JP4144415B2 - Lead-free solder - Google Patents

Lead-free solder Download PDF

Info

Publication number
JP4144415B2
JP4144415B2 JP2003112287A JP2003112287A JP4144415B2 JP 4144415 B2 JP4144415 B2 JP 4144415B2 JP 2003112287 A JP2003112287 A JP 2003112287A JP 2003112287 A JP2003112287 A JP 2003112287A JP 4144415 B2 JP4144415 B2 JP 4144415B2
Authority
JP
Japan
Prior art keywords
solder
lead
bga
mass
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003112287A
Other languages
Japanese (ja)
Other versions
JP2004261863A (en
Inventor
正純 雨海
雅子 渡辺
堅昇 村田
良孝 豊田
稔 上島
司 大西
武 田島
大輔 相馬
貴弘 六本木
弘史 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Senju Metal Industry Co Ltd
Original Assignee
Senju Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Senju Metal Industry Co Ltd filed Critical Senju Metal Industry Co Ltd
Priority to JP2003112287A priority Critical patent/JP4144415B2/en
Priority to US10/824,647 priority patent/US7282175B2/en
Priority to EP04291027.3A priority patent/EP1468777B1/en
Priority to ES04291027.3T priority patent/ES2445158T3/en
Publication of JP2004261863A publication Critical patent/JP2004261863A/en
Application granted granted Critical
Publication of JP4144415B2 publication Critical patent/JP4144415B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電子機器のはんだ付け、特に微小なはんだ付け部に適した鉛フリーはんだに関する。
【0002】
【従来の技術】
近時、電子機器の小型化、高速化等から、該電子機器に使用する電子部品も小型で多機能化されてきている。この小型化、多機能化された電子部品としてはBGA、CSP、MCM(Ball Grid Array、Chip Size Package、Multi Chip Module:以下代表してBGAという)がある。BGAは、BGA基板の裏面に多数の電極が碁盤目状位置に設置されている。BGAをプリント基板に実装する場合は、BGAの電極とプリント基板のランドとをはんだで接合することにより行われる。このBGAのプリント基板への実装時、電極毎にはんだを供給してはんだ付けしていたのでは多大な手間がかかるばかりでなく、中程にある電極に外部からはんだを供給することはできない。そこでBGAをプリント基板に実装するために、前もってBGAの電極にはんだを盛り付けておくというはんだバンプの形成がなされている。
【0003】
BGAへのはんだバンプ形成には、はんだボール、ソルダペースト等を使用する。はんだボールではんだバンプ形成する場合は、BGA電極に粘着性のフラックスを塗布し、該フラックスが塗布された電極上にはんだボールを載置する。その後、該BGA基板をリフロー炉のような加熱装置で加熱して、はんだボールを溶融することにより、電極上にはんだバンプを形成するものである。またソルダペーストでウエハーのランドにはんだバンプを形成する場合、ウエハーのランドと一致した所にランドと同程度の穴が穿設されたメタルマスクを置き、メタルマスクの上からソルダペーストをスキージで掻きならしてウエハーのランドにソルダペーストを印刷塗布する。その後、ウエハーをリフロー炉で加熱し、ソルダペーストを溶融させることにより、はんだバンプを形成する。
【0004】
ところで従来のBGAでは、はんだバンプ形成用としてSn-Pb合金のはんだボールを用いていた。このSn-Pbはんだボールは、BGAの電極に対するはんだ付け性に優れているばかりでなく、特にSn-Pbの共晶組成は、はんだ付け時にBGA素子や基板等に熱影響を与えない融点を有し、しかも電子機器の使用時にトランスやコイル等から発熱がおきても、該発熱の温度ぐらいでは溶融しないという電子機器のはんだ付けには適した融点を有している。
【0005】
しかしながらSn-Pbはんだボール使用のBGAを組み込んだ電子機器が古くなって使い勝手が悪くなったり故障したりした場合、機能アップや修理をすることなく、ほとんどが廃棄処分されていた。廃棄処分するときに省資源の見地から、再使用できるものは取り外して再使用するようにしている。例えばケースの樹脂やフレームの金属、電子部品中の貴金属等が再使用の対象である。再使用できないものとしてはんだ付けしたプリント基板がある。なぜならばプリント基板は、プリント基板のランドとはんだとが金属的に接合しており、はんだとランドとを完全に分離することが難しいからである。そこでプリント基板は破砕して埋め立て処分されていた。
【0006】
この埋め立て処分されたプリント基板に近時のpHの高い酸性雨が接触すると、Sn-Pb中のPbを溶出させ、それが地下水に混入するようになる。Pb成分を含んだ地下水を人や家畜が長年月にわたって飲用するうちに、Pbが体内に蓄積され、Pb中毒を起こすとされている。そこで最近ではPbを含まない所謂鉛フリーはんだの使用が推奨されている。
【0007】
鉛フリーはんだとは、Sn主成分にAg、Cu、Sb、In、Bi、Zn、Ni、Cr、Co、Fe、P、Ge、Ga等を適宜添加したものである。一般に使用される鉛フリーはんだのうち低中温用としてはSn-Bi系、Sn-In系、Sn-Zn系等があるが、Sn-Bi系は脆性破壊しやすい、Sn-In系は高価格、そしてSn-Zn系は経時変化しやすい、等の問題がある。また低温はんだは、電子機器に組み込んだ後、発熱部品の発熱でケース内の温度が上昇したときに、溶融したり、また溶融しないまでも接合強度が極端に低下したりする。そのため低温の鉛フリーはんだは、特殊用途だけに限られていた。
【0008】
中高温用(Sn-Pb共晶よりは融点は少し高い)の鉛フリーはんだとしては、Sn-Ag系、Sn-Cu系、Sn-Ag-Cu系等がある。Sn-Ag系およびSn-Cu系はぬれ性、耐ヒートサイクル性に問題がある。Sn-Ag系およびSn-Cu系の 問題点を解決したのがSn-Ag-Cu系であり、今日鉛フリーはんだとして最も多く使用されているはんだ合金である。
【0009】
【発明が解決しようとする課題】
Sn-Ag-Cu系鉛フリーはんだは、一般の表面実装部品やディスクリート部品のように比較的接合面積が大きい部分をはんだ付けする場合は、衝撃やヒートサイクルに遭遇しても、従来のSn-Pbはんだ合金よりも優れたものであるが、BGAのような微小電極にはんだバンプを形成した場合は問題となるものであった。
【0010】
つまり携帯電話、ノート型パソコン、ビデオカメラ、デジタルカメラなどの所謂モバイル電子機器では、外部から受ける衝撃が多く、BGAのはんだ付けにSn-Ag-Cu系鉛フリーはんだを使用したものでは、この衝撃でBGAとプリント基板のはんだ付け部が剥離し、電子機器としての機能を果たせなくなってしまうことがあった。例えば携帯電話では、ワイシャツのポケットに入れておいたものが、前屈みになったときにポケットから滑り落ちてしまったり、最近のメール機能が備わった携帯電話では、片手での操作中に落としたりする。またノート型パソコンは、鞄の中に入れて運ぶときに鞄ごと落とすことが多く、ビデオカメラやデジタルカメラは、使用中に落とすことが多い。このような衝撃が電子機器に加わったときにBGAのはんだ付け部分が剥離する。
【0011】
またBGAは、バンプ形成後に高温放置試験を行うが、この時に従来のSn-Ag-Cu系鉛フリーはんだを用いたものでは、はんだバンプが黄色く変色する(以下、黄変という)ことがあった。高温放置試験とは、BGAを組み込んだ電子機器が使用中に高温雰囲気中に置かれた場合でも、BGAが熱影響で機能劣化しないことを確認する試験である。この高温放置試験は、電子部品メーカーや電子機器のセットメーカーによって条件が異なるが、通常125℃の高温雰囲気中に12時間放置する。この高温放置試験で、はんだバンプ表面が黄変すると、はんだバンプの検査を画像処理によって行うときに、正確な検査ができず、エラーの原因となるものである。従来のSn-Ag-Cu系鉛フリーはんだボールでBGAにバンプを形成した後、高温放置試験を行うと、黄変することがあった。
【0012】
さらに電子機器では、使用時に回路に電気を通すと、コイル、パワートランジスター、抵抗等の部品から熱を発し、電子機器のケース内が昇温する。そして電子機器の使用を止めるために通電を切ると、部品からの発熱がなくなってケース内は室温に戻る。このように電子機器の使用・不使用を行うたびに、ケース内が昇温と降温を繰り返すというヒートサイクルが起こる。このヒートサイクルは、当然はんだ付け部にもおよび、はんだ付け部のはんだとプリント基板が熱膨張・収縮を起こす。ところがはんだ付け部における金属のはんだと樹脂のプリント基板では熱膨張率が大いに相違するため、昇温時には、はんだ付け部のはんだが熱膨張で大きく伸びようとするが、それよりも熱膨張率の小さなプリント基板がはんだの伸びを拘束するようになる。そして熱膨張で大きく伸びていたはんだが降温時に大きく縮もうとしても、今度は、その縮みをプリント基板が拘束するようになる。そのため電子機器の使用・不使用により、はんだ付け部がヒートサイクルに曝され、はんだは伸びと縮みを拘束するストレスにより、金属疲労を起こして、ついにはヒビ割れや破壊となり、はんだ付け部が剥離する。Sn-Ag-Cu系鉛フリーはんだは、一般使用ではSn-Pbはんだよりも格段に耐ヒートサイクル性に優れているが、はんだ付け部が微小なBGAのはんだ付けにおいては、耐ヒートサイクルが充分ではなかった。
【0013】
本発明は、耐衝撃性に優れ、しかもバンプ形成時に黄変しないBGA基板へのはんだバンプ形成用の鉛フリーはんだであり、さらに耐ヒートサイクル性を改善した鉛フリーはんだを提供することにある。
【0014】
【課題を解決するための手段】
本発明者らは、Sn-Ag-Cu系鉛フリーはんだにおいて、耐衝撃性向上と黄変防止について鋭意研究を重ねた結果、微量のCuとP、Ge、Ga、Al、Siの1種以上を共存させると、これらを解決でき、またSbの添加が耐衝撃性向上に効果があり、さらに該組成に遷移元素を添加すると耐ヒートサイクル性が改善されること、等を見いだして本発明を完成させた。
【0015】
本発明は、Ag0.05〜質量%、Cu0.01〜0.5質量%、およびP、Ge、Al、Siのいずれか1種または2種以上を合計で0.001〜0.01質量%、残部Snからなることを特徴とする鉛フリーはんだである。
【0016】
Sn主成分の鉛フリーはんだにおいて、Agは、はんだ付け性を向上させる効果がある。一般に広い面積を有するはんだ付け部、例えばプリント基板のはんだ付け部のような広いはんだ付け部に対しては、Agは0.3質量%以上添加されていれば、はんだ付け部によく広がって充分なはんだ付け部となる。しかしながら、BGAでは使用するはんだボールが直径0.25〜0.76mmの小径であり、しかも該はんだボールをはんだ付けするバンプ形成部の直径が使用するはんだボールの直径よりも小さいため、はんだ付け時に、はんだが充分なはんだ付け性を有していなくても、はんだはバンプ形成部全域に完全に付着する。従って、バンプ形成用に用いる鉛フリーはんだとしては、Agの添加量が0.05質量%以上あればバンプ形成部に充分に濡れて確実なはんだ付け部を形成する。しかるにAgの添加量が5質量%を超えると溶融温度が急激に高くなって、バンプ形成時にBGA素子を熱損傷させてしまう。本発明ではAg2質量%以下とする
【0017】
前述のようにSn-Ag-Cu系鉛フリーはんだは、一般の表面実装部品や長いリードのあるディスクリート部品をはんだ付けした場合、耐衝撃性に優れている。つまりはんだ付け面積が或る程度大きい場合は、電子機器を落としたぐらいでは、はんだ付け部が剥離するようなことはないが、はんだ付け面積が小さいBGAでは、電子機器を落下させたような衝撃で剥離することがある。
【0018】
本発明において、P、Ge、Al、Siの1種または2種以上とCuとを共存させると、バンプ形成時にSnと他の金属、例えばはんだ付け部(電極やランド)の材料であるCuやNi等とで形成される金属間化合物の成長を抑制して落下衝撃ではんだ付け部が剥離するのを防ぐ効果を奏するようになる。P、Ge、Al、Si存在下において、Cuの含有量が0.01質量%よりも少ないと金属間化合物抑制効果が現れない。Cuはボイド発生の原因となるものであり、Cuの添加量にともなってボイド発生も多くなるが、0.5質量%までの添加であればボイドが増えた分以上に金属間化合物抑制効果の方が強く現れ、結果的には落下衝撃に対して強くなる。従って、本発明ではCuの添加量を0.01〜0.5%質量とした。
【0019】
またSn主成分の鉛フリーはんだにおいて、P、Ge、Al、Siは、はんだバンプ形成時に加熱されることによりはんだバンプ表面が黄変するのを防止する効果もある。P、Ge、Al、Siの1種または2種以上の合計が0.001質量%未満では、この効果が現れず、しかるに0.01質量%よりも多くなるとはんだ付け性を害するようになる。
【0020】
はんだ付け面積の大きい部分をSn−Ag−Cu系鉛フリーはんだではんだ付けしたものは、耐ヒートサイクル性に優れているが、BGAのようにはんだ付け部が微小なものでは、長年月にわたってヒートサイクルに曝されると、はんだ付け部にヒビ割れや破壊が発生することがある。本発明では、Sn−Ag−Cu系に、さらにMn、Co、Ni、W、Au、Laの遷移元素の1種または2種以上を微量添加して耐ヒートサイクル性を向上させることもできる。前述のように、電子機器では使用・不使用を繰り返すことにより、はんだ付け部にヒートサイクルがかかるが、Sn−Ag−Cu−Pに微量の上記遷移元素を1種または2種以上添加すると耐ヒートサイクル性を向上させる効果がある。遷移元素の添加量が0.1質量%を超えると融点が高くなるばかりでなく、はんだ付け性を阻害するようになる。耐ヒートサイクル性向上効果が現れるのは、上記遷移元素の1種または2種以上が0.001質量%以上であり、好適には0.005〜0.05質量%である。
【0021】
さらにまた本発明は、融点を下げるために上記組成にIn,Znのいずれか1種または2種を5質量%以下添加することもできる。これらの融点降下元素は5質量%よりも多くなると、これらとSnの二元系の低い固相線温度、例えばSn−In系の117C、Sn−Zn系の199Cが現れてしまい、耐熱性に問題がでてきてしまう。
【0022】
そしてさらにまた本発明は、Sbを1質量%以下添加することもできる。Sbの添加は、耐衝撃性向上に効果がある。Sbの添加量が1質量%を超えると、脆性が現れるようになり、かえって耐衝撃性を弱めることになる。
【0023】
実施例と比較例を表1に示す。
【0024】
【表1】

Figure 0004144415
【0025】
表1の説明
耐衝撃:はんだバンプではんだ付けしたCSP基板とプリント基板間に落下による衝撃を与えて、はんだ付け部が剥離するまでの落下回数を測定する。
(衝撃試験の工程は以下のとおりである)
▲1▼直径0.25mmの電極が150個設置されたCSP用基板(大きさ10×10mm)にソルダペーストを印刷塗布し、該塗布部に直径0.3mmのはんだボールを載置する。
▲2▼はんだボールが載置されたCSP用基板をリフロー炉で加熱して電極にはんだバンプを形成する。
▲3▼はんだバンプが形成されたCSP用基板を30×120mmのガラエポのプリント基板の中央に搭載し、リフロー炉で加熱してCSP用基板をプリント基板にはんだ付けする。
▲4▼CSP用基板がはんだ付けされたプリント基板の両端を、外形40×200×80mmのステンレス製で下部中央に三角形の衝突部が設けられた枠状治具上に治具と間隔をあけて固定する。
▲5▼治具を500mmの高さから落下させてプリント基板に衝撃を与える。このとき両端を治具に固定されたプリント基板は、中央が振動し、プリント基板とCSP用基板のはんだ付け部は、振動による衝撃を受ける。この落下試験でCSP用基板が剥離するまでの落下回数を測定する。
【0026】
黄変:高温加熱後のはんだ表面の黄変を目視で観察する。
(黄変試験の工程は以下のとおりである)
▲1▼CSP用基板に直径0.3mmのはんだボールを載置する。
▲2▼CSP用基板に載置したはんだボールをリフロー炉で溶融してはんだバンプを形成する。
▲3▼はんだバンプが形成されたCSP用基板を150℃の恒温槽中に24時間放置後、目視にて黄変状態を観察する。黄変がほんとんどないものを無、黄変が顕著なものを有とする。
【0027】
耐ヒートサイクル:電子部品を実装したプリント基板にヒートサイクルをかけて、はんだ付け部の破壊が発生するまでの回数を測定する。
(ヒートサイクル試験の工程は以下のとおりである)
▲1▼直径0.25mmの電極が150個設置されたCSP用基板(大きさ10×10mm)にソルダペーストを印刷塗布し、該塗布部に直径0.3mmのはんだボールを載置する。
▲2▼はんだボールが載置されたCSP用基板をリフロー炉で加熱して電極にはんだバンプを形成する。
▲3▼はんだバンプが形成されたCSP用基板を120×140mmのガラエポのプリント基板に搭載し、リフロー炉で加熱してCSP用基板をプリント基板にはんだ付けする。
▲4▼CSP用基板がはんだ付けされたプリント基板を、−40℃に10分間、+120℃に10分間それぞれ曝すというヒートサイクルをかけて、はんだ付け部にヒビ割れや破壊が発生して導通不良になるまでのサイクル数を測定する。
【0028】
【発明の効果】
以上説明したように、本発明の鉛フリーはんだで形成したはんだバンプは、モバイル電子機器が外的衝撃を受けてもBGAのはんだ付け部が容易に剥離しないため、BGAを多く使用しているモバイル電子機器においては信頼性が向上するものであり、また高温放置試験においても黄変しないことから、画像検査が正確に行えるという従来にない優れた効果を有している。さらにまた本発明の鉛フリーはんだは、BGAの微小なはんだ付け部において耐ヒートサイクル性が向上しているため、長年月の使用・不使用の繰り返しでも、はんだ付け部が破壊しにくいという長寿命化も図れるものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lead-free solder suitable for soldering electronic devices, and particularly suitable for a small soldered portion.
[0002]
[Prior art]
In recent years, electronic components used in electronic devices have been made smaller and more multifunctional due to the downsizing and speeding up of electronic devices. There are BGA, CSP, and MCM (Ball Grid Array, Chip Size Package, Multi Chip Module: hereinafter, representatively referred to as BGA) as the miniaturized and multifunctional electronic components. A BGA has a large number of electrodes arranged in a grid pattern on the back side of the BGA substrate. When the BGA is mounted on a printed board, the BGA electrode and the land of the printed board are joined by soldering. When mounting this BGA on a printed circuit board, supplying solder for each electrode not only takes a great deal of time, but also cannot supply solder to the middle electrode. Therefore, in order to mount the BGA on a printed circuit board, solder bumps are formed in which solder is placed on the BGA electrodes in advance.
[0003]
Solder balls, solder paste, etc. are used to form solder bumps on the BGA. When forming solder bumps with solder balls, an adhesive flux is applied to the BGA electrode, and the solder balls are placed on the electrode to which the flux has been applied. Thereafter, the BGA substrate is heated by a heating device such as a reflow furnace to melt the solder balls, thereby forming solder bumps on the electrodes. When solder bumps are formed on the wafer lands with solder paste, a metal mask with holes equal to the lands are placed on the wafer land, and the solder paste is scraped from the metal mask with a squeegee. Then, solder paste is printed on the land of the wafer. Thereafter, the wafer is heated in a reflow furnace to melt the solder paste, thereby forming solder bumps.
[0004]
By the way, in conventional BGA, solder balls of Sn—Pb alloy are used for forming solder bumps. This Sn-Pb solder ball not only has excellent solderability to the BGA electrode, but in particular, the eutectic composition of Sn-Pb has a melting point that does not affect the BGA element and the substrate during soldering. In addition, even when heat is generated from a transformer, a coil, or the like when the electronic device is used, it has a melting point suitable for soldering an electronic device that does not melt at the temperature of the generated heat.
[0005]
However, when electronic devices incorporating BGA using Sn-Pb solder balls became old and became unusable or failed, most of them were disposed of without being upgraded or repaired. From the viewpoint of saving resources when disposing of them, those that can be reused are removed and reused. For example, the resin of the case, the metal of the frame, the noble metal in the electronic component, and the like are objects to be reused. There is a soldered printed circuit board that cannot be reused. This is because in the printed circuit board, the land of the printed circuit board and the solder are metallicly joined, and it is difficult to completely separate the solder and the land. Therefore, the printed circuit board was crushed and disposed of in landfills.
[0006]
When acid rain with a recent high pH comes into contact with this landfilled printed circuit board, Pb in Sn-Pb is eluted and mixed into groundwater. It is said that Pb accumulates in the body and causes Pb poisoning while humans and livestock have been drinking groundwater containing Pb for many years. Therefore, recently, it is recommended to use so-called lead-free solder which does not contain Pb.
[0007]
The lead-free solder is obtained by appropriately adding Ag, Cu, Sb, In, Bi, Zn, Ni, Cr, Co, Fe, P, Ge, Ga, or the like to the Sn main component. Among the commonly used lead-free solders, there are Sn-Bi, Sn-In, Sn-Zn, etc. for low and medium temperatures, but Sn-Bi is susceptible to brittle fracture, and Sn-In is expensive. In addition, the Sn—Zn system has problems such as being easily changed over time. Further, after being incorporated into an electronic device, the low-temperature solder melts when the temperature in the case rises due to the heat generated by the heat-generating component, or the bonding strength decreases extremely even if it does not melt. Therefore, low temperature lead-free solder has been limited to special applications.
[0008]
Examples of lead-free solders for medium and high temperatures (melting point is slightly higher than Sn-Pb eutectic) include Sn-Ag, Sn-Cu, and Sn-Ag-Cu. Sn-Ag and Sn-Cu systems have problems with wettability and heat cycle resistance. The Sn-Ag-Cu system solves the problems of Sn-Ag and Sn-Cu systems, and is the solder alloy most frequently used as lead-free solder today.
[0009]
[Problems to be solved by the invention]
Sn-Ag-Cu-based lead-free solder can be used to solder parts with a relatively large joint area, such as general surface mount components and discrete components. Although it is superior to Pb solder alloy, it was problematic when solder bumps were formed on microelectrodes such as BGA.
[0010]
In other words, so-called mobile electronic devices such as mobile phones, notebook computers, video cameras, digital cameras, etc., receive a lot of impact from outside, and those that use Sn-Ag-Cu lead-free solder for BGA soldering have this impact. As a result, the soldered part of the BGA and the printed circuit board peeled off, making it impossible to function as an electronic device. For example, on a cell phone, what you put in your shirt pocket slips out of your pocket when you bend forward, or on a cell phone with a recent mail function, it drops during one-handed operation. . In addition, notebook computers are often dropped together with the bag when carried in a bag, and video cameras and digital cameras are often dropped during use. When such an impact is applied to an electronic device, the soldered part of the BGA peels off.
[0011]
In addition, BGA is subjected to a high temperature standing test after bump formation. At this time, with conventional Sn-Ag-Cu-based lead-free solder, the solder bump may turn yellow (hereinafter referred to as yellowing). . The high temperature storage test is a test for confirming that BGA does not deteriorate its function due to the influence of heat even when an electronic device incorporating BGA is placed in a high temperature atmosphere during use. This high-temperature storage test is usually performed in a high-temperature atmosphere at 125 ° C for 12 hours, although the conditions vary depending on the electronic component manufacturer and the electronic device set manufacturer. If the surface of the solder bump turns yellow in this high temperature storage test, when the solder bump is inspected by image processing, an accurate inspection cannot be performed, causing an error. After forming bumps on BGA with conventional Sn-Ag-Cu lead-free solder balls, yellowing may occur when subjected to a high temperature standing test.
[0012]
Furthermore, in an electronic device, when electricity is passed through a circuit during use, heat is generated from components such as a coil, a power transistor, and a resistor, and the temperature of the case of the electronic device rises. When the power is turned off to stop the use of the electronic device, the heat from the parts disappears and the case returns to room temperature. As described above, each time the electronic device is used / not used, a heat cycle occurs in which the temperature in the case repeatedly increases and decreases. This heat cycle naturally extends to the soldered portion, and the solder and the printed board of the soldered portion cause thermal expansion / contraction. However, the coefficient of thermal expansion is greatly different between the metal solder and the resin printed circuit board in the soldering part, so when the temperature rises, the solder in the soldering part tends to expand greatly due to thermal expansion. A small printed circuit board restrains the elongation of the solder. Even if the solder, which has been greatly expanded due to thermal expansion, tries to shrink greatly when the temperature drops, the printed circuit board now restrains the shrinkage. For this reason, the use of electronic equipment causes the soldered part to be exposed to a heat cycle, and the solder causes metal fatigue due to stress that restrains expansion and contraction, eventually cracking and breaking, and the soldering part peels off. To do. Sn-Ag-Cu lead-free solder has much better heat cycle resistance than Sn-Pb solder in general use, but has sufficient heat cycle resistance when soldering BGA with a small soldering area. It wasn't.
[0013]
An object of the present invention is to provide a lead-free solder for forming a solder bump on a BGA substrate which is excellent in impact resistance and does not turn yellow during bump formation, and further has improved heat cycle resistance.
[0014]
[Means for Solving the Problems]
As a result of intensive research on the improvement of impact resistance and the prevention of yellowing in Sn-Ag-Cu-based lead-free solders, the present inventors have made a trace amount of Cu and one or more of P, Ge, Ga, Al, and Si. Coexistence of these can solve these problems, and addition of Sb is effective in improving impact resistance, and addition of a transition element to the composition improves heat cycle resistance. Completed.
[0015]
The present invention, Ag0.05~ 2 wt%, Cu0.01~ 0.5 mass%, and P, Ge, A l, 0.001 to total any one or more of Si 0.01 It is a lead-free solder characterized by comprising mass% and the balance Sn.
[0016]
In lead-free solder containing Sn as a main component, Ag has an effect of improving solderability. In general, for a soldering part having a large area, for example, a soldering part such as a soldering part of a printed circuit board, if 0.3 mass% or more of Ag is added, the soldering part spreads well. It becomes a proper soldering part. However, in the BGA, the solder ball used is a small diameter of 0.25 to 0.76 mm, and the diameter of the bump forming portion for soldering the solder ball is smaller than the diameter of the solder ball used. Even if the solder does not have sufficient solderability, the solder adheres completely to the entire bump forming portion. Therefore, as a lead-free solder used for bump formation, if the amount of Ag added is 0.05% by mass or more, the bump formation portion is sufficiently wetted to form a reliable soldered portion. However, if the addition amount of Ag exceeds 5% by mass, the melting temperature increases rapidly, and the BGA element is thermally damaged during bump formation. In the present invention, Ag is 2% by mass or less .
[0017]
As described above, Sn-Ag-Cu-based lead-free solder has excellent impact resistance when soldering general surface-mount components or discrete components with long leads. In other words, if the soldering area is large to some extent, the soldered part will not peel off if the electronic device is dropped, but with a BGA with a small soldering area, the impact of dropping the electronic device May peel off.
[0018]
In the present invention, when one or more of P, Ge, Al, and Si is coexistent with Cu, Sn and other metals, for example, Cu which is a material of a soldered portion (electrode or land) at the time of bump formation This suppresses the growth of the intermetallic compound formed with Ni or Ni, and has an effect of preventing the soldered portion from being peeled off by a drop impact. If the Cu content is less than 0.01% by mass in the presence of P, Ge, Al, and Si, the intermetallic compound suppressing effect does not appear. Cu is a cause of void generation, and void generation increases with the amount of Cu added. However, if it is added up to 0.5 % by mass , the effect of inhibiting intermetallic compounds is more than the amount of void increase. Appears stronger and, as a result, becomes stronger against a drop impact. Therefore, in the present invention, the amount of Cu added is 0.01 to 0.5% by mass .
[0019]
Further, in lead-free solder containing Sn as a main component, P, Ge, Al, and Si also have an effect of preventing the solder bump surface from being yellowed by being heated at the time of forming the solder bump. If the total of one or more of P, Ge, Al, and Si is less than 0.001% by mass, this effect does not appear, and if it exceeds 0.01 % by mass , solderability is impaired.
[0020]
Soldered parts with a large soldering area with Sn-Ag-Cu-based lead-free solder are excellent in heat cycle resistance, but if the soldered part is very small like BGA, it will heat for many years. When exposed to a cycle, cracks and breakage may occur in the soldered part. In the present invention, the heat cycle resistance can be improved by adding a trace amount of one or more of transition elements of Mn, Co, Ni, W, Au, and La to the Sn—Ag—Cu system. As described above, in electronic equipment, heat cycles are applied to the soldered parts by repeated use / nonuse. However, when one or more trace amounts of the above-mentioned transition elements are added to Sn-Ag-Cu-P, resistance is increased. There is an effect of improving heat cycle performance. When the addition amount of the transition element exceeds 0.1% by mass, not only the melting point becomes high, but also solderability is hindered. The effect of improving the heat cycle resistance appears when one or more of the above transition elements are 0.001% by mass or more, preferably 0.005 to 0.05% by mass.
[0021]
Furthermore, in the present invention, in order to lower the melting point, any one or two of In 2 and Zn can be added to the above composition in an amount of 5% by mass or less. When these melting point lowering element is more than 5 wt%, binary low solidus temperatures of these and Sn, for example, Sn -In system 117 o C, will appear is 199 o C of Sn-Zn-based This will cause problems with heat resistance.
[0022]
Furthermore, in the present invention, 1% by mass or less of Sb can be added. The addition of Sb is effective in improving impact resistance. If the amount of Sb added exceeds 1% by mass, brittleness will appear and the impact resistance will be weakened.
[0023]
Examples and comparative examples are shown in Table 1.
[0024]
[Table 1]
Figure 0004144415
[0025]
Description of Table 1 Impact resistance: An impact due to dropping is applied between the CSP substrate soldered with solder bumps and the printed circuit board, and the number of times of dropping until the soldered portion is peeled is measured.
(The impact test process is as follows)
(1) A solder paste is printed on a CSP substrate (size: 10 × 10 mm) on which 150 electrodes with a diameter of 0.25 mm are installed, and a solder ball with a diameter of 0.3 mm is placed on the applied portion.
(2) The CSP substrate on which the solder balls are placed is heated in a reflow furnace to form solder bumps on the electrodes.
(3) A CSP substrate on which solder bumps are formed is mounted at the center of a 30 × 120 mm glass epoxy printed circuit board and heated in a reflow oven to solder the CSP substrate to the printed circuit board.
(4) The both ends of the printed circuit board on which the CSP board is soldered are spaced apart from a jig on a frame-shaped jig made of stainless steel with an outer shape of 40 x 200 x 80 mm and a triangular collision part at the bottom center. And fix.
(5) Drop the jig from a height of 500 mm to give an impact to the printed circuit board. At this time, the printed circuit board having both ends fixed to the jig vibrates in the center, and the soldered portion of the printed circuit board and the CSP substrate receives an impact due to vibration. In this drop test, the number of drops until the CSP substrate peels is measured.
[0026]
Yellowing: The yellowing of the solder surface after high-temperature heating is visually observed.
(The process of yellowing test is as follows)
(1) A 0.3 mm diameter solder ball is placed on the CSP substrate.
(2) Solder balls placed on the CSP substrate are melted in a reflow furnace to form solder bumps.
(3) The CSP substrate on which the solder bumps are formed is left in a constant temperature bath at 150 ° C. for 24 hours, and then the yellowing state is visually observed. No yellowing is observed, and yellowing is marked.
[0027]
Heat cycle resistance: A heat cycle is applied to a printed circuit board on which electronic components are mounted, and the number of times until the soldered portion is broken is measured.
(The process of the heat cycle test is as follows)
(1) A solder paste is printed on a CSP substrate (size: 10 × 10 mm) on which 150 electrodes with a diameter of 0.25 mm are installed, and a solder ball with a diameter of 0.3 mm is placed on the applied portion.
(2) The CSP substrate on which the solder balls are placed is heated in a reflow furnace to form solder bumps on the electrodes.
(3) A CSP substrate on which solder bumps are formed is mounted on a 120 × 140 mm glass epoxy printed circuit board and heated in a reflow oven to solder the CSP substrate to the printed circuit board.
(4) The printed circuit board on which the CSP board is soldered is exposed to -40 ° C for 10 minutes and + 120 ° C for 10 minutes, causing cracks and breakage in the soldered part, resulting in poor conduction. Measure the number of cycles until.
[0028]
【The invention's effect】
As described above, the solder bump formed with the lead-free solder of the present invention does not easily peel off the soldered part of the BGA even when the mobile electronic device is subjected to an external impact. In electronic equipment, the reliability is improved, and yellowing does not occur even in a high-temperature standing test, so that it has an unprecedented excellent effect that image inspection can be performed accurately. Furthermore, the lead-free solder of the present invention has improved heat cycle resistance at the small soldered part of the BGA, so the soldered part is hard to break even after repeated use and non-use for many years. It can also be realized.

Claims (4)

Ag0.05〜2質量%、Cu0.01〜0.5質量%、およびP、Ge、Al、Siのいずれか1種または2種以上を合計で0.001〜0.01質量%、残部Snからなることを特徴とする鉛フリーはんだ。  Ag 0.05 to 2% by mass, Cu 0.01 to 0.5% by mass, and any one or more of P, Ge, Al, and Si in total 0.001 to 0.01% by mass, balance Sn A lead-free solder characterized by comprising: Mn、Co、Ni、W、Au、Laの1種または2種以上が0.1質量%以下添加されていることを特徴とする請求項1記載の鉛フリーはんだ。 Mn, Co, Ni, W, Au, 1 kind or lead-free solder according to claim 1, wherein two or more is characterized in that it is added more than 0.1 wt% of La. In、Znのいずれか1種または2種が5質量%以下添加されていることを特徴とする請求項1または2に記載の鉛フリーはんだ(ただし、Ag:2−5質量%、Cu:0.1−2質量%、P:0.001−0.3質量%、Zn:0.0005−0.1質量%、残部Snからなる組成と重複する組成範囲を除く)。  The lead-free solder according to claim 1 or 2, wherein one or two of In and Zn are added in an amount of 5% by mass or less (provided that Ag: 2-5% by mass, Cu: 0) .1-2 mass%, P: 0.001-0.3 mass%, Zn: 0.0005-0.1 mass%, excluding the composition range overlapping with the composition consisting of the remaining Sn). Sbが1質量%以下添加されていることを特徴とする請求項1から3のいずれかに記載の鉛フリーはんだ。  The lead-free solder according to any one of claims 1 to 3, wherein Sb is added in an amount of 1% by mass or less.
JP2003112287A 2003-01-07 2003-04-17 Lead-free solder Expired - Lifetime JP4144415B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003112287A JP4144415B2 (en) 2003-01-07 2003-04-17 Lead-free solder
US10/824,647 US7282175B2 (en) 2003-04-17 2004-04-15 Lead-free solder
EP04291027.3A EP1468777B1 (en) 2003-04-17 2004-04-16 Lead free solder
ES04291027.3T ES2445158T3 (en) 2003-04-17 2004-04-16 Lead free welding

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003000788 2003-01-07
JP2003112287A JP4144415B2 (en) 2003-01-07 2003-04-17 Lead-free solder

Publications (2)

Publication Number Publication Date
JP2004261863A JP2004261863A (en) 2004-09-24
JP4144415B2 true JP4144415B2 (en) 2008-09-03

Family

ID=33133491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003112287A Expired - Lifetime JP4144415B2 (en) 2003-01-07 2003-04-17 Lead-free solder

Country Status (1)

Country Link
JP (1) JP4144415B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020021967A1 (en) 2018-07-24 2020-01-30 千住金属工業株式会社 Soldering alloy and solder joint
WO2021029222A1 (en) 2019-08-09 2021-02-18 千住金属工業株式会社 Lead-free and antimony-free solder alloy, solder ball, baii grid array, and solder joint
WO2021161954A1 (en) 2020-02-14 2021-08-19 千住金属工業株式会社 Lead-free and antimony-free solder alloy, solder ball, and solder joint
WO2021161953A1 (en) 2020-02-14 2021-08-19 千住金属工業株式会社 Lead-free and antimony-free solder alloy, solder ball, and solder joint
WO2021187271A1 (en) 2020-03-19 2021-09-23 千住金属工業株式会社 Solder alloy, solder ball and solder joint
WO2022107806A1 (en) 2020-11-19 2022-05-27 千住金属工業株式会社 Solder alloy, solder ball and solder joint

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005035180A1 (en) 2003-10-07 2005-04-21 Senju Metal Industry Co., Ltd. Lead-free solder ball
KR100885543B1 (en) * 2004-10-22 2009-02-26 엠케이전자 주식회사 Pb-free solder alloy
CN101048521A (en) * 2004-11-01 2007-10-03 千住金属工业株式会社 High temperature lead-free solder and package for storing semiconductor element
GB2421030B (en) * 2004-12-01 2008-03-19 Alpha Fry Ltd Solder alloy
CN1313240C (en) * 2005-05-09 2007-05-02 天津大学 Shape memory Co-Zn-Al alloy grains reinforced composite Sn-Ag welding material and its prepn process
WO2006129713A1 (en) * 2005-06-03 2006-12-07 Senju Metal Industry Co., Ltd. Lead-free solder alloy
US8641964B2 (en) 2005-08-24 2014-02-04 Fry's Metals, Inc. Solder alloy
JP2009506203A (en) * 2005-08-24 2009-02-12 フライズ メタルズ インコーポレイテッド Solder alloy
JP2007111715A (en) * 2005-10-19 2007-05-10 Nihon Almit Co Ltd Solder alloy
CN100396426C (en) * 2005-12-12 2008-06-25 黄德欢 Al-Cu-Sn series lead-free soldering tin
CN100364713C (en) * 2005-12-12 2008-01-30 黄德欢 Ag-Al-Cu-Ni-Sn series lead-free soldering tin
US7626274B2 (en) 2006-02-03 2009-12-01 Texas Instruments Incorporated Semiconductor device with an improved solder joint
KR100904656B1 (en) * 2006-02-14 2009-06-25 주식회사 에코조인 Pb free solder Composition for wave and deeping, electronic equipment and PCB with the same
KR100904658B1 (en) * 2006-02-14 2009-06-25 주식회사 에코조인 Pb free solder Composition for wave and deeping, electronic equipment and PCB with the same
KR100904653B1 (en) * 2006-02-14 2009-06-25 주식회사 에코조인 Pb free solder composition for wave and deeping, electronic equipment and PCB with the same
KR100904651B1 (en) * 2006-02-14 2009-06-25 주식회사 에코조인 Pb free solder Composition for wave and deeping, electronic equipment and PCB with the same
KR100887358B1 (en) * 2006-02-14 2009-03-06 주식회사 에코조인 Diluent Pb free solder Composition, electronic equipment and PCB with the same
KR100904652B1 (en) * 2006-02-14 2009-06-25 주식회사 에코조인 Pb free solder Composition for wave and deeping, electronic equipment and PCB with the same
KR100904654B1 (en) * 2006-02-14 2009-06-25 주식회사 에코조인 Pb free solder Composition for wave and deeping, electronic equipment and PCB with the same
KR100904657B1 (en) * 2006-02-14 2009-06-25 주식회사 에코조인 Pb free solder Composition for wave and deeping, electronic equipment and PCB with the same
KR100887357B1 (en) * 2006-02-14 2009-03-06 주식회사 에코조인 Pb free solder Composition for high temperature system, electronic equipment and PCB with the same
JP4904953B2 (en) * 2006-04-06 2012-03-28 日立電線株式会社 WIRING CONDUCTOR, MANUFACTURING METHOD THEREOF, TERMINAL CONNECTION UNIT AND Pb FREE SOLDER ALLOY
JP5376553B2 (en) * 2006-06-26 2013-12-25 日立金属株式会社 Wiring conductor and terminal connection
JP2008030047A (en) * 2006-07-26 2008-02-14 Eishin Kogyo Kk Unleaded solder
JP5051633B2 (en) * 2006-10-12 2012-10-17 富士電機株式会社 Solder alloy
CN103008903A (en) * 2007-08-14 2013-04-03 株式会社爱科草英 Lead-free solder combination and printed circuit board and electronic device provided with lead-free solder combination
US20110091351A1 (en) * 2007-08-24 2011-04-21 Than Trong Long Bonding composition
TW200927357A (en) * 2007-10-17 2009-07-01 Ishikawa Metal Co Ltd Lead-free solder
JP5071802B2 (en) * 2008-04-08 2012-11-14 日立金属株式会社 Solder balls, solder layers and solder bumps
JP5584427B2 (en) * 2009-04-14 2014-09-03 新日鉄住金マテリアルズ株式会社 Electronic member having lead-free solder alloy, solder ball and solder bump
JP5722302B2 (en) * 2010-02-16 2015-05-20 株式会社タムラ製作所 Lead-free solder alloy, solder paste using this, and mounted product
US20110303448A1 (en) 2010-04-23 2011-12-15 Iowa State University Research Foundation, Inc. Pb-Free Sn-Ag-Cu-Al or Sn-Cu-Al Solder
US9339893B2 (en) 2011-04-15 2016-05-17 Nihon Superior Co., Ltd. Lead-free solder alloy
KR101283580B1 (en) 2011-12-14 2013-07-05 엠케이전자 주식회사 Tin-based solder ball and semiconductor package including the same
WO2014002304A1 (en) * 2012-06-29 2014-01-03 ハリマ化成株式会社 Solder alloy, solder paste, and electronic circuit board
JP5238088B1 (en) 2012-06-29 2013-07-17 ハリマ化成株式会社 Solder alloy, solder paste and electronic circuit board
CN103042315B (en) * 2013-01-22 2015-05-27 马莒生 Heat-resistant and moisture-resistant low-melting-point lead-free solder alloy
JP6060199B2 (en) * 2015-03-24 2017-01-11 ハリマ化成株式会社 Solder alloy, solder paste and electronic circuit board
US10307868B2 (en) 2015-05-20 2019-06-04 Nec Corporation Solder alloy
WO2016185672A1 (en) * 2015-05-20 2016-11-24 日本電気株式会社 Solder alloy
JP2017064781A (en) * 2015-10-01 2017-04-06 株式会社Joy・zu−company Lead-free solder alloy
JP6892568B2 (en) * 2015-12-21 2021-06-23 ニホンハンダ株式会社 A method for selecting a solder alloy containing Sn as a main component, which has excellent surface properties.
JP6374424B2 (en) 2016-03-08 2018-08-15 千住金属工業株式会社 Solder alloy, solder ball, chip solder, solder paste and solder joint
JP6767506B2 (en) * 2016-05-06 2020-10-14 アルファ・アセンブリー・ソリューションズ・インコーポレイテッドAlpha Assembly Solutions Inc. Highly reliable lead-free solder alloy
JP6579253B1 (en) * 2018-11-09 2019-09-25 千住金属工業株式会社 Solder ball, solder joint and joining method

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH106075A (en) * 1996-06-13 1998-01-13 Nippon Handa Kk Lead-free solder alloy
JP3693762B2 (en) * 1996-07-26 2005-09-07 株式会社ニホンゲンマ Lead-free solder
KR19980068127A (en) * 1997-02-15 1998-10-15 김광호 Lead-Free Alloys for Soldering
JP3353662B2 (en) * 1997-08-07 2002-12-03 富士電機株式会社 Solder alloy
JP3296289B2 (en) * 1997-07-16 2002-06-24 富士電機株式会社 Solder alloy
JP2000015476A (en) * 1998-06-29 2000-01-18 Ishikawa Kinzoku Kk Lead-free solder
JP3262113B2 (en) * 1999-01-29 2002-03-04 富士電機株式会社 Solder alloy
JP2000288772A (en) * 1999-02-02 2000-10-17 Nippon Genma:Kk Lead-free solder
JP3753168B2 (en) * 1999-08-20 2006-03-08 千住金属工業株式会社 Solder paste for joining microchip components
JP2001138088A (en) * 1999-11-18 2001-05-22 Nippon Steel Corp Solder alloy, solder ball and electric member having solder bump
JP3649384B2 (en) * 2000-07-03 2005-05-18 日立金属株式会社 Solder balls and manufacturing method thereof
JP2001358458A (en) * 2000-06-12 2001-12-26 Hitachi Ltd Electronic equipment having lead-free solder connection
JP2002018589A (en) * 2000-07-03 2002-01-22 Senju Metal Ind Co Ltd Lead-free solder alloy
JP4152596B2 (en) * 2001-02-09 2008-09-17 新日鉄マテリアルズ株式会社 Electronic member having solder alloy, solder ball and solder bump
JP2003266193A (en) * 2002-01-10 2003-09-24 Senju Metal Ind Co Ltd Lead-free solder for feeding into solder bath
JP2003326386A (en) * 2002-05-13 2003-11-18 Matsushita Electric Ind Co Ltd Leadless solder alloy

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020021967A1 (en) 2018-07-24 2020-01-30 千住金属工業株式会社 Soldering alloy and solder joint
KR20200118863A (en) 2018-07-24 2020-10-16 센주긴조쿠고교 가부시키가이샤 Solder alloy, and solder seams
WO2021029222A1 (en) 2019-08-09 2021-02-18 千住金属工業株式会社 Lead-free and antimony-free solder alloy, solder ball, baii grid array, and solder joint
KR20220025110A (en) 2019-08-09 2022-03-03 센주긴조쿠고교 가부시키가이샤 Lead free and antimony free solder alloys, solder balls, ball grid arrays and solder joints
WO2021161954A1 (en) 2020-02-14 2021-08-19 千住金属工業株式会社 Lead-free and antimony-free solder alloy, solder ball, and solder joint
WO2021161953A1 (en) 2020-02-14 2021-08-19 千住金属工業株式会社 Lead-free and antimony-free solder alloy, solder ball, and solder joint
KR20220129113A (en) 2020-02-14 2022-09-22 센주긴조쿠고교 가부시키가이샤 Lead-free and antimony-free solder alloys, solder balls and solder joints
KR20220129112A (en) 2020-02-14 2022-09-22 센주긴조쿠고교 가부시키가이샤 Lead-free and antimony-free solder alloys, solder balls and solder joints
WO2021187271A1 (en) 2020-03-19 2021-09-23 千住金属工業株式会社 Solder alloy, solder ball and solder joint
WO2022107806A1 (en) 2020-11-19 2022-05-27 千住金属工業株式会社 Solder alloy, solder ball and solder joint
KR20230087565A (en) 2020-11-19 2023-06-16 센주긴조쿠고교 가부시키가이샤 Solder alloys, solder balls, and solder joints

Also Published As

Publication number Publication date
JP2004261863A (en) 2004-09-24

Similar Documents

Publication Publication Date Title
JP4144415B2 (en) Lead-free solder
EP1468777B1 (en) Lead free solder
KR101985646B1 (en) Low temperature high reliability tin alloy for soldering
KR100999331B1 (en) Lead-free solder alloy
JP4152596B2 (en) Electronic member having solder alloy, solder ball and solder bump
US20160339543A1 (en) Lead-Free Solder Ball
JP5724411B2 (en) Solder, soldering method and semiconductor device
JP2004141910A (en) Lead-free solder alloy
JPH071179A (en) Lead-free tin - bismuth solder
JP3827322B2 (en) Lead-free solder alloy
US9773721B2 (en) Lead-free solder alloy, connecting member and a method for its manufacture, and electronic part
JP3991788B2 (en) Solder and mounted product using it
JP3919106B2 (en) Metal core solder ball of Cu or Cu alloy ball
JP2005072173A (en) Electronic component and solder paste
JP2019126827A (en) Lead-free solder alloy
JP3852377B2 (en) Lead-free solder alloy
JP2004058085A (en) Lead-free soldering alloy
JPH07299585A (en) Solder
JP2004214468A (en) Leadless parts and lead-free solder
JP2001232491A (en) Semiconductor package and solder joining
JP2004363618A (en) Packaging structural body using lead-free solder and packaging method using the same
JP2001113387A (en) Solder alloy
KR20070039477A (en) Lead-free solder alloy
JP2002313983A (en) Semiconductor device
JP2000319738A (en) Lead-free tin based solder alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080128

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080128

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080609

R150 Certificate of patent or registration of utility model

Ref document number: 4144415

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term