating apparatus which is an embodiment of the production method of the present invention. In FIG. 1, a conductive metal foil support (hereinafter referred to as “metal foil”) 100 continuously runs between the winding roll 5 and the winding roll 7 through the drying heater section 6. The nozzle 3 having the pores is installed so as to keep a space in the metal foil.
[0016]
The nozzle 3 having the pores has a structure in which the coating liquid flow path incorporates a three-way shutter. The electrode material coating liquid prepared and held in the coating liquid tank 4 sucks up the liquid with a pressurizing pump 1 that can be pressurized directly, pressurizes it, adjusts it to an arbitrary pressure with a pressure regulator 2, and adjusts the viscosity of the coating liquid with a heater. In order to reduce the viscosity, it is maintained at an appropriate temperature and continuously supplied into the nozzle 3 having the pores. Note that a three-way shutter built in the nozzle 3 can be switched between reflux and discharge by an external signal.
[0017]
The coating liquid is ejected and ejected from the nozzle 3 and applied onto the continuously running metal foil 100. The spraying method in which pressure is directly applied to the coating liquid has an effect that it can be applied efficiently with less scattering compared to the conventional spraying method in which high-pressure air is blown to the coating liquid outlet. Further, since the coating liquid is discharged uniformly, the thickness can be easily controlled. In the coating method, the viscosity of the electrode material coating solution is measured by a B-type viscometer (manufactured by Tokimec Co., Ltd.), and the range of 10 cPS to 500 cPS is good at 25 ° C., preferably 50 cPS to 200 cPS.
[0018]
The amount of the electrode material coating solution supplied to the nozzle 3 used in the present invention is determined by the coating thickness, the transport speed of the metal foil, etc., but is adjusted by a flow meter in the system, 0.1 ml / min to 100 ml / min. Is preferred. The coating film thickness of the electrode material coating solution applied according to the present invention is preferably 30 μm to 200 μm, particularly preferably 50 μm to 100 μm, in a wet state before drying. The coating film thickness after drying is preferably 10 μm to 60 μm on one side, particularly preferably 20 to 40 μm. The temperature of the electrode material coating solution used in the present invention can be controlled by a heater so as to keep the viscosity low. The liquid temperature is preferably in the range of 20 ° C to 70 ° C, particularly preferably 30 ° C to 50 ° C.
[0019]
FIG. 3 shows another manufacturing apparatus used for the manufacturing method of the sheet-like electrode plate of the present invention. The basic configuration is the same as in FIG. 1 except that two systems of FIG. 1 are prepared and a coating film is formed on both surfaces of a conductive metal foil support (hereinafter referred to as “metal foil”) 100. It is a point that I made it possible. Accordingly, the same parts as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
[0020]
The electrode material coating solution applied according to the present invention may include an electrode active material, a conductive agent, a binder, a solvent, and the like. The electrode active material may be any compound in which H +, Li +, Na +, K + can be inserted and / or released. Among them, transition metal oxides, transition metal chalcogenides, carbonaceous materials, periodic tables, etc. Oxides mainly composed of IVB and VB group metalloids can be used, in particular, lithium-containing transition metal oxides, transition metal oxides, carbonaceous materials, periodic table IVB, and oxides mainly composed of VB group metalloids. Things are preferred. (The transition metal is preferably mainly composed of Mn, Co, Ni, V and Fe, and the periodic table IVB and VB are preferably composed mainly of Ge, Sn, Pb, Bi and Si.) LiCoO2, LiNiO2, LiCo0.5
Ni0.5 O2, LiMn2 O4, LiCoVO4, LiNiVO4, LiCo0.9 Sn0.1 O2, LiCo0.9 Ti0.1O2, LiCo0.9 Al0.1 O2, LiCo0.9 In0.1 O2, LiCo0.9 Y0.1 O2 LiCo0.9 Ce0.1 O2, Fe3 O4, V6 O13, V2 O5, and the like. Preferred carbonaceous materials are those having a 002 plane spacing of 3.35 to 3.80 A (angstrom) and a density of 1.1 to 1.7 g / m 3, and are calcined graphite, petroleum coke, and cresol resin. Examples thereof include carbon, furan resin-fired carbon, polyacrylonitrile fiber-fired carbon, vapor-grown carbon, and mesophase pitch-fired carbon. Periodic table IVB, oxides mainly composed of group VB semimetals are GeO, GeO2, SnO, SnO2, PbO, PbO2, Pb2 O3, Pb3 O4, Sb2 O3, Sb2 O4, Sb2 O5, Bi2 O3, Bi2 O4. , Bi2 O5, SiSnO3, Li2 SiO3, Li4 SiO4, Li2 Si3 O7, Li2 Si2 O5, Li8 SiO6, Li6 Si2 O7, Li4 Ge9 O20, Li6 Ge8 O19, Li4 Ge4 O4, Li6 Ge2 O7, Li6 Ge2 O7 , Β-Li8 GeO6, Li2 Ge7 O15, Li2 GeO3, Li2 Ge4 O9, Li2 SnO3, Li8 SnO6, Li2 PbO3, β-Li2 PbO3, Li8 PbO6, Li4 PbO4, Li7 SbO6, Li7 SbO6 , Li5 BiO5, LiBiO2, Li4 Bi6 O11, L 4 MgSn2 O7, Li2 MgSn2 O5, Li2 MgSn2 O6, Li2 Mg3 SnO6, Li4 Mg2 SnO6, Li4Ti5O12 can be listed, such as but not limited to.
[0021]
The electrode material coating solution applied according to the present invention may include an active material of 0.01 to 100 μm. The conductive agent may be any electron conductive material that does not cause a chemical change in the constructed battery.
[0022]
Usually, one or a mixture of conductive materials such as natural graphite (scale-like graphite, scale-like graphite, etc.), artificial graphite, carbon black, acetylene black, ketjen black, carbon fiber, metal powder, metal fiber or polyphenylene derivative Can be included. The combined use of graphite and acetylene black is particularly preferred. As the binder, at least one of polysaccharides, thermoplastic resins and polymers having rubber elasticity, or a mixture thereof can be used. The binder may be dissolved in a solvent, or may be precipitated as dispersed or suspended. As the solvent, water or at least one organic solvent or a mixture thereof can be used. The solvent is not particularly limited, and N-methylpyrrolidone, xylene, toluene, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, ethanol, methanol, methyl acetate, ethyl acetate, butyl acetate, methylene chloride, ethylene chloride, etc. preferable. In the present invention, the composition of the electrode material coating solution is not particularly limited, but the coating solution is usually 1 to 50 parts by weight of a conductive agent, 1 to 20 parts by weight of a binder, and 30 to 30 parts by weight of solvent relative to 100 parts by weight of the electrode active material. Comprising 600 parts by weight.
[0023]
In addition, the conductive metal foil body in the present invention is not particularly limited, but conductive films such as metal foils (aluminum, copper, nickel, stainless steel, etc.), inorganic oxides, organic polymer materials, carbon, etc. Can be used. The form of the support may be a continuous body, a hole, or a net, but a continuous body is particularly preferable. The thickness of the conductive metal foil is preferably 5 to 50 μm. Furthermore, although the tension | tensile_strength which acts on the support body in this invention is not specifically limited, 5 g / cm-100 g / cm are preferable, and 10 g / cm-40 g / cm are especially preferable. In the present invention, when the position variation on the coated surface of the metal foil body is large, the traveling position is controlled by an EPC (edge position controller) or the like. As shown in the figure, the metal foil coated with the electrode material is conveyed to a drying chamber and dried. For drying, hot air drying, far-infrared rays, or the like can be used. In the case of hot air drying, the temperature is selected depending on the solvent, the binder, and the like, but it is preferably 40 to 250 ° C, particularly 50 to 200 ° C.
[0024]
a) Positive electrode 9
88 parts by weight of LiCoO2 as a positive electrode active material, 9 parts by weight of acetylene black as a conductive agent, 3 parts by weight of polyvinylidene fluoride as a binder, and N-methylpyrrolidone as a solvent were added. The kneaded slurry having a solid content concentration of 60% was applied on both sides of an aluminum foil having a thickness of 20 μm, one side at a time, using a coating apparatus as shown in FIG. Coating was performed at a heater temperature of 50 ° C., a coating liquid pressure of 40 kgf / cm 2, a flow meter flow rate setting of 50 ml / min, and a metal foil transport speed of 5 m / min. The electrode material coating solution had a solid content of 60% by weight and an apparent viscosity of 150 cPS. The coated product was dried with hot air and then compression molded with a roller press to prepare a positive electrode sheet having a thickness of 80 μm.
[0025]
b) Negative electrode 11
The negative electrode 11 is made of a carbonaceous material that absorbs and releases lithium ions as a negative electrode active material, such as coke, carbon fiber, pyrolytic vapor phase carbonaceous material, graphite, resin fired body, mesophase pitch-based carbon fiber, or mesophase spherical carbon fired body. Can be mentioned. Among these, it is preferable to use mesophase pitch-based carbon fiber or mesophase spherical carbon graphitized at 2500 ° C. or higher because the electrode capacity is increased. Here, 85 parts by weight of mesophase pitch-based carbon fiber, 6 parts by weight of acetylene black as a conductive agent and 6 parts by weight of graphite are mixed, and a copolymer compound of ethyl acrylate, ethylene and maleic anhydride is further added as a binder. A slurry having a solid content concentration of 50%, which was added 3 parts by weight and kneaded and mixed with toluene as a solvent, was applied to both sides of a 10 μm thick copper foil one side at a time in the same manner as the positive electrode. The slurry electrode material coating solution had a solid content of 50% by weight and an apparent viscosity of 150 cPS. The coated product was dried and then compression molded by a roller press to prepare a negative electrode sheet having a thickness of 70 μm.
[0026]
The active material of the negative electrode 11 is made of, for example, a material containing a carbonaceous material or a chalcogen compound that occludes / releases lithium ions, a light metal, or the like. Among these, a negative electrode containing a carbonaceous material or a chalcogen compound that occludes / releases lithium ions is preferable because battery characteristics such as cycle life of the secondary battery are improved.
[0027]
Examples of the carbonaceous material that occludes / releases lithium ions include coke, carbon fiber, pyrolytic vapor phase carbon material, graphite, resin fired body, mesophase pitch carbon fiber, and mesophase spherical carbon fired body. Among these, it is preferable to use mesophase pitch-based carbon fiber or mesophase spherical carbon graphitized at 2500 ° C. or higher because the electrode capacity is increased.
[0028]
Examples of chalcogen compounds that occlude and release lithium ions include titanium disulfide (TiS 2 ), molybdenum disulfide (MoS 2 ), and niobium selenide (NbSe 2 ). When such a chalcogen compound is used for the negative electrode, although the voltage of the secondary battery drops, the capacity of the negative electrode increases, so the capacity of the secondary battery is improved. Furthermore, since the negative electrode has a high diffusion rate of lithium ions, the rapid charge / discharge performance of the secondary battery is improved.
[0029]
Examples of the light metal include aluminum, aluminum alloy, magnesium alloy, lithium metal, and lithium alloy.
[0030]
As the binder, for example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), ethylene-propylene-diene copolymer (EPDM), styrene-butadiene rubber (SBR), or the like can be used.
[0031]
As the metal foil current collector, for example, copper foil, nickel foil or the like can be used. However, considering the electrochemical stability and flexibility during winding, the copper foil is most preferable. Can be used regardless of electrolytic copper and gloss / matte. It is a copper alloy and can be used in the same way as copper. In this case, a copper alloy can be obtained by adding about 0.05% by weight of a metal such as nickel or iron to copper. On the other hand, the thickness of the foil at this time is preferably 6 μm or more and 20 μm or less.
c) Nonaqueous electrolyte 18
The nonaqueous electrolytic solution 18 has a composition in which an electrolyte is dissolved in a nonaqueous solvent.
[0032]
Examples of the non-aqueous solvent include cyclic carbonates such as propylene carbonate (PC) and ethylene carbonate (EC), chain carbonates such as dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), and diethyl carbonate (DEC), Chain ethers such as 2-dimethoxyethane (DME) and diethoxyethane (DEE), cyclic ethers and crown ethers such as tetrahydrofuran (THF) and 2-methyltetrahydrofuran (2-MeTHF), γ-butyrolactone (γ-BL) At least one selected from fatty acid esters such as acetonitrile, nitrogen compounds such as acetonitrile (AN), sulfur compounds such as sulfolane (SL) and dimethyl sulfoxide (DMSO), and the like.
[0033]
Among these, at least one selected from EC, PC, and γ-BL, at least one selected from EC, PC, and γ-BL and DMC, MEC, DEC, DME, DEE, THF, 2-MeTHF, It is desirable to use a mixed solvent composed of at least one selected from AN. Moreover, when using what contains the carbonaceous material which occludes and discharge | releases said lithium ion in a negative electrode, from a viewpoint of improving the cycle life of the secondary battery provided with the negative electrode, EC and PC, (gamma) -BL, EC and PC, It is desirable to use a mixed solvent composed of MEC, EC and PC and DEC, EC and PC and DEE, EC and AN, EC and MEC, PC and DMC, PC and DEC, or EC and DEC.
[0034]
Examples of the electrolyte include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium borofluoride (LiBF 4 ), lithium hexafluoroarsenide (LiAsF 6 ), lithium trifluorometasulfonate ( Examples thereof include lithium salts such as LiCF 3 SO 3 ), lithium aluminum tetrachloride (LiAlCl 4 ), and bistrifluoromethylsulfonylimide lithium [LiN (CF 3 SO 2 ) 2 ]. Of these, LiPF 6 , LiBF 4 , and LiN (CF 3 SO 2 ) 2 are preferable because conductivity and safety are improved.
The amount of electrolyte dissolved in the non-aqueous solvent is preferably in the range of 0.5 mol / L to 2.0 mol / L.
[0035]
【Example】
Using the electrode sheet prepared as described above, a cylindrical lithium ion battery 18650 type having an internal configuration as shown in FIG. 5 was prepared. This figure is a perspective view of the cylindrical battery cut away. In the present invention, in the metal battery container 8 also serving as the negative electrode terminal made of iron nickel plating, the electrode reaction area is widened in order to make a battery capable of rapid charging, in other words, the active material layer has a thin thickness. In the same manner as the positive electrode sheet 9 obtained by the manufacturing method shown, a negative electrode sheet 11 formed by applying a thin film negative electrode is formed into a spiral shape through a negative electrode sheet 11 larger than the positive electrode sheet 9 and a width larger than the negative electrode sheet 11 and a thin separator 10. The positive electrode lead tab 13 is configured to be connected to a positive electrode top 15 that also serves as a rupture and a battery cover via a current cutoff valve 14 having a current cutoff mechanism. No. 16 was formed by welding a metal clad bottom using a copper clad material in which resistance loss was reduced as much as possible.
[0036]
The separator 10 is formed from a nonwoven fabric, a polypropylene microporous film, a polyethylene microporous film, a polyethylene-polypropylene microporous laminated film, for example.
[0037]
Further, 6.0 g of 1 mol / liter · LiPF 6 (1: 2 volume mixture of ethylene carbonate and dimethyl carbonate) was injected into the battery can as the non-aqueous electrolyte 18. A battery lid 15 having an electrode top was mechanically caulked through a gasket 17 to produce a cylindrical lithium ion battery. The prepared cylindrical lithium ion battery had a diameter of 18 mm, a height of 65 mm, and a nominal capacity of 1600 mAh at 0.2 C.
[Comparative example]
The same positive electrode mixture coating solution as that used in the example was applied to both surfaces of an aluminum foil having a thickness of 20 μm one by one by a doctor blade method. The conveyance speed of the metal foil was 1 m / min. The coated material was hot-air dried and then compression molded by a roller press to prepare a positive electrode sheet having a thickness of 140 μm. The same negative electrode mixture coating solution as in the example was applied to both sides of a 10 μm thick copper foil one side by a doctor-blade method in the same manner as the positive electrode. The coated material was dried with hot air and then compression molded with a roller press to prepare a negative electrode sheet having a thickness of 125 μm. A cylindrical battery (nominal capacity: 1850 mAh) was prepared from the prepared positive electrode sheet and negative electrode sheet in the same manner as in the example.
[0038]
FIG. 3 is a diagram showing the quick chargeability of the battery of the example and the battery of the comparative example. In the battery using the doctor blade type electrode as a comparative example, it took 50 minutes (about 0.9 hours) to reach full charge (100%), whereas it was obtained by the sheet electrode manufacturing method of the present invention. It can be seen that a battery using an electrode reaches full charge in 12 minutes (about 0.2 hours). On the other hand, in the rate characteristics, as shown in FIG. 4, it can be seen that when a large current having a discharge current value exceeding 5 C (mA) is taken out, a particularly remarkable difference appears. As is apparent from these characteristics, it can be seen that in the battery using the electrode produced according to the present invention, rapid diffusion is progressed due to the improvement of the lithium ion conductivity.
[0039]
As described above, the lithium ion battery using the thin film-coated electrode obtained in the present embodiment as the positive and negative electrodes is a battery with excellent quick chargeability that improves the lithium ion conductivity and can be charged in a short time. . Also, regarding the discharge characteristics, it is possible to discharge a large current of 20 C, and it can be applied to power equipment such as an electric tool.
[0040]
【The invention's effect】
The present invention can provide a battery excellent in so-called rapid chargeability, which can solve the problem of current concentration caused by unevenness of the thickness of the active material layer and can be charged in a short time.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration of a coating apparatus used in the present invention.
FIG. 2 is a view showing a configuration for simultaneous application of both surfaces of a support in the coating apparatus used in the present invention.
FIG. 3 is a quick charge characteristic diagram of a cylindrical lithium ion battery configured with an electrode of the present invention.
FIG. 4 is a discharge rate characteristic of a cylindrical lithium ion battery composed of the electrode of the present invention.
FIG. 5 is a perspective view showing a cylindrical lithium-ion battery constituted by the electrode of the present invention by cutting.
1: Pressurized suction pump (with pressure adjustment)
2: Heating heater 3: Nozzle having pores 4: Coating liquid tank 5: Winding roll 6: Drying heater section 7: Winding roll 8: Outer can 9: Positive electrode 10: Separator 11: Negative electrode 12: Electrode group 13: Positive electrode lead tab 14: Current cutoff valve 15: Positive electrode top 16: Negative electrode lead tab 17: Insulator for sealing (gasket)
18: Non-aqueous electrolyte

Claims (6)

非水電解質電池用の導電性金属箔体上に、活物質材料及び溶剤を含み粘度が10cPS〜500cPSであり加圧・加熱した電極材料塗液を、霧状にした状態から塗布層を形成する工程と、
この塗布層を乾燥させて活物質層を形成する工程とを具備することを特徴とするシート状極板の製造方法。
On the conductive metal foil for a non-aqueous electrolyte battery, a coating layer is formed from a sprayed electrode material coating liquid containing an active material and a solvent and having a viscosity of 10 cPS to 500 cPS and heated. Process,
And a step of forming an active material layer by drying the coating layer.
前記電極材料塗液の加熱温度が20℃〜70℃であることを特徴とする請求項1に記載のシート状極板の製造方法。  2. The method for producing a sheet-like electrode plate according to claim 1, wherein a heating temperature of the electrode material coating liquid is 20 ° C. to 70 ° C. 3. 導電性金属箔体上に正極活物質層を形成した正極と、導電性金属箔体上に負極活物質層を形成した負極と、前記正極及び負極間に介在して形成される非水電解液とを有する非水電解質電池において、
前記正極活物質層および前記負極活物質層がどちらとも、活物質材料及び溶剤を含み粘度が10cPS〜500cPSであり加圧・加熱した電極材料塗液を、霧状にした状態から導電性金属箔体上に塗布して形成された活物質層を用いたことを特徴とする非水電解質電池。
A positive electrode in which a positive electrode active material layer is formed on a conductive metal foil, a negative electrode in which a negative electrode active material layer is formed on a conductive metal foil, and a non-aqueous electrolyte formed between the positive electrode and the negative electrode In a non-aqueous electrolyte battery having
Both the positive electrode active material layer and the negative electrode active material layer have an active material and a solvent and have a viscosity of 10 cPS to 500 cPS. A nonaqueous electrolyte battery using an active material layer formed by applying on a body.
前記活物質層の厚さが10μm〜40μmであることを特徴とする請求項3に記載の非水電解質電池。  The thickness of the said active material layer is 10 micrometers-40 micrometers, The nonaqueous electrolyte battery of Claim 3 characterized by the above-mentioned. 前記活物質材料は、樹脂焼成体であることを特徴とする請求項3又は4に記載の非水電解質電池。  The non-aqueous electrolyte battery according to claim 3, wherein the active material is a resin fired body. 前記活物質材料は、Li4Ti5O12であることを特徴とする請求項3又は4に記載の非水電解質電池。  The non-aqueous electrolyte battery according to claim 3, wherein the active material is Li 4 Ti 5 O 12.
JP2003086798A 2003-03-27 2003-03-27 Method for manufacturing sheet electrode plate and non-aqueous electrolyte battery Expired - Fee Related JP4157404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003086798A JP4157404B2 (en) 2003-03-27 2003-03-27 Method for manufacturing sheet electrode plate and non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003086798A JP4157404B2 (en) 2003-03-27 2003-03-27 Method for manufacturing sheet electrode plate and non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JP2004296255A JP2004296255A (en) 2004-10-21
JP4157404B2 true JP4157404B2 (en) 2008-10-01

Family

ID=33401326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003086798A Expired - Fee Related JP4157404B2 (en) 2003-03-27 2003-03-27 Method for manufacturing sheet electrode plate and non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP4157404B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5084098B2 (en) * 2004-12-09 2012-11-28 日産自動車株式会社 Electrode and battery using the same
US20130056092A1 (en) * 2010-05-18 2013-03-07 Nissan Motor Co., Ltd. Coating apparatus
US20120064225A1 (en) * 2010-09-13 2012-03-15 Applied Materials, Inc. Spray deposition module for an in-line processing system
JP6300619B2 (en) * 2014-04-23 2018-03-28 株式会社日立ハイテクノロジーズ Method and apparatus for manufacturing electrode plate of lithium ion secondary battery
WO2019240466A1 (en) * 2018-06-11 2019-12-19 주식회사 아모그린텍 Flexible battery, manufacturing method therefor, and auxiliary battery comprising same

Also Published As

Publication number Publication date
JP2004296255A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
CN111095616B (en) Negative electrode for lithium secondary battery and method for manufacturing same
JP7044861B2 (en) Lithium secondary battery
US8460812B2 (en) Lithium secondary battery
US11245107B2 (en) Positive electrode mixture for secondary battery, method for manufacturing positive electrode for secondary battery, and method for manufacturing secondary battery
JP2004006275A (en) Non-aqueous electrolytic solution rechargeable battery
WO2006134684A1 (en) Lithium secondary battery
US20080073217A1 (en) Method and apparatus for manufacturing negative electrode for non-aqueous electrolyte secondary battery
JP6805374B2 (en) Electrodes for lithium-ion secondary batteries, their manufacturing methods, and lithium-ion secondary batteries
JP7242120B2 (en) Lithium secondary battery and manufacturing method thereof
WO2011065538A1 (en) Non-aqueous electrolyte rechargeable battery
KR20200089182A (en) LITHIUM SECONDARY BATTERY COMPRISING Si-BASED COMPOUND WITH EXCELLENT ENERGY DENSITY
JP6903263B2 (en) Lithium-ion battery electrodes and lithium-ion batteries
JPH11204145A (en) Lithium secondary battery
JP4157404B2 (en) Method for manufacturing sheet electrode plate and non-aqueous electrolyte battery
JP2022547501A (en) Method for manufacturing secondary battery
JP6850975B2 (en) Positive electrode for lithium-ion batteries and lithium-ion batteries
JP4138326B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2000173666A (en) Nonaqueous electrolyte secondary battery
JP2017152122A (en) Negative electrode active material for lithium ion secondary batteries, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2019075278A (en) Laminated structure, lithium secondary battery and method of manufacturing laminated structure
JP5072061B2 (en) Method for producing positive electrode for non-aqueous secondary battery and non-aqueous secondary battery
JP2022547282A (en) BATTERY SYSTEM, USAGE THEREOF AND BATTERY PACK INCLUDING THE SAME
JP3364378B2 (en) Non-aqueous electrolyte secondary battery and method for manufacturing non-aqueous electrolyte secondary battery
JP4082103B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2004200122A (en) Manufacturing method of non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050415

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070607

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080711

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees