JP4148031B2 - Rotation angle detector - Google Patents

Rotation angle detector Download PDF

Info

Publication number
JP4148031B2
JP4148031B2 JP2003159242A JP2003159242A JP4148031B2 JP 4148031 B2 JP4148031 B2 JP 4148031B2 JP 2003159242 A JP2003159242 A JP 2003159242A JP 2003159242 A JP2003159242 A JP 2003159242A JP 4148031 B2 JP4148031 B2 JP 4148031B2
Authority
JP
Japan
Prior art keywords
gear
rotation
absolute
angle
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003159242A
Other languages
Japanese (ja)
Other versions
JP2004361212A (en
Inventor
幸司 御池
清孝 笹之内
清孝 植平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003159242A priority Critical patent/JP4148031B2/en
Publication of JP2004361212A publication Critical patent/JP2004361212A/en
Application granted granted Critical
Publication of JP4148031B2 publication Critical patent/JP4148031B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Power Steering Mechanism (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Steering Controls (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車の車体制御システムなどに用いられる回転角度検出装置に関するものである。
【0002】
【従来の技術】
従来、アブソリュートエンコーダなどのように多回転する回転体の回転角度を検出する装置として、特許文献1に開示されている回転体における角度測定方法及び装置が存在する。この装置においては、位相差を有する複数の回転体の角度から被検回転角度を検出している。
【0003】
【特許文献1】
特開昭63−118614号公報
【0004】
【発明が解決しようとする課題】
しかしながら、上述の装置においては、歯車の歯欠け、軸ずれなどにより歯車の係合がはずれた場合、被検回転軸の回転角を誤算出する可能性があり、また被検回転軸の回転角を高分解能化するにあたり大容量のメモリを必要としていた。
【0005】
本発明はこの課題を解決するためのものであり、被検回転軸と絶対角度検出用歯車との係合がはずれても、大きな誤差を発生することなく、また少容量メモリの演算回路部でも多回転する回転体の回転角度を高分解能に検出でき、歯車や検出手段の異常検出もできる回転角度検出装置を提供することである。
【0006】
【課題を解決するための手段】
上記目的を達成するために、以下の構成を有するものである。
【0007】
本発明の請求項1に記載の発明は、外周に歯車を有する被検回転軸と、この被検回転軸の歯車と係合した第1の歯車と、この第1の歯車と係合し、第1の歯車と歯数がそれぞれ異なる第2の歯車と、第1、第2の歯車の絶対回転角をそれぞれ検出する第1、第2の検出手段と、第1、第2の検出手段がそれぞれ検出した第1、第2の歯車の絶対回転角の組み合わせに基づいて、被検回転軸の多回転絶対角を算出する算出部とを備えた回転角度検出装置において、被検回転軸の歯車と第2の歯車と係合する第3の歯車をさらに備えという構成を有しており、この発明によれば、簡易な構成で、被検回転軸と係合させている第の歯車との係合がはずれたり、歯欠けが発生しても大きな誤差を発生することなく多回転する被検回転軸の絶対角度を検出することができる。
【0008】
本発明の請求項2に記載の発明は、第1、第2の歯車被検回転軸の歯車よりも歯数が少ないことを特徴とするもので、被検回転軸の検出角の高分解能化を図ろうとした時、通常は必要となる、各歯車の絶対回転角の組み合わせを記憶する大容量のメモリを削減できる。
【0009】
本発明の請求項3に記載の発明は、第3の歯車の絶対回転角を検出する第3の検出手段をさらに備え、第3の歯車は、第1、第2の歯車よりも歯数が少ないことを特長とするもので、被検回転軸の回転検出範囲を満足させる為、被検回転軸に順次係合されている複数の絶対角算出用歯車と被検回転軸との歯数に制限が加わるが、第3の歯車によりこの歯数よりも少ない歯数を自由に設定可能なため、被検回転軸の高分解能化の設計自由度を高められる。
【0010】
本発明の請求項4に記載の発明は、算出部が、歯車群の絶対角により算出された被検回転軸の絶対回転角をシリアル信号として外部に送信するもので、絶対回転角検出部の信号を直接メインシステム部に伝えるよりも外来ノイズによる絶対角信号の異常防止や、メインシステムのソフト処理負担の軽減ができるという作用効果が得られる。
【0011】
本発明の請求項5に記載の発明は、外周に歯車を有する被検回転軸と、この被検回転軸の歯車と係合した第1の歯車と、この第1の歯車と係合し、第1の歯車と歯数がそれぞれ異なる第2の歯車と、第1、第2の歯車の絶対回転角をそれぞれ検出する第1、第2の検出手段と、第1、第2の検出手段がそれぞれ検出した第1、第2の歯車の絶対回転角の組み合わせに基づいて、被検回転軸の多回転絶対角を算出する算出部とを備えた回転角度検出装置において、被検回転軸の歯車と係合した第3の歯車と、この第3の歯車、および、第1の歯車と係合した第4の歯車とをさらに備えたことにより、簡易な構成で、被検回転軸と係合させている第1の歯車との係合がはずれたり、歯欠けが発生しても大きな誤差を発生することなく多回転する被検回転軸の絶対角度を検出することができる。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態について、図1から図8を用いて説明する。
【0013】
(実施の形態1)
図1、図2において、1は外周に歯車がついた被検回転軸、2は被検回転軸1と係合した歯車、3は歯車2と係合した歯車、4は歯車3及び被検回転軸1と係合した歯車である。5は歯車2の中央部に組み込まれている磁石、6は歯車3の中央部に組み込まれている磁石、7は歯車2とともに回転する磁石5の磁界方向を検出する第1の検出手段(異方性磁気検出素子)、8は歯車3とともに回転する磁石6の磁界方向を検出する第2の検出手段(異方性磁気検出素子)である。歯車2は下ケース9に設けられた軸受け10により位置規制されている。一方、被検回転軸1の歯車の歯数a、歯車2の歯数b、歯車3の歯数cは、a/b>1、a/c>1、b≠cとなるように設定する。図2において、第1の検出手段7は下ケース9に固定された基板12に実装されており、磁石5の真上に配置されている。第2の検出手段8、歯車3及び磁石6も図2で示されている構造と同じ形態をとっている。
【0014】
図3において、第1の検出手段7と第2の検出手段8は演算回路部13に接続されており、これらは回転角度検出装置14に内蔵されており、この演算回路部13は車両の姿勢制御等を行うメインシステム部15とシリアル通信ラインで接続されている。
【0015】
次に、以上の構成により被検回転軸1の回転角度検出の方法について説明する。
【0016】
図1において被検回転軸1が回転したとき、その外周にある歯車と係合している歯車2が回転すると同時に、歯車2と係合している歯車3及び被検回転軸1と歯車3に係合している別歯車4も回転する。
【0017】
歯車2は被検回転軸1に対してa/b倍の速さで回転し、歯車3は被検回転軸1に対してa/c倍の速さで回転する。第1の検出手段7は歯車2に組み込まれている磁石5の真下に配置されているため、歯車2が回転すると第1の検出手段7を貫く磁石の方向が変化し、歯車2の回転角度に応じた信号を得ることができる。同様に第2の検出手段8も歯車3の回転角度に応じた信号を得ることができる。
【0018】
図3に示すように、被検回転軸1の多回転絶対角の算出は、演算回路部13で第1の検出手段7と第2の検出手段8それぞれの絶対角信号を入力して行われ、その演算結果はシリアル信号としてメインシステム部15へ定期的に送信される。
【0019】
図4にて被検回転軸1の多回転絶対角を算出する方法について説明する。歯車2は被検回転軸1の回転に対してa/b倍の速さで回転し、歯車3は被検回転軸1の回転に対してa/c倍の速さで回転するが、b≠cであるので歯車2と歯車3の位相差はある規則をもって変動する。これは被検回転軸1の多回転絶対角18が歯車2の絶対角値16と歯車3の絶対角値17の組み合わせが回転検出範囲において、1対1に決定されることを意味する。歯車2の歯数bと歯車3の歯数cの最小公倍数を被検回転軸1の歯車の歯数aで割った値dだけ回転すると、歯車2も歯車3も初期回転位置、すなわち両歯車の絶対角が0°になる位置に戻る。この値dが回転検出範囲となる。歯車2の歯欠け、被検回転軸1との軸ずれ等によって被検回転軸1と歯車2との係合がはずれても、別歯車4にて、歯車3、歯車2へ被検回転軸1の回転を伝えることができるので、被検回転軸1の多回転絶対角の算出が継続して行える。
【0020】
一方、演算回路部13では、歯車2の絶対角値と歯車3の絶対角値の組み合わせに対して被検回転軸1の多回転絶対角値をテーブルとして持つようにしているが、被検回転軸1の検出回転角度の分解能を上げようとすると、テーブルにもつ角度データの数量を増加させる必要があり、演算回路部13のメモリ空間が非常に大きなものになり、能力的にも限界が発生する。
【0021】
そこで、テーブルにもつ角度データの数量を削減する方法を図4にて説明する。歯車2の絶対角値16と歯車3の絶対角値17の組み合わせによる、被検回転軸1の絶対角18の決定は粗くする。この粗い絶対角18は、歯車2の回転周期19の初期回転位置からの回転数eを決定するのにだけ用いる。すなわち、絶対角18の分解能は歯車2の回転周期以下の角度に設定すればよい。被検回転軸1の細かい絶対角度は、被検回転軸1よりも高速で回転している歯車2の絶対角17から演算する。すなわち、被検回転軸1の多回転絶対角は
(360[°/回転]*e[回転]+(絶対角17))/(a/b)[°]
となる。この場合、被検回転軸1と歯車2の歯数比a/bを大きくすれば、被検回転軸1の検出角度の分解能を上げることができる。
【0022】
被検回転軸1の多回転絶対角の分解能を更に向上するには、被検回転軸1と歯車2の歯数比a/bもしくは、歯車3と被検回転軸1の歯数比a/cを大きくする必要があるが、歯車2の歯数bと歯車3の歯数cと被検回転軸1の歯数aによって回転検出範囲dが決定される為歯数a、b、cの設計自由度に限界がある。
【0023】
そこで図5に示すように歯数を自由に設定できる別歯車4の中央部に磁石20を組み込み、この磁石20の真上に第3の検出手段21を配置し、別歯車4の絶対角を検出する。詳細構造は、図2で示されているものと同じ形態をとる。
【0024】
歯車4の歯数をfとしたとき、a/f>1、b>f、c>fとなるように設定する。
【0025】
被検回転軸1の多回転絶対角の算出方法を図6に示す。歯車2の絶対角値22と歯車3の絶対角値23の組み合わせにより、被検回転軸1の粗い絶対角24を決定する。この粗い絶対角24により、別歯車4の回転周期25の初期回転位置からの回転数gを決定する。被検回転軸1の細かい絶対角度は、被検回転軸1よりも高速で回転している別歯車4の絶対角26から算出する。すなわち、被検回転軸1の多回転絶対角は
(360[°/回転]*g[回転]+(絶対角26))/(a/f)[°]
となり、歯車2と歯車3で求めた被検回転軸1の多回転絶対角よりも高分解能化が図れる。
【0026】
一方、図1において、歯車2と被検回転軸1及び歯車3との係合はずれが、歯車2、歯車3の歯欠け、軸ずれ等によって発生した場合や第1の検出手段7と第2の検出手段8に異常が発生した場合は、図4に示すような歯車2と歯車3の位相差の規則性がなくなり、被検回転軸1の多回転絶対角の算出を誤まる。そこで、図7に示す異常検出フローにてこの異常を検出する。まず、演算回路部13で、第1の検出手段7と第2の検出手段8の絶対角信号より、処理27、処理28にて歯車2及び歯車3の絶対角のある一定時間における変動量X,Yを算出する。次に、処理29にて|X−Y|と定数Aとの大小を判定し、大きい時には処理30にてメインシステム部15にこの異常を知らせる信号を、図3に示すシリアル通信にのせて、被検回転軸1の誤った絶対角値で車体制御されることを防ぐ。定数Aは歯車2と歯車3の歯数差及び被検回転軸1の最大回転速度h[°/sec]、変動量X,Yを算出する時間t[sec]により決定する。すなわち
A=|h*(a/b−a/c)*t|
となる。
【0027】
(実施の形態2)
図8は実施の形態2における回転角度検出装置の構成図である。
【0028】
図8において、1は外周に歯車がついた被検回転軸、2は被検回転軸1と係合した歯車、3は歯車2と係合した歯車、31は被検回転軸1と係合した歯車、32は歯車31と歯車2に係合した歯車である。5は歯車2の中央部に組み込まれている磁石、6は歯車3の中央部に組み込まれている磁石、7は歯車2とともに回転する磁石5の磁界方向を検出する第1の検出手段(異方性磁気検出素子)、8は歯車3とともに回転する磁石6の磁界方向を検出する第2の検出手段(異方性磁気検出素子)である。歯車2は、図2に示すように下ケース9に設けられた軸受け10により位置規制されており、歯車3、歯車31、32も同様に下ケース9に設けられた軸受けにより位置規制する。
【0029】
次に、以上の構成により被検回転軸1の回転角度検出の方法について説明する。
【0030】
図8において被検回転軸1が回転したとき、その外周にある歯と係合している歯車2が回転すると同時に、歯車2と係合している歯車3が回転する。この時、被検回転軸1に係合している歯車31及びこの歯車31と歯車2に係合している歯車32も回転する。
【0031】
被検回転軸1の多回転絶対角の算出は、実施の形態1で記述したように、歯数の異なる歯車2、歯車3に組み込まれている磁石5、磁石6の磁力の方向を第1の検出手段7と第2の検出手段8を検知することにより行っている。
【0032】
歯車2の歯欠け、軸ずれ等によって被検回転軸1と歯車2との係合がはずれても、歯車31と歯車32にて、歯車2へ被検回転軸1の回転を伝えることができるので、被検回転軸1の多回転絶対角の算出が継続して行える。
【0033】
【発明の効果】
以上のように本発明によれば、被検回転軸と絶対角度検出用の第1の歯車との係合がはずれても、大きな誤差を発生することなく、また少容量メモリの演算回路部でも多回転する被検回転軸の回転角度を高分解能に検出でき、歯車や検出手段の異常検出もできる高性能、高信頼性の回転角度検出装置を簡易な形態で提供することができる。
【図面の簡単な説明】
【0034】
【図1】 (a)(b)は本発明の実施の形態1による回転検出装置の平面図と側面図
【図2】 本発明の実施の形態1における図1の11部分の拡大図
【図3】 本発明の実施の形態1による回転角度検出装置のシステム構成図
【図4】 本発明の実施の形態1における歯車2と歯車3の絶対角より被検回転軸1の多回転絶対角を算出する原理図
【図5】 本発明の実施の形態1による別歯車4の絶対回転角を検出する手段を備えた回転角度検出装置の平面図
【図6】 本発明の実施の形態1における歯車2と歯車3及び別歯車4の絶対角より被検回転軸1の多回転絶対角を算出する原理図
【図7】 本発明の実施の形態1における歯車の係合はずれの異常を検出するフローチャート
【図8】 本発明の実施の形態2による回転検出装置の平面図
【符号の説明】
【0035】
1 被検回転軸
2 歯車
3 歯車
4 歯車
5 磁石
6 磁石
7 第1の検出手段
8 第2の検出手段
9 下ケース
10 軸受け
11 回転角度検出装置の部分拡大図
12 基板
13 演算回路部
14 回転角度検出装置
15 メインシステム部
16 歯車2の絶対角値
17 歯車3の絶対角値
18 被検回転軸1の多回転絶対角
19 歯車2の回転周期
20 磁石
21 第3の検出手段
22 歯車2の絶対角値
23 歯車3の絶対角値
24 被検回転軸1の粗い絶対角
25 別歯車4の回転周期
26 別歯車4の絶対角
27 処理部
28 処理部
29 処理部
30 処理部
31 歯車
32 歯車
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rotation angle detection device used in an automobile body control system or the like.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as an apparatus for detecting the rotation angle of a rotating body that rotates multiple times, such as an absolute encoder, there is an angle measuring method and apparatus for a rotating body disclosed in Patent Document 1. In this apparatus, the test rotation angle is detected from the angles of a plurality of rotating bodies having phase differences.
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 63-118614
[Problems to be solved by the invention]
However, in the above-described apparatus, if the gear engagement is disengaged due to gear teeth missing, shaft misalignment, etc., the rotation angle of the test rotation shaft may be erroneously calculated, and the rotation angle of the test rotation shaft In order to increase the resolution, a large amount of memory is required.
[0005]
The present invention is for solving this problem, and even if the engagement between the rotation shaft to be detected and the absolute angle detection gear is disengaged, a large error is not generated, and the arithmetic circuit unit of the small-capacity memory is used. It is an object of the present invention to provide a rotation angle detection device that can detect the rotation angle of a rotating body that rotates multiple times with high resolution and that can also detect abnormality of gears and detection means.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has the following configuration.
[0007]
According to a first aspect of the present invention, a test rotary shaft having a gear on the outer periphery, a first gear engaged with the gear of the test rotary shaft, and the first gear are engaged. a second gear first gear and the number of teeth that differs respectively, first, first, second detecting means for detecting an absolute rotation angle of the second gear, respectively, first, second detection A rotation angle detection apparatus comprising: a calculation unit that calculates a multi-rotation absolute angle of a rotation axis to be detected based on a combination of absolute rotation angles of the first and second gears respectively detected by the means ; the gear and has a third configuration of gear Ru further comprising a for engaging the second gear, according to the present invention, a simple configuration, the are engaged and the test rotation axis or out of engagement with the first gear, the absolute angle of the test axis of rotation multiple rotations without missing teeth to generate a large error be generated It is possible to detect the.
[0008]
The invention according to claim 2 of the present invention is characterized in that the first and second gears have a smaller number of teeth than the gears of the test rotary shaft, and the detection angle of the test rotary shaft is high. When attempting to increase the resolution, it is possible to reduce a large-capacity memory that normally stores a combination of absolute rotation angles of the respective gears.
[0009]
The invention according to claim 3 of the present invention further includes third detection means for detecting an absolute rotation angle of the third gear, and the third gear has a number of teeth as compared with the first and second gears. In order to satisfy the rotation detection range of the test rotating shaft, the number of teeth of the plurality of absolute angle calculating gears that are sequentially engaged with the test rotating shaft and the number of teeth of the test rotating shaft is reduced. Although there is a limitation , since the number of teeth smaller than this number of teeth can be set freely by the third gear , the degree of freedom in designing the resolution of the rotation axis to be tested can be increased.
[0010]
In the invention according to claim 4 of the present invention, the calculation unit transmits the absolute rotation angle of the rotation shaft to be measured calculated based on the absolute angle of the gear group to the outside as a serial signal . Rather than transmitting the signal directly to the main system unit, it is possible to prevent the abnormality of the absolute angle signal due to external noise and to reduce the software processing burden of the main system.
[0011]
According to a fifth aspect of the present invention, there is provided a test rotating shaft having a gear on the outer periphery, a first gear engaged with the gear of the test rotating shaft, and the first gear. A second gear having a different number of teeth from the first gear, first and second detection means for detecting absolute rotation angles of the first and second gears, and first and second detection means, A rotation angle detecting device comprising: a calculation unit that calculates a multi-rotation absolute angle of a rotation axis to be detected based on a combination of absolute rotation angles of the first and second gears detected respectively; And a third gear engaged with the first gear, and a fourth gear engaged with the third gear and the first gear. Even if the engagement with the first gear is disengaged or the tooth is missing, it does not cause a large error and does not rotate. It is possible to detect the absolute angle of the rotating shaft.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
[0013]
(Embodiment 1)
1 and 2, reference numeral 1 denotes a test rotating shaft having a gear on its outer periphery, 2 a gear engaged with the test rotating shaft 1, 3 a gear engaged with the gear 2, 4 a gear 3 and a test A gear engaged with the rotating shaft 1. Reference numeral 5 denotes a magnet incorporated in the central portion of the gear 2, reference numeral 6 denotes a magnet incorporated in the central portion of the gear 3, and reference numeral 7 denotes first detection means for detecting the magnetic field direction of the magnet 5 rotating together with the gear 2 (different (Directional magnetic detection element) 8 is a second detection means (anisotropic magnetic detection element) for detecting the magnetic field direction of the magnet 6 rotating together with the gear 3 . Teeth wheel 2 is restricted in position by a bearing 10 provided in the lower case 9. On the other hand, the number of gear teeth a, the number of teeth b of the gear 2, and the number of teeth c of the gear 3 are set so that a / b> 1, a / c> 1, and b ≠ c. . In FIG. 2, the first detection means 7 is mounted on a substrate 12 fixed to the lower case 9 and is disposed immediately above the magnet 5. The second detection means 8, the gear 3 and the magnet 6 also have the same form as the structure shown in FIG.
[0014]
In FIG. 3, the first detection means 7 and the second detection means 8 are connected to an arithmetic circuit unit 13, which are built in the rotation angle detection device 14, and the arithmetic circuit unit 13 is a vehicle posture. It is connected to a main system unit 15 that performs control and the like through a serial communication line.
[0015]
Next, a method for detecting the rotation angle of the test rotating shaft 1 with the above configuration will be described.
[0016]
In FIG. 1, when the test rotary shaft 1 rotates, the gear 2 engaged with the gear on the outer periphery of the test rotary shaft 1 rotates, and at the same time, the gear 3 engaged with the gear 2 and the test rotary shaft 1 and the gear 3 The other gear 4 engaged with is also rotated.
[0017]
The gear 2 rotates at a speed of a / b with respect to the test rotary shaft 1, and the gear 3 rotates at a speed of a / c with respect to the test rotary shaft 1. Since the first detection means 7 is arranged directly below the magnet 5 incorporated in the gear 2, when the gear 2 rotates, the direction of the magnet passing through the first detection means 7 changes, and the rotation angle of the gear 2 is changed. A signal corresponding to can be obtained. Similarly, the second detection means 8 can also obtain a signal corresponding to the rotation angle of the gear 3.
[0018]
As shown in FIG. 3, the calculation of the multi-turn absolute angle of the rotation shaft 1 is performed by inputting the absolute angle signals of the first detection means 7 and the second detection means 8 in the arithmetic circuit unit 13. The calculation result is periodically transmitted to the main system unit 15 as a serial signal.
[0019]
A method of calculating the multi-rotation absolute angle of the test rotating shaft 1 will be described with reference to FIG. The gear 2 rotates at a speed a / b times that of the rotation of the test rotary shaft 1, and the gear 3 rotates at a speed of a / c times that of the rotation of the test rotation shaft 1, but b Since ≠ c, the phase difference between the gear 2 and the gear 3 varies with a certain rule. This means that the combination of the absolute angle value 16 of the gear 2 and the absolute angle value 17 of the gear 3 of the multi-rotation absolute angle 18 of the rotation shaft 1 to be tested is determined 1: 1 on the rotation detection range. When the least common multiple of the number of teeth b of the gear 2 and the number of teeth c of the gear 3 is divided by a value d obtained by dividing the number of teeth of the gear of the rotation shaft 1 to be tested, both the gear 2 and the gear 3 are in the initial rotational position, that is, both gears. Return to the position where the absolute angle becomes 0 °. This value d is the rotation detection range. Even if the engagement between the test rotary shaft 1 and the gear 2 is disengaged due to a missing tooth of the gear 2, a misalignment with the test rotary shaft 1, etc., the test rotary shaft is moved to the gear 3 and the gear 2 by another gear 4. Since the rotation of 1 can be transmitted, the calculation of the multi-rotation absolute angle of the rotation shaft 1 to be tested can be continued.
[0020]
On the other hand, the arithmetic circuit unit 13 has a table of the multi-rotation absolute angle values of the rotation shaft 1 for the combination of the absolute angle value of the gear 2 and the absolute angle value of the gear 3. In order to increase the resolution of the detected rotation angle of the axis 1, it is necessary to increase the amount of angle data held in the table, the memory space of the arithmetic circuit unit 13 becomes very large, and the capability is limited. To do.
[0021]
A method for reducing the quantity of angle data held in the table will be described with reference to FIG. The determination of the absolute angle 18 of the rotating shaft 1 to be tested is made rough by the combination of the absolute angle value 16 of the gear 2 and the absolute angle value 17 of the gear 3. This coarse absolute angle 18 is used only to determine the rotational speed e from the initial rotational position of the rotational period 19 of the gear 2. That is, the resolution of the absolute angle 18 may be set to an angle equal to or less than the rotation period of the gear 2. The fine absolute angle of the test rotary shaft 1 is calculated from the absolute angle 17 of the gear 2 rotating at a higher speed than the test rotary shaft 1. That is, the multi-rotation absolute angle of the test rotating shaft 1 is (360 [° / rotation] * e [rotation] + (absolute angle 17)) / (a / b) [°]
It becomes. In this case, if the gear ratio a / b between the test rotary shaft 1 and the gear 2 is increased, the resolution of the detected angle of the test rotary shaft 1 can be increased.
[0022]
In order to further improve the resolution of the multi-turn absolute angle of the rotation shaft 1 to be tested, the gear ratio a / b between the rotation shaft 1 to be tested and the gear 2 or the gear ratio a / b between the gear 3 and the rotation shaft 1 to be tested Although it is necessary to increase c, since the rotation detection range d is determined by the number of teeth b of the gear 2, the number of teeth c of the gear 3, and the number of teeth a of the rotating shaft 1 to be tested, the number of teeth a, b, c There is a limit to the degree of design freedom.
[0023]
Therefore, as shown in FIG. 5, a magnet 20 is incorporated in the center of the separate gear 4 where the number of teeth can be freely set, and the third detecting means 21 is disposed directly above the magnet 20 so that the absolute angle of the separate gear 4 is set. To detect. The detailed structure takes the same form as shown in FIG.
[0024]
When the number of teeth of the gear 4 is f, a / f> 1, b> f, and c> f are set.
[0025]
A method of calculating the multi-turn absolute angle of the test rotating shaft 1 is shown in FIG. The coarse absolute angle 24 of the rotating shaft 1 to be tested is determined by the combination of the absolute angle value 22 of the gear 2 and the absolute angle value 23 of the gear 3. The rough absolute angle 24 determines the rotational speed g from the initial rotational position of the rotational period 25 of the separate gear 4. The fine absolute angle of the test rotating shaft 1 is calculated from the absolute angle 26 of the separate gear 4 rotating at a higher speed than the test rotating shaft 1. That is, the multi-rotation absolute angle of the test rotating shaft 1 is (360 [° / rotation] * g [rotation] + (absolute angle 26)) / (a / f) [°]
Next, high resolution can be achieved than multiple rotation absolute angle of the tooth wheel 2 and the tooth wheel 3 at the test rotation shaft 1 obtained.
[0026]
On the other hand, in FIG. 1, when the disengagement between the gear 2 and the rotation shaft 1 to be tested and the gear 3 is caused by the gear 2, the gear 3 having a missing tooth, a shaft misalignment, or the like, When the abnormality occurs in the detecting means 8, the regularity of the phase difference between the gear 2 and the gear 3 as shown in FIG. 4 is lost, and the calculation of the multi-rotation absolute angle of the rotation shaft 1 to be tested is incorrect. Therefore, this abnormality is detected in the abnormality detection flow shown in FIG. First, in the arithmetic circuit unit 13, based on the absolute angle signals of the first detection means 7 and the second detection means 8, the fluctuation amount X of the absolute angles of the gear 2 and the gear 3 in a certain time in processing 27 and processing 28. , Y is calculated. Next, in process 29, the magnitude of | X−Y | and constant A is determined, and if larger, a signal notifying the main system unit 15 of this abnormality in process 30 is put on the serial communication shown in FIG. The vehicle body is prevented from being controlled with an incorrect absolute angle value of the rotation shaft 1 to be tested. The constant A is determined by the difference in the number of teeth between the gears 2 and 3, the maximum rotational speed h [° / sec] of the test rotating shaft 1, and the time t [sec] for calculating the fluctuation amounts X and Y. That is, A = | h * (a / b−a / c) * t |
It becomes.
[0027]
(Embodiment 2)
FIG. 8 is a configuration diagram of the rotation angle detection device according to the second embodiment.
[0028]
In FIG. 8, 1 is a test rotating shaft with a gear on the outer periphery, 2 is a gear engaged with the test rotating shaft 1, 3 is a gear engaged with the gear 2, and 31 is engaged with the test rotating shaft 1. The gear 32 is a gear engaged with the gear 31 and the gear 2. Reference numeral 5 denotes a magnet incorporated in the central portion of the gear 2, reference numeral 6 denotes a magnet incorporated in the central portion of the gear 3, and reference numeral 7 denotes first detection means for detecting the magnetic field direction of the magnet 5 rotating together with the gear 2 (different (Directional magnetic detection element) 8 is a second detection means (anisotropic magnetic detection element) for detecting the magnetic field direction of the magnet 6 rotating together with the gear 3. As shown in FIG. 2, the position of the gear 2 is restricted by a bearing 10 provided in the lower case 9, and the positions of the gear 3 and the gears 31 and 32 are also restricted by bearings provided in the lower case 9.
[0029]
Next, a method for detecting the rotation angle of the test rotating shaft 1 with the above configuration will be described.
[0030]
In FIG. 8, when the rotation shaft 1 to be tested rotates, the gear 2 engaged with the teeth on the outer periphery thereof rotates, and at the same time, the gear 3 engaged with the gear 2 rotates. At this time, the gear 31 engaged with the test rotating shaft 1 and the gear 32 engaged with the gear 31 and the gear 2 also rotate.
[0031]
As described in the first embodiment, the absolute rotation angle of the rotation shaft 1 to be tested is calculated based on the direction of the magnetic force of the gear 2 having a different number of teeth, the magnet 5 incorporated in the gear 3, and the magnet 6. The detection means 7 and the second detection means 8 are detected.
[0032]
Even if the engagement between the test rotating shaft 1 and the gear 2 is disengaged due to tooth missing or shaft misalignment of the gear 2, the rotation of the test rotating shaft 1 can be transmitted to the gear 2 by the gear 31 and the gear 32. Therefore, the calculation of the multi-rotation absolute angle of the test rotating shaft 1 can be continuously performed.
[0033]
【The invention's effect】
As described above, according to the present invention, even when the engagement between the rotation axis to be tested and the first gear for detecting the absolute angle is disengaged, no large error is generated, and even in the arithmetic circuit unit of the small capacity memory. A high-performance, high-reliability rotation angle detection device that can detect the rotation angle of the rotation shaft to be rotated with high resolution and can detect abnormality of the gears and detection means can be provided in a simple form.
[Brief description of the drawings]
[0034]
FIGS. 1A and 1B are a plan view and a side view of a rotation detection device according to a first embodiment of the present invention. FIG. 2 is an enlarged view of a portion 11 in FIG. 1 according to the first embodiment of the present invention. 3 is a system configuration diagram of the rotation angle detection device according to the first embodiment of the present invention. FIG. 4 shows the absolute angle of the multi-rotation shaft 1 to be detected from the absolute angles of the gear 2 and the gear 3 according to the first embodiment of the present invention. FIG. 5 is a plan view of a rotation angle detection device provided with means for detecting the absolute rotation angle of another gear 4 according to the first embodiment of the present invention. FIG. 6 is a gear according to the first embodiment of the present invention. FIG. 7 is a flow chart for detecting an abnormality in gear disengagement according to the first embodiment of the present invention. FIG. 8 is a plan view of a rotation detection device according to a second embodiment of the present invention. Description of]
[0035]
DESCRIPTION OF SYMBOLS 1 Test rotation shaft 2 Gear 3 Gear 4 Gear 5 Magnet 6 Magnet 7 1st detection means 8 2nd detection means 9 Lower case 10 Bearing 11 Partial expansion figure of rotation angle detection apparatus 12 Board | substrate 13 Operation circuit part 14 Rotation angle Detection device 15 Main system unit 16 Absolute angle value of gear 2 17 Absolute angle value of gear 3 18 Multi-rotation absolute angle of rotation shaft 1 to be tested 19 Rotation period of gear 2 20 Magnet 21 Third detection means 22 Absolute of gear 2 Angular value 23 Absolute angle value of the gear 3 24 Rough absolute angle of the rotation shaft 1 to be tested 25 Rotation period of the separate gear 4 26 Absolute angle of the separate gear 4 27 Processing unit 28 Processing unit 29 Processing unit 30 Processing unit 31 Gear 32 Gear

Claims (5)

外周に歯車を有する被検回転軸と、
この被検回転軸の歯車と係合した第1の歯車と、
この第1の歯車と係合し、前記第1の歯車と歯数がそれぞれ異なる第2の歯車と、
前記第1、第2の歯車の絶対回転角をそれぞれ検出する第1、第2の検出手段と、
前記第1、第2の検出手段がそれぞれ検出した第1、第2の歯車の絶対回転角の組み合わせに基づいて、前記被検回転軸の多回転絶対角を算出する算出部とを備えた回転角度検出装置において、
前記被検回転軸の歯車前記第2の歯車と係合する第3の歯車をさらに備えた
ことを特徴とする回転角度検出装置。
A test rotary shaft having gears on the outer periphery;
A first gear engaged with the gear of the test rotary shaft;
The first gear engages, said first gear and the number of teeth and a second gear that different respectively,
A first, second detecting means for detecting the first, the absolute rotation angle of the second gear, respectively,
Rotation and a calculation unit for the first, the second detection means first detects respectively, based on a combination of the absolute rotation angle of the second gear, it calculates a multiple rotation absolute angle of the subject rotary shaft In the angle detection device,
Rotation angle detection apparatus characterized by further comprising a third gear that engages with the gear of the subject rotary shaft and said second gear.
前記第1、第2の歯車は、前記被検回転軸の歯車よりも歯数が少ない
ことを特徴とする請求項1に記載の回転角度検出装置。
It said first, second gear is less number of teeth than the gear of the subject rotary shaft
The rotation angle detection device according to claim 1.
前記第3の歯車の絶対回転角を検出する第3の検出手段をさらに備え
前記第3の歯車は、前記第1、第2の歯車よりも歯数が少ない
ことを特徴とする請求項1に記載の回転角度検出装置。
Further comprising a third detecting means for detecting an absolute rotation angle of the third gear,
The rotation angle detection device according to claim 1, wherein the third gear has fewer teeth than the first and second gears .
前記算出部は、前記歯車群の絶対角により算出された前記被検回転軸の絶対回転角をシリアル信号として外部に送信する
ことを特徴とする請求項に記載の回転角度検出装置。
The rotation angle detection device according to claim 1 , wherein the calculation unit transmits the absolute rotation angle of the rotation shaft to be detected calculated based on the absolute angle of the gear group to the outside as a serial signal.
外周に歯車を有する被検回転軸と、A test rotary shaft having gears on the outer periphery;
この被検回転軸の歯車と係合した第1の歯車と、A first gear engaged with the gear of the test rotating shaft;
この第1の歯車と係合し、前記第1の歯車と歯数がそれぞれ異なる第2の歯車と、A second gear engaged with the first gear and having a different number of teeth from the first gear;
前記第1、第2の歯車の絶対回転角をそれぞれ検出する第1、第2の検出手段と、First and second detection means for detecting absolute rotation angles of the first and second gears, respectively;
前記第1、第2の検出手段がそれぞれ検出した第1、第2の歯車の絶対回転角の組み合わせに基づいて、前記被検回転軸の多回転絶対角を算出する算出部とを備えた回転角度検出装置において、A rotation unit including a calculation unit that calculates a multi-rotation absolute angle of the rotation shaft to be tested based on a combination of absolute rotation angles of the first and second gears detected by the first and second detection units, respectively. In the angle detection device,
前記被検回転軸の歯車と係合した第3の歯車と、A third gear engaged with the gear of the test rotating shaft;
この第3の歯車、および、前記第1の歯車と係合した第4の歯車とをさらに備えたThe third gear and a fourth gear engaged with the first gear are further provided.
ことを特徴とする回転角度検出装置。A rotation angle detection device characterized by that.
JP2003159242A 2003-06-04 2003-06-04 Rotation angle detector Expired - Fee Related JP4148031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003159242A JP4148031B2 (en) 2003-06-04 2003-06-04 Rotation angle detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003159242A JP4148031B2 (en) 2003-06-04 2003-06-04 Rotation angle detector

Publications (2)

Publication Number Publication Date
JP2004361212A JP2004361212A (en) 2004-12-24
JP4148031B2 true JP4148031B2 (en) 2008-09-10

Family

ID=34052361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003159242A Expired - Fee Related JP4148031B2 (en) 2003-06-04 2003-06-04 Rotation angle detector

Country Status (1)

Country Link
JP (1) JP4148031B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007139741A (en) * 2005-10-20 2007-06-07 Matsushita Electric Ind Co Ltd Rotational angle detector
KR100837209B1 (en) * 2006-04-19 2008-06-16 대성전기공업 주식회사 Angle sensing device of steering wheel
JP4763540B2 (en) * 2006-07-21 2011-08-31 東洋電装株式会社 Rudder angle sensor
EP1876423B1 (en) * 2006-07-04 2015-10-28 Toyo Denso Kabushiki Kaisha Rudder angle sensor
JP5265362B2 (en) * 2006-07-25 2013-08-14 エルジー イノテック カンパニー リミテッド Steering angle sensing device and sensing method
JP5112779B2 (en) * 2007-08-03 2013-01-09 株式会社ミツトヨ Absolute position measuring device
JP5159438B2 (en) * 2008-05-30 2013-03-06 Ntn株式会社 Bearing with rotation detector
CN102749026B (en) * 2012-07-10 2015-01-21 万向钱潮(上海)汽车***有限公司 Detection device and method for absolute-type multi-circle rotation angle
KR101881047B1 (en) * 2016-10-07 2018-07-24 영남대학교 산학협력단 Position measurement system and method using plural absolute encoders

Also Published As

Publication number Publication date
JP2004361212A (en) 2004-12-24

Similar Documents

Publication Publication Date Title
JP4474872B2 (en) Absolute rotation angle and torque detector
AU763795B2 (en) Device and method for detecting the relative position of a rotatable body
CN100552374C (en) Rotation angle detection apparatus and anglec of rotation modification method
KR100765087B1 (en) Steering angle sensor assembly in vehicle
US7321230B2 (en) Rotation angle-detecting device
EP2006648A2 (en) Rotation angle detector
WO2006085569A1 (en) Rotation angle detection device and rotation angle correction method
JPH11500828A (en) Method and apparatus for measuring angle in rotating body
JP4148031B2 (en) Rotation angle detector
JP2006220529A (en) Detection device for absolute angle of rotation and torque
JP2004177154A (en) Rotation angle detector
JP4562355B2 (en) Rotation angle detection device and rotation angle detection method
JP2003502681A (en) Angle sensor offset compensation method
JP2006029937A (en) Compensation method for rotation angle of rotation angle detector
KR20190035910A (en) A sensor system for determining an absolute rotational angle of a shaft, a method for determining an absolute rotational angle of a shaft, and a vehicle having a sensor system
JP4982925B2 (en) Rotation angle detector
KR20040038766A (en) Rotation angle detecting device, and torque detecting device
KR100792668B1 (en) Detect method for absolute angular measure of wheel
US20230194237A1 (en) Magnetic sensor system
JP2010261738A (en) Angle detection device
JP2005061964A (en) Rotation angle sensor
JP2007078552A (en) Multiple rotational angle detection apparatus and bearing having the same
JP5147531B2 (en) Rotation angle detection device and manufacturing method thereof
JP2007232461A (en) Rotation angle detector
JP4218290B2 (en) Rotation angle detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060309

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4148031

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees