JP4141679B2 - エレクトレット化方法、エレクトレット化装置、及びエレクトレット体の製造方法 - Google Patents

エレクトレット化方法、エレクトレット化装置、及びエレクトレット体の製造方法 Download PDF

Info

Publication number
JP4141679B2
JP4141679B2 JP2001358915A JP2001358915A JP4141679B2 JP 4141679 B2 JP4141679 B2 JP 4141679B2 JP 2001358915 A JP2001358915 A JP 2001358915A JP 2001358915 A JP2001358915 A JP 2001358915A JP 4141679 B2 JP4141679 B2 JP 4141679B2
Authority
JP
Japan
Prior art keywords
processed
electretization
ions
electret
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001358915A
Other languages
English (en)
Other versions
JP2002248335A (ja
Inventor
雅章 川部
治 秋庭
直樹 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Vilene Co Ltd
Original Assignee
Japan Vilene Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Vilene Co Ltd filed Critical Japan Vilene Co Ltd
Priority to JP2001358915A priority Critical patent/JP4141679B2/ja
Publication of JP2002248335A publication Critical patent/JP2002248335A/ja
Application granted granted Critical
Publication of JP4141679B2 publication Critical patent/JP4141679B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Filtering Materials (AREA)
  • Electrostatic Separation (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は被処理体の帯電量が多いように、エレクトレット化することのできるエレクトレット化方法、エレクトレット化装置、及びエレクトレット体の製造方法に関する。
【0002】
【従来の技術】
エレクトレット化方法として、例えば、(1)図10に示すように、平板状電極22の上に配置した被処理体1に対して、針状電極28から直流コロナ放電を作用させる方法、(2)図11に示すように、被処理体1をホイル7で真空パックした状態で、ワイヤー電極21、21’からコロナ放電を作用させる方法(例えば、USP4,588,537号など)、或いは(3)図12に示すように、表面に誘電体8、8’を担持した1対のロール状電極23、23’により被処理体1を挟持した状態で、前記電極23、23’間に直流高電圧を印加する方法(例えば、特開昭57−101073号など)、などが知られている。
【0003】
しかしながら、これらいずれの方法も、被処理体の帯電量が多いようにエレクトレット化することは困難であった。
【0004】
【発明が解決しようとする課題】
本発明は上記の問題点を解決するためになされたものであり、帯電量が多いようにエレクトレット化することのできる方法、エレクトレット化装置、及びエレクトレット体の製造方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
従来のエレクトレット化方法により、被処理体にかかる電界強度を高くして帯電量を多くするために、コロナ放電等の電圧を上げても、比較的低い電界強度で放電が始まってしまい、被処理体にかかる電界強度を高めることが困難であった。そのため、この原因を追求したところ、エレクトレット化処理を大気圧下(約0.1MPa)で実施していることに起因することを見い出した。本発明はこのような知見に基づいてなされたものであり、その要旨とするところは、「被処理体をイオンの移動経路に配置し、直流を印加することにより被処理体にイオンを作用させてエレクトレット化する方法であり、このエレクトレット化を0.15MPa以上の高圧力雰囲気下で実施することを特徴とするエレクトレット化方法」である。このように、高圧力雰囲気下においては、気体の絶縁破壊電圧が高くなるため、被処理体にかかる電界強度を高くすることができ、結果として、被処理体の帯電量を多くできることを見い出したのである。また、直流を印加することにより被処理体にイオンを作用させる方法であり、安定してイオンを作用させることができるため、安定して帯電させることを見い出した。
【0006】
なお、高圧力雰囲気下でエレクトレット化する前、及び/又は高圧力雰囲気下でエレクトレット化する際に、被処理体に対して紫外線を照射すると、驚くべきことに更に帯電量を多くできることも見い出したのである。
【0007】
また、被処理体が光触媒反応を生じる半導体を含んでおり、しかも高圧力雰囲気下でエレクトレット化する前、及び/又は高圧力雰囲気下でエレクトレット化する際に、被処理体に対して光を照射すると、驚くべきことに更に帯電量を多くできることも見い出したのである。
【0008】
更に、ガス雰囲気が空気雰囲気であると、放電開始電圧が高く、帯電量を多くでき、しかも安全でコスト的に有利であることも見い出したのである。
【0009】
なお、被処理体が多孔質体であっても効率的にエレクトレット化することができ、特に被処理体が流体中から粒子を分離するフィルタ用途に使用される多孔質体である場合には、集塵効率を極めて高くすることができ、音波又は振動の検出用途に使用される検出素子をエレクトレット化すると、検出感度の高い検出素子とすることができることも見い出したのである。
【0010】
また、被処理体に作用するイオンが、被処理体と対向する側に誘電体を担持していない電極から発生させたイオンであると、誘電体によってイオン量が制限されないため、帯電量を多くできることを見い出したのである。
【0011】
本発明のエレクトレット装置は、イオンの移動経路に被処理体を配置することのできる手段、イオン発生手段、イオンの移動経路を0.15MPa以上の高圧力雰囲気とすることのできる手段、直流を印加することによりイオンを移動させ、被処理体にイオンを作用させる手段とを備えたものであり、上記のようなエレクトレット化を実施できるものであり、被処理体の帯電量を多くすることができる。また、直流を印加することによりイオンを移動させ、被処理体にイオンを作用させる手段を備えているため、安定してイオンを作用させることができ、安定して帯電させることができる。
【0012】
また、イオンの移動経路に配置される前の被処理体、及び/又はイオンの移動経路に配置された被処理体に対して、紫外線を照射することのできる手段を、更に備えていると、更に帯電量を多くすることができる。
【0013】
更に、イオンの移動経路へ、空気を導入することのできる手段を、更に備えていると、放電開始電圧を高くすることができ、更に帯電量を多くすることができる。
【0014】
なお、イオン発生手段が、被処理体と対向する側に誘電体を担持していない電極からイオンを発生可能であると、誘電体によってイオン量が制限されないため、帯電量を多くできるエレクトレット化装置である。
【0015】
本発明のエレクトレット体の製造方法は、被処理体をイオンの移動経路に配置し、直流を印加することにより被処理体にイオンを作用させてエレクトレット化してエレクトレット体を製造する方法であり、このエレクトレット化を0.15MPa以上の高圧力雰囲気下で実施する製造方法である。前述のように、高圧力雰囲気下においては、気体の絶縁破壊電圧が高くなるため、被処理体にかかる電界強度を高くすることができ、結果として、帯電量の多いエレクトレット体を製造できることを見い出したのである。また、直流を印加することにより被処理体にイオンを作用させるエレクトレット体の製造方法であり、安定してイオンを作用させることができるため、安定して帯電させることのできるエレクトレット体の製造方法である。
【0016】
なお、空気雰囲気下でエレクトレット化するエレクトレット体の製造方法であると、放電開始電圧が高く、帯電量を多くでき、しかも安全でコスト的に有利であることも見い出したのである。
【0017】
また、被処理体に作用するイオンが、被処理体と対向する側に誘電体を担持していない電極から発生させたイオンによりエレクトレット体を製造する方法であると、誘電体によってイオン量が制限されないため、帯電量の多いエレクトレット体を製造することができる。
【0019】
【発明の実施の形態】
本発明のエレクトレット化方法でエレクトレット処理することのできる被処理体、及びエレクトレット体のもととなる被処理体(以下、単に「被処理体」と表記する)は、特に限定されるものではないが、例えば、多孔質体(例えば、繊維シート(例えば、織物、編物、不織布、これらの複合体など)、多孔フィルム(例えば、穴開きフィルムなど)、発泡体など)、非多孔質体(例えば、フィルムなど)、或いは多孔質体と非多孔質体の複合体などがある。この被処理体は無機材料から構成されていても、有機材料から構成されていても、これら両方から構成されていても良い。
【0020】
本発明における被処理体が流体中(例えば、気体中、液体中)から粒子を分離するフィルタ用途に使用される多孔質体であると、集塵効率を極めて高くすることができるため好適な多孔質体である。この多孔質体の中でも、より集塵効率の優れている不織布を含んでいるのが好ましく、この不織布として、例えば、メルトブロー不織布、ニードルパンチ不織布、スパンボンド不織布、フィルム開繊糸から形成した不織布、流体流(特に水流)絡合不織布、ファイバーボンド不織布などを挙げることができ、これらの中でも、繊維径が細く、集塵効率の優れるメルトブロー不織布を含んでいるのが好ましい。
【0021】
また、本発明における被処理体が音波又は振動の検出用途に使用される検出素子であると、検出感度を極めて高くすることができる。この検出素子としては、例えば、フィルム、微多孔膜(例えば、ポリテトラフルオロエチレン微多孔膜など)を挙げることができる。
【0022】
なお、本発明における被処理体はシート状の平面的なものである必要はなく、成型されたような立体的なものであっても良い。例えば、集塵効率の優れている不織布を成型した顔マスクであっても良い。
【0023】
特に、被処理体が光触媒反応を生じる半導体を含んでいると、後述のような方法によりエレクトレット化する前、及び/又はエレクトレット化する際に光を照射することにより、帯電量を著しく多くすることができるため、好適な被処理体である。
【0024】
この「光触媒反応を生じる半導体」とは、光照射により価電子帯から伝導帯への電子励起が生じ、価電子帯に正孔、伝導帯に電子が生成し、これら正孔及び電子が表面に現れる半導体をいい、例えば、金属酸化物(例えば、二酸化スズ、酸化亜鉛、三酸化タングステン、二酸化チタン、チタン酸バリウム、酸化第2鉄など)、金属カルコゲイド(例えば、硫化亜鉛、硫化カドミウム、硫化鉛、セレン化亜鉛、セレン化カドミウムなど)、第IV族元素(例えば、シリコン、ゲルマニウムなど)、III−V族化合物(例えば、ガリウムリン、ガリウムヒ素、インジウムリンなど)、有機半導体(例えば、ポリアセチレン、ポリピロール、ポリチオフェン、ポリアニリン、ポリビニルカルバゾール)などを挙げることができ、これら半導体に、ヒ素、リン、アルミニウム、ホウ素、ナトリウム、ハロゲンなどの不純物をドープしたものも使用することができる。これらの中でも、帯電量を多くすることのできる金属酸化物が好適であり、特に二酸化チタンが好適である。
【0025】
なお、この光触媒反応を生じる半導体の含有量は、被処理体の帯電量を多くすることができ、しかも被処理体の強度を極端に低下させることのない量である限り限定されるものではないが、例えば、被処理体が不織布からなる場合には、不織布全体の質量の0.01〜1%であるのが好ましい。
【0026】
また、この光触媒反応を生じる半導体は被処理体に対して、どのような態様で存在していても良い。例えば、被処理体の内部に存在していても良いし、表面に露出した状態で被処理体の内部に存在していても良いし、被処理体の表面に付着した状態にあっても良い。より具体的には、被処理体が不織布からなる場合、光触媒反応を生じる半導体が内部に存在する繊維(例えば、芯鞘型繊維で光触媒反応を生じる半導体が芯成分中にのみ存在する繊維など)を使用して不織布を製造すれば、光触媒反応を生じる半導体が内部にのみ存在する不織布(被処理体)であり、光触媒反応を生じる半導体が表面に露出した繊維(例えば、光触媒反応を生じる半導体を含む単一成分からなる繊維、芯鞘型繊維で光触媒反応を生じる半導体が鞘成分中にも存在する繊維など)を使用して不織布を製造すれば、光触媒反応を生じる半導体が表面に露出した状態で内部に存在する不織布(被処理体)であり、不織布を形成した後に、繊維の融着性やバインダーを使用するなどして光触媒反応を生じる半導体を固定すると、不織布(被処理体)の表面に付着した状態にある。
【0027】
本発明における被処理体は、前述のような光触媒反応を生じる半導体に加えて、又は光触媒反応を生じる半導体に替えて、帯電性を高めることのできる添加剤が添加されていても良い。このような添加剤としては、従来から知られているものを添加することができ、例えば、ヒンダードアミン系添加剤、脂肪族金属塩(例えば、ステアリン酸のマグネシウム塩、ステアリン酸のアルミニウム塩など)、不飽和カルボン酸変性高分子などを添加することができる。また、このような添加剤の添加量は特に限定されるものではないが、例えば、被処理体が不織布からなる場合には、不織布全体の質量の0.01〜1%であるのが好ましい。
【0028】
このような被処理体はイオンの移動経路に配置することによって、被処理体はエレクトレット化され、エレクトレット体となる。このイオンの移動経路は特に限定されるものではないが、例えば、直流高電圧が印加される一対の電極間、X線などの電離放射線が照射される空間などを挙げることができる。
【0029】
なお、被処理体と対向する側に誘電体を担持していない電極からイオンを発生させると、誘電体によってイオン量が制限されず、帯電量の多いエレクトレット化方法であり、帯電量の多いエレクトレット体を製造することができるため、好適である。このような被処理体と対向する側に誘電体を担持していない電極からイオンを発生させる方法としては、例えば、誘電体で被覆されていない一対の電極に直流電圧を印加する方法、被処理体と対向する側に誘電体を担持していない対向電極を備えた沿面放電装置に交流電圧を印加する方法、などを挙げることができる。より具体的には、後述の図1〜図7及び図9に示す方法によって、被処理体と対向する側に誘電体を担持していない電極からイオンを発生させることができる。
【0030】
また、直流を印加することにより被処理体にイオンを作用させる方法であると、交流を印加することにより被処理体にイオンを作用させる方法と比較して、安定してイオンを被処理体に作用させることができるため、安定して帯電させることのできるエレクトレット化方法であり、安定して帯電させることのできるエレクトレット体の製造方法である。このような直流を印加することにより被処理体にイオンを作用させる方法としては、例えば、一対の電極(誘電体を担持していないのが好ましい)に直流を印加する方法、沿面放電によりイオンを発生させるとともに直流を印加してイオンを移動させる方法、或いは電離放射線源から発生させたイオンを直流の印加によりイオンを移動させる方法、などを挙げることができる。より具体的には、後述の図1〜図4及び図9に示す方法によれば、直流を印加することにより被処理体にイオンを作用させることができ、図5〜図7に示す方法によれば、沿面放電によりイオンを発生させるとともに直流を印加してイオンを移動させて被処理体にイオンを作用させることができ、図8に示す方法によれば、電離放射線源からイオンを発生させるとともに直流を印加してイオンを移動させて被処理体にイオンを作用させることができる。
【0031】
また、被処理体の配置の仕方も限定されるものではなく、イオン移動経路が直流高電圧が印加される一対の電極間である場合には、一方の電極に接触するように配置しても、両方の電極と非接触であるように配置しても良い。
【0032】
本発明おいては、このイオン移動経路における圧力を0.12MPa以上の高圧力雰囲気とすることによって、気体の絶縁破壊電圧を高くし、被処理体にかかる電界強度を高くして、被処理体の帯電量を多くすることに成功したエレクトレット化方法、及びエレクトレット体の製造方法である。この圧力が高ければ高いほど、気体の絶縁破壊電圧が高くなり、前記のような作用効果に優れているため、好ましい圧力は0.15MPa以上であり、より好ましい圧力は0.2MPa以上であり、更に好ましい圧力は0.3MPa以上である。なお、上限は被処理体の形態を維持することのできる圧力であり、一般的に10MPa程度が適当である。
【0033】
このような高圧力雰囲気は、例えば、イオン移動経路を含む空間を閉鎖空間とし、この閉鎖空間に、コンプレッサー、ガスボンベ、或いはブロアーなどの加圧装置からガスを導入することによって作り出すことができる。
【0034】
このイオンの移動経路における雰囲気ガスは、例えば、空気、窒素、酸素、アルゴン、二酸化炭素などを自由に選択又は混合することができる。特に、放電開始電圧の高いガスであると、前述のような作用効果を奏しやすいため好適である。この放電開始電圧の高いガスとしては、例えば、空気、酸素、二酸化炭素などを挙げることができる。これらの中でも、安全性及びコストの点で有利である空気であるのが好ましい。
【0035】
なお、エレクトレット化する際の被処理体は常温であっても良いし、加熱された状態にあっても良い。後者の場合、その加熱温度は被処理体の形態を維持することのできる温度であれば良く、特に限定されるものではない。
【0036】
本発明のエレクトレット化方法及びエレクトレット体の製造方法においては、高圧力雰囲気下でエレクトレット化する前、及び/又は高圧力雰囲気下でエレクトレット化する際に、被処理体に対して紫外線を照射すると、帯電量を増加させることができることを見い出した。
【0037】
この紫外線は特に限定されるものではないが、波長が350nm以下の紫外線を、0.1mW/cm以上の強度で、0.1s以上照射するのが好ましい。
【0038】
このような紫外線の照射は紫外線電球によって実施することができ、例えば、水素放電管、キセノン放電管、水銀ランプ、殺菌燈、ブラックライトランプなどにより照射することができる。
【0039】
また、紫外線の照射は被処理体の片面の一部にのみ実施することもできるし、片面全体に対して実施することもできるし、両面とも一部にのみ実施することもできるし、片面は全体に対して実施し他面は一部にのみ実施することもできるし、或いは両面とも全体に実施することもできる。
【0040】
また、被処理体が前述のような光触媒反応を生じる半導体を含んでいる場合には、半導体の光触媒反応が生じるように、高圧力雰囲気下でエレクトレット化する前、及び/又は高圧力雰囲気下でエレクトレット化する際に、被処理体に対して光を照射するのが好ましい。この光は照射することによって価電子帯から伝導帯へ電子励起を生じさせ、価電子帯に正孔、伝導帯に電子を生成できれば良く、光触媒反応を生じる半導体によって異なる。
【0041】
例えば、光触媒反応を生じる半導体が二酸化チタンである場合、紫外線を照射することによって光触媒反応を生じさせることができる。この場合、被処理体に対して照射する紫外線は特に限定されるものではないが、波長が350nm以下の紫外線を、0.1mW/cm以上の強度で、0.1s以上照射するのが好ましい。なお、このような紫外線の照射は紫外線電球によって実施することができ、例えば、水素放電管、キセノン放電管、水銀ランプ、殺菌燈、ブラックライトランプなどにより照射することができる。また、紫外線の照射は被処理体の片面の一部にのみ実施することもできるし、片面全体に対して実施することもできるし、両面とも一部にのみ実施することもできるし、片面は全体に対して実施し他面は一部にのみ実施することもできるし、或いは両面とも全体に実施することもできる。
【0042】
このような本発明のエレクトレット化方法及びエレクトレット体の製造方法は、イオンの移動経路に被処理体を配置することのできる手段、イオン発生手段、イオンの移動経路を0.12MPa以上の高圧力雰囲気とすることのできる手段、とを備えたエレクトレット化装置によって実施することができる。
【0043】
このイオン移動経路に被処理体を配置することのできる手段としては、例えば、供給ロールによる方法、巻き取りロールによる方法、搬送コンベアによる方法、などを挙げることができる。
【0044】
このイオン発生手段としては、例えば、直流高電圧を印加することのできる一対の電極、X線などの電離放射線発生源などを挙げることができる。なお、イオン発生手段が、被処理体と対向する側に誘電体を担持していない電極からイオンを発生可能であると、誘電体によってイオン量が制限されないため、帯電量を多くできるエレクトレット化装置である。このような被処理体と対向する側に誘電体を担持していない電極からイオンを発生可能な手段としては、例えば、誘電体で被覆されていない一対の電極、被処理体と対向する側に誘電体を担持していない対向電極を備えた沿面放電装置、などを挙げることができる。より具体的には、後述の図1〜図7及び図9に示す手段によって、被処理体と対向する側に誘電体を担持していない電極からイオンを発生させることができる。
【0045】
なお、直流を印加することによりイオンを移動させ、被処理体にイオンを作用させる手段を備えていると、交流を印加することにより被処理体にイオンを作用させる手段と比較して、安定してイオンを被処理体に作用させることができるため、安定して帯電させることのできるエレクトレット化装置である。このような直流を印加することによりイオンを移動させ、被処理体にイオンを作用させる手段としては、例えば、(1)一対の電極(誘電体を担持していないのが好ましい)への直流印加手段、(2)沿面放電によりイオンを発生させるための交流印加手段と、被処理体と対向する側の沿面放電用の電極(誘電体を担持していないのが好ましい)に対向して位置する対向電極をアースするとともに、前記沿面放電用の電極への直流印加手段との組み合わせ、などを挙げることができる。より具体的には、後述の図1〜図4及び図8〜図9に示すような直流印加手段(上記(1))、図5〜図7に示すような交流印加手段と直流印加手段との組み合わせ(上記(2))により、イオンを移動させて、被処理体にイオンを作用させることができる。
【0046】
このイオンの移動経路を0.12MPa以上の高圧力雰囲気とすることのできる手段としては、例えば、イオン移動経路を含む空間を閉鎖空間とすることのできる容器と、この容器にガスを導入することのできる、コンプレッサー或いはガスボンベなどの加圧装置を挙げることができる。なお、圧力が0.12〜0.2MPa程度の比較的圧力が低い場合には、加圧装置としてブロアーを使用することもできる。
【0047】
なお、イオンの移動経路に配置される前の被処理体、及び/又はイオンの移動経路に配置された被処理体に対して、光を照射することのできる手段を、更に備えていると、帯電量を多くすることができる。この光照射手段は光の種類によって異なるが、例えば、紫外線である場合には、水素放電管、キセノン放電管、水銀ランプ、殺菌燈、ブラックライトランプなどの紫外線電球を挙げることができる。
【0048】
また、イオンの移動経路へ空気を導入することのできる手段を、更に備えていると、更に帯電量を多くすることができ、安全でコスト的に有利であるため好適である。この空気を導入することのできる手段としては、例えば、前述のようなコンプレッサー、ガスボンベ、或いはブロアーなどの加圧装置により導入するガスとして、空気を使用すれば良い。
【0049】
以下に、本発明のエレクトレット化装置について、基本的な原理を表す模式的断面図である図1をもとに説明する。
【0050】
図1のエレクトレット化装置においては、1本のワイヤー電極21と平板状電極22を対向して対置し、ワイヤー電極21に高電圧電源3(好ましくは高圧直流電源)が接続されている。また、このワイヤー電極21と平板状電極22は、加わる圧力によっても破壊することのない圧力容器9によって形成される閉鎖空間内に配置されている。更に、この圧力容器9には、圧力容器9内の圧力を0.12MPa以上の高圧力雰囲気とすることのできる加圧装置4が接続されており、圧力容器9内の圧力を調節することのできる調圧バルブ41を、加圧装置4と圧力容器9との間に接続されている。このエレクトレット化装置においては、誘電体を担持していない一対の電極を備えているため、帯電量を多くすることができる。また、ワイヤー電極21に高圧直流電源が接続され、平板状電極22がアースされていると、直流を印加することによってイオンを移動させて、被処理体にイオンを作用させることができるため、安定して帯電させることができる。
【0051】
なお、この加圧装置4が放電開始電圧の高いガス(例えば、空気、酸素、二酸化炭素など)を供給できると、帯電量をより多くすることができる。
【0052】
また、図示していないが、電極間に位置する被処理体1、及び/又は電極間以外のところに位置する被処理体1に対して光(特に紫外線)を照射することのできる手段、例えば、光が紫外線である場合には、水素放電管、キセノン放電管、水銀ランプ、殺菌燈、ブラックライトランプなどの紫外線電球を更に備えているのが好ましい。
【0053】
なお、図示していないが、放電によって発生したオゾンガスを圧力容器9から排出できるように、圧力容器9にバルブを設けるのが好ましい。
【0054】
また、電極間距離は電極の形状、印加電圧、或いは被処理体の形状などによって変化するため、特に限定されるものではないが、0.1〜200mm程度であるのが好ましく、0.5〜100mm程度であるのがより好ましい。
【0055】
この図1におけるエレクトレット化装置において、被処理体1をエレクトレット化してエレクトレット体を製造するには、まず、被処理体1を板状電極22の上、又はいずれの電極とも離間するように配置する。次いで、加圧装置4により圧力容器9内の圧力が0.12MPa以上になるまで加圧する。その後、高電圧電源3により両電極間に電圧(好ましくは高圧直流)を印加して、ワイヤー電極21によってイオンを発生させ、平板状電極22との電位差によって平板状電極22へイオンを移動させる際に、被処理体1にイオンを付着させて、被処理体1のエレクトレット化を実施し、エレクトレット体を製造する。この加圧装置4により前述のような放電開始電圧の高いガスを導入すると、絶縁破壊電圧が高くなり、被処理体1に対して強い電界強度を作用させることができるため、被処理体1の帯電量を多くすることができる。また、被処理体1に対して光(特に紫外線)を照射しながらエレクトレット化したり、エレクトレット化する前に被処理体1に対して光(特に紫外線)を照射しても、被処理体1、つまりエレクトレット体の帯電量を多くすることができる。
【0056】
なお、高電圧電源3により両電極間に印加する電圧は、帯電量を多くできるように、1kV以上であるのが好ましく、5kV以上であるのがより好ましい。なお、高電圧電源3による印加時間は1〜30秒程度であるのが好ましい。また、パルス状電圧を印加しても良いし、直流にパルスを重畳した重畳電圧を印加しても良いし、直流を印加しても良いが、帯電量を多くできるように、直流であるのが好ましい。
【0057】
図2は別のエレクトレット化装置の模式的断面図(高電圧電源3は省略)である。
【0058】
この図2のエレクトレット化装置においては、(1)ワイヤー電極21を5本使用している。このようにワイヤー電極21は1本である必要はなく、2本以上であっても良い。ワイヤー電極21の本数がある程度多い方が、電流密度を高めることができる。また、(2)ワイヤー電極21に対向する電極として、ロール状電極23を使用しているため、被処理体1を損傷することなく搬送することができ、連続してエレクトレット化することができる。更に、(3)圧力容器9内の圧力を高く維持することができるように、シール装置10を更に備えているため、連続してエレクトレット化することができる。なお、このシール装置10は特に限定されるものではないが、例えば、金属ロール、或いは表面をゴムで覆ったロールを適宜組み合わせた一対のロールであることができる。これら一対のロールによって圧力容器9を密閉し、圧力容器9内の圧力を一定に保つことができる。以上のような点以外は、前述の図1と全く同様である。
【0059】
図3は別のエレクトレット化装置の模式的断面図(高電圧電源3は省略)である。
【0060】
この図3のエレクトレット化装置においては、ワイヤー電極21に対向する電極としてベルト状電極24を使用しているため、被処理体1を損傷することなく搬送することができ、連続してエレクトレット化することができる。このような点以外は、前述の図2と全く同様である。
【0061】
図4は別のエレクトレット化装置の模式的断面図(高電圧電源3は省略)である。
【0062】
この図4のエレクトレット化装置においては、シール装置10を設置するのに替えて、被処理体1を巻き出す巻き出しロール1a、及び被処理体1を巻き取る巻き取りロール1bを圧力容器9内に設置したこと以外は、図2と全く同様である。このように巻き出しロール1a及び巻き取りロール1bを圧力容器9内に設置しているため、一定した高圧力雰囲気、かつより高い圧力中で被処理体1を連続的にエレクトレット化することができる。
【0063】
なお、このようなエレクトレット化装置によると、イオンを発生させる際にオゾンが発生しやすいため、このオゾンを排出するためのバルブを圧力容器9に接続するのが好ましい。
【0064】
図5は本発明のエレクトレット化装置に使用することのできる、別の一対の電極のみを表す模式的断面図(圧力容器9及び加圧装置4は省略)である。
【0065】
図5においては、沿面放電装置25とベルト状電極24とを対向して配置し、この沿面放電装置25とベルト状電極24との間に電位差を設けることによって、沿面放電装置25によって発生したイオンをベルト状電極24へと移動させることができる。
【0066】
この図5に示すエレクトレット化装置においても、沿面放電装置25の被処理体1と対向する対向電極は誘電体を担持していないため、イオンの発生量を多くすることができ、帯電量の多いエレクトレット体を製造することができる。
【0067】
また、沿面放電装置25に対して直流電圧を印加し、ベルト状電極24をアースすることによって、沿面放電装置25からベルト状電極24へイオンを安定して移動させることができるため、安定してエレクトレット体を製造することができる。
【0068】
図6は本発明のエレクトレット化装置に使用することのできる、更に別の一対の電極のみを表す模式的断面図(圧力容器9及び加圧装置4は省略)である。
【0069】
図6においては、ワイヤー電極21と沿面放電装置25とを対向して配置し、このワイヤー電極21と沿面放電装置25との間に電位差を設けることによって、ワイヤー電極21により発生したイオンを沿面放電装置25へと移動させるとともに、沿面放電装置25によって発生したイオンをワイヤー電極21へと移動させる際に、これら電極間に配置された被処理体1を両極性に帯電させることができる。
【0070】
この図6に示すエレクトレット化装置においても、沿面放電装置25の被処理体1と対向する対向電極が誘電体を担持しておらず、ワイヤー電極21も誘電体を担持していないため、イオンの発生量を多くすることができ、帯電量の多いエレクトレット体を製造することができる。
【0071】
また、ワイヤー電極21に対して直流電圧を印加し、沿面放電装置25側をアースすることによって、沿面放電装置25とワイヤー電極21との間におけるイオンの移動を安定して行うことができるため、安定してエレクトレット体を製造することができる。
【0072】
図7は本発明のエレクトレット化装置に使用することのできる、更に別の一対の電極のみを表す模式的断面図(圧力容器9及び加圧装置4は省略)である。
【0073】
図7においては、沿面放電装置25と沿面放電装置25’とを対向して配置し、この沿面放電装置25と沿面放電装置25’との間に電位差を設けることによって、沿面放電装置25により発生したイオンを他方の沿面放電装置25’へと移動させるとともに、沿面放電装置25’によって発生したイオンを他方の沿面放電装置25へと移動させる際に、これら電極間に配置された被処理体1を両極性に帯電させることができる。
【0074】
この図7に示すエレクトレット化装置においても、両沿面放電装置25、25’の被処理体1と対向する両対向電極が誘電体を担持していないため、イオンの発生量を多くすることができ、帯電量の多いエレクトレット体を製造することができる。
【0075】
また、沿面放電装置25に対して直流電圧を印加し、沿面放電装置25’をアースすることによって、両沿面放電装置25、25’間におけるイオンの移動を安定して行うことができるため、安定してエレクトレット体を製造することができる。
【0076】
図8は本発明のエレクトレット化装置に使用することのできる、更に別のイオン発生装置を表す模式的断面図(圧力容器9及び加圧装置4は省略)である。
【0077】
図8においては、被処理体1の両側にそれぞれ電離放射線源26、26’を配置するとともに、電離放射線源26、26’間に電位差を形成できるように、多孔電極27、27’が配置されている。そのため、電離放射線源26、26’からの放射線の作用により、多孔電極27、27’間に発生したイオンは一方の多孔電極27、27’から他方の多孔電極27’、27へと移動する際に、これら多孔電極27、27’間に配置された被処理体1を両極性に帯電させることができる。また、イオン発生源として電離放射線源26を使用すると、被処理体1の形状に左右されることなく帯電することができ、スパーク放電により被処理体1を損傷することがなく、オゾンの発生もほとんどない、という効果も奏する。
【0078】
なお、図8においては、被処理体1の両側に電離放射線源26、26’を配置しているが、被処理体1のいずれか一方のみに電離放射線源を配置し、電離放射線源配置側とは反対側における電極を多孔電極に替えて、平板状電極、ロール状電極、或いはベルト状電極を使用しても良い。
【0079】
また、一方の多孔電極27に対して直流電圧を印加し、他方の多孔電極27’をアースすることによって、両多孔電極27、27’の間におけるイオンの移動を安定して行うことができるため、安定してエレクトレット体を製造することができる。
【0080】
図9は立体的に成型された顔マスク11をエレクトレット化することのできるエレクトレット化装置の模式的断面図(高電圧電源3は省略)である。
【0081】
このエレクトレット化装置においては、ワイヤー電極21、21’が対向して配置されており、これらワイヤー電極21、21’間に、被処理体である成型された顔マスク11を搬送できるように、メッシュコンベア13が配置されている。また、これらワイヤー電極21、21’及びメッシュコンベア13は圧力容器9の中に配置され、この圧力容器9は調圧バルブ41を介して加圧装置4に接続されている。更に、圧力容器9内の圧力を低下させることなく、メッシュコンベア13に成型された顔マスク11を供給できる位置に、供給側気密室51が設けられており、エレクトレット化された顔マスク11を搬出できる位置に、搬出側気密室52が設けられている。なお、供給側気密室51は、供給側気密室51に顔マスク11を供給するための大気側入口ドア61と、圧力容器9に顔マスク11を供給するための容器側入口ドア62を備えており、搬出側気密室52は、圧力容器9から顔マスク11を搬出するための容器側出口ドア63と、搬出側気密室52から顔マスク11を取り出すための大気側出口ドア64とを備えている。また、供給側気密室51及び搬出側気密室52にも加圧装置(図示していない)が接続されており、供給側気密室51及び搬出側気密室52を加圧することができるようになっている。
【0082】
なお、このようなエレクトレット化装置によると、イオンを発生させる際にオゾンが発生しやすいため、このオゾンを排出するためのバルブを圧力容器9に接続するのが好ましい。
【0083】
また、このようなエレクトレット化装置の両ワイヤー電極21、21’は誘電体を担持していないため、イオンの発生量を多くすることができ、帯電量の多い顔マスクを製造することができる。
【0084】
このエレクトレット化装置においては、まず、加圧装置4により圧力容器9内の圧力を0.12MPa以上の所望の圧力にする。次いで、大気側入口ドア61を開けて供給側気密室51に顔マスク11を搬入し、大気側入口ドア61を閉じる。次いで、供給側気密室51における圧力を加圧装置によって加圧し、圧力容器9と同程度の圧力とする。次いで、容器側入口ドア62を開けて圧力容器9のメッシュコンベア13上に顔マスク11を搬入し、ワイヤー電極21、21’間へと搬送する。なお、顔マスク11を搬入した後に容器側入口ドア62を閉じる。この搬送された顔マスク11は、ワイヤー電極21、21’間においてエレクトレット化される。このエレクトレット化された顔マスク11はメッシュコンベア13によって搬送される。次いで、圧力容器9と同程度の圧力に加圧された搬出側気密室52の容器側出口ドア63を開けて、エレクトレット化された顔マスク11を搬出側気密室52に搬出する。容器側出口ドア63を閉じた後、大気側出口ドア64を開けて顔マスク11を取り出す。次いで、大気側出口ドア64を閉じ、加圧装置によって加圧し、搬出側気密室52の圧力を圧力容器9と同程度の圧力とする。このような作業を繰り返すことにより、顔マスク11を連続的にエレクトレット化することができる。
【0085】
なお、容器側入口ドア62を開けて圧力容器9のメッシュコンベア13上に顔マスク11を搬入する作業や、容器側出口ドア63を開けて、エレクトレット化された顔マスク11を搬出側気密室52に搬出する作業を、顔マスク11を一定量蓄えた後に実施すれば、容器側入口ドア62及び/又は容器側出口ドア63の開閉回数を減らすことができるため、より効率的である。
【0086】
また、一方のワイヤー電極21に直流を印加するとともに、他方のワイヤー電極21’をアースすることによってイオンを移動させると、安定してイオンを移動させることができるため、安定してエレクトレット化した顔マスク11を製造することができる。
【0087】
以上、図面をもとに説明したエレクトレット化装置は、電極同士が略平行に配置された態様であるが、電極の形状や電極の配置を被処理体1の形状に対応させることによって、各種形状の被処理体1を短時間で帯電量の多いエレクトレット化を実施することができる。例えば、被処理体1が襞状にプリーツ加工されている場合には、被処理体1と対向する電極の表面形状を襞状とすることによって、短時間で帯電量の多いエレクトレット化を実施することができる。
【0088】
本発明のエレクトレット化方法及びエレクトレット化装置は、帯電量を多くエレクトレット化することができる方法及び装置であるため、本発明のエレクトレット化方法によりエレクトレット化された被処理体1は、エレクトレット化されているのが好ましい用途、例えば、空気などの気体フィルタ、オイルや水などの液体フィルタ、成型マスクなどのマスク、ワイピング材、防塵衣料、音波又は振動の検出素子などの各種用途に使用することができる。
【0089】
以下に、本発明のエレクトレット化方法について実施例を記載するが、本発明は以下の実施例に限定されるものではない。
【0090】
【実施例】
(被処理体A)
被処理体Aとして、メルトブロー法により製造したポリプロピレン製不織布(平均繊維径:約2μm、面密度:35g/m、厚さ:約0.35mm)を用意した。
【0091】
(被処理体B)
被処理体Bとして、メルトブロー法により製造した、一次粒径7nmのアナターゼ型酸化チタン(光触媒反応を生じる半導体)を0.3mass%含む、ポリプロピレン製不織布(平均繊維径:約2μm、面密度:35g/m、厚さ:約0.35mm、酸化チタンの一部が表面に露出)を用意した。
【0092】
(被処理体C)
被処理体Cとして、メルトブロー法により製造した、一次粒径7nmのアナターゼ型酸化チタン(光触媒反応を生じる半導体)を0.3mass%含む、ポリプロピレン製不織布(平均繊維径:約2μm、面密度:65g/m、厚さ:約0.65mm、酸化チタンの一部が表面に露出)を用意した。
【0093】
(被処理体D)
被処理体Dとして、メルトブロー法により製造したポリプロピレン製不織布(平均繊維径:約2μm、面密度:23g/m、厚さ:約0.3mm)を用意した。
【0094】
(エレクトレット化装置)
15本のタングステンワイヤー電極21(直径:50μm、誘電体を担持していない)を10mm間隔で配置した放電極(高電圧直流電源3に接続されている)と、これら放電極に対向して20mmの間をあけてステンレス製平板状電極(アースされている、誘電体を担持していない)22を配置した直流コロナ放電装置を、ステンレス製円筒状圧力容器9によって形成される閉鎖空間に配置した。なお、この圧力容器9に、圧力容器9内の圧力を0.12MPa以上の高圧力雰囲気とすることのできる加圧装置4(ガスボンベ)を、調圧バルブ41を介して接続した。
【0095】
(帯電量の評価)
エレクトレット化された平板状の各被処理体を用いて、直径0.3〜0.5μmの大気塵粒子について、面風速10cm/secにて集塵効率の測定を行った。なお、集塵効率の評価としてγ値を用いた。このγ値は文献(1996,Non-wovens Conference TAPPI Proceedings,p15−19)に記載された手順によって得られる値であり、次の式により得られる値である。このγ値が高ければ高い程、集塵効率が優れていることを意味する。
γ=−ln η/p
ここで、ηは粒子の透過比率(=(被処理体通過後の大気塵粒子数)/(被処理体通過前の大気塵粒子数))を意味し、pは各被処理体の圧力損失(Pa)を意味する。
【0096】
そして、帯電量が多ければ多い程、集塵効率が高くなるため、このγ値を帯電量の目安とすることができる。
【0097】
(実施例1〜2、比較例1)
被処理体Dをエレクトレット化装置の平板状電極22の上に載置した後、加圧装置4により圧力容器9内に空気を供給して、圧力容器9内の圧力を変化させるとともに、印加直流電圧を変化させながら常温下で10秒間印加して、被処理体Dをエレクトレット化して、エレクトレット体を製造した。これら条件及び集塵効率(γ値)は表1に示す通りであった。この表1から明らかなように、圧力容器9内の圧力を高くすることによって、集塵効率を高く、つまり帯電量を多くできることが推測できた。
【0098】
【表1】
Figure 0004141679
【0099】
(実施例3〜5、比較例2)
被処理体Aをエレクトレット化装置の平板状電極22の上に載置した後、加圧装置4により圧力容器9内に空気を供給して、圧力容器9内の圧力を変化させるとともに、印加直流電圧を変化させながら常温下で10秒間印加して、被処理体Aをエレクトレット化して、エレクトレット体を製造した。これら条件及び集塵効率(γ値)は表2に示す通りであった。この表2からも、圧力容器9内の圧力を高くすることによって、集塵効率を高く、つまり帯電量を多くできることが推測できた。
【0100】
【表2】
Figure 0004141679
【0101】
(実施例6)
エレクトレット化装置によりエレクトレット化する前に、低圧水銀ランプにより紫外線を0.5W/cmの照度で、両面全体に対して15秒間づつ照射した被処理体Aを使用したこと以外は、実施例4と同様にしてエレクトレット化を実施して、エレクトレット体を製造した。この結果、エレクトレット化した被処理体A(エレクトレット体A)の圧力損失は60.4Paで、γ値は0.0877であった。このことから、被処理体Aに紫外線を照射していない実施例4のエレクトレット体と比較してγ値が大きいため、被処理体Aに紫外線を照射することによって、帯電量の多いエレクトレット体を製造できることが推測できた。
【0102】
(実施例7〜9)
エレクトレット化装置によりエレクトレット化する前に、低圧水銀ランプにより紫外線を0.5W/cmの照度で、被処理体B又は被処理体Cの両面全体に対して15秒間づつ照射した。
【0103】
次いで、この被処理体B又は被処理体Cをエレクトレット化装置の平板状電極22の上に載置した後、加圧装置4により圧力容器9内に空気を供給して、圧力容器9内の圧力を変化させるとともに、印加直流電圧を変化させながら常温下で10秒間印加して、被処理体B又は被処理体Cをエレクトレット化してエレクトレット体を製造した。これら条件及び集塵効率(γ値)は表3に示す通りであった。この表3から明らかなように、光触媒反応を生じる半導体を含むエレクトレット体は更に帯電量を多くなることが推測できた。また、圧力容器9内における圧力が高い程、帯電量の多いエレクトレット体を製造できることも推測できた。
【0104】
【表3】
Figure 0004141679
【0105】
(実施例10)
実施例9と同様に、エレクトレット化装置によりエレクトレット化する前に、紫外線を照射した。
【0106】
次いで、この紫外線を照射した被処理体Cを、エレクトレット化装置の平板状電極22の上に載置した後、加圧装置4により圧力容器9内に空気を供給して、圧力容器9内の圧力を0.6MPaにするとともに、負極性の直流電圧(−32KV)を、常温下で10秒間印加して、紫外線を照射した被処理体Cを正極性にエレクトレット化した。
【0107】
次いで、この正極性にエレクトレット化した被処理体Cを反転させた後、加圧装置4により圧力容器9内に空気を供給して、圧力容器9内の圧力を0.6MPaにするとともに、正極性の直流電圧(+32KV)を、常温下で10秒間印加して、被処理体Cの他方の面を負極性にエレクトレット化して、両極性エレクトレット体を製造した。その結果、両極性エレクトレット体の圧力損失は74.5Paで、γ値は0.1169であり、被処理体の表裏面を異極性に帯電させると、集塵効率を高く、つまり帯電量を多くできることが推測できた。
【0108】
【発明の効果】
本発明のエレクトレット化方法によれば、被処理体の帯電量を多くすることができる。
【0109】
なお、高圧力雰囲気下でエレクトレット化する前、及び/又は高圧力雰囲気下でエレクトレット化する際に、被処理体に対して紫外線を照射すると、更に帯電量を多くできる。
【0110】
また、被処理体が光触媒反応を生じる半導体を含んでおり、しかも高圧力雰囲気下でエレクトレット化する前、及び/又は高圧力雰囲気下でエレクトレット化する際に、被処理体に対して光を照射すると、更に帯電量を多くできる。
【0111】
更に、ガス雰囲気が空気雰囲気であると、放電開始電圧が高く、帯電量を多くできる。
【0112】
なお、被処理体が多孔質体であっても効率的にエレクトレット化することができ、特に被処理体が流体中から粒子を分離するフィルタ用途に使用される多孔質体である場合には、集塵効率を極めて高くすることができ、また、被処理体が音波又は振動の検出用途に使用される検出素子である場合には、検出感度を極めて高くすることができる。
【0113】
また、被処理体と対向する側に誘電体を担持していない電極からイオンを発生させると、帯電量を多くできる。更に、直流を印加することにより被処理体にイオンを作用させる方法であると、安定して帯電させることができる。
【0114】
本発明のエレクトレット装置は被処理体の帯電量を多くすることができる。
【0115】
また、イオンの移動経路に配置される前の被処理体、及び/又はイオンの移動経路に配置された被処理体に対して、光を照射することのできる手段を、更に備えていると、更に帯電量を多くすることができる。
【0116】
更に、イオンの移動経路へ、空気を導入することのできる手段を、更に備えていると、放電開始電圧を高くすることができ、帯電量を多くできる。
【0117】
なお、イオン発生手段が、被処理体と対向する側に誘電体を担持していない電極からイオンを発生可能であると、帯電量を多くできるエレクトレット化装置である。また、直流を印加することによりイオンを移動させ、被処理体にイオンを作用させる手段を備えていると、安定して帯電させることのできるエレクトレット化装置である。
【0118】
本発明のエレクトレット体の製造方法は、帯電量の多いエレクトレット体を製造できる。
【0119】
なお、空気雰囲気下でエレクトレット化するエレクトレット体の製造方法であると、帯電量を多くでき、しかも安全でコスト的に有利である。
【0120】
また、被処理体と対向する側に誘電体を担持していない電極から発生させたイオンによりエレクトレット体を製造する方法であると、帯電量の多いエレクトレット体を製造することができる。
【0121】
更に、直流を印加することにより被処理体にイオンを作用させるエレクトレット体の製造方法であると、安定して帯電させるができる。
【図面の簡単な説明】
【図1】 本発明のエレクトレット化装置の模式的断面図
【図2】 本発明の別のエレクトレット化装置の模式的断面図
【図3】 本発明の更に別のエレクトレット化装置の模式的断面図
【図4】 本発明の更に別のエレクトレット化装置の模式的断面図
【図5】 本発明のエレクトレット化装置におけるイオン発生部の模式的断面図
【図6】 本発明のエレクトレット化装置における別のイオン発生部の模式的断面図
【図7】 本発明のエレクトレット化装置における更に別のイオン発生部の模式的断面図
【図8】 本発明のエレクトレット化装置における更に別のイオン発生部の模式的断面図
【図9】 本発明の更に別のエレクトレット化装置の模式的断面図
【図10】 従来のエレクトレット化装置の模式的断面図
【図11】 従来の別のエレクトレット化装置の模式的断面図
【図12】 従来の更に別のエレクトレット化装置の模式的断面図
【符号の説明】
1 被処理体
21、21’ ワイヤー電極
22 平板状電極
23、23’ ロール状電極
24 ベルト状電極
25、25’ 沿面放電装置
26、26’ 電離放射線源
27、27’ 多孔電極
28 針状電極
3 高電圧電源
4 加圧装置
41 調圧バルブ
7 ホイル
8、8’ 誘電体
9 圧力容器
10 シール装置
11 成型された顔マスク
13 メッシュコンベア
1a 巻き出しロール
1b 巻き取りロール
51 供給側気密室
52 搬出側気密室
61 大気側入口ドア
62 容器側入口ドア
63 容器側出口ドア
64 大気側出口ドア

Claims (15)

  1. 被処理体をイオンの移動経路に配置し、直流を印加することにより被処理体にイオンを作用させてエレクトレット化する方法であり、このエレクトレット化を0.15MPa以上の高圧力雰囲気下で実施することを特徴とするエレクトレット化方法。
  2. 高圧力雰囲気下でエレクトレット化する前、及び/又は高圧力雰囲気下でエレクトレット化する際に、被処理体に対して紫外線を照射することを特徴とする、請求項1記載のエレクトレット化方法。
  3. 被処理体が光触媒反応を生じる半導体を含んでおり、しかも高圧力雰囲気下でエレクトレット化する前、及び/又は高圧力雰囲気下でエレクトレット化する際に、被処理体に対して光を照射することを特徴とする、請求項1記載のエレクトレット化方法。
  4. 空気雰囲気下でエレクトレット化することを特徴とする、請求項1〜請求項3のいずれかに記載のエレクトレット化方法。
  5. 被処理体が多孔質体であることを特徴とする、請求項1〜請求項4のいずれかに記載のエレクトレット化方法。
  6. 被処理体が流体中から粒子を分離するフィルタ用途に使用される多孔質体であることを特徴とする、請求項1〜請求項5のいずれかに記載のエレクトレット化方法。
  7. 被処理体が音波又は振動の検出用途に使用される検出素子であることを特徴とする、請求項1〜請求項4のいずれかに記載のエレクトレット化方法。
  8. 被処理体に作用するイオンが、被処理体と対向する側に誘電体を担持していない電極から発生させたイオンであることを特徴とする、請求項1〜請求項7のいずれかに記載のエレクトレット化方法。
  9. イオンの移動経路に被処理体を配置することのできる手段、イオン発生手段、イオンの移動経路を0.15MPa以上の高圧力雰囲気とすることのできる手段、直流を印加することによりイオンを移動させ、被処理体にイオンを作用させる手段とを備えていることを特徴とする、エレクトレット化装置。
  10. イオンの移動経路に配置される前の被処理体、及び/又はイオンの移動経路に配置された被処理体に対して、紫外線を照射することのできる手段を、更に備えていることを特徴とする、請求項記載のエレクトレット化装置。
  11. イオンの移動経路へ、空気を導入することのできる手段を、更に備えていることを特徴とする、請求項又は請求項10記載のエレクトレット化装置。
  12. イオン発生手段は、被処理体と対向する側に誘電体を担持していない電極からイオンを発生可能であることを特徴とする、請求項〜請求項11のいずれかに記載のエレクトレット化装置。
  13. 被処理体をイオンの移動経路に配置し、直流を印加することにより被処理体にイオンを作用させてエレクトレット化してエレクトレット体を製造する方法であり、このエレクトレット化を0.15MPa以上の高圧力雰囲気下で実施することを特徴とするエレクトレット体の製造方法。
  14. 空気雰囲気下でエレクトレット化することを特徴とする、請求項13に記載のエレクトレット体の製造方法。
  15. 被処理体に作用するイオンが、被処理体と対向する側に誘電体を担持していない電極から発生させたイオンであることを特徴とする、請求項13又は請求項14に記載のエレクトレット体の製造方法。
JP2001358915A 2000-12-07 2001-11-26 エレクトレット化方法、エレクトレット化装置、及びエレクトレット体の製造方法 Expired - Fee Related JP4141679B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001358915A JP4141679B2 (ja) 2000-12-07 2001-11-26 エレクトレット化方法、エレクトレット化装置、及びエレクトレット体の製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-372306 2000-12-07
JP2000372306 2000-12-07
JP2001358915A JP4141679B2 (ja) 2000-12-07 2001-11-26 エレクトレット化方法、エレクトレット化装置、及びエレクトレット体の製造方法

Publications (2)

Publication Number Publication Date
JP2002248335A JP2002248335A (ja) 2002-09-03
JP4141679B2 true JP4141679B2 (ja) 2008-08-27

Family

ID=26605387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001358915A Expired - Fee Related JP4141679B2 (ja) 2000-12-07 2001-11-26 エレクトレット化方法、エレクトレット化装置、及びエレクトレット体の製造方法

Country Status (1)

Country Link
JP (1) JP4141679B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020261034A1 (en) 2019-06-28 2020-12-30 3M Innovative Properties Company Filter assembly, prefilter assembly, and respirator including the same
WO2020261150A1 (en) 2019-06-28 2020-12-30 3M Innovative Properties Company Core-sheath fibers, nonwoven fibrous web, and respirator including the same
WO2022091060A1 (en) 2020-11-02 2022-05-05 3M Innovative Properties Company Core-sheath fibers, nonwoven fibrous web, and filtering articles including the same
WO2022130080A1 (en) 2020-12-18 2022-06-23 3M Innovative Properties Company Electrets comprising a substituted cyclotriphosphazene compound and articles therefrom

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004256974A (ja) * 2003-02-27 2004-09-16 Japan Vilene Co Ltd 静電紡糸方法及び静電紡糸装置
JP2007167771A (ja) * 2005-12-22 2007-07-05 Toray Ind Inc エアフィルター濾材およびエアフィルターユニット
CN101489684B (zh) * 2006-07-19 2012-07-04 皇家飞利浦电子股份有限公司 静电颗粒过滤器
WO2012053617A1 (ja) * 2010-10-21 2012-04-26 国立大学法人 東京大学 帯電装置及び帯電体製造方法
JP6309283B2 (ja) * 2014-01-24 2018-04-11 学校法人 関西大学 エレクトレットとその製造方法、並びに、これを用いた発電装置
CN105057102B (zh) * 2015-09-01 2017-05-17 东北师范大学 一种极板除尘效率比较测试平台
CN112962303B (zh) * 2021-03-24 2022-12-13 鞍山雷盛电子有限公司 一种静电驻极设备

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020261034A1 (en) 2019-06-28 2020-12-30 3M Innovative Properties Company Filter assembly, prefilter assembly, and respirator including the same
WO2020261150A1 (en) 2019-06-28 2020-12-30 3M Innovative Properties Company Core-sheath fibers, nonwoven fibrous web, and respirator including the same
WO2022091060A1 (en) 2020-11-02 2022-05-05 3M Innovative Properties Company Core-sheath fibers, nonwoven fibrous web, and filtering articles including the same
WO2022130080A1 (en) 2020-12-18 2022-06-23 3M Innovative Properties Company Electrets comprising a substituted cyclotriphosphazene compound and articles therefrom

Also Published As

Publication number Publication date
JP2002248335A (ja) 2002-09-03

Similar Documents

Publication Publication Date Title
JP4141679B2 (ja) エレクトレット化方法、エレクトレット化装置、及びエレクトレット体の製造方法
US5403453A (en) Method and apparatus for glow discharge plasma treatment of polymer materials at atmospheric pressure
US10207926B2 (en) Ozone generator
US3653185A (en) Airborne contaminant removal by electro-photoionization
US6391118B2 (en) Method for removing particles from surface of article
EP0000738B1 (en) An air purifier of the regenerating type.
JPH0829213B2 (ja) フィルターの製造方法
JP2015524860A (ja) 改善された潤滑のための活性化したガス状化学種
AU679237B2 (en) Method and apparatus for glow discharge plasma treatment of polymer materials at atmospheric pressure
JP6328882B2 (ja) プラズマアニール方法及びその装置
SK6292001A3 (en) Method and device for the treatment of textile materials
KR20200067380A (ko) X선 선량이 자동 제어되어 분사하는 x선을 이용한 공기청정기
WO1995007175A9 (en) Electrostatic charging apparatus and method
WO1995007175A1 (en) Electrostatic charging apparatus and method
Galmiz et al. Plasma treatment of polyethylene tubes in continuous regime using surface dielectric barrier discharge with water electrodes
US3932760A (en) Powder activation in an inert atmosphere
JP2004053298A (ja) エアロゾル粒子荷電装置
KR20070076939A (ko) 공기 정화 시스템
KR101611131B1 (ko) 전기집진장치 및 그 제조방법
JP5008622B2 (ja) プラズマ発生電極及びプラズマ発生方法
JP3337473B2 (ja) 負電荷酸素原子発生方法及びその装置
CN104395496A (zh) 沉积装置和沉积方法
KR102030011B1 (ko) 분리된 전기 방전실을 이용한 공기 정화 장치 및 방법
JP2000300650A (ja) 光触媒型空気浄化装置
Roth et al. Increasing the surface energy and sterilization of nonwoven fabrics by exposure to a one atmosphere uniform glow discharge plasma (OAUGDP)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140620

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees