JP4134509B2 - Charging device and electric vehicle - Google Patents

Charging device and electric vehicle Download PDF

Info

Publication number
JP4134509B2
JP4134509B2 JP2000359439A JP2000359439A JP4134509B2 JP 4134509 B2 JP4134509 B2 JP 4134509B2 JP 2000359439 A JP2000359439 A JP 2000359439A JP 2000359439 A JP2000359439 A JP 2000359439A JP 4134509 B2 JP4134509 B2 JP 4134509B2
Authority
JP
Japan
Prior art keywords
charging
power supply
secondary battery
battery
charging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000359439A
Other languages
Japanese (ja)
Other versions
JP2002165370A (en
Inventor
正一 佐々木
良二 沖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2000359439A priority Critical patent/JP4134509B2/en
Publication of JP2002165370A publication Critical patent/JP2002165370A/en
Application granted granted Critical
Publication of JP4134509B2 publication Critical patent/JP4134509B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/24Using the vehicle's propulsion converter for charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • B60L2220/54Windings for different functions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • B60L2220/56Structural details of electrical machines with switched windings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Description

【0001】
【発明の属する技術分野】
本発明は、充電装置に関し、詳しくはスイッチング素子のスイッチングにより電源からの電力を多相モータに供給する電力制御回路を備えた充電装置、およびこれを搭載した電動車輌に関する。
【0002】
【従来の技術】
従来、二次電池を電源とし、インバータを用いて多相モータを回転するモータ駆動回路が、電動自動車を初め、様々な機器で用いられている。こうした機器において、二次電池を充電したいという要求は当然存在するため、専用の充電器を用意していた(例えば、特開平5−207664号公報参照)。
【0003】
【発明が解決しようとする課題】
しかしながら、従来の充電装置では、交流の位相に応じてスイッチング素子をオンオフする必要があり、制御が煩雑になるという問題があった。また、充電電流の制御に使用する大型のリアクトルを設けなければならないという問題もあった。このリアクトルとして多相モータの界磁コイルを利用する提案もなされているが、シンク側のスイッチング素子をターンオンして界磁コイルに短絡電流を流した後、スイッチング素子をオフしてこの電流を充電電流として取り出すという構成になっており(上記公報図5参照)、例えばスイッチング素子がオン故障すると、短絡電流が流れたままになるといった不具合が指摘されていた。
【0004】
本発明は上記課題を解決するためになされ、多相モータを駆動する電力制御回路を利用した充電装置の構成を簡略にすることを目的としてなされた。また、この電源装置を組み込んだ電動車輌の成を簡明なものすることも目的の一つとしている。
【0005】
【課題を解決するための手段およびその作用・効果】
上記課題を解決するためになされた本発明の充電装置は、
二次電池への充電を行なう充電装置であって、
界磁コイルが星形結線された多相モータと正負の電源ラインとの間に、該多相モータの相数に対応してスイッチング素子を介装すると共に、該スイッチング素子のスイッチングにより前記電源ラインに供給される電力を前記多相モータに多相交流として供給する電力制御回路
前記正負の電源ラインに、出力側が接続されたダイオードブリッジと、
前記電源ライン間に接続されたコンデンサと、
前記二次電池充電用の外部の電源を接続するためのコネクタと
を備え、
充電時には、
前記外部の電源を前記コネクタに接続することで、該外部の電源から前記ダイオードブリッジの入力側への接続を構成し
充電しようとする前記二次電池の一方の端子を、前記多相モータの前記星形結線の交点に接続すると共に、該二次電池の他方の端子を、前記電源ラインの一方に接続する回路を構成し、
走行時には、前記二次電池の出力を前記電源ラインに接続する回路を構成する
を要旨としている。
【0006】
かかる充電装置では、電源として交流または直流電源を用意すると、この電源からダイオードブリッジを介して得られる直流電圧により、電源ライン間に接続されたコンデンサの充電が行なわれる。この状態で、スイッチング素子をオンオフすると、コンデンサに蓄積された電荷は、電源ライン−ターンオンされたスイッチング素子−多相モータの界磁コイル−星形結線の交点−二次電池−電源ラインという回路を流れて、二次電池を充電する。
【0007】
また、こうした充電装置において、電力制御回路は、直列接続された二つのスイッチング素子を一組として、前記相数に対応した組数だけ、前記電源ライン間に介装し、前記二次電池への充電時に、前記各組のスイッチング素子のうち、前記二次電池の他方の端子が接続された側の電源ラインとは反対側の電源ラインに接続されたスイッチング素子を、導通状態とする構成とすることも可能である。かかる構成を採用すれば、多相モータの駆動回路をそのまま充電用の電力制御回路として利用可能である。
【0008】
かかる回路構成において、スイッチング素子の各々に、保護用のダイオードを併設することも、電力制御回路では、しばしば行なわれている。この場合には、スイッチング素子をターンオフした際、多相モータの界磁コイルに流れていた電流は、シンク側のスイッチング素子に併設された保護用のダイオードを介して流れ続け、二次電池を充電する。
【0009】
こうした充電装置は、電動車両に備えることができる。電動車両であって、動力源としての二次電池の充電が必要なものが存在するが、こうした電動車両の二次電池を充電する装置として、簡便なものを提供することができる。かかる装置は、ダイオードブリッジを備えるので、商用交流用のような交流電源も、燃料電池や太陽電池と言った直流電源でも接続することができ、汎用性に富むという利点が得られる。また、こうした充電装置は、車両に搭載して、電動車両として一体化しても良いし、別体にも受けても良い。また、車両に限らず、星形結線を有する多相モータと二次電池とを有する機器の充電装置として用いることができる。なお、充電用の電源としては、商用交流や燃料電池、太陽電池の他、直流電源として、他のバッテリまたは大容量キャパシタを用いることもできる。
【0010】
充電される二次電池は、化学変化を利用して電気エネルギを蓄積するものであり、鉛蓄電池、ニッケル水素バッテリ、ニッケルカドミウムバッテリ、リチウムイオンバッテリ、リチウムポリマバッテリなど、従来から用いられている各種の二次電池を採用可能である。
【0011】
【発明の他の態様】
本発明の電源装置は上記態様に限られるものではなく、次の様な態様も包含するものである。まず充電される二次電池は、2以上であっても差し支えない。この場合、二つのバッテリを並列または直列に接続して一度に充電を行なっても良いし、切り換え用の接点を設けて一つずつ、充電するものとしても良い。また、星形結線の交点に接続される二つの二次電池の極性を逆にし、各二次電池の反対側の端子を、正負の電源ラインのそれぞれに接続して、一つの二次電池を、ソース側のスイッチング素子のオンオフで充電し、他方の二次電池を、シンク側のスイッチング素子のオンオフで充電する構成も可能である。
【0012】
【発明の実施の形態】
次に、本発明の実施の形態を実施例に基づき説明する。図1は、本発明の実施例としての充電装置を組み込んだ電気自動車の概略構成図である。この充電装置は、電気自動車10に一体に組み込まれていることから、まず電気自動車10としての構成について説明する。
【0013】
図1に示したように、この電気自動車10は、電源としてのリチウムイオンタイプの二次電池であるバッテリ20を搭載し、この直流電源をインバータ40により、三相交流に変換して、三相モータ50に出力する構成を採用している。三相モータ50は、回転子に永久磁石を備える永久磁石型(PM型)同期電動機である。インバータ40は、コントローラ30により制御される。このコントローラ30は、アクセルペダル32や車速センサ34、あるいはバッテリ20の電圧を監視する電圧センサ36などのセンサからの入力を監視し、インバータ40を構成するスイッチング素子をオン・オフ制御する。スイッチング素子のオン・オフのデューティと周波数を制御することにより、モータ50の各相に流れる電流、ひいてはモータ50のトルクと回転数を制御することができる。モータ50の回転軸の回転は、ディファレンシャルギヤ55を介して、左右の車輪51,52に伝達され、車両を走行させる。
【0014】
通常の電気自動車の基本的な構成と比べると、本実施例の電気自動車10では、バッテリ20とインバータ40との間が直接接続されておらず、コネクタCN1,ダイオードブリッジD1,コンデンサC1等が介装されている。これらの接続関係を図1を参照しつつ、詳しく説明する。バッテリ20の負側電源ラインは、コネクタCN1の番端子に接続されている。また、バッテリ20の正側電源ラインは、コネクタCN1の2番端子に接続されている。このコネクタCN1の3番端子は、ダイオードブリッジD1の入力側のもう一方の端子に接続されており、コネクタCN1の4番端子は、ダイオードブリッジD1の出力側(インバータ40の正側電源ライン)に接続されている。更に、コネクタCN1の5番端子は、三相モータ50のUVWのコイルが星形結線されているその交点に接続されている。コネクタCN1の0番端子は、ダイオードブリッジD1の出力側(インバータ40の正側電源ライン)に接続されている。また、コンデンサC1は、ダイオードブリッジD1の出力端子とインバータ40とをつなぐ電源ライン間に介装されている。
【0015】
このコネクタCN1には、車両走行時には、走行用コネクタCN2が装着されている。走行用コネクタCN2の0番端子と1番端子、および2番端子と4番端子は、それぞれ短絡されている。この結果、図1に示すように、走行用コネクタCN2が、コネクタCN1に正しく装着されていれば、バッテリ20の正負の端子は、ダイオードブリッジD1を介することなく、インバータ40の電源ラインに接続された状態となる。この結果、走行時においては、バッテリ20とインバータ40とは直接接続されて状態となり、バッテリ20の電力によりモータ50を駆動して、車両を走行させたり、制動時などにモータ50により電力を回生し、これをバッテリ20に充電するといった処理が可能となる。
【0016】
この場合のバッテリ20から三相モータ50までの接続を等価回路で表わしたものが図2である。インバータ40内のスイッチング素子は、図2では、ソース側のスイッチSW1ないし3およびシンク側のスイッチSW11ないし13として表わしている。ダイオードブリッジD1は、回路には介装されていない状態となっており、何らの作用もきたしていない。コンデンサC1は、電荷を蓄えており、電源ラインの見かけのインピーダンスを下げる働きをしている。
【0017】
この状態で、コントローラ30からの制御信号により、スイッチング素子を順次ターンオンして、U相コイル、V相コイル、W相コイルに順次電流を流すと、各相コイルを順次流れる電流により回転磁界が形成され、回転子に設けられた永久磁石による磁界との相互作用により、三相モータ50は回転する。なお、三相モータ50により回生が行なわれる場合は、これとは逆に各相コイルに回生電流が流れ、インバータ40を介して、バッテリ20が充電されることになる。
【0018】
なお、図1の回路では、コネクタCN1の0番端子と4番端子を利用して、ダイオードブリッジD1を介装しない回路を構成して、三相モータ50による回生を可能としたが、図3に示すように、三相モータ50の星形結線の交点(中性点)からバッテリ20の正側端子に戻るラインを形成し、三相モータ50の中性点を通って各相コイルに電流を流して、三相モータ50を駆動する回路構成でも、バッテリ20による三相モータ50の駆動と、三相モータ50からの回生によるバッテリ20の充電とが可能である。この場合には、端子2と端子5を接続して用いるが、その動作を以下に説明する。図3に示した回路構成を用いた場合には、スイッチング素子SW11をまずターンオンして、一つのコイル(例えばコイルU)に電流iuを流す。このときの電流iuは、バッテリ20を電源として、バッテリ20→三相モータの中性点→U相コイル→スイッチング素子SW11→ダイオードブリッジD1の一つのダイオード(省略可能)→バッテリ20、というように流れ、三相モータ50のコイルにエネルギを蓄える。
【0019】
次に、スイッチング素子SW11をターンオフすると、スイッチング素子SW11とSW1との接続点の電位VLは上昇し、保護用のダイオードDP1を介して、コイルに蓄えられた電荷により、電流が流れる(図3、破線矢印)。この電流は、ダイオードDP1→他の相のスイッチング素子SW2(SW3)→V(W)相コイル→三相モータ50の中性点、というように流れる。この結果、かかる回路構成を採用すると、スイッチング素子SW11(SW12,SW13でも可)を制御することにより、インバータの電圧Vcを調整することができる。即ち、バッテリ20の電圧が低下している場合でも、これを用いてインバータ40に対して十分な動作電圧を確保することができる。かかる回路構成を採用した場合でも、後述する充電回路により、バッテリ20の充電を行なうことができる。
【0020】
そこで、次に、電気自動車10のバッテリ20に充電を行なう場合の接続と制御について説明する。図4は、充電時の接続関係を示す回路図である。商用交流を用いて充電を行なう場合には、走行用コネクタCN2を外して、電源ケーブルが接続された充電用コネクタCN3を、コネクタCN1に装着する。この充電用コネクタCN3は、図示するように、商用交流に接続するコンセント60からの電源ラインが1番と3番の端子にそれぞれ接続されており、2番端子と5番端子とが短絡されている。この結果、等価回路である図5に示したように、商用交流であるAC100ボルトがダイオードブリッジD1を介してインバータ40に接続され、バッテリ20は、三相モータ50の星形結線された交点(中性点)と負側の電源ライン間に接続された状態となる。
【0021】
ダイオードブリッジD1により、交流は全波整流され、コンデンサC1に蓄えられる。全波整流により、コンデンサC1の両端の電圧VCは、商用交流であれば141ボルト、即ち交流の実効電圧Vrmsに対して、
VC=Vrms・√2
となる。コントローラ30は、充電時には、スイッチング素子のうち、シンク側の全素子(等価回路ではスイッチSW1ないしSW3)を同時にオン・オフする。シンク側のスイッチング素子がオン状態になると、図5に示したように、コンデンサC1に蓄積されていた電荷は、シンク側のスイッチング素子を介してUVWの各相コイルに流れ、星形結線された交点で合流して、バッテリ20に流れ込み、バッテリ20を充電する。バッテリ20の充電電流iを得るためには、各相コイルに流れる電流は、それぞれi/3となる。そこで、コントローラ30は、平均電流がi/3となるよう、スイッチング素子のオン時間(デューティ)を制御する。なお、かかる充電制御において、三相モータ50の各相コイルには等しい電流が同時に流れることから、モータ50が回転することはない。
【0022】
図6に、コントローラ30が行なう充電制御のフローチャートを示す。図示するように、コントローラ30は、充電制御を開始すると、まずバッテリ20の電圧を計測し(ステップS100)、計測した電圧に応じて、充電電流iを決定する処理を行なう(ステップS110)。次にこの充電電流iに応じて、スイッチング素子のオンデューティを決定し(ステップS120)、そのデューティでインバータ40のソース側の全スイッチング素子をオン・オフ制御する(ステップS130)。その後、バッテリ20が満充電状態になったかを判断し(ステップS140)、満充電状態となるまでは、ステップS100に戻って、上記の処理を繰り返す。
【0023】
なお、通常の半導体型インバータ40では、図7に示したように、スイッチング素子Tr1ないしTr3およびTr11ないしTr13のコレクタ−エミッタ間には、保護用のダイオードDp1ないしDp3およびDp11ないしDp13が設けられている。この場合、ソース側のスイッチング素子Tr1ないTr3を、オフにすると、三相コイルを介して流れていた電流は、そのまま流れ続けようとすることから、シンク側のスイッチング素子Tr11ないしTr13に併設された保護用のダイオードDp11ないしDp13を介して電流が還流することになる。従って、スイッチング素子に保護用のダイオードが併設されている場合には、スイッチング素子をオフにした場合の電力損失は殆ど生じない。図7では、理解の便を図って、W相コイルに流れる電流のみを示したが、他の相の電流についても同様である。
【0024】
以上説明した本実施例によれば、電気自動車の基本的な構成であるバッテリ20−インバータ40−三相モータ50という回路に、ダイオードブリッジD1とコンデンサC1を追加しただけで、容易に、外部の交流電源または直流電源を用いてバッテリ20を充電する充電装置を構成することができる。走行状態と充電状態とでは、バッテリ20の端子の接続を切り換えているだけであり、しかもその切換は、走行用コネクタCN2を、充電用コネクタCN3に取り替えることにより自動的に行なわれる。この結果、電気自動車10を充電スタンドまで走行させ、走行用コネクタCN2を外し、商用交流などの電源に接続した充電用コネクタCN3に取り替えるだけで、直ちに充電可能な状態となる。ダイオードブリッジD1を採用していることから、直流電源でも交流電源でも区別することなく接続でき、例えば通常は充電スタンドで商用交流を用いて充電を行なっており、自宅に太陽電池式の発電装置と二次電源装置があれば、これに接続して充電を行なうといったことも可能である。また、燃料電池に接続して充電するものとすることもできる。
【0025】
上記実施例では、バッテリ20は、そのまま三相交流の星形結線の交点とマイナス側電源ラインとの間に接続して充電を行なうものとしたが、例えば二次電池の仕様が200ボルトのように商用交流の電圧を超えている場合には、二次電池を複数の組に予め分割しておき、車両走行時には、これらを全て直列に接続して走行用の電源とし、充電時には、複数の二次電池を並列に接続して充電するものとしても良い。この場合、一度に複数の二次電池を充電しても良いし、接点などで切り換えることにより、一つずつ充電を行なうものとしても良い。
【0026】
また、例えばバッテリ20を等分に分割して、第1のバッテリ20Aと第2のバッテリ20Bから構成し、走行時には両者20A,20Bを直列に接続して走行用の電源とし、充電時には、図8に示すように、両バッテリ20A,20Bの中点と三相モータ50の星形結線の交点とを接続し、インバータ40のソース側スイッチング素子のオン・オフにより第1のバッテリ20Aを、シンク側スイッチング素子のオン・オフにより第2のバッテリ20Bを、それぞれ独立して充電するものとしても良い。この場合には、図9に示したように、ソース側のスイッチング素子とシンク側のスイッチング素子が一度に導通状態とならないよう、ターンオンのタイミングを調整する。
【0027】
なお、三相モータ50に温度上昇を測定するセンサが設けられている場合には、温度上昇が所定の許容温度以下となるように、充電を制御することも容易である。充電は、通常連続して行なわれることから、各相コイルに流れる電流自体は走行時の最大電流より小さくても、連続通電により三相モータ50の温度は相当に上昇することがあり得るが、コイルの温度上昇をモニタしつつ充電を行なえば、充電処理の信頼性を更に高くすることができる。
【0028】
以上、本発明の実施の形態について説明したが、本発明はこうした実施の形態に何等限定されるものではなく、例えば、実施例の充電装置を電気自動車とは完全に別体に構成しても良いし、電気自動車以外の機器、例えば船舶,航空機などの交通手段やその他各種産業機械などに組み込んだ態様など、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。また、実施例では、全波整流用のダイオードブリッジを用いたが、充電用の電源電圧とバッテリの電圧との関係によっては、半波整流用のダイオードブリッジを用いることも可能である。半波整流用のダイオードブリッジを用いた場合には、コネクタCN1の端子0からインバータのマイナス側電源ラインへの結線を省略することができる。
【図面の簡単な説明】
【図1】本発明の実施例としての電気自動車10に組み込んだ充電装置の構成を示す回路図である。
【図2】実施例における等価回路図である。
【図3】実施例の充電回路を適用可能な他の駆動回路例を示す回路図である。
【図4】実施例の充電時の接続関係を示す回路図である。
【図5】充電時の等価回路図である。
【図6】コントローラ30が行なう処理の概要を示すフローチャートである。
【図7】インバータ40の実際の構成と還流の様子を例示する説明図である。
【図8】本発明の他の実施例を示す回路図である。
【図9】他の実施例におけるスイッチング素子のオンタイミングを示すタイミングチャートである。
【符号の説明】
10…電気自動車
20…バッテリ
20A…第1のバッテリ
20B…第2のバッテリ
30…コントローラ
32…アクセルペダル
34…車速センサ
36…電圧センサ
40…インバータ
50…三相モータ
51,52…車輪
55…ディファレンシャルギヤ
60…コンセント
C1…コンデンサ
CN1…コネクタ
CN2…走行用コネクタ
CN3…充電用コネクタ
D1…ダイオードブリッジ
Dp1〜Dp11…ダイオード
SW1〜SW11…スイッチ
Tr1〜Tr11…スイッチング素子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a charging device, and more particularly to a charging device including a power control circuit that supplies power from a power source to a multiphase motor by switching of a switching element, and an electric vehicle equipped with the charging device.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a motor drive circuit that uses a secondary battery as a power source and rotates a multiphase motor using an inverter has been used in various devices including electric vehicles. In such devices, since there is a demand for charging the secondary battery, a dedicated charger has been prepared (for example, see Japanese Patent Application Laid-Open No. 5-207664).
[0003]
[Problems to be solved by the invention]
However, the conventional charging device has a problem that the switching element needs to be turned on and off in accordance with the AC phase, and the control becomes complicated. Moreover, there also existed a problem that the large reactor used for control of charging current had to be provided. A proposal has been made to use a field coil of a multiphase motor as the reactor, but after turning on the switching element on the sink side and supplying a short-circuit current to the field coil, the switching element is turned off to charge this current. It has a configuration in which the current is taken out (see FIG. 5 of the above publication). For example, when the switching element is on-failed, there is a problem that a short-circuit current remains flowing.
[0004]
The present invention has been made in order to solve the above-described problems, and has been made for the purpose of simplifying the configuration of a charging device using a power control circuit that drives a multiphase motor. Another object is to simplify the construction of an electric vehicle incorporating this power supply device.
[0005]
[Means for solving the problems and their functions and effects]
The charging device of the present invention made to solve the above problems is
A charging device for charging a secondary battery,
Between the field coil polyphase motor and positive and negative power supply lines which are star-connected, with interposed switching element in response to the number of phases of the multi-phase motor, the power line by switching of the switching element a power control circuit for supplying a multi-phase AC power to be supplied to said multi-phase motor,
A diode bridge whose output side is connected to the positive and negative power supply lines; and
A capacitor connected between the power lines;
A connector for connecting an external power source for charging the secondary battery;
With
When charging,
By connecting the external power supply to the connector, the connection from the external power supply to the input side of the diode bridge is configured ,
A circuit for connecting one terminal of the secondary battery to be charged to an intersection of the star connection of the multi-phase motor and connecting the other terminal of the secondary battery to one of the power supply lines; Configure
The gist is to configure a circuit for connecting the output of the secondary battery to the power supply line during traveling .
[0006]
In such a charging device, when an AC or DC power supply is prepared as a power supply, a capacitor connected between the power supply lines is charged by a DC voltage obtained from the power supply via a diode bridge. When the switching element is turned on and off in this state, the electric charge accumulated in the capacitor is changed to a circuit of power supply line-turned on switching element-multiphase motor field coil-star connection point-secondary battery-power supply line. Flows to charge the secondary battery.
[0007]
Further, in such a charging device, the power control circuit includes two switching elements connected in series as a set, and the number of sets corresponding to the number of phases is interposed between the power supply lines to connect to the secondary battery. At the time of charging, the switching element connected to the power line on the side opposite to the power line to which the other terminal of the secondary battery is connected among the switching elements of each set is set to a conductive state. It is also possible. If such a configuration is adopted, the driving circuit for the multiphase motor can be used as it is as a power control circuit for charging.
[0008]
In such a circuit configuration, it is often performed in the power control circuit that a protective diode is provided in each switching element. In this case, when the switching element is turned off, the current flowing in the field coil of the multiphase motor continues to flow through the protective diode provided in the sink-side switching element to charge the secondary battery. To do.
[0009]
Such a charging device can be provided in an electric vehicle. Although there are some electric vehicles that require charging of a secondary battery as a power source, a simple device can be provided as a device for charging the secondary battery of such an electric vehicle. Since such a device includes a diode bridge, an AC power source for commercial AC or a DC power source such as a fuel cell or a solar cell can be connected, and an advantage of high versatility can be obtained. Moreover, such a charging device may be mounted on a vehicle and integrated as an electric vehicle, or may be received separately. Moreover, it can use as a charging device of the apparatus which has not only a vehicle but the multiphase motor which has star connection, and a secondary battery. As a power source for charging, in addition to a commercial AC, a fuel cell, and a solar cell, another battery or a large-capacity capacitor can be used as a DC power source.
[0010]
Rechargeable secondary batteries use chemical changes to store electrical energy, such as lead-acid batteries, nickel metal hydride batteries, nickel cadmium batteries, lithium ion batteries, and lithium polymer batteries. Secondary batteries can be used.
[0011]
Other aspects of the invention
The power supply device of the present invention is not limited to the above-described aspect, and includes the following aspects. First, the secondary battery to be charged may be two or more. In this case, two batteries may be connected in parallel or in series and charged at a time, or a switching contact may be provided to charge one by one. Also, reverse the polarity of the two secondary batteries connected to the intersection of the star connection, connect the opposite terminal of each secondary battery to each of the positive and negative power lines, and connect one secondary battery It is also possible to charge the battery by turning on / off the switching element on the source side and charge the other secondary battery by turning on / off the switching element on the sink side.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described based on examples. FIG. 1 is a schematic configuration diagram of an electric vehicle incorporating a charging device as an embodiment of the present invention. Since this charging apparatus is integrated in the electric vehicle 10, the configuration of the electric vehicle 10 will be described first.
[0013]
As shown in FIG. 1, this electric vehicle 10 is equipped with a battery 20 that is a lithium ion type secondary battery as a power source, and this DC power source is converted into a three-phase AC by an inverter 40 to obtain a three-phase AC. A configuration for outputting to the motor 50 is adopted. The three-phase motor 50 is a permanent magnet type (PM type) synchronous motor including a permanent magnet in the rotor. The inverter 40 is controlled by the controller 30. The controller 30 monitors inputs from sensors such as an accelerator pedal 32, a vehicle speed sensor 34, or a voltage sensor 36 that monitors the voltage of the battery 20, and performs on / off control of switching elements constituting the inverter 40. By controlling the on / off duty and frequency of the switching element, the current flowing in each phase of the motor 50, and thus the torque and the rotational speed of the motor 50 can be controlled. The rotation of the rotation shaft of the motor 50 is transmitted to the left and right wheels 51 and 52 via the differential gear 55, and the vehicle is caused to travel.
[0014]
Compared to the basic configuration of a normal electric vehicle, in the electric vehicle 10 of the present embodiment, the battery 20 and the inverter 40 are not directly connected, and the connector CN1, the diode bridge D1, the capacitor C1, and the like are interposed. It is disguised. These connection relationships will be described in detail with reference to FIG. Negative power supply line of the battery 20 is connected to the zeroth terminal of connector CN1. The positive power line of the battery 20 is connected to the second terminal of the connector CN1. The third terminal of the connector CN1 is connected to the other terminal on the input side of the diode bridge D1, and the fourth terminal of the connector CN1 is connected to the output side of the diode bridge D1 (the positive power line of the inverter 40). It is connected. Further, the fifth terminal of the connector CN1 is connected to the intersection of the UVW coils of the three-phase motor 50 that are star-connected. The 0th terminal of the connector CN1 is connected to the output side of the diode bridge D1 (positive power line of the inverter 40). The capacitor C1 is interposed between the power supply lines connecting the output terminal of the diode bridge D1 and the inverter 40.
[0015]
The connector CN1 is fitted with a travel connector CN2 when the vehicle travels. The 0th and 1st terminals and the 2nd and 4th terminals of the traveling connector CN2 are short-circuited. As a result, as shown in FIG. 1, if the traveling connector CN2 is correctly attached to the connector CN1, the positive and negative terminals of the battery 20 are connected to the power line of the inverter 40 without going through the diode bridge D1. It becomes a state. As a result, during traveling, the battery 20 and the inverter 40 are directly connected to each other, and the motor 50 is driven by the power of the battery 20 so that the vehicle travels or power is regenerated by the motor 50 during braking. Then, processing such as charging the battery 20 can be performed.
[0016]
FIG. 2 shows the connection from the battery 20 to the three-phase motor 50 in this case by an equivalent circuit. In FIG. 2, the switching elements in the inverter 40 are represented as source-side switches SW1 to SW3 and sink-side switches SW11 to SW13. The diode bridge D1 is not interposed in the circuit and has no effect. The capacitor C1 stores electric charge and functions to lower the apparent impedance of the power supply line.
[0017]
In this state, when the switching elements are sequentially turned on by a control signal from the controller 30 and currents are sequentially supplied to the U-phase coil, V-phase coil, and W-phase coil, a rotating magnetic field is formed by the current that sequentially flows through each phase coil. The three-phase motor 50 rotates due to the interaction with the magnetic field generated by the permanent magnets provided in the rotor. When regeneration is performed by the three-phase motor 50, on the contrary, a regeneration current flows through each phase coil, and the battery 20 is charged via the inverter 40.
[0018]
In the circuit of FIG. 1, a circuit that does not include the diode bridge D1 is configured by using the 0th terminal and the 4th terminal of the connector CN1, and regeneration by the three-phase motor 50 is possible. As shown in FIG. 2, a line is formed from the intersection (neutral point) of the star connection of the three-phase motor 50 to the positive terminal of the battery 20, and the current flows to each phase coil through the neutral point of the three-phase motor 50. Even in a circuit configuration in which the three-phase motor 50 is driven by driving the three-phase motor 50, the three-phase motor 50 can be driven by the battery 20 and the battery 20 can be charged by regeneration from the three-phase motor 50. In this case, the terminal 2 and the terminal 5 are connected and used, and the operation will be described below. When the circuit configuration shown in FIG. 3 is used, the switching element SW11 is first turned on, and a current iu is supplied to one coil (for example, the coil U). The current iu at this time is from the battery 20 as a power source, the battery 20 → the neutral point of the three-phase motor → the U-phase coil → the switching element SW11 → one diode of the diode bridge D1 (can be omitted) → the battery 20 and so on. The energy is stored in the coil of the three-phase motor 50.
[0019]
Next, when the switching element SW11 is turned off, the potential VL at the connection point between the switching elements SW11 and SW1 rises, and current flows due to the charge stored in the coil via the protective diode DP1 (FIG. 3, Dashed arrows). This current flows as follows: diode DP1 → switching element SW2 (SW3) of other phase → V (W) phase coil → neutral point of three-phase motor 50. As a result, when such a circuit configuration is employed, the inverter voltage Vc can be adjusted by controlling the switching element SW11 (or SW12 or SW13). That is, even when the voltage of the battery 20 is lowered, a sufficient operating voltage can be secured for the inverter 40 using this. Even when such a circuit configuration is adopted, the battery 20 can be charged by a charging circuit described later.
[0020]
Then, next, connection and control in the case of charging the battery 20 of the electric vehicle 10 will be described. FIG. 4 is a circuit diagram showing a connection relationship during charging. When charging is performed using commercial AC, the traveling connector CN2 is removed and the charging connector CN3 to which the power cable is connected is attached to the connector CN1. In the charging connector CN3, as shown in the figure, the power line from the outlet 60 connected to the commercial AC is connected to the first and third terminals, respectively, and the second and fifth terminals are short-circuited. Yes. As a result, as shown in FIG. 5, which is an equivalent circuit, AC 100 volts, which is a commercial alternating current, is connected to the inverter 40 via the diode bridge D1, and the battery 20 is connected to the star-connected intersection of the three-phase motor 50 ( It is connected between the neutral point) and the negative power line.
[0021]
The AC is full-wave rectified by the diode bridge D1 and stored in the capacitor C1. By full-wave rectification, the voltage VC across the capacitor C1 is 141 volts for commercial alternating current, that is, with respect to the effective voltage Vrms of alternating current,
VC = Vrms · √2
It becomes. During charging, the controller 30 simultaneously turns on / off all the sink-side elements (switches SW1 to SW3 in the equivalent circuit) among the switching elements. When the sink-side switching element is turned on, as shown in FIG. 5, the charge accumulated in the capacitor C1 flows to each phase coil of the UVW through the sink-side switching element, and is star-connected. They merge at the intersection and flow into the battery 20 to charge the battery 20. In order to obtain the charging current i of the battery 20, the current flowing through each phase coil is i / 3. Therefore, the controller 30 controls the on-time (duty) of the switching element so that the average current becomes i / 3. In this charging control, since the same current flows simultaneously in the respective phase coils of the three-phase motor 50, the motor 50 does not rotate.
[0022]
FIG. 6 shows a flowchart of charge control performed by the controller 30. As shown in the figure, when the charging control is started, the controller 30 first measures the voltage of the battery 20 (step S100), and performs a process of determining the charging current i according to the measured voltage (step S110). Next, the on-duty of the switching element is determined according to the charging current i (step S120), and all the switching elements on the source side of the inverter 40 are on / off controlled with the duty (step S130). Thereafter, it is determined whether the battery 20 is fully charged (step S140), and the process returns to step S100 and repeats the above processing until the battery 20 is fully charged.
[0023]
In the normal semiconductor inverter 40, as shown in FIG. 7, protective diodes Dp1 to Dp3 and Dp11 to Dp13 are provided between the collectors and emitters of the switching elements Tr1 to Tr3 and Tr11 to Tr13. Yes. In this case, if the source-side switching element Tr1 but not Tr3 is turned off, the current that has been flowing through the three-phase coil continues to flow as it is, so that the switching element Tr11 to Tr13 on the sink side is also provided. The current flows back through the protective diodes Dp11 to Dp13. Therefore, when a protective diode is provided in the switching element, almost no power loss occurs when the switching element is turned off. In FIG. 7, only the current flowing through the W-phase coil is shown for the convenience of understanding, but the same applies to the currents of other phases.
[0024]
According to the present embodiment described above, it is possible to easily connect an external battery simply by adding a diode bridge D1 and a capacitor C1 to the circuit of battery 20-inverter 40-three-phase motor 50, which is a basic configuration of an electric vehicle. A charging device that charges the battery 20 using an AC power source or a DC power source can be configured. In the traveling state and the charging state, the connection of the terminal of the battery 20 is merely switched, and the switching is automatically performed by replacing the traveling connector CN2 with the charging connector CN3. As a result, the electric vehicle 10 travels to the charging stand, the traveling connector CN2 is removed, and the charging vehicle CN3 is replaced with a charging connector CN3 connected to a power source such as a commercial alternating current. Since it employs the diode bridge D1, it can be connected without discrimination between DC power supply and AC power supply. For example, charging is normally performed using commercial AC power at a charging stand. If there is a secondary power supply device, it can be connected and charged. It can also be connected to a fuel cell and charged.
[0025]
In the above embodiment, the battery 20 is connected as it is between the intersection of the star connection of the three-phase alternating current and the negative power supply line, and is charged. For example, the specification of the secondary battery is 200 volts. If the voltage of the commercial AC is exceeded, the secondary battery is divided into a plurality of sets in advance, and when running the vehicle, these are all connected in series to serve as a power source for running, and when charging, a plurality of It is good also as what charges a secondary battery by connecting in parallel. In this case, a plurality of secondary batteries may be charged at a time or may be charged one by one by switching at a contact or the like.
[0026]
Further, for example, the battery 20 is divided equally into a first battery 20A and a second battery 20B, and when traveling, both 20A and 20B are connected in series as a power source for traveling, and when charging, As shown in FIG. 8, the middle point of both batteries 20A and 20B is connected to the intersection of the star connection of the three-phase motor 50, and the first battery 20A is sinked by turning on and off the source side switching element of the inverter 40. The second battery 20B may be independently charged by turning on and off the side switching element. In this case, as shown in FIG. 9, the turn-on timing is adjusted so that the switching element on the source side and the switching element on the sink side do not become conductive at once.
[0027]
When the sensor for measuring the temperature rise is provided in the three-phase motor 50, it is also easy to control the charging so that the temperature rise becomes a predetermined allowable temperature or less. Since charging is normally performed continuously, the temperature of the three-phase motor 50 can rise considerably due to continuous energization even if the current flowing in each phase coil itself is smaller than the maximum current during travel, If charging is performed while monitoring the temperature rise of the coil, the reliability of the charging process can be further increased.
[0028]
As mentioned above, although embodiment of this invention was described, this invention is not limited to such embodiment at all, For example, even if it comprises the charging device of an Example completely separately from an electric vehicle, it is. Of course, the present invention can be implemented in various forms without departing from the gist of the present invention, such as a mode incorporated in equipment other than electric vehicles, for example, transportation means such as ships and airplanes, and other various industrial machines. It is. In the embodiment, a full-wave rectifier diode bridge is used. However, a half-wave rectifier diode bridge may be used depending on the relationship between the charging power supply voltage and the battery voltage. When a diode bridge for half-wave rectification is used, the connection from the terminal 0 of the connector CN1 to the negative power line of the inverter can be omitted.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing a configuration of a charging device incorporated in an electric vehicle 10 as an embodiment of the present invention.
FIG. 2 is an equivalent circuit diagram in the embodiment.
FIG. 3 is a circuit diagram illustrating another example of a drive circuit to which the charging circuit of the embodiment can be applied.
FIG. 4 is a circuit diagram illustrating a connection relationship during charging according to an embodiment.
FIG. 5 is an equivalent circuit diagram during charging.
FIG. 6 is a flowchart showing an outline of processing performed by a controller 30;
FIG. 7 is an explanatory diagram illustrating the actual configuration of the inverter 40 and the state of reflux.
FIG. 8 is a circuit diagram showing another embodiment of the present invention.
FIG. 9 is a timing chart showing on-timing of switching elements in another embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Electric vehicle 20 ... Battery 20A ... 1st battery 20B ... 2nd battery 30 ... Controller 32 ... Accelerator pedal 34 ... Vehicle speed sensor 36 ... Voltage sensor 40 ... Inverter 50 ... Three-phase motor 51, 52 ... Wheel 55 ... Differential Gear 60 ... Outlet C1 ... Capacitor CN1 ... Connector CN2 ... Travel connector CN3 ... Charging connector D1 ... Diode bridge Dp1-Dp11 ... Diodes SW1-SW11 ... Switches Tr1-Tr11 ... Switching elements

Claims (4)

二次電池への充電を行なう充電装置であって、
界磁コイルが星形結線された多相モータと正負の電源ラインとの間に、該多相モータの相数に対応してスイッチング素子を介装すると共に、該スイッチング素子のスイッチングにより前記電源ラインに供給される電力を前記多相モータに多相交流として供給する電力制御回路
前記正負の電源ラインに、出力側が接続されたダイオードブリッジと、
前記電源ライン間に接続されたコンデンサと、
前記二次電池充電用の外部の電源を接続するためのコネクタと
を備え、
充電時には、
前記外部の電源を前記コネクタに接続することで、該外部の電源から前記ダイオードブリッジの入力側への接続を構成し
充電しようとする前記二次電池の一方の端子を、前記多相モータの前記星形結線の交点に接続すると共に、該二次電池の他方の端子を、前記電源ラインの一方に接続する回路を構成し、
走行時には、前記二次電池の出力を前記電源ラインに接続する回路を構成する
充電装置。
A charging device for charging a secondary battery,
Between the field coil polyphase motor and positive and negative power supply lines which are star-connected, with interposed switching element in response to the number of phases of the multi-phase motor, the power line by switching of the switching element a power control circuit for supplying a multi-phase AC power to be supplied to said multi-phase motor,
A diode bridge whose output side is connected to the positive and negative power supply lines; and
A capacitor connected between the power lines;
A connector for connecting an external power source for charging the secondary battery;
With
When charging,
By connecting the external power supply to the connector, the connection from the external power supply to the input side of the diode bridge is configured ,
A circuit for connecting one terminal of the secondary battery to be charged to the intersection of the star connection of the multi-phase motor and connecting the other terminal of the secondary battery to one of the power lines; Configure
A charging device that constitutes a circuit that connects the output of the secondary battery to the power supply line during traveling .
請求項1記載の充電装置であって、
前記電力制御回路は、直列接続された二つのスイッチング素子を一組として、前記相数に対応した組数だけ、前記電源ライン間に介装し、前記二次電池への充電時に、前記各組のスイッチング素子のうち、前記二次電池の他方の端子が接続された側の電源ラインとは反対側の電源ラインに接続されたスイッチング素子を、導通状態とする
充電装置。
The charging device according to claim 1,
The power control circuit includes two switching elements connected in series as a set, and is interposed between the power supply lines in a number corresponding to the number of phases. When charging the secondary battery, each set The charging device which makes the switching element connected to the power supply line on the opposite side to the power supply line on the side to which the other terminal of the secondary battery is connected among the switching elements.
前記スイッチング素子の各々には、保護用のダイオードが併設されている請求項2記載の充電装置。The charging device according to claim 2, wherein each of the switching elements is provided with a protective diode. 請求項1ないし3のいずれか記載の充電装置を備えた電動車両。The electric vehicle provided with the charging device in any one of Claims 1 thru | or 3.
JP2000359439A 2000-11-27 2000-11-27 Charging device and electric vehicle Expired - Fee Related JP4134509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000359439A JP4134509B2 (en) 2000-11-27 2000-11-27 Charging device and electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000359439A JP4134509B2 (en) 2000-11-27 2000-11-27 Charging device and electric vehicle

Publications (2)

Publication Number Publication Date
JP2002165370A JP2002165370A (en) 2002-06-07
JP4134509B2 true JP4134509B2 (en) 2008-08-20

Family

ID=18831200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000359439A Expired - Fee Related JP4134509B2 (en) 2000-11-27 2000-11-27 Charging device and electric vehicle

Country Status (1)

Country Link
JP (1) JP4134509B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040062059A1 (en) * 2002-07-19 2004-04-01 Ballard Power Systems Corporation Apparatus and method employing bi-directional converter for charging and/or supplying power
JP4682740B2 (en) * 2005-08-08 2011-05-11 トヨタ自動車株式会社 Vehicle power supply
US7733039B2 (en) 2006-10-19 2010-06-08 Ut-Battelle, Llc Electric vehicle system for charging and supplying electrical power
JP5067617B2 (en) * 2007-09-19 2012-11-07 富士電機株式会社 Power conversion system and electric drive vehicle
JP5644070B2 (en) * 2008-07-16 2014-12-24 株式会社豊田中央研究所 Power control device
DE102009014704A1 (en) 2009-03-27 2010-10-07 Sew-Eurodrive Gmbh & Co. Kg Drive system, method of operating a drive system and use
DE102016209898A1 (en) 2016-06-06 2017-12-07 Continental Automotive Gmbh Vehicle electrical system with inverter, energy storage, electric machine and DC transmission connection
DE102016209872A1 (en) 2016-06-06 2017-12-07 Continental Automotive Gmbh Vehicle electrical system with inverter, energy storage, electric machine and AC transmission connection

Also Published As

Publication number Publication date
JP2002165370A (en) 2002-06-07

Similar Documents

Publication Publication Date Title
US8791681B2 (en) Electric power conversion system
JP3692993B2 (en) DRIVE DEVICE AND POWER OUTPUT DEVICE
US7550861B2 (en) AC power supplying system, power supply apparatus, and vehicle having the same
US8659182B2 (en) Power supply system and electric powered vehicle including power supply system, and method for controlling power supply system
KR100985837B1 (en) Power source apparatus for vehicle, vehicle and method of controlling power source apparatus
JP3597591B2 (en) Motor drive
CN101595008B (en) Power control device and vehicle using the same
US8164282B2 (en) Motive power output apparatus and vehicle with the same
US7755306B2 (en) Electric power control device, electric powered vehicle including the same, and method for controlling electric power of electric vehicle
CN110063013B (en) Power conversion device
CN103972954B (en) Charging apparatus and electric vehicle including the same
US20090184681A1 (en) Electrically Powered Vehicle
US7495399B2 (en) Power output apparatus and vehicle including the same
WO2013077221A1 (en) Power conversion apparatus and charging system
JPH06217416A (en) Inverter device able to be constituted again for electric motor-car driving system
US20100204860A1 (en) Control apparatus and control method for vehicle
WO2007139126A1 (en) Motor driving control system and its control method
JPWO2002065628A1 (en) POWER OUTPUT DEVICE, VEHICLE EQUIPPED WITH SAME, CONTROL METHOD AND STORAGE MEDIUM FOR POWER OUTPUT DEVICE, PROGRAM, DRIVE DEVICE, VEHICLE HAVING THE SAME, CONTROL METHOD OF DRIVE DEVICE, STORAGE MEDIUM, AND PROGRAM
JP2000324857A (en) Variety of power units, and equipment, motor driver, and hybrid vehicle provided with the same
JP2001037247A (en) Power supply unit, equipment and motor drive provided therewith, and electric vehicle
JP2009038958A (en) Vehicle control device and method
JP4134509B2 (en) Charging device and electric vehicle
JP2009027811A (en) Power controller and vehicle equipped with the same
JPH06292304A (en) Power converter for electric vehicle driving system
CN108482102B (en) Hybrid power driving system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080520

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees