JP4139198B2 - Inspection and measurement equipment for steel pipe structures - Google Patents

Inspection and measurement equipment for steel pipe structures Download PDF

Info

Publication number
JP4139198B2
JP4139198B2 JP2002342928A JP2002342928A JP4139198B2 JP 4139198 B2 JP4139198 B2 JP 4139198B2 JP 2002342928 A JP2002342928 A JP 2002342928A JP 2002342928 A JP2002342928 A JP 2002342928A JP 4139198 B2 JP4139198 B2 JP 4139198B2
Authority
JP
Japan
Prior art keywords
arm
steel pipe
probe
scanning
inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002342928A
Other languages
Japanese (ja)
Other versions
JP2004177230A (en
Inventor
敏彦 辻丸
Original Assignee
日本鉄塔工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本鉄塔工業株式会社 filed Critical 日本鉄塔工業株式会社
Priority to JP2002342928A priority Critical patent/JP4139198B2/en
Publication of JP2004177230A publication Critical patent/JP2004177230A/en
Application granted granted Critical
Publication of JP4139198B2 publication Critical patent/JP4139198B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、送電用鉄塔、通信用鉄塔等の鋼管構造物のメッキや塗装或いはその母材の状態を超音波、磁気或いはCCDカメラ等の光学的手段を用いて既設の鋼管構造物の外部から検査測定するための装置に関する。
【0002】
【従来の技術】
周知の如く、この種の検査測定は非破壊検査において多用されており、超音波探傷技術や渦流探傷技術或いは光学的検査技術等が用いられている。既設の鋼管構造物の外部から検査測定に用いられる装置は、鋼管の外周に環状のブラケットを設け、このブラケット上を円周方向に回転する回転体に探触子を取り付けた装置(例えば、特許文献1参照。)が提案されている。また、鋼管の外周に環状のガイドレールを設け、このガイドレールに沿って探触子を備えた台車を走行させる装置(例えば、特許文献2参照。)、走行車輪を備えたボックス内に探触子を設け、ボックスを鋼管の軸方向または円周方向へ手で動かす装置(例えば、特許文献3または4参照。)が提案されている。
【0003】
【特許文献1】
特開平7−98303号公報
【特許文献2】
特開平10−197498号公報
【特許文献3】
特開平11−23544号公報
【特許文献4】
特開平11−352109号公報
【0004】
【発明が解決しようとする課題】
しかしながら、前者の検査測定装置は、素材の段階で調べることを目的としているため、固定されて使用するものや、装置の取付けが大掛かりなものであった。このため、送電用鉄塔、通信用鉄塔等のような既設の鋼管構造物を調べる場合には適用することができなかった。一方、後者の検査測定装置は、可搬型の装置であり、既設の鋼管構造物の調査に使用することは可能ではあるが、探触子を取り付けた本体を手で移動させることにより検査測定を行なうものであるため、所要の測定条件を維持して測定を行うことが難しく、また不良箇所を見つけた場合であってもその位置を定量的に特定することができず、大雑把な調査しか行えないものであった。
【0005】
従って、本発明は、既設の鋼管構造物の調査を所要の測定条件下で定量的に行うことができ、検査測定装置の取付けを簡単かつ確実に行うことができる検査測定装置を提供しようとするものである。
【0006】
【課題を解決するための手段】
本発明による検査測定装置は、主として既設の鋼管構造物のメッキや塗装或いはその母材の状態を超音波、磁気或いはCCDカメラ等の光学的手段を用いて外部から検査測定するための装置であり、測定すべき鋼管の外周面に接触して所定の検査測定を行うための探触子と、鋼管の外周面に沿って円周方向に移動自在な駆動部と、探触子を鋼管の外周面に沿って鋼管の軸方向へ移動させるための走査アームとから構成される。
【0007】
本装置に用いられる探触子は、その検査測定方法に応じて随意に変更される。検査測定は、基本的に、探触子の円周方向と軸方向の運動のいずれか一方の動きを固定し、他方の動きを行わせることにより行われる。換言すると、駆動部による探触子の動きを停止させ、走査アームによって探触子を軸方向のみへ動かすか、或いは、走査アームによる探触子の動きを停止させ、駆動部によって探触子を円周方向のみへ動かす。しかし、駆動部と走査アームを同時に作動させて、スパイラル状に探触子を移動させることも可能であり、これにより測定に要する時間を短縮することが可能になる。このとき、スパイラル状に移動する探触子の感知領域間に測定されない空白領域が生じないように留意する必要がある。
【0008】
探触子の位置に関しては、駆動部の移動量を計測することにより円周方向の位置を決定され、走査アームの変位量を計測することにより軸方向の位置を決定される。
【0009】
駆動部の一形態としては、磁力により鋼管の外周面に吸着した状態を維持して移動するための少なくとも2つのマグネット車輪と、該マグネット車輪を回動するための駆動モータとを備えている。2つのマグネット車輪の回転軸は探触子を円周方向へ動かすように鋼管の外表面の円周方向に相互に並置される。
【0010】
駆動部の別の形態としては、鋼管の外周面を回転して移動するための少なくとも2つの車輪と、駆動部から鋼管の外周面上を回って駆動部に戻るように鋼管に着脱自在に装着される案内ベルトと、案内ベルトを移動させることによって駆動部を円周方向へ走行させるための駆動モータとを備えている。この場合もまた、2つの車輪の回転軸は鋼管の外表面の円周方向に相互に並置される。この案内ベルトは本装置が測定対象物から離脱してしまうのを確実に防止できる一方、前述のマグネット車輪は少なくとも一時的に測定対象物に付着させることができるため、両者を併用することによって安全に作業を行えることになる。
【0011】
走査アームの一形態としては、少なくとも2本の相互に枢動自在に連結されたアーム部を備えている。この相互に連結されたアーム部の一方の自由端部は駆動部に枢動自在に軸承され、他方の自由端部には探触子が枢動自在に連結される。走査アームは駆動部に設けられた走査モータによって開閉脚され、それにより、探触子を軸方向へ移動させる。
【0012】
走査アームの別の形態としては、駆動部にその一端を枢動自在に軸承された枢動アーム部と、枢動アーム部の他端にその一端を枢動自在に連結された展張アーム部と、展張アーム部の他端にその一端を枢動自在に連結された先端アーム部とから構成される。先端アーム部の他端には探触子が枢動自在に連結される。走査アームは、枢動アーム部と展張アーム部の連結部と展張アーム部と先端アーム部の連結部と先端アーム部と探触子の連結部とをつなぐ線が、枢動アーム部と展張アーム部の連結部と先端アーム部と探触子の連結部とをつなぐ線を底辺とする本質的に二等辺三角形を常に形成するように、枢動アーム部と展張アーム部の連結部と展張アーム部と先端アーム部の連結部との間の間隔と、展張アーム部と先端アーム部の連結部と先端アーム部と探触子の連結部との間の間隔とが等しくなるように形成される。また、前記の二等辺三角形の底辺が本質的に鋼管表面と平行に位置するように、枢動アーム部が枢動されたとき、展張アーム部が枢動アーム部の回転角度と等しい角度だけ逆方向へ枢動するように駆動され、展張アーム部が枢動されたとき、先端アーム部が展張アーム部の回転角度の2倍の角度だけ逆方向へ枢動するように駆動される。これにより、枢動アーム部は鋼管表面からの高さ方向における位置を調節する一方、展張アーム部と先端アーム部の開脚角度を検出することにより探触子の軸方向の位置が一定の換算式を用いて決定されることになる。
【0013】
走査アームのまた別の形態としては、駆動部から鋼管の軸方向へ伸びる少なくとも1本の走査ロッド部を備えている。探触子は走査ロッド部に沿って移動自在に装着され、探触子の軸方向の位置は走査ロッド部に沿った移動量を計測することにより検出される。
【0014】
前記走査アームのさらに別の形態としては、駆動部から鋼管の軸方向へ伸縮自在に延びる伸縮ロッド部を備えている。探触子は伸縮ロッド部の伸延端に装着され、探触子の軸方向の位置は伸縮ロッド部の伸縮量を計測することにより検出される。
【0015】
【発明の実施の形態】
【実施例1】
本発明の第1実施例による鋼管構造物の検査測定装置は、図1に示すように、測定すべき鋼管Pの外周面に接触して所定の検査測定を行うための探触子1と、鋼管Pの外周面に沿って円周方向に移動自在な駆動部2と、探触子1を鋼管Pの外周面に沿って鋼管Pの軸方向へ移動させるための走査アーム3とから構成される。
【0016】
探触子1は、本発明の検査測定装置が主として既設の鋼管構造物のメッキや塗装或いはその母材の状態を超音波、磁気或いはCCDカメラ等の光学的な検査測定手段を用いて外部から検査測定するための装置であるため、その検査測定方法に応じて随意に変更できる。
【0017】
駆動部2は、磁力により鋼管Pの外周面に吸着した状態を維持して移動するための少なくとも2つ(図示の場合、4つ)のマグネット車輪4と、マグネット車輪4を回動するための駆動モータ5とを備えている。マグネット車輪4は、図2に示すように、円柱形の回転磁石4aと回転磁石4aの外周面を少なくとも部分的に覆うように設けられた合成樹脂製のライニング4bとから構成される。ライニング4bは回転時に鋼管Pの表面の凹凸を吸収すると共に、回転磁石4aがその磁力によって鋼管Pの表面に吸着したまま回転し難くなるのを防止するための緩衝部材である。各マグネット車輪4の回転軸は、駆動部2が円周方向へ動けるように、鋼管の外表面の円周方向へ相互に並置する位置関係で設けられる。マグネット車輪4または駆動モータ5にはポテンショメータ(図示なし)が装着されており、これにより探触子1の円周方向における位置が検出される。
【0018】
走査アーム3は2本の相互に枢動自在に連結されたアーム部31、32から構成され、駆動部2から鋼管Pの軸方向へ延びている。一方のアーム部31の自由端部は駆動部2に枢動自在に軸承され、他方のアーム部32の自由端部には探触子1が枢動自在に連結される。駆動部2には走査モータ6が設けられている。走査モータ6はアーム部31を鋼管Pの表面に対して垂直方向へ枢動させると同時に、アーム部32をアーム部31とは逆の方向へ枢動させることにより走査アーム3を開閉脚させる。換言すると、アーム部31および32は、走査モータ6によってアーム部31と駆動部2の連結部とアーム部32と探触子1の連結部との間の間隔を増減することにより探触子1を軸方向へ移動させる。走査モータ6にもまたポテンショメータ(図示なし)が装着されており、これにより探触子1の軸方向における位置が検出される。
【0019】
ここにおいて、走査モータ6とアーム部31および32の間の力伝達機構は、このアーム部31とアーム部32の逆方向の枢動を可能にするものであればどのような手段も適用できる。一例として、延長回転シャフト(図示なし)をアーム部31内に設け、走査モータ6からの回転をこの延長回転シャフトを介してアーム部31とアーム部32の連結部に伝達し、それによりアーム部32を枢動させるような能動的な力伝達手段を用いることができる。一方、アーム部32と探触子1の間の関係は、探触子1の走査接触面1aが鋼管Pの表面と常に一定の接触関係を維持できるのであればどのようにも構成できる。一例として、探触子1はアーム部32の端部に単に連結されているだけ(ただし、軸方向に枢動するが、円周方向には枢動しない。)であってもよいが、探触子1が何らかの要因で所定の位置または向きから外れてしまうことがないように、上述のアーム部31とアーム部32の連結部におけると同様な能動的な力伝達手段を用いることによって、一定の接触関係を強制的に維持させることが望ましい。また、図示されていないが、駆動部2が取り付けられる鋼管Pの面と、探触子1が実質的に接触して検査測定を行う鋼管Pの面の放射方向における両者の高さに差がある場合、探触子1を支持するマウント(図示なし)に、探触子1の位置を放射方向に調節するためのスライド手段(図示なし)を設けることにより対応できる。
【0020】
上述の如く構成される本発明の検査測定装置は、マグネット車輪4の磁力によって鋼管Pの表面の所要の位置に図示のように取り付けられる。駆動モータ5が作動されると、探触子1は駆動部2が鋼管Pの円周方向へ移動することにより円周方向の走査を行う。一方、走査モータ6が作動されると、探触子1は走査アーム3が鋼管Pの軸方向へ開閉脚することにより軸方向の走査を行う。この走査は、基本的に、探触子1の円周方向と軸方向の走査のいずれか一方を停止し、他方の走査を行わせることにより行われる。しかし、駆動部2による探触子1の移動と走査アーム3による探触子1の移動を同時に行わせることにより、鋼管Pの上をスパイラル状に探触子1を移動させることも可能であり、これにより測定に要する時間を短縮することが可能になる。このとき、スパイラル状に移動する探触子1の感知領域間に走査されない空白領域が生じないように留意することが必要である。軸方向および円周方向の走査が完了すると、本装置を鋼管Pの軸方向へ移動させて次の走査を行わせる。
【0021】
【実施例2】
図3は、本発明の第2実施例による検査測定装置を示す図で、駆動部2が鋼管Pの円周方向へ移動するための構造が、第1実施例ではマグネット車輪方式であったのに対し、本実施例ではベルトドライブ方式を用いている点で異なることを除き、第1実施例と同様に構成される。冗長を避けるため、駆動部2のベルトドライブ方式の駆動に関する以外の説明は割愛する。
【0022】
本実施例における特徴であるベルトドライブ方式の駆動は、鋼管Pの外周面を回転して移動するための少なくとも2つ(図示の場合、4つ)の車輪4´と、駆動部2から鋼管Pの外周面上を通って駆動部2に戻るように、鋼管Pに着脱自在に巻回される環状の案内ベルト7と、案内ベルト7を移動させることによって駆動部2を鋼管Pの円周方向へ走行させるための駆動モータ5とから構成される。駆動モータ5が作動すると、駆動モータ5は案内ベルト7を鋼管Pの円周方向へ移動させ、それにより駆動部2は円周方向へ移動する。
【0023】
ここにおいて、案内ベルト7は、1回の検査測定作業が終了すると、本装置を鋼管の別の場所に取り付けるために切り離され、新たな検査測定場所において再び上述のように鋼管Pに巻回されることになる。この切り離し/接続のための構造はどのようなものでもよく、例えば、ボルト止めやフック止め等のような係脱自在な係合手段が適用される。また、案内ベルト7は本装置を鋼管Pに固縛した形態で保持するため、前記実施例のマグネット車輪方式の場合に比べて本装置が鋼管Pから離脱してしまうのを確実に防止できる。しかし、前記実施例で述べたマグネット車輪4を本実施例に適用することにより、少なくとも案内ベルト7で本装置を鋼管Pに取付けるまでの間、鋼管に付着させて保持することができるため、より安全に作業を行えることになる。
【0024】
【実施例3】
図4は、本発明の第3実施例による検査測定装置を示す図で、探触子1を移動させるための走査アーム3の構成が異なる点を除き、前記実施例と同様に構成される。冗長を避けるため、走査アーム3の構成に関する以外の説明については割愛する。なお、図示の場合、駆動部2はマグネット車輪方式のもので示されている。
【0025】
本実施例における走査アーム3は、駆動部2から鋼管Pの軸方向へ伸びる少なくとも1本(図示の場合、2本)の走査ロッド部(33、34)を備えている。探触子1は走査ロッド部33、34に沿って移動自在に装着される。走査ロッド部33、34の伸延端部は、駆動部2の移動に伴って鋼管Pの表面上を円周方向へ移動するための従動マグネット車輪41を備えた従動部21によって支持されている。探触子1の移動は、図示のように、走査ロッド部33および34の一方(図示の場合、走査ロッド部33)にスクリューボルトを適用し、他方の走査ロッド部(図示の場合、走査ロッド部34)に回転防止ロッドを適用し、駆動部2に設けられた走査モータ6によってスクリューボルト(走査ロッド部33)を正逆回転させることにより行われる。探触子1の軸方向の位置は、走査モータ6に設けられたポテンショメータ(図示なし)により、走査ロッド部に沿った移動量を計測することにより検出される。
【0026】
ここにおいて、探触子1の移動は、このスクリューボルト方式以外の方法も適用可能であり、例えば、駆動部2と従動部21の間に探触子1を取着された環状のチェーンまたはベルトを展張し、駆動部2に設けられた走査モータによってチェーンまたはベルトを移動させるチェーンドライブ方式や、探触子1を走査ロッド部に取り付けるためのマウント22に走査ロッド部上を走行するための車輪を設け、マウントに設けられた走査モータによって車輪を回転してマウントを移動させる自走式を適用することができる。また、図示されていないが、駆動部2が取り付けられる鋼管Pの面と、探触子1が実質的に接触して検査測定を行う鋼管Pの面の鋼管Pの放射方向における両者の高さに差がある場合、探触子1を支持するマウントに、探触子1の位置を放射方向に調節するためのスライド手段(図示なし)を設けることにより対応できる。
【0027】
【実施例4】
図5は、本発明の第4実施例による検査測定装置を示す図で、探触子1を移動させるための走査アーム3の構成が異なる点を除き、前記実施例と同様に構成される。冗長を避けるため、走査アーム3の構成に関する以外の説明については割愛する。なお、図示の場合、駆動部2はマグネット車輪方式のものを用いた形で示されている。
【0028】
本実施例における走査アーム3は、駆動部2から鋼管Pの軸方向へ伸縮自在に伸びる伸縮ロッド部35を備えている。伸縮ロッド部35は駆動部2に設けられた走査モータ6によって伸縮される。探触子1は伸縮ロッド部35の伸延端に装着される。
【0029】
伸縮ロッド部35を伸縮するための機構は、特に限定するものではないが、伸縮ロッド部35にラック(図示なし)を設け、走査モータ6によってピニオン(図示なし)を回転することによりラックを移動させるラックアンドピ二オン方式を採用できる。探触子1の軸方向の位置は、走査モータ6に設けられたポテンショメータ(図示なし)により、伸縮ロッド部の伸縮量を計測することにより検出される。
【0030】
ここにおいて、図示されていないが、駆動部2が取り付けられる鋼管Pの面と、探触子1が実質的に接触して検査測定を行う鋼管Pの面の放射方向における両者の高さに差がある場合、探触子1を支持するマウント22に、探触子1の位置を放射方向に調節するためのスライド手段(図示なし)を設けることにより対応できる。
【0031】
【実施例5】
図6は、本発明の第5実施例による検査測定装置を示す図で、本実施例の検査測定装置は基本的に第1および第2実施例で説明したものと同様な開閉脚する走査アーム3を用いるものである。しかしながら、前述した実施例の検査測定装置が、基本的に、駆動部2を取り付ける鋼管Pの面と、探触子1を実質的に接触させて検査測定を行う鋼管Pの面とが同一高さの面であること条件としているのに対し、本実施例の検査測定装置は、駆動部2の取付け面と探触子1の検査測定面の高さがどのように変化しても随意に対応できるように構成されていることに最大の特色を有している。
【0032】
本実施例の検査測定装置は、走査アーム3の構成およびそれに付随する機構が異なる点を除き、前記第1または第2実施例と同様に構成される。それ故、冗長を避けるために、走査アーム3に関する説明以外の説明は割愛する。なお、図示のものは、駆動部が第2実施例で説明したベルトドライブ方式のものが用いられている。
【0033】
本実施例の走査アーム3は枢動アーム部36と展張アーム部37と先端アーム部38の3本のアーム部から構成される。枢動アーム部36の一端は駆動部2に軸承され、枢動アーム部36の他端には展張アーム部37の一端が枢動自在に連結され、展張アーム部37の他端には先端アーム部38の一端が枢動自在に連結される。先端アーム部38の他端には探触子1が枢動自在に連結される。枢動アーム部36は駆動部2に設けられたピッチ送りノブ8を操作することによって枢動される。枢動アーム部36と展張アーム部37の連結部と、展張アーム部37と先端アーム部38の連結部とは、枢動アーム部36と展張アーム部37と先端アーム部38とにそれぞれ設けられた延長回転シャフト9および/または伝動チェーン10を介して相互に連結され、駆動部2に設けられた走査モータ6によって各アーム部が次の関係を有して動くように駆動される。
【0034】
すなわち、展張アーム部37と先端アーム部38は、
a) 枢動アーム部36と展張アーム部37の連結部と、展張アーム部37と先端アーム部38の連結部と、先端アーム部38と探触子1の連結部とをつなぐ線が、枢動アーム部36と展張アーム部37の連結部と先端アーム部38と探触子1の連結部をつなぐ線を底辺とする本質的に二等辺三角形を常に形成すると
同時に、
b) この二等辺三角形の底辺が本質的に鋼管Pの表面と平行に位置する
位置関係を常に満足しながら移動するように構成される。
【0035】
先端アーム部38と探触子1の連結部は、前述の実施例で述べたのと同様な理由により、先端アーム部38に設けられた延長回転シャフト9および/または伝動チェーン10を介して伝えられる走査モータ6の回転力により、鋼管Pの表面に対して探触子1が常に所定の走査角度で走査するように保持されるのが好ましい。
【0036】
このように構成される本実施例の走査アーム3は、ピッチ送りノブ8を操作して探触子1の鋼管Pの表面からの高さを調節した後、走査モータ6を作動させて枢動アーム部36と展張アーム部37を開閉脚することにより鋼管Pの軸方向の走査を行う。このとき、枢動アーム部36と展張アーム部37の開脚角度を走査モータ6に設けられたポテンショメータで検出することにより探触子の軸方向の位置が一定の換算式を用いて決定される。
【0037】
【発明の効果】
本発明によれば、本検査測定装置の探触子を駆動部によって鋼管の円周方向へ移動させる一方、走査アームによって鋼管の軸方向へ動かすことにより確実に所定範囲の検査測定を行うことができ、また、走査モータに設けられたポテンショメータによって駆動部の移動量と走査アームの開脚度、変位量または移動量とをそれぞれ計測することにより探触子の位置を正確に検出でき、それにより、既設の鋼管構造物の調査を所要の測定条件下で定量的に行うことができる。
【0038】
一方、移動手段としてマグネット車輪を用いていることにより、本検査測定装置を磁力で鋼管の外周面に吸着させた状態を維持しながら移動させることができるため、検査測定装置の取付けを簡単かつ確実に行うことができる。また、駆動部を移動させる手段として案内ベルトを用いることもできるため、鉄塔等のような高所での検査測定作業時に装置が落下してしまうのを確実に防止することができ、マグネット車輪と案内ベルトを併用することによってより安全に作業を行うことができる。
【0039】
加えて、駆動部と走査アームを同時に作動させることにより探触子をスパイラル状に移動させることができるため、測定に要する時間を短縮することができ、また、走査アームを枢動アーム部と展張アーム部と先端アーム部から構成し、所定の位置関係を保持して枢動、開閉脚させることにより、枢動アーム部によって鋼管表面からの高さ方向における位置を調節する一方、枢動アーム部と展張アーム部の開脚角度を検出することにより探触子の軸方向の位置を検出できるため、駆動部の配置面と検査測定すべき面の間に高さの差があっても簡単に対応できかつ探触子の位置をより容易に決定することができる。
【図面の簡単な説明】
【図1】 本発明の第1実施例による検査測定装置を示す正面図および側面図である。
【図2】 図1に示す検査測定装置に用いられるマグネット車輪を示す図である。
【図3】 本発明の第2実施例による検査測定装置を示す正面図および側面図である。
【図4】 本発明の第3実施例による検査測定装置を示す正面図および側面図である。
【図5】 本発明の第4実施例による検査測定装置を示す正面図および側面図である。
【図6】 本発明の第5実施例による検査測定装置を示す正面図である。
【符号の説明】
1 探触子 2 駆動部
3 走査アーム
4 マグネット車輪 4´ 車輪
4a 回転磁石 4b ライニング
5 駆動モータ 6 走査モータ
7 案内ベルト 8 ピッチ送りノブ
9 延長回転シャフト 10 伝動チェーン10
21 従動部 22 マウント
31、32 アーム部 33、34 走査ロッド部
35 伸縮ロッド部 36 枢動アーム部
37 展張アーム部 38 先端アーム部
41 従動マグネット車輪
P 鋼管
[0001]
BACKGROUND OF THE INVENTION
In the present invention, the state of the plating or coating of a steel pipe structure such as a power transmission tower, a communication tower or the like or the base material thereof is applied from the outside of the existing steel pipe structure using optical means such as ultrasonic, magnetic or CCD cameras. The present invention relates to an apparatus for inspection and measurement.
[0002]
[Prior art]
As is well known, this type of inspection and measurement is frequently used in nondestructive inspection, and ultrasonic inspection technology, eddy current inspection technology, optical inspection technology, or the like is used. An apparatus used for inspection and measurement from the outside of an existing steel pipe structure is an apparatus in which an annular bracket is provided on the outer periphery of a steel pipe, and a probe is attached to a rotating body that rotates in a circumferential direction on the bracket (for example, a patent Reference 1) has been proposed. Further, an annular guide rail is provided on the outer periphery of the steel pipe, and a device (see, for example, Patent Document 2) that travels a carriage provided with a probe along the guide rail, and a probe in a box provided with traveling wheels. A device has been proposed in which a child is provided and the box is moved manually in the axial direction or circumferential direction of the steel pipe (see, for example, Patent Document 3 or 4).
[0003]
[Patent Document 1]
JP-A-7-98303 [Patent Document 2]
JP-A-10-197498 [Patent Document 3]
Japanese Patent Laid-Open No. 11-23544 [Patent Document 4]
Japanese Patent Laid-Open No. 11-352109
[Problems to be solved by the invention]
However, since the former inspection / measurement apparatus is intended to be examined at the material stage, it is used in a fixed manner or requires a large installation. For this reason, it was not applicable when investigating existing steel pipe structures such as power transmission towers and communication towers. On the other hand, the latter inspection and measurement device is a portable device and can be used for investigation of existing steel pipe structures, but inspection and measurement can be performed by moving the body with the probe attached by hand. Therefore, it is difficult to perform measurement while maintaining the required measurement conditions, and even when a defective part is found, the position cannot be quantitatively specified, and only a rough investigation can be performed. It was not.
[0005]
Therefore, the present invention intends to provide an inspection and measurement apparatus that can quantitatively perform investigation of an existing steel pipe structure under required measurement conditions and can easily and reliably attach the inspection and measurement apparatus. Is.
[0006]
[Means for Solving the Problems]
The inspection and measurement apparatus according to the present invention is an apparatus for inspecting and measuring an existing steel pipe structure from the outside by using an optical means such as ultrasonic wave, magnetic or CCD camera, or coating or painting of the existing steel pipe structure. A probe for making a predetermined inspection measurement by contacting the outer peripheral surface of the steel pipe to be measured, a drive unit movable in the circumferential direction along the outer peripheral surface of the steel pipe, and the probe on the outer periphery of the steel pipe And a scanning arm for moving the steel pipe in the axial direction along the surface.
[0007]
The probe used in this apparatus is arbitrarily changed according to the inspection and measurement method. The inspection measurement is basically performed by fixing one of the circumferential movement and the axial movement of the probe and performing the other movement. In other words, the movement of the probe by the driving unit is stopped and the probe is moved only in the axial direction by the scanning arm, or the movement of the probe by the scanning arm is stopped and the probe is moved by the driving unit. Move in the circumferential direction only. However, it is also possible to move the probe in a spiral shape by simultaneously operating the drive unit and the scanning arm, thereby shortening the time required for measurement. At this time, it is necessary to take care not to generate an unmeasured blank area between the sensing areas of the probe moving in a spiral shape.
[0008]
Regarding the position of the probe, the position in the circumferential direction is determined by measuring the amount of movement of the drive unit, and the position in the axial direction is determined by measuring the amount of displacement of the scanning arm.
[0009]
As one form of a drive part, it has the at least 2 magnet wheel for moving while maintaining the state attracted | sucked to the outer peripheral surface of the steel pipe by magnetic force, and the drive motor for rotating this magnet wheel. The rotating shafts of the two magnet wheels are juxtaposed in the circumferential direction of the outer surface of the steel pipe so as to move the probe in the circumferential direction.
[0010]
As another form of the drive unit, at least two wheels for rotating and moving the outer peripheral surface of the steel pipe, and detachably mounted on the steel pipe so as to return from the drive unit to the drive unit around the outer peripheral surface of the steel pipe And a drive motor for moving the drive unit in the circumferential direction by moving the guide belt. Again, the rotational axes of the two wheels are juxtaposed in the circumferential direction of the outer surface of the steel pipe. While this guide belt can reliably prevent the device from detaching from the measurement object, the magnet wheel can be attached to the measurement object at least temporarily. Will be able to work.
[0011]
As one form of the scanning arm, at least two arm portions pivotably connected to each other are provided. One free end portion of the mutually connected arm portions is pivotally supported by the drive portion, and a probe is pivotally connected to the other free end portion. The scanning arm is opened and closed by a scanning motor provided in the drive unit, thereby moving the probe in the axial direction.
[0012]
As another form of the scanning arm, a pivot arm portion whose one end is pivotally supported by the drive portion, and a stretching arm portion whose one end is pivotally connected to the other end of the pivot arm portion, The distal end of the extension arm is pivotally connected to the other end of the extension arm. A probe is pivotally connected to the other end of the tip arm portion. The scanning arm has a connecting line between the pivot arm part and the extension arm part, a line connecting the extension arm part, the connection part of the tip arm part, the tip arm part, and the connection part of the probe. The connecting part and the extending arm of the pivot arm part and the extending arm part so as to always form an essentially isosceles triangle whose base is the line connecting the connecting part, the tip arm part and the connecting part of the probe. The distance between the connecting part of the head part and the tip arm part and the distance between the extending arm part, the connecting part of the tip arm part, the tip arm part and the connecting part of the probe are formed to be equal. . When the pivot arm is pivoted so that the base of the isosceles triangle is essentially parallel to the surface of the steel pipe , the extension arm is reversed by an angle equal to the rotation angle of the pivot arm. When it is driven to pivot in the direction and the extension arm part is pivoted, the tip arm part is driven to pivot in the opposite direction by twice the rotation angle of the extension arm part. As a result, the pivot arm adjusts the position in the height direction from the steel pipe surface, while the axial position of the probe is converted to a constant value by detecting the opening angle of the extension arm and the tip arm. It will be determined using the formula.
[0013]
As another form of the scanning arm, at least one scanning rod portion extending in the axial direction of the steel pipe from the driving portion is provided. The probe is mounted movably along the scanning rod portion, and the position of the probe in the axial direction is detected by measuring the amount of movement along the scanning rod portion.
[0014]
As another form of the scanning arm, there is provided a telescopic rod portion that extends from the drive portion in the axial direction of the steel pipe. The probe is attached to the extension end of the telescopic rod portion, and the position of the probe in the axial direction is detected by measuring the amount of expansion / contraction of the telescopic rod portion.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
[Example 1]
As shown in FIG. 1, the inspection and measurement device for a steel pipe structure according to the first embodiment of the present invention is a probe 1 for making a predetermined inspection measurement in contact with the outer peripheral surface of a steel pipe P to be measured, The drive unit 2 is movable in the circumferential direction along the outer peripheral surface of the steel pipe P, and the scanning arm 3 is used for moving the probe 1 in the axial direction of the steel pipe P along the outer peripheral surface of the steel pipe P. The
[0016]
In the probe 1, the inspection / measurement apparatus of the present invention mainly uses an optical inspection / measurement means such as an ultrasonic, magnetic, or CCD camera to externally check the state of plating or coating of an existing steel pipe structure or its base material. Since it is an apparatus for inspection and measurement, it can be changed arbitrarily according to the inspection and measurement method.
[0017]
The driving unit 2 maintains at least two magnet wheels 4 for moving while maintaining the state of being attracted to the outer peripheral surface of the steel pipe P by a magnetic force, and for rotating the magnet wheels 4. And a drive motor 5. As shown in FIG. 2, the magnet wheel 4 is composed of a cylindrical rotating magnet 4a and a synthetic resin lining 4b provided so as to at least partially cover the outer peripheral surface of the rotating magnet 4a. The lining 4b is a buffer member for absorbing irregularities on the surface of the steel pipe P during rotation and preventing the rotating magnet 4a from being difficult to rotate while being attracted to the surface of the steel pipe P by its magnetic force. The rotating shafts of the magnet wheels 4 are provided in a positional relationship in which they are juxtaposed in the circumferential direction of the outer surface of the steel pipe so that the drive unit 2 can move in the circumferential direction. A potentiometer (not shown) is attached to the magnet wheel 4 or the drive motor 5, thereby detecting the position of the probe 1 in the circumferential direction.
[0018]
The scanning arm 3 includes two arm portions 31 and 32 that are pivotably connected to each other, and extends from the driving portion 2 in the axial direction of the steel pipe P. The free end of one arm 31 is pivotally supported by the drive unit 2, and the probe 1 is pivotally connected to the free end of the other arm 32. The drive unit 2 is provided with a scanning motor 6. The scanning motor 6 pivots the arm portion 31 in the direction perpendicular to the surface of the steel pipe P, and simultaneously pivots the arm portion 32 in the direction opposite to the arm portion 31 to open and close the scanning arm 3. In other words, the arm portions 31 and 32 increase or decrease the distance between the arm portion 31 and the connecting portion of the driving portion 2 and the connecting portion of the arm portion 32 and the probe 1 by the scanning motor 6. Is moved in the axial direction. The scanning motor 6 is also equipped with a potentiometer (not shown), thereby detecting the position of the probe 1 in the axial direction.
[0019]
Here, any means can be applied as the force transmission mechanism between the scanning motor 6 and the arm portions 31 and 32 as long as the arm portion 31 and the arm portion 32 can be pivoted in the opposite directions. As an example, an extension rotation shaft (not shown) is provided in the arm portion 31, and the rotation from the scanning motor 6 is transmitted to the connecting portion between the arm portion 31 and the arm portion 32 via the extension rotation shaft, thereby the arm portion. Active force transmission means such as pivoting 32 can be used. On the other hand, the relationship between the arm portion 32 and the probe 1 can be configured in any way as long as the scanning contact surface 1a of the probe 1 can always maintain a constant contact relationship with the surface of the steel pipe P. As an example, the probe 1 may be simply connected to the end of the arm portion 32 (however, it pivots in the axial direction but does not pivot in the circumferential direction). By using the same active force transmission means as that in the above-described connecting portion between the arm portion 31 and the arm portion 32 so that the touch element 1 does not deviate from a predetermined position or orientation for some reason, it is constant. It is desirable to forcibly maintain the contact relationship. Although not shown, there is a difference in the height in the radial direction between the surface of the steel pipe P to which the drive unit 2 is attached and the surface of the steel pipe P on which the probe 1 substantially contacts and performs inspection measurement. In some cases, a mount (not shown) for supporting the probe 1 can be dealt with by providing slide means (not shown) for adjusting the position of the probe 1 in the radial direction.
[0020]
The inspection and measurement apparatus of the present invention configured as described above is attached to a required position on the surface of the steel pipe P by the magnetic force of the magnet wheel 4 as illustrated. When the drive motor 5 is actuated, the probe 1 scans in the circumferential direction as the drive unit 2 moves in the circumferential direction of the steel pipe P. On the other hand, when the scanning motor 6 is actuated, the probe 1 performs scanning in the axial direction as the scanning arm 3 opens and closes in the axial direction of the steel pipe P. This scanning is basically performed by stopping one of the scanning in the circumferential direction and the axial direction of the probe 1 and performing the other scanning. However, it is also possible to move the probe 1 in a spiral shape on the steel pipe P by simultaneously moving the probe 1 by the drive unit 2 and moving the probe 1 by the scanning arm 3. This makes it possible to reduce the time required for measurement. At this time, it is necessary to take care not to generate a blank area that is not scanned between the sensing areas of the probe 1 that moves in a spiral. When the scanning in the axial direction and the circumferential direction is completed, the apparatus is moved in the axial direction of the steel pipe P to perform the next scanning.
[0021]
[Example 2]
FIG. 3 is a diagram showing an inspection / measurement apparatus according to a second embodiment of the present invention. The structure for moving the drive unit 2 in the circumferential direction of the steel pipe P is a magnet wheel system in the first embodiment. On the other hand, this embodiment is configured in the same manner as in the first embodiment except that the belt drive system is used. In order to avoid redundancy, explanations other than driving of the drive unit 2 in the belt drive system are omitted.
[0022]
The driving of the belt drive system, which is a feature of the present embodiment, includes at least two wheels (4 in the case of illustration) 4 ′ for rotating and moving the outer peripheral surface of the steel pipe P, and the driving section 2 to the steel pipe P. An annular guide belt 7 that is detachably wound around the steel pipe P so as to return to the drive part 2 through the outer peripheral surface of the steel pipe P, and by moving the guide belt 7, the drive part 2 is moved in the circumferential direction of the steel pipe P. And a drive motor 5 for traveling the vehicle. When the drive motor 5 is operated, the drive motor 5 moves the guide belt 7 in the circumferential direction of the steel pipe P, whereby the drive unit 2 moves in the circumferential direction.
[0023]
Here, when one inspection / measurement operation is completed, the guide belt 7 is separated to attach the present apparatus to another place on the steel pipe, and is wound around the steel pipe P again at the new inspection / measurement place as described above. Will be. Any structure for detaching / connecting may be used. For example, a detachable engaging means such as a bolt or a hook is applied. Further, since the guide belt 7 holds the apparatus in a form of being tied to the steel pipe P, it is possible to reliably prevent the apparatus from being detached from the steel pipe P as compared with the case of the magnet wheel system of the above embodiment. However, by applying the magnet wheel 4 described in the above embodiment to the present embodiment, it is possible to hold the apparatus on the steel pipe P at least until the apparatus is attached to the steel pipe P by the guide belt 7. You will be able to work safely.
[0024]
[Example 3]
FIG. 4 is a diagram showing an inspection / measurement apparatus according to a third embodiment of the present invention, and is configured in the same manner as in the above-described embodiment except that the configuration of the scanning arm 3 for moving the probe 1 is different. In order to avoid redundancy, descriptions other than the configuration of the scanning arm 3 are omitted. In the illustrated case, the drive unit 2 is shown as a magnet wheel type.
[0025]
The scanning arm 3 in this embodiment includes at least one (two in the illustrated case) scanning rod portion (33, 34) extending from the driving portion 2 in the axial direction of the steel pipe P. The probe 1 is mounted so as to be movable along the scanning rod portions 33 and 34. The extending end portions of the scanning rod portions 33 and 34 are supported by a driven portion 21 having driven magnet wheels 41 for moving in the circumferential direction on the surface of the steel pipe P as the drive portion 2 moves. As shown in the drawing, the probe 1 is moved by applying a screw bolt to one of the scanning rod portions 33 and 34 (in the illustrated case, the scanning rod portion 33) and the other scanning rod portion (in the illustrated case, the scanning rod portion). The rotation prevention rod is applied to the part 34), and the screw bolt (scanning rod part 33) is rotated forward and backward by the scanning motor 6 provided in the drive part 2. The position of the probe 1 in the axial direction is detected by measuring the amount of movement along the scanning rod portion with a potentiometer (not shown) provided in the scanning motor 6.
[0026]
Here, a method other than the screw bolt method can be applied to the movement of the probe 1. For example, an annular chain or belt in which the probe 1 is attached between the drive unit 2 and the driven unit 21. A chain drive system in which a chain or a belt is moved by a scanning motor provided in the drive unit 2 or a wheel for traveling on the scan rod unit to a mount 22 for attaching the probe 1 to the scan rod unit A self-propelled type in which a wheel is rotated by a scanning motor provided on the mount to move the mount can be applied. Moreover, although not shown in figure, the height of both in the radial direction of the steel pipe P of the surface of the steel pipe P in which the drive part 2 is attached, and the surface of the steel pipe P which the probe 1 substantially contacts and performs an inspection measurement Can be dealt with by providing slide means (not shown) for adjusting the position of the probe 1 in the radial direction on the mount that supports the probe 1.
[0027]
[Example 4]
FIG. 5 is a diagram showing an inspection / measurement apparatus according to a fourth embodiment of the present invention, and is configured in the same manner as in the above-described embodiment except that the configuration of the scanning arm 3 for moving the probe 1 is different. In order to avoid redundancy, descriptions other than the configuration of the scanning arm 3 are omitted. In the illustrated case, the drive unit 2 is shown in a form using a magnet wheel type.
[0028]
The scanning arm 3 in this embodiment includes an extendable rod portion 35 that extends from the drive portion 2 in an axial direction of the steel pipe P. The telescopic rod portion 35 is expanded and contracted by the scanning motor 6 provided in the driving unit 2. The probe 1 is attached to the extended end of the telescopic rod portion 35.
[0029]
The mechanism for extending and retracting the telescopic rod portion 35 is not particularly limited, but a rack (not shown) is provided on the telescopic rod portion 35 and the rack is moved by rotating a pinion (not shown) by the scanning motor 6. The rack and pinion system can be adopted. The position of the probe 1 in the axial direction is detected by measuring the amount of expansion / contraction of the expansion / contraction rod portion with a potentiometer (not shown) provided in the scanning motor 6.
[0030]
Here, although not shown in the figure, the difference in height between the surface of the steel pipe P to which the drive unit 2 is attached and the surface of the steel pipe P on which the probe 1 is substantially in contact and performing inspection and measurement in the radial direction. Can be dealt with by providing slide means (not shown) for adjusting the position of the probe 1 in the radial direction on the mount 22 that supports the probe 1.
[0031]
[Example 5]
FIG. 6 is a view showing an inspection / measuring device according to a fifth embodiment of the present invention. The inspection / measuring device according to the present embodiment is basically a scanning arm that opens and closes as described in the first and second embodiments. 3 is used. However, in the inspection and measurement apparatus according to the above-described embodiment, the surface of the steel pipe P to which the drive unit 2 is attached is basically the same as the surface of the steel pipe P that performs inspection and measurement by substantially contacting the probe 1. In contrast, the inspection and measurement apparatus according to the present embodiment is optional regardless of how the height of the mounting surface of the drive unit 2 and the inspection and measurement surface of the probe 1 changes. The greatest feature is that it is configured to be compatible.
[0032]
The inspection and measurement apparatus of the present embodiment is configured in the same manner as in the first or second embodiment except that the configuration of the scanning arm 3 and the mechanism associated therewith are different. Therefore, in order to avoid redundancy, explanations other than those concerning the scanning arm 3 are omitted. In addition, the thing of the belt drive system which the drive part demonstrated in 2nd Example is used for the thing of illustration.
[0033]
The scanning arm 3 of the present embodiment is composed of three arm portions, that is, a pivot arm portion 36, a stretching arm portion 37, and a tip arm portion 38. One end of the pivot arm portion 36 is supported by the drive unit 2, one end of the extension arm portion 37 is pivotally connected to the other end of the pivot arm portion 36, and the other end of the extension arm portion 37 is the tip arm. One end of the portion 38 is pivotally connected. The probe 1 is pivotally connected to the other end of the tip arm portion 38. The pivot arm 36 is pivoted by operating a pitch feed knob 8 provided in the drive unit 2. The connecting portion of the pivot arm portion 36 and the extending arm portion 37 and the connecting portion of the extending arm portion 37 and the distal arm portion 38 are provided in the pivot arm portion 36, the extending arm portion 37, and the distal arm portion 38, respectively. The arm portions are driven by the scanning motor 6 connected to each other via the extended rotation shaft 9 and / or the transmission chain 10 and provided in the drive unit 2 so as to move in the following relationship.
[0034]
That is, the extending arm portion 37 and the tip arm portion 38 are
a) A line connecting the connecting portion of the pivot arm portion 36 and the extending arm portion 37, the connecting portion of the extending arm portion 37 and the tip arm portion 38, and the connecting portion of the tip arm portion 38 and the probe 1 is pivoted. At the same time, an isosceles triangle is always formed essentially with a line connecting the connecting portion of the moving arm portion 36 and the extending arm portion 37 and the connecting portion of the tip arm portion 38 and the probe 1 as the base,
b) The base of the isosceles triangle is configured to move while always satisfying the positional relationship in which the base is essentially parallel to the surface of the steel pipe P.
[0035]
The connecting portion between the tip arm portion 38 and the probe 1 is transmitted via the extended rotation shaft 9 and / or the transmission chain 10 provided in the tip arm portion 38 for the same reason as described in the above-described embodiment. It is preferable that the probe 1 is always held at a predetermined scanning angle with respect to the surface of the steel pipe P by the rotational force of the scanning motor 6.
[0036]
The scanning arm 3 of this embodiment configured as described above operates the pitch feed knob 8 to adjust the height of the probe 1 from the surface of the steel pipe P, and then operates the scanning motor 6 to pivot. The steel pipe P is scanned in the axial direction by opening and closing the arm portion 36 and the extending arm portion 37. At this time, the position of the probe in the axial direction is determined by using a constant conversion formula by detecting the opening angle of the pivot arm portion 36 and the extension arm portion 37 with a potentiometer provided in the scanning motor 6. .
[0037]
【The invention's effect】
According to the present invention, the probe of the inspection and measurement apparatus is moved in the circumferential direction of the steel pipe by the drive unit, while the scanning arm is moved in the axial direction of the steel pipe to reliably perform inspection and measurement within a predetermined range. In addition, the position of the probe can be accurately detected by measuring the amount of movement of the drive unit and the degree of opening of the scanning arm, the amount of displacement, or the amount of movement by a potentiometer provided in the scanning motor. The existing steel pipe structure can be investigated quantitatively under the required measurement conditions.
[0038]
On the other hand, by using a magnet wheel as the moving means, the inspection and measurement device can be moved while maintaining the state of being attracted to the outer peripheral surface of the steel pipe by magnetic force, so that the inspection and measurement device can be easily and reliably attached. Can be done. In addition, since a guide belt can be used as a means for moving the drive unit, it is possible to reliably prevent the device from falling during inspection and measurement work at a high place such as a steel tower, By using the guide belt in combination, the work can be performed more safely.
[0039]
In addition, since the probe can be moved spirally by operating the drive unit and the scanning arm simultaneously, the time required for measurement can be shortened, and the scanning arm can be extended with the pivot arm unit. Consists of an arm part and a tip arm part, and pivots while maintaining a predetermined positional relationship, and the pivot arm part adjusts the position in the height direction from the steel pipe surface by the pivot arm part, while the pivot arm part The position of the probe in the axial direction can be detected by detecting the open leg angle of the extension arm, so it is easy even if there is a height difference between the drive placement surface and the surface to be inspected and measured. The position of the probe can be determined more easily.
[Brief description of the drawings]
FIG. 1 is a front view and a side view showing an inspection / measurement apparatus according to a first embodiment of the present invention.
FIG. 2 is a diagram showing a magnet wheel used in the inspection / measurement apparatus shown in FIG. 1;
FIGS. 3A and 3B are a front view and a side view showing an inspection measuring apparatus according to a second embodiment of the present invention. FIGS.
FIGS. 4A and 4B are a front view and a side view showing an inspection measuring apparatus according to a third embodiment of the present invention. FIGS.
FIGS. 5A and 5B are a front view and a side view showing an inspection measuring apparatus according to a fourth embodiment of the present invention. FIGS.
FIG. 6 is a front view showing an inspection measuring apparatus according to a fifth embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Probe 2 Drive part 3 Scan arm 4 Magnet wheel 4 'Wheel 4a Rotating magnet 4b Lining 5 Drive motor 6 Scan motor 7 Guide belt 8 Pitch feed knob 9 Extension rotating shaft 10 Transmission chain 10
DESCRIPTION OF SYMBOLS 21 Drive part 22 Mount 31, 32 Arm part 33, 34 Scanning rod part 35 Telescopic rod part 36 Pivoting arm part 37 Extension arm part 38 Tip arm part 41 Driven magnet wheel P Steel pipe

Claims (3)

測定すべき鋼管の外周面に接触して所定の検査測定を行うための探触子と、鋼管の外周面に沿って円周方向に移動自在な駆動部と、探触子を鋼管の外周面に沿って鋼管の軸方向へ移動させるための走査アームとから構成され、
前記走査アームは、駆動部にその一端を枢動自在に軸承された枢動アーム部と、枢動アーム部の他端にその一端を枢動自在に連結された展張アーム部と、展張アーム部の他端にその一端を枢動自在に連結された先端アーム部とから構成され、先端アーム部の他端には探触子が枢動自在に連結され、
前記走査アームは、枢動アーム部と展張アーム部の連結部と展張アーム部と先端アーム部の連結部と先端アーム部と探触子の連結部とをつなぐ線が、枢動アーム部と展張アーム部の連結部と先端アーム部と探触子の連結部とをつなぐ線を底辺とする本質的に二等辺三角形を常に形成するように、枢動アーム部と展張アーム部の連結部と展張アーム部と先端アーム部の連結部との間の間隔と、展張アーム部と先端アーム部の連結部と先端アーム部と探触子の連結部との間の間隔とが等しくなるように形成され、かつ、前記二等辺三角形の底辺が本質的に鋼管表面と平行に位置するように、枢動アーム部が枢動されたとき、展張アーム部が枢動アーム部の回転角度と等しい角度だけ逆方向へ枢動するように駆動され、展張アーム部が枢動されたとき、先端アーム部が展張アーム部の回転角度の2倍の角度だけ逆方向へ枢動するように駆動される、
検査測定装置。
A probe for making a predetermined inspection measurement in contact with the outer peripheral surface of the steel pipe to be measured, a drive unit movable in the circumferential direction along the outer peripheral surface of the steel pipe, and the outer peripheral surface of the steel pipe is composed of a scanning arm to move in the axial direction of the steel pipe along,
The scanning arm includes a pivot arm portion pivotally supported at one end of the drive portion, a stretch arm portion pivotally coupled at one end to the other end of the pivot arm portion, and a stretch arm portion. And a tip arm part pivotally connected at one end to the other end of the head, and a probe is pivotally connected to the other end of the tip arm part,
In the scanning arm, a line connecting a connecting portion of the pivot arm portion and the extending arm portion, a connecting portion of the extending arm portion, the connecting portion of the tip arm portion, a connecting portion of the tip arm portion and the probe, In order to always form an essentially isosceles triangle with the line connecting the connecting part of the arm part, the tip arm part and the connecting part of the probe as the base, the connecting part of the pivot arm part and the extending arm part is stretched. The distance between the arm part and the connecting part of the tip arm part and the distance between the extending arm part, the connecting part of the tip arm part, and the connecting part of the tip arm part and the probe are formed to be equal. And when the pivot arm is pivoted so that the base of the isosceles triangle is essentially parallel to the surface of the steel pipe, the extension arm is reversed by an angle equal to the rotation angle of the pivot arm. It is driven to pivot in the direction and the extension arm is pivoted , Distal arm portion driven to pivot to twice the angular only reverse rotation angle of the stretched arm,
Inspection measurement equipment.
前記駆動部は、磁力により鋼管の外周面に吸着した状態を維持して移動するための少なくとも2つのマグネット車輪と、該マグネット車輪を回動するための駆動モータとを備える、請求項1に記載の検査測定装置。  The said drive part is equipped with the at least 2 magnet wheel for moving while maintaining the state attracted | sucked to the outer peripheral surface of the steel pipe with magnetic force, and the drive motor for rotating this magnet wheel. Inspection measuring equipment. 前記駆動部は、鋼管の外周面を回転して移動するための少なくとも2つの車輪と、駆動部から鋼管の外周面上を回って駆動部に戻るように鋼管に着脱自在に装着される案内ベルトと、案内ベルトを移動させることによって駆動部の円周方向への移動を行わせるための駆動モータとを備える、請求項1または2に記載の検査測定装置。  The drive unit includes at least two wheels for rotating the outer peripheral surface of the steel pipe and a guide belt that is detachably attached to the steel pipe so as to return from the drive unit to the drive unit around the outer peripheral surface of the steel pipe. And a drive motor for causing the drive unit to move in the circumferential direction by moving the guide belt.
JP2002342928A 2002-11-26 2002-11-26 Inspection and measurement equipment for steel pipe structures Expired - Lifetime JP4139198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002342928A JP4139198B2 (en) 2002-11-26 2002-11-26 Inspection and measurement equipment for steel pipe structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002342928A JP4139198B2 (en) 2002-11-26 2002-11-26 Inspection and measurement equipment for steel pipe structures

Publications (2)

Publication Number Publication Date
JP2004177230A JP2004177230A (en) 2004-06-24
JP4139198B2 true JP4139198B2 (en) 2008-08-27

Family

ID=32704849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002342928A Expired - Lifetime JP4139198B2 (en) 2002-11-26 2002-11-26 Inspection and measurement equipment for steel pipe structures

Country Status (1)

Country Link
JP (1) JP4139198B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108333254A (en) * 2017-12-29 2018-07-27 上海天阳钢管有限公司 Ultrasonic probe system for the seamless composite steel tube combination delamination layer defects detection of bimetallic

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008148225A1 (en) * 2007-06-07 2008-12-11 Hafner, Georg Device and method for the non-destructive testing of objects
KR101728987B1 (en) 2016-12-02 2017-05-02 주식회사 베타젠 Nondestructive inspection apparatus
JP6785643B2 (en) * 2016-12-20 2020-11-18 神鋼検査サービス株式会社 Detector moving device
CN108732241B (en) * 2018-05-22 2023-11-14 北京双河理声自动化检测技术有限公司 Ultrasonic flaw detector for train wheel axle
KR200490799Y1 (en) * 2018-05-23 2020-01-06 두산중공업 주식회사 Apparatus for ultrasonic test
KR200491752Y1 (en) * 2018-08-14 2020-06-01 두산중공업 주식회사 Apparatus for ultrasonic test
CN116972779B (en) * 2023-09-22 2023-12-08 山东高原油气装备有限公司 Detection device with location centre gripping function for steel pipe production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108333254A (en) * 2017-12-29 2018-07-27 上海天阳钢管有限公司 Ultrasonic probe system for the seamless composite steel tube combination delamination layer defects detection of bimetallic
CN108333254B (en) * 2017-12-29 2020-07-17 上海天阳钢管有限公司 Ultrasonic probe system for detecting delamination defect of double-metal seamless composite steel pipe bonding layer

Also Published As

Publication number Publication date
JP2004177230A (en) 2004-06-24

Similar Documents

Publication Publication Date Title
US7950298B2 (en) Motorized bracelet assembly for moving sensor modules around a pipe
US4893512A (en) Swinging-type automatic examination apparatus for piping
JP4139198B2 (en) Inspection and measurement equipment for steel pipe structures
US20110205348A1 (en) System and method for performing an external inspection on a wind turbine rotor blade
TWI360136B (en) Apparatus and method for processing inside of pipe
JP2533027B2 (en) Autonomous mobile piping maintenance robot
JP6349294B2 (en) Inspection tool for structures
CN108267457A (en) Small-caliber pipeline inner ring seam laser video detecting device
CN104669164A (en) Novel remote control-type sensor clamping device
JP3224987B2 (en) Ultrasonic flaw detector
CN207882172U (en) Small-caliber pipeline inner ring seam laser video detecting device
CN108333193A (en) A kind of pipeline training test specimen ray digitlization non-destructive testing device and method
JP2002303611A (en) Method and device for nondestructive inspection of tunnel lining concrete
JPS6251422B2 (en)
JP2006308555A (en) Apparatus and method of inspecting thickness of boiler heat-transfer tube
JPS6147379B2 (en)
JP6778530B2 (en) Detector moving device and moving method
JPH0520964Y2 (en)
JP6950948B2 (en) Structure inspection equipment
JPS6230953A (en) Piping inspection device
JP3142182B2 (en) Viaduct inspection device
JPS6222841Y2 (en)
JPH0156703B2 (en)
JP2519757B2 (en) Traveling robot
JPS62287149A (en) Ultrasonic flaw detecting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051125

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060825

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080606

R150 Certificate of patent or registration of utility model

Ref document number: 4139198

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term