JP2003321701A - Cu-In BASED METAL POWDER AND MANUFACTURING METHOD - Google Patents

Cu-In BASED METAL POWDER AND MANUFACTURING METHOD

Info

Publication number
JP2003321701A
JP2003321701A JP2002126877A JP2002126877A JP2003321701A JP 2003321701 A JP2003321701 A JP 2003321701A JP 2002126877 A JP2002126877 A JP 2002126877A JP 2002126877 A JP2002126877 A JP 2002126877A JP 2003321701 A JP2003321701 A JP 2003321701A
Authority
JP
Japan
Prior art keywords
powder
indium
metal
metal powder
copper powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002126877A
Other languages
Japanese (ja)
Other versions
JP4154491B2 (en
Inventor
Yoshiyuki Masachi
吉行 正地
Masayuki Nishina
正行 仁科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP2002126877A priority Critical patent/JP4154491B2/en
Publication of JP2003321701A publication Critical patent/JP2003321701A/en
Application granted granted Critical
Publication of JP4154491B2 publication Critical patent/JP4154491B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain copper-based metal powder for conductive paste having excellent oxidation resistance by a simplified manufacturing method. <P>SOLUTION: The Cu-In based metal powder with excellent oxidation resistance is constituted by coating the surface of Cu particles with In. This Cu-In based metal powder can be advantageously manufactured by a method where metal baser than indium is put into an indium salt solution in which metal copper powder is suspended to deposit indium metal onto the surface of the metal copper powder and the resultant indium-coated copper powder is separated from the solution. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は,導電ペーストやろ
う材のフイラーに適したCu・In系金属粉体に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Cu / In-based metal powder suitable for a conductive paste or filler filler.

【0002】[0002]

【従来の技術】熱伝導性および導電性の良好な金属粉体
をフイラーとしてビヒクル(通常はバインダー樹脂と溶
媒とからなる)中に分散させてなる導電ペーストは,各
種基板の導電回路や電極を形成する手段として多用され
ている。このような導電ペーストは,通常は塗布または
ホールに充填されたあと,高温に加熱されることによっ
て,溶媒および樹脂成分が蒸発もしくは分解除去され,
フイラーの金属粉体が焼結して導体を形成する。また,
融点の低い金属粉末の場合にはろう材としても使用され
る。ろう材の場合は金属粉体が融点以上に加熱されるこ
とによって導体を形成する。
2. Description of the Related Art A conductive paste prepared by dispersing a metal powder having good thermal conductivity and conductivity in a vehicle (usually composed of a binder resin and a solvent) as a filler is used for conductive circuits and electrodes of various substrates. It is widely used as a means for forming. Such conductive paste is usually applied or filled in holes, and then heated to a high temperature to evaporate or decompose and remove the solvent and resin components,
The metal powder of the filler is sintered to form a conductor. Also,
In the case of a metal powder having a low melting point, it is also used as a brazing material. In the case of a brazing material, the conductor is formed by heating the metal powder above the melting point.

【0003】このような導電ペーストまたはろう材に用
いる熱伝導性および導電性の良好な金属粉体は,一般
に,その使用温度に至るまでに酸化し難いこと,すなわ
ち耐酸化性に優れることが要求される。導電ペーストの
場合には,金属粉体の焼結温度に至るまでに表面が酸化
すると焼結が不良となることがあり,その酸化物が導電
性を阻害することになりかねない。ろう材の場合にも,
酸化物が生成すると導電性および濡れ性を阻害する要因
となる。
Generally, a metal powder having good thermal conductivity and conductivity used for such a conductive paste or brazing material is required to be difficult to oxidize up to its use temperature, that is, excellent in oxidation resistance. To be done. In the case of a conductive paste, if the surface is oxidized before the sintering temperature of the metal powder, the sintering may be poor, and the oxide may hinder the conductivity. In the case of brazing material,
The formation of oxides is a factor that hinders conductivity and wettability.

【0004】金属粉末に耐酸化性を付与する処法として
は,粒子表面をコーティングすることが一般に行われて
いる。そのうち,熱伝導性および導電性を有する粉体に
金属コーティングを施すことを意図する場合には原理的
には電気めっき法が適する。銅粉に銀やニッケルなどを
電気めっきする方法の例は,例えば特公昭61−403
19号公報に記載されている。実際には,各金属粒子の
表面に均一に電気めっきすることは非常に難しい。
As a method for imparting oxidation resistance to a metal powder, coating of the particle surface is generally performed. Among them, the electroplating method is in principle suitable when the metal coating is intended to be applied to the powder having thermal conductivity and conductivity. An example of a method of electroplating copper powder with silver or nickel is disclosed in, for example, Japanese Patent Publication No. 61-403.
No. 19 publication. In practice, it is very difficult to uniformly electroplate on the surface of each metal particle.

【0005】他方,特開平4−237952号公報に
は,亜鉛合金粉末にInを添加し混合攪拌し加熱して亜
鉛合金粒子にInをコーティングする方法が記載されて
いる。特開平4−350102号公報には,金属箔(例
えば銅箔)に機械的混合力によって例えば銀を被覆させ
る方法が記載されている。特開平10−212501号
公報にはEDTA錯体を用いて例えば銅粉の表面に銀を
コーティングする方法が記載されている。
On the other hand, Japanese Patent Application Laid-Open No. 4-237952 discloses a method of adding In to zinc alloy powder, mixing and stirring the mixture and heating it to coat the zinc alloy particles with In. Japanese Patent Application Laid-Open No. 4-350102 describes a method of coating a metal foil (for example, a copper foil) with, for example, silver by a mechanical mixing force. JP-A-10-212501 describes a method of coating the surface of copper powder with silver using an EDTA complex.

【0006】[0006]

【発明が解決しようとする課題】金属粒子の表面に金属
をコーティングする処法として,前記のように電気めっ
き法,機械的被覆法,湿式法等の種々の方法が知られて
いるが,いずれも一長一短があり,処理操作が複雑であ
るにも拘わらず均一なコーティングを得るには困難を伴
うものが多い。特開平10−212501号公報のよう
な湿式法は制御性がよいが,この方法では銅よりEDT
A錯体が安定な金属をコーティングすることはできな
い。例えばインジウムの方が銅よりもEDTA錯体が安
定であるので,銅粉にインジウムをコーティングするこ
とができない。
Various methods such as the electroplating method, the mechanical coating method, and the wet method have been known as the method for coating the surface of the metal particles with the metal. However, even though the treatment operation is complicated, it is difficult to obtain a uniform coating in many cases. The wet method as disclosed in JP-A-10-212501 has good controllability, but in this method, EDT is used rather than copper.
The A complex cannot coat stable metals. For example, since indium is more stable than copper in the EDTA complex, it is not possible to coat copper powder with indium.

【0007】したがって,本発明は簡単な処法によって
耐酸化性のよいペーストフイラーまたはろう材としての
金属粉末を得ることを課題としたものである。
Therefore, an object of the present invention is to obtain a metal powder as a paste filler or a brazing material having good oxidation resistance by a simple method.

【0008】[0008]

【課題を解決するための手段】本発明によれば,Cuの
粒子表面をInで被覆してなるCu・In系の金属粉体
を提供する。この金属粉体を導電ペーストのフイラーと
して使用する場合には銅粒子の表面を被覆するIn量と
しては0.1〜30重量%であることができ,この金属
粉体をろう材として使用する場合には,銅粒子の表面を
被覆するIn量としては0.1〜50重量%,好ましく
は0.1〜30重量%であるのがよい。この金属粉体
は,Cu粒子の表面にInの一部または全部がIn−C
uの合金相として存在することができる。
According to the present invention, there is provided a Cu / In-based metal powder obtained by coating the surface of Cu particles with In. When this metal powder is used as a filler of conductive paste, the amount of In covering the surface of copper particles can be 0.1 to 30% by weight, and when this metal powder is used as a brazing filler metal In addition, the amount of In coating the surface of the copper particles is 0.1 to 50% by weight, preferably 0.1 to 30% by weight. In this metal powder, some or all of In is In-C on the surface of Cu particles.
It can exist as an alloy phase of u.

【0009】このCu・In系の金属粉体は,金属銅粉
を懸濁したインジウム塩溶液中にインジウムより卑な金
属を投入することにより,金属銅粉の表面にインジウム
金属を析出させ,得られたインジウム被着銅粉を液から
分離するという簡単な方法によって得ることができる。
This Cu · In-based metal powder is obtained by precipitating indium metal on the surface of the metal copper powder by introducing a metal baser than indium into an indium salt solution in which the metal copper powder is suspended. It can be obtained by a simple method of separating the obtained indium-deposited copper powder from the liquid.

【0010】[0010]

【発明の実施の形態】銅粉の粒子表面にIn金属を適量
被覆すると,銅粉の酸化を防止することができる。酸化
開始温度が170℃近辺に金属銅粉に対して,Inを被
覆した本発明のCu・In系の金属粉体は酸化開始温度
は250℃を超えるようになり,本発明者らの経験によ
ると300℃を超えても酸化を開始しない。
BEST MODE FOR CARRYING OUT THE INVENTION Oxidation of copper powder can be prevented by coating an appropriate amount of In metal on the surface of copper powder particles. The oxidation starting temperature of the Cu / In-based metal powder of the present invention coated with In is higher than 250 ° C. as compared with the metal copper powder having an oxidation starting temperature of around 170 ° C. Oxidation does not start even when the temperature exceeds 300 ° C.

【0011】このため,この金属粉体を導電ペーストの
フイラーとした場合,少なくとも250℃までは酸化を
抑制できる。そして,Inは低融点金属で且つCuと固
溶体を形成し易いので,銅粉に比べて焼結温度を低下さ
せることができる。したがって,銅粉系の導電ペースト
であっても,耐酸化性に優れ且つ焼結温度の低い導電ペ
ーストを得ることができる。この場合,Inの被覆量と
しては0.1重量%〜30重量%であるのがよい。In
量が0.1重量%以下では十分な耐酸化性を銅粉に付与
することができないし,30重量%を超えるInを被覆
しても耐酸化性の効果は飽和する一方,価格面での負担
増が大きくなるからである。
Therefore, when the metal powder is used as the filler of the conductive paste, the oxidation can be suppressed up to at least 250 ° C. Since In is a low melting point metal and easily forms a solid solution with Cu, the sintering temperature can be lowered as compared with copper powder. Therefore, even with a copper powder-based conductive paste, a conductive paste having excellent oxidation resistance and a low sintering temperature can be obtained. In this case, the coating amount of In is preferably 0.1 to 30% by weight. In
If the amount is less than 0.1% by weight, sufficient oxidation resistance cannot be imparted to the copper powder, and even if over 30% by weight of In is coated, the effect of oxidation resistance is saturated, but in terms of price. This is because the burden increases.

【0012】他方,この金属粉体をろう材のフイラーと
した場合には,銅を含有する粉体であっても,比較的低
温で粒子表面のIn同士が融着してろう材として機能す
る。このCu・In金属粉体がろう材として機能するに
は,粒子表面に被着するIn量は4重量%以上を必要と
する。しかし,In量があまり多量になっても銅系の粉
体としての特質が失われるのでIn量は50重量%以
下,好ましくは30重量%以下であるのがよい。
On the other hand, when this metal powder is used as a filler for a brazing filler metal, even if it is a powder containing copper, In particles on the surface of the particles are fused together at a relatively low temperature to function as a brazing filler metal. . In order for this Cu.In metal powder to function as a brazing material, the amount of In deposited on the particle surface must be 4% by weight or more. However, even if the In content becomes too large, the characteristics of the copper-based powder are lost, so the In content should be 50 wt% or less, preferably 30 wt% or less.

【0013】Inを被覆するのに用いる銅粉(元粉)に
ついては,その粒径や形状については特に限定されない
が,導電ペーストやろう材として適する粒径や形状のも
のであるのが実際には好ましい。元粉の粒径としては例
えば平均粒径が0.1〜10μmの範囲にあるものが導
電ペースト用として好ましい。形状は球状,板状,フレ
ーク状など任意の形状のものが使用できる。ろう材用の
Cu・In系金属粉体を得る場合には,平均粒径が1〜
50μmの範囲にある元粉にInを被着処理するのがよ
い。
The copper powder (original powder) used for coating In is not particularly limited in its particle size and shape, but it is actually a particle size and shape suitable for a conductive paste and a brazing material. Is preferred. As the particle size of the original powder, for example, one having an average particle size in the range of 0.1 to 10 μm is preferable for the conductive paste. Any shape such as spherical, plate-like, flake-like can be used. When obtaining Cu / In-based metal powder for brazing filler metal, the average particle size is 1 to
It is advisable to apply In to the original powder in the range of 50 μm.

【0014】本発明に従うCu・In系金属粉体は水中
のインジウムイオンを銅粒子表面において還元析出させ
る湿式還元法によって有利に製造することができる。具
体的には,原料として使用する銅粉の表面を洗浄(酸化
膜除去)する工程,インジウムイオンを含む液中に銅粉
を懸濁させて還元剤を投入する還元処理工程,得られた
In被着銅粉を液から分離する固液分離工程,該粉体を
洗浄乾燥し乾燥物を解粒する工程を順に経ることによっ
て製造することができる。
The Cu.In metal powder according to the present invention can be advantageously produced by a wet reduction method in which indium ions in water are reduced and precipitated on the surface of copper particles. Specifically, a step of cleaning the surface of the copper powder used as a raw material (removal of an oxide film), a reduction treatment step of suspending the copper powder in a liquid containing indium ions and introducing a reducing agent, the obtained In It can be produced by sequentially performing a solid-liquid separation step of separating the adhered copper powder from a liquid and a step of washing and drying the powder and pulverizing the dried product.

【0015】酸洗工程では,原料として使用する銅粉の
表面に生成している酸化膜を酸洗液で除去する。この酸
洗液としてインジウムイオンを溶解した酸性液を使用す
ることができ,この場合には酸洗処理のあと,次の還元
工程にそのまま移行できるので便利である。もっとも,
銅粉表面に酸化膜が形成されていない銅粉原料を用いる
場合には,例えば湿式還元法などによって製造されたま
まの銅粉を用いる場合には,とくに酸洗工程を必要とし
ないこともある。
In the pickling step, the oxide film formed on the surface of the copper powder used as a raw material is removed with a pickling solution. An acid solution in which indium ions are dissolved can be used as the pickling solution, and in this case, it is convenient because after the pickling process, the process can be directly transferred to the next reduction step. However,
When using a copper powder raw material in which an oxide film is not formed on the surface of the copper powder, for example, when using the copper powder as it is produced by the wet reduction method, the pickling step may not be necessary. .

【0016】次いで,本発明の最も特徴的なインジウム
イオンの湿式還元処理を実施するが,この還元工程は,
インジウムイオンを溶解した液中に銅粉を懸濁させ,還
元剤を投入してインジウムイオンを金属インジウムに還
元すると同時にその金属インジウムを銅粉表面に析出さ
せる工程である。酸洗工程においてインジウム塩溶液を
用いればそのままこの工程を行うことができる。
Then, the most characteristic feature of the present invention is a wet reduction treatment of indium ions.
In this process, copper powder is suspended in a liquid in which indium ions are dissolved, and a reducing agent is added to reduce the indium ions to metallic indium, and at the same time, the metallic indium is deposited on the copper powder surface. If an indium salt solution is used in the pickling step, this step can be performed as it is.

【0017】インジウムイオンを溶解した液を得るに
は,インジウム塩を水に溶解させるのが便宜であり,イ
ンジウム塩としては非酸化性の塩,代表的には塩酸塩,
硫酸塩などを使用することができ,好ましくはpHが
0.5〜2の範囲のものがよい。pHが0.5より低いと
溶液中へのインジウムの溶解度が増してしまい,被着に
寄与しないインジウム量が増えてしまう。また,pHが
2より高い場合には水酸化インジウムや酸化インジウム
が生成してしまい,不純物の混入のおそれがある。ま
た,置換還元反応のために添加元素(還元剤)としては
インジウムよりも卑な金属,例えばアルミニウムや亜鉛
などを用いる。この還元剤としては,反応性を上げるた
めに粉末状のものを使用することが望ましい。還元剤の
投入量は,インジウムイオンを金属インジウムに還元す
る価数変化の当量程度であればよく,好ましくは 0.8
から 1.5 当量である。
In order to obtain a solution in which indium ions are dissolved, it is convenient to dissolve the indium salt in water. As the indium salt, a non-oxidizing salt, typically a hydrochloride,
Sulfate or the like can be used, and the pH is preferably in the range of 0.5 to 2. When the pH is lower than 0.5, the solubility of indium in the solution increases, and the amount of indium that does not contribute to the deposition increases. Further, if the pH is higher than 2, indium hydroxide or indium oxide is generated, and there is a possibility that impurities may be mixed. In addition, a metal baser than indium, such as aluminum or zinc, is used as an additional element (reducing agent) for the substitution reduction reaction. As this reducing agent, it is desirable to use a powdery one in order to increase the reactivity. The reducing agent may be added in an amount equivalent to the change in valence for reducing indium ions to metallic indium, and preferably 0.8
To 1.5 equivalents.

【0018】インジウムイオンと添加金属との置換反応
を行わせるには,室温から90℃までの温度で実施する
のが望ましい。より好ましくは室温から60℃までであ
る。攪拌については,銅粉が溶液中に均一に分散してお
り,置換還元反応が有利に進行する程度の攪拌強度があ
ればよい。また,大気中からの酸素の混入を避けるため
に,不活性ガス(窒素ガスやアルゴンガス)でパージし
た不活性ガス雰囲気下でこの置換還元反応を行うのが好
ましい。
In order to carry out the substitution reaction of indium ions with the added metal, it is desirable to carry out at a temperature from room temperature to 90 ° C. More preferably from room temperature to 60 ° C. As for stirring, it is sufficient that the copper powder is uniformly dispersed in the solution and the stirring strength is such that the substitution reduction reaction proceeds advantageously. Further, in order to avoid mixing of oxygen from the atmosphere, it is preferable to carry out the substitution reduction reaction under an inert gas atmosphere purged with an inert gas (nitrogen gas or argon gas).

【0019】ついで,固液分離するが,反応の終了時に
は還元剤として投入したインジウムより卑な金属粉末が
消耗した状態となるのが好ましく,この場合には,還元
反応終了後に直ちに固液分離しても,In被着銅粉だけ
を液から分離できる。液中に卑な金属粉末が固形分とし
て残存している場合には,これを液中に溶解させてから
固液分離するか,澱物を固液分離したあとで卑な金属粉
末を分離する操作を加えればよい。
Next, solid-liquid separation is carried out. At the end of the reaction, it is preferable that the metal powder that is less noble than indium introduced as the reducing agent be consumed. In this case, solid-liquid separation is carried out immediately after the reduction reaction is completed. However, only In-deposited copper powder can be separated from the liquid. If the base metal powder remains as a solid in the liquid, either dissolve it in the liquid and then perform solid-liquid separation, or perform solid-liquid separation of the starch and then separate the base metal powder. Just add some operations.

【0020】還元終了後,固液分離する前にIn被着銅
粉を熟成する工程を挿入すると,未反応の還元剤を液中
に溶解させることができる。この熟成は,還元反応を実
施した温度に例えば10〜120 分程度保持すればよく,こ
れによって,還元剤を確実に反応に寄与させることがで
きる。このため,不純物となる未反応の還元剤の混入を
最小限に抑えることができる。
After completion of the reduction, an unreacted reducing agent can be dissolved in the liquid by inserting a step of aging the In-coated copper powder before solid-liquid separation. This aging may be carried out by holding the temperature at which the reduction reaction is carried out, for example, for about 10 to 120 minutes, whereby the reducing agent can surely contribute to the reaction. Therefore, the mixture of unreacted reducing agent that becomes an impurity can be minimized.

【0021】固液分離したIn被着銅粉は水洗したの
ち,真空乾燥を行うと銀白色の凝集体を得る。この乾燥
は50℃以下で行うのがよい。得られた乾燥物は,解粒機
により解粒することでインジウムが粒子表面に被着した
Cu・In系金属粉体を得ることができる。このCu・
In系金属粉体を好ましくは100℃以上の温度で熱処
理すると安定した合金相が生成する。
The solid-liquid separated In-coated copper powder is washed with water and then vacuum-dried to obtain a silver-white aggregate. This drying is preferably performed at 50 ° C or lower. The obtained dried product can be crushed by a crusher to obtain a Cu / In-based metal powder having indium deposited on the particle surface. This Cu
When the In-based metal powder is heat-treated at a temperature of preferably 100 ° C. or higher, a stable alloy phase is generated.

【0022】[0022]

【実施例】〔実施例1〕濃度 25 g/Lの塩化インジウム
溶液4L(pH=0.5)に,銅粉(平均粒径D50=1.8
6μm)を 500g 投入し,液温50℃で10分間攪拌して銅
粉を酸洗した。その後, この懸濁液に還元剤として1当
量のアルミニウム粉(23.5g :平均粒径D50=75μm)
を30分間かけて添加した。還元剤の添加後, 液温を50℃
に保持しながら30分間攪拌し,液中のインジウムイオン
を金属インジウムに還元する処理を行った。
Example 1 4 L of indium chloride solution having a concentration of 25 g / L (pH = 0.5) was mixed with copper powder (average particle size D50 = 1.8).
(6 μm) was added to the solution, and the mixture was stirred at a liquid temperature of 50 ° C for 10 minutes to pickle the copper powder. Then, 1 equivalent of aluminum powder as a reducing agent was added to this suspension (23.5 g: average particle size D50 = 75 μm).
Was added over 30 minutes. After adding the reducing agent, increase the liquid temperature to 50 ° C.
The solution was stirred for 30 minutes while maintaining the temperature at 0 ° C. to reduce the indium ions in the solution to metallic indium.

【0023】次いで,澱物を液からろ別し,水洗したあ
と40℃真空乾燥させた。得られた乾燥品を解粒して粉
体とし,この粉体を,X線回折,熱重量測定,In量の
化学分析およびマイクロトラックによる粒度分布測定に
供した。それらの結果を図1(X線回折)と図2(熱重
量測定)および表1(化学分析)と表2(粒度分布)に
示した。
Then, the precipitate was separated from the liquid by filtration, washed with water, and dried at 40 ° C. under vacuum. The obtained dried product was disintegrated into powder, and this powder was subjected to X-ray diffraction, thermogravimetric measurement, chemical analysis of In content, and particle size distribution measurement by Microtrac. The results are shown in FIG. 1 (X-ray diffraction), FIG. 2 (thermogravimetric measurement), and Table 1 (chemical analysis) and Table 2 (particle size distribution).

【0024】なお,平均粒径D50 (μm) とは,マイク
ロトラックによる粒度分布測定結果を,横軸に粒径D
(μm) をとり,粒径Dμm以下の粒子が存在する容積
% (Q%) を縦軸とした累積粒度曲線で表したときに,
Q=50%に対応する粒径D (μm) の値を言う。図1〜
2には,本例の処理に供した元粉(未コート銅粉)の測
定結果も未コート銅粉として併せて示した。さらに,図
2には,特開平10−212501号公報の実施例に従
って得た10%銀コーティング銅粉について熱重量測定
した結果を「比較例」として併記した。
The average particle size D50 (μm) is the particle size distribution measured by Microtrac, and the horizontal axis shows the particle size D50.
(μm) and expressed as a cumulative particle size curve with the vertical axis being the volume% (Q%) in which particles with a particle size of Dμm or less are present,
The value of particle diameter D (μm) corresponding to Q = 50%. Figure 1
In Table 2, the measurement results of the original powder (uncoated copper powder) subjected to the treatment of this example are also shown as uncoated copper powder. Further, in FIG. 2, the results of thermogravimetric measurement of the 10% silver-coated copper powder obtained according to the example of JP-A-10-212501 are also shown as “comparative example”.

【0025】〔実施例2〕濃度が 37.5 g/Lの塩化イン
ジウム溶液を使用し, 且つ溶液中のインジウムの量に対
して1当量のアルミニウム粉(35.2g) を添加した以外
は, 実施例1を繰り返した。得られた粉体をX線回折,
熱重量測定,In量の化学分析および粒度分布測定に供
し,これらの結果を図1〜2および表1〜2に併記し
た。
Example 2 Example 1 was repeated except that an indium chloride solution having a concentration of 37.5 g / L was used and 1 equivalent of aluminum powder (35.2 g) was added to the amount of indium in the solution. Was repeated. X-ray diffraction of the obtained powder,
It was subjected to thermogravimetric measurement, chemical analysis of In content and particle size distribution measurement, and these results are also shown in FIGS. 1-2 and Tables 1-2.

【0026】〔実施例3〕平均粒径D50= 6.4μmの銅
粉を用いた以外は,実施例1を繰り返した。得られた粉
体をX線回折,熱重量測定,In量の化学分析および粒
度分布測定に供し,これらの結果を図1と図3および表
1〜2に併記した。図3には,比較のために,本例に用
いた元粉(D50= 6.4μmの未コート銅粉)についての
熱重量測定結果も併記した。また,本例で得られた粉体
についてその1個の粒子断面のEPMA測定を行った結
果を図5に示した。図5の上段はCu,下段はInの分
析像である。
Example 3 Example 1 was repeated except that copper powder having an average particle diameter D50 = 6.4 μm was used. The obtained powder was subjected to X-ray diffraction, thermogravimetric measurement, chemical analysis of In content and particle size distribution measurement, and the results are shown in FIGS. 1 and 3 and Tables 1 and 2. For comparison, FIG. 3 also shows the thermogravimetric measurement results of the original powder (D50 = 6.4 μm uncoated copper powder) used in this example. Further, FIG. 5 shows the result of EPMA measurement of the cross section of one particle of the powder obtained in this example. The upper part of FIG. 5 is an analysis image of Cu, and the lower part is an analysis image of In.

【0027】〔実施例4〕還元剤として 1.5当量のアル
ミニウム粉(35.3g )を添加した以外は,実施例1を繰
り返した。得られた粉体をX線回折,熱重量測定,In
量の化学分析および粒度分布測定に供し,これらの結果
を図1〜2および表1と2に併記した。
Example 4 Example 1 was repeated except that 1.5 equivalents of aluminum powder (35.3 g) was added as a reducing agent. X-ray diffraction, thermogravimetric measurement, In
The amount was subjected to chemical analysis and particle size distribution measurement, and the results are shown in FIGS. 1 and 2 and Tables 1 and 2.

【0028】〔実施例5〕反応容器内に窒素ガスを2L
/分の流量で流すことにより,容器内を窒素パージしな
がら,液中のインジウムイオンを金属インジウムに還元
する処理を行った以外は,実施例3を繰り返した。得ら
れた粉体をX線回折,熱重量測定,In量の化学分析お
よび粒度分布測定に供し,これらの結果を図1と図3お
よび表1と2に併記した。さらに,本例で得られた粉体
を大気中80℃,100℃,120℃で熱処理し,それ
らの熱処理品を粉末X線回折に供した。得られたX線回
折結果を図4に示した。
[Embodiment 5] 2 L of nitrogen gas was placed in the reaction vessel.
Example 3 was repeated, except that the indium ion in the liquid was reduced to metallic indium while purging the inside of the container with nitrogen by flowing at a flow rate of / min. The obtained powder was subjected to X-ray diffraction, thermogravimetric measurement, chemical analysis of In content and particle size distribution measurement, and the results are shown in FIGS. 1 and 3 and Tables 1 and 2. Further, the powder obtained in this example was heat-treated at 80 ° C., 100 ° C. and 120 ° C. in the atmosphere, and the heat-treated products were subjected to powder X-ray diffraction. The obtained X-ray diffraction result is shown in FIG.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】図1に見られるように,実施例1で得られ
たCu・In系金属粉体は金属Cuと金属Inの回折ピ
ークのみならず,Cu−In合金(CuIn)からの回
折ピークを有している。このCuIn合金相の回折ピー
クはICDDカード(351150) において報告されている
ものに相当している。実施例2〜5で得られたCu・I
n系金属粉体も実施例1のものと実質的に同一である。
As shown in FIG. 1, the Cu.In-based metal powder obtained in Example 1 exhibits not only diffraction peaks of metal Cu and metal In but also diffraction peaks of Cu--In alloy (CuIn). Have The diffraction peak of this CuIn alloy phase corresponds to that reported in ICDD card (351150). Cu · I obtained in Examples 2 to 5
The n-based metal powder is also substantially the same as that of the first embodiment.

【0032】図2の結果から,未コート銅粉(元粉)は
ほぼ170℃付近から酸化が起こったと見られる急激な
重量増加が始まっているのに対し,実施例1,2および
4で得られたCu・In系金属粉体はそのような重量増
加は300℃でも起こっていないことがわかる。また,
銀コートした比較例のものは酸化開始温度が250℃ま
で上昇しているが,それでも,その耐酸化性は実施例の
Cu・In系金属粉末のものには及ばない。
From the results shown in FIG. 2, the uncoated copper powder (original powder) begins to undergo a rapid weight increase at about 170 ° C., which is thought to have undergone oxidation. It can be seen that the obtained Cu / In-based metal powder does not have such a weight increase even at 300 ° C. Also,
Although the oxidation-initiated temperature of the silver-coated Comparative Example increased up to 250 ° C., its oxidation resistance was still lower than that of the Cu.In-based metal powders of Examples.

【0033】図3は,実施例3と5のCu・In系金属
粉体と未コート銅粉(元粉)の熱重量測定結果を対比し
たものであるが,実施例のものは,未コート銅粉のよう
な酸化は起こっておらず,300℃を超えても酸化は開
始しないことがわかる。
FIG. 3 compares the results of thermogravimetric measurement of the Cu / In-based metal powder and the uncoated copper powder (original powder) of Examples 3 and 5 with each other. It can be seen that the oxidation like copper powder has not occurred, and the oxidation does not start even when the temperature exceeds 300 ° C.

【0034】図4の結果から,Cu・In系金属粉体を
100℃以上で熱処理すると,Cu−Inの合金相が他
の合金相に転移(CuIn→Cu11In9)していること
がわかる。このCu11In9合金相の回折ピークはIC
DDカード(410883) に報告されている。
[0034] From the results of FIG. 4, when the Cu · an In-based metal powder to a heat treatment at 100 ° C. or higher, that alloy phase CuIn has spread to other alloy phase (CuIn → Cu 11 In 9) Recognize. The diffraction peak of this Cu 11 In 9 alloy phase is IC
Reported on DD card (410883).

【0035】図5の結果から,本発明に従うCu・In
系金属粉体の粒子はCuコアの周囲にIn被覆がほぼ均
一に被着していることがわかる。
From the results shown in FIG. 5, Cu.In according to the present invention is obtained.
It can be seen that in the particles of the system-based metal powder, the In coating is deposited almost uniformly around the Cu core.

【0036】[0036]

【発明の効果】以上説明したように,本発明によると耐
酸化性に優れたCu・In系金属粉体が得られる。この
ものは導電ペーストのフイラーとして,或いはろう材の
フイラーとして有用な用途を有する。そして,このCu
・In系金属粉体は湿式による置換還元法によって製造
性よく製造することができる。
As described above, according to the present invention, Cu / In-based metal powder having excellent oxidation resistance can be obtained. This has a useful application as a filler of a conductive paste or a filler of a brazing filler metal. And this Cu
The In-based metal powder can be manufactured with good manufacturability by a wet substitution reduction method.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に従うCu・In系金属粉体のX線回折
結果を銅粉のそれと対比して示した図である。
FIG. 1 is a diagram showing an X-ray diffraction result of a Cu / In-based metal powder according to the present invention in comparison with that of a copper powder.

【図2】本発明に従うCu・In系金属粉体の大気雰囲
気中での示差熱分析結果を銅粉のそれと対比して示した
図である。
FIG. 2 is a diagram showing the results of differential thermal analysis of Cu.In-based metal powder according to the present invention in an air atmosphere in comparison with that of copper powder.

【図3】本発明に従う他の例のCu・In系金属粉体の
大気雰囲気中での示差熱分析結果を銅粉のそれと対比し
て示した図である。
FIG. 3 is a diagram showing the results of differential thermal analysis of Cu.In-based metal powder of another example according to the present invention in an air atmosphere, in comparison with that of copper powder.

【図4】本発明に従うCu・In系金属粉体をさらに熱
処理した場合のX線回折結果を熱処理温度毎に対比して
示した図である。
FIG. 4 is a diagram showing the results of X-ray diffraction when the Cu.In-based metal powder according to the present invention was further heat-treated, in comparison with each heat-treatment temperature.

【図5】本発明に従うCu・In系金属粒子のEPMA
分析結果を示した図である。
FIG. 5: EPMA of Cu / In-based metal particles according to the present invention
It is the figure which showed the analysis result.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01B 1/00 H01B 1/00 C 1/02 1/02 A 1/22 1/22 A 13/00 13/00 Z Fターム(参考) 4K018 BA02 BA20 BB03 BC01 BC24 BD04 BD09 BD10 5G301 AA08 AA11 AB13 AD07 AE10 DA06 DD01 DE10 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01B 1/00 H01B 1/00 C 1/02 1/02 A 1/22 1/22 A 13/00 13 / 00 ZF term (reference) 4K018 BA02 BA20 BB03 BC01 BC24 BD04 BD09 BD10 5G301 AA08 AA11 AB13 AD07 AE10 DA06 DD01 DE10

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 Cuの粒子表面をInで被覆してなるC
u・In系金属粉体。
1. A C obtained by coating the surface of a Cu particle with In.
u · In-based metal powder.
【請求項2】 Inの含有量が0.1〜30重量%であ
る請求項1に記載の金属粉体。
2. The metal powder according to claim 1, wherein the In content is 0.1 to 30% by weight.
【請求項3】 Inの一部または全部がCuとの合金相
を形成している請求項1または2に記載の金属粉体。
3. The metal powder according to claim 1, wherein a part or all of In forms an alloy phase with Cu.
【請求項4】 酸化開始温度が250℃以上である請求
項1ないし3のいずれかに記載の金属粉体。
4. The metal powder according to claim 1, which has an oxidation starting temperature of 250 ° C. or higher.
【請求項5】 請求項1ないし4のいずれかに記載の金
属粉体をフイラーとしたペースト。
5. A paste in which the metal powder according to any one of claims 1 to 4 is used as a filler.
【請求項6】 請求項1ないし4のいずれかに記載の金
属粉体をフイラーとしたろう材。
6. A brazing material using the metal powder according to any one of claims 1 to 4 as a filler.
【請求項7】 金属銅粉を懸濁したインジウム塩溶液中
にインジウムより卑な金属を投入することにより該金属
銅粉の表面にインジウム金属を析出させ,得られたイン
ジウム被着銅粉を液から分離するCu・In系金属粉体
の製法。
7. An indium metal is deposited on a surface of the metal copper powder by introducing a metal baser than indium into an indium salt solution in which the metal copper powder is suspended, and the obtained indium-coated copper powder is liquid. Method for producing Cu / In-based metal powder separated from
【請求項8】 インジウムより卑な金属はアルミニウム
または亜鉛である請求項7に記載のCu・In系金属粉
体の製法。
8. The method for producing a Cu.In-based metal powder according to claim 7, wherein the metal baser than indium is aluminum or zinc.
【請求項9】 インジウム被着銅粉はさらに100℃以
上の温度で熱処理される請求項7または8に記載のCu
・In系金属粉体の製法。
9. The Cu according to claim 7, wherein the indium-deposited copper powder is further heat-treated at a temperature of 100 ° C. or higher.
-Method for producing In-based metal powder.
JP2002126877A 2002-04-26 2002-04-26 Cu / In-based metal powder and production method thereof Expired - Fee Related JP4154491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002126877A JP4154491B2 (en) 2002-04-26 2002-04-26 Cu / In-based metal powder and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002126877A JP4154491B2 (en) 2002-04-26 2002-04-26 Cu / In-based metal powder and production method thereof

Publications (2)

Publication Number Publication Date
JP2003321701A true JP2003321701A (en) 2003-11-14
JP4154491B2 JP4154491B2 (en) 2008-09-24

Family

ID=29541165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002126877A Expired - Fee Related JP4154491B2 (en) 2002-04-26 2002-04-26 Cu / In-based metal powder and production method thereof

Country Status (1)

Country Link
JP (1) JP4154491B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013251233A (en) * 2012-06-04 2013-12-12 Hitachi Ltd Conductive paste material, method of connecting semiconductor element, and method of forming electrode
CN115070031A (en) * 2022-06-02 2022-09-20 哈尔滨工业大学(深圳) Cu @ In @ Ag core-shell structure interconnection material and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013251233A (en) * 2012-06-04 2013-12-12 Hitachi Ltd Conductive paste material, method of connecting semiconductor element, and method of forming electrode
CN115070031A (en) * 2022-06-02 2022-09-20 哈尔滨工业大学(深圳) Cu @ In @ Ag core-shell structure interconnection material and preparation method thereof
CN115070031B (en) * 2022-06-02 2024-02-20 哈尔滨工业大学(深圳) Cu@In@Ag core-shell structure interconnection material and preparation method thereof

Also Published As

Publication number Publication date
JP4154491B2 (en) 2008-09-24

Similar Documents

Publication Publication Date Title
JP4821014B2 (en) Copper powder manufacturing method
JP2021021146A (en) Method for manufacturing silver-coated copper nanowire having core-shell structure by using chemical reduction method
JP5176824B2 (en) Silver-coated copper fine particles, dispersion thereof, and production method thereof
JP7042945B2 (en) Silver-coated metal powder and its manufacturing method
KR101525099B1 (en) Metal microparticle containing composition and process for production of the same
WO2007040195A1 (en) Silver-copper composite powder having silver microparticule attached thereto, and method of production of the silver-copper composite powder
JPWO2008059789A1 (en) Silver-plated copper fine powder, conductive paste produced using silver-plated copper fine powder, and method for producing silver-plated copper fine powder
JP3277823B2 (en) Production method of metal powder
JP4182234B2 (en) Copper powder for conductive paste and method for producing the same
JP4078410B2 (en) Manufacturing method of silver diffusion copper powder
JP2017002401A (en) Silver-coated copper powder
JP4701426B2 (en) Copper powder and copper powder manufacturing method
JP4433743B2 (en) Method for producing copper fine particles
JP2015105406A (en) Silver-coated copper powder, and conductive paste
CN106903325A (en) The preparation method of silver-tin contact material and its contact material being made
KR102017177B1 (en) A method for preparing high-purity silver nano powder using wet process
JP2003321701A (en) Cu-In BASED METAL POWDER AND MANUFACTURING METHOD
JP4957465B2 (en) Oxide-coated copper fine particles and method for producing the same
KR102023711B1 (en) A silver nano powder of high purity
CN106607586B (en) Metal composite powder and method for producing same
JP6541764B2 (en) Silver-coated copper powder and conductive paste, and method for producing them
JP4644765B2 (en) Silver diffused copper powder, process for producing the same, and conductive paste using the same
JPH1192805A (en) Copper alloy powder and its production
JP5003668B2 (en) Method for producing oxide-coated copper fine particles
JPH05222413A (en) Production of copper monodisperse particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080612

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080613

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4154491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees