JP4132037B2 - Method for producing lactic acid fermented food - Google Patents

Method for producing lactic acid fermented food Download PDF

Info

Publication number
JP4132037B2
JP4132037B2 JP2003011563A JP2003011563A JP4132037B2 JP 4132037 B2 JP4132037 B2 JP 4132037B2 JP 2003011563 A JP2003011563 A JP 2003011563A JP 2003011563 A JP2003011563 A JP 2003011563A JP 4132037 B2 JP4132037 B2 JP 4132037B2
Authority
JP
Japan
Prior art keywords
lactic acid
bacteria
acid bacteria
producing
rice bran
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003011563A
Other languages
Japanese (ja)
Other versions
JP2004222542A (en
Inventor
隆洋 加島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gifu Prefecture
Original Assignee
Gifu Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gifu Prefecture filed Critical Gifu Prefecture
Priority to JP2003011563A priority Critical patent/JP4132037B2/en
Publication of JP2004222542A publication Critical patent/JP2004222542A/en
Application granted granted Critical
Publication of JP4132037B2 publication Critical patent/JP4132037B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cereal-Derived Products (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Meat, Egg Or Seafood Products (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、かぶらずし、いずし、ねずし等の乳酸発酵食品の製造方法に関するものである。より詳しくは、バチルス属細菌(Bacillus)や大腸菌群(Coliform)等の有害細菌による汚染を極めて容易かつ効果的に防止しつつ短期間で良好に乳酸発酵した製品を製造することが容易な乳酸発酵食品の製造方法に関するものである。
【0002】
【従来の技術】
従来より、この種の乳酸発酵食品の製造方法としては、例えば非特許文献1に開示されているように、塩蔵したかぶらとブリを米麹とともにさらに数日間漬け込んで製造され、乳酸発酵は自然発酵に頼られているのが現状である。
【0003】
【非特許文献1】
久田 孝、外2名、“金沢産かぶらずしの細菌フローラ”、日本食品微生物学会誌、(財)東京顕微鏡院、1997、14(2),111−114
【0004】
【発明が解決しようとする課題】
ところが、前記非特許文献1では、バチルス属細菌が103〜105個/g、大腸菌群が102〜103個/g検出された製品が報告されている。さらに、同文献では、同じ製造元の製品でも乳酸菌数やpHが大きく異なり、品質が安定していないことも報告されている。即ち、この非特許文献1に記載されている自然発酵による製法では、おそらく乳酸菌による発酵が十分に安定していないためにこれらの不具合が発生しているものと考えられる。これらのバチルス属細菌や大腸菌群は、米麹、野菜類、魚肉等の原材料を汚染したものであるが、味や食感を損ねるため、それら原材料及び最終製品に加熱殺菌処理を施すことができない。
【0005】
バチルス属細菌は、米麹を汚染する代表的な腐敗細菌であるが、耐熱・耐薬品性の高い芽胞を形成するため、かぶらずし等の最終製品中でそれらを死滅させることは困難である。中でもバチルス・セレウス(Bacillus cereus)は、5℃という低温下でも増殖する食中毒細菌であり注意が必要である。一方、大腸菌群は、汚染指標細菌とされ、それらが検出される食品は食品衛生上好ましくないだけでなく、冷蔵条件下でも食品を腐敗させるものも存在するため注意が必要である。また腸管出血性大腸菌(Enterohemorrhagic Escherichia coli)O157は、数100個程度のごく少量の生菌が経口的に侵入しても感染が成立し、近年ではイクラといった水産加工品が食中毒の原因食品となったことから警戒が必要である。
【0006】
この発明は、上記のような従来技術に存在する問題点に着目してなされたものである。その目的とするところは、有害細菌による汚染を容易かつ効果的に阻止することができるとともに、短期間で良好に乳酸発酵した乳酸発酵食品を製造することが容易な乳酸発酵食品の製造方法を提供することにある。
【0007】
【課題を解決するための手段】
上記の目的を達成するために、請求項1に記載の発明の乳酸発酵食品の製造方法は、食品素材に米麹を添加して発酵熟成を行う乳酸発酵食品の製造方法において、前記食品素材に米麹を添加するとともに低温性乳酸菌を接種して0〜10℃で発酵熟成を行うように構成され、前記米麹は、ナイシン生産性乳酸菌の培養物を添加することにより該乳酸菌が接種された蒸し米を製麹したもの、又は栄養成分を含む水に浸漬させた米を蒸煮した蒸し米にナイシン生産性乳酸菌を接種して製麹したものであることを特徴とするものである。
【0008】
請求項2に記載の発明の乳酸発酵食品の製造方法は、食品素材に米麹を添加して発酵熟成を行う乳酸発酵食品の製造方法において、前記食品素材に低温性乳酸菌を接種して0〜10℃で下漬けを行った後、前記米麹を添加して0〜10℃で発酵熟成を行うように構成され、前記米麹は、ナイシン生産性乳酸菌の培養物を添加することにより該乳酸菌が接種された蒸し米を製麹したもの、又は栄養成分を含む水に浸漬させた米を蒸煮した蒸し米にナイシン生産性乳酸菌を接種して製麹したものであることを特徴とするものである。
【0009】
請求項3に記載の発明の乳酸発酵食品は、請求項1又は請求項2に記載の乳酸発酵食品の製造方法において、前記低温性乳酸菌としてラクトバチルス・サケ(Lactobacillus sake)を用いることを特徴とするものである。
【0010】
【発明の実施の形態】
以下、この発明を具体化した実施形態を詳細に説明する。
実施形態の乳酸発酵食品は、食品素材に米麹を添加するとともに低温性乳酸菌を接種した後、0〜10℃の低温で所定期間発酵熟成を行うことにより製造される。この乳酸発酵食品は、米麹を用いて発酵熟成させる食品であり、例えば、かぶらずし、大根ずし、いずし、ねずし等が挙げられる。これらの乳酸発酵食品の原料となる食品素材としては、魚肉、畜肉、野菜及び米飯から選ばれる少なくとも1種が用いられる。
【0011】
前記米麹は、ナイシン(nisin)生産性乳酸菌の培養物を添加することにより該乳酸菌が接種された蒸し米を製麹した第1の米麹、又は栄養成分を含む水に浸漬させた米を蒸煮した蒸し米にナイシン生産性乳酸菌を接種して製麹した第2の米麹が用いられる。第1の米麹は、蒸煮後に冷ました蒸し米に、ナイシン生産性乳酸菌を予め所定の培地中で培養した培養物を添加することにより該乳酸菌を接種するとともに、同蒸し米に麹菌(種麹)を接種することにより製麹したものである。第2の米麹は、ナイシン生産性乳酸菌にとっての栄養成分を含む水を米の浸漬液として浸漬させた米を蒸煮した蒸し米に、ナイシン生産性乳酸菌及び麹菌(種麹)を接種することにより製麹したものである。この第2の米麹は、例えば特開2001−224359号公報に開示された製造方法に従って製造される。なお、これら第1及び第2の米麹に接種されるナイシン生産性乳酸菌の接種量としては、接種直後の蒸し米中に含まれる該乳酸菌が検出可能な量(1.0×102個/g以上)であるのが好ましい。
【0012】
これら第1及び第2の米麹は、前記蒸し米に麹菌を接種した後、好気的な条件下で15〜35℃、好ましくは30℃付近の比較的高温で発酵させることにより、該蒸し米に麹菌を増殖させたものである。さらに、これら米麹は、接種したナイシン生産性乳酸菌が生存することにより発生するアンタゴニズム(拮抗作用)及び該乳酸菌が生産するナイシンの作用により、製麹時に繁殖しやすいバチルス属細菌等の有害細菌による汚染を効果的に阻止したバイオプリザベーション(biopreservation)が施されたものである。また、これら米麹の使用に関しては、そのまま食品素材に添加する以外にも、水や食塩等の調味料と混合したものを調製してから用いることもできる。
【0013】
前記ナイシン生産性乳酸菌としては、例えばラクトコッカス・ラクティス(Lactococcus lactis)IFO12007や同ATCC11454等が挙げられる。これらナイシン生産性乳酸菌は、15〜37℃での増殖能及びナイシン生産能が高い中温性の乳酸球菌であり、それら増殖能及びナイシン生産能は10℃以下の低温では著しく低く、5℃以下ではほとんどない。このナイシン生産性乳酸菌を増殖させるための栄養成分としては、単糖やオリゴ糖、各種ビタミンやミネラル等の微生物(特にナイシン生産性乳酸菌)の増殖に適したものが用いられる。この栄養成分を含む素材としては、米糠、酒粕、大豆、トウモロコシ、麹、味噌、ペプトン、酵母抽出物等が挙げられ、該素材(1種類のみであっても、複数種類混合して用いてもよい)に水を加えたもの、好ましくは水を加えた後に加熱したものが上記所定の培地又は米の浸漬液として用いられる。
【0014】
なお、上記培養物は、前記培地中にナイシン生産性乳酸菌を接種して該乳酸菌が検出可能(1.0×102個/g以上)となるまで培養したものである。また、この培養物としては、前記蒸煮後に冷ました蒸し米に添加したときに、該蒸し米中に含まれるナイシン生産性乳酸菌が検出可能(1.0×102個/g以上)となる菌体数まで培養したものであるのが最も好ましい。
【0015】
前記ナイシンは、バチルス属細菌や乳酸菌等のグラム陽性細菌全般に対して強い殺菌作用を持つバクテリオシンの1種である。なお、このナイシンは、大腸菌等のグラム陰性細菌に対して同様の作用を持たない。
【0016】
前記低温性乳酸菌は、0〜10℃の低温で優れた増殖能を持ち、さらにその増殖とともに乳酸や酢酸等の有機酸を多量に生産するホモ発酵型の乳酸菌であることが好ましい。この低温性乳酸菌としては、ラクトバチルス・サケやラクトバチルス・カルバタス(Lactobacillus curvatus)等が挙げられるが、製品(乳酸発酵食品)の呈味性が高いことから、ラクトバチルス・サケが最も好適に用いられる。これら低温性乳酸菌は、グラム陽性の乳酸桿菌である。この低温性乳酸菌の接種量としては、製品化までの発酵熟成期間を短縮するために、該乳酸菌及び米麹が添加された部位(発酵部)中に1.0×102個/g以上存在する量、即ち接種直後の時点で食品検査により検出可能な量である。
【0017】
前記発酵熟成は、食品素材に米麹の添加と低温性乳酸菌の接種とを行った後の工程であり、好ましくは嫌気的な条件下で行われる。この発酵熟成は、前記食品素材及び米麹に含まれる各種栄養分、及び前記米麹に含まれる各種酵素の作用により生産される栄養分を前記低温性乳酸菌の増殖に利用させる工程である。そのため、この発酵熟成は、前記米麹に付着したナイシン生産性乳酸菌の増殖を抑制するため、0〜10℃、好ましくは4〜6℃の低温で行われる。これにより前記低温性乳酸菌は、ナイシン生産性乳酸菌に増殖を阻害されることなく速やかに増殖して乳酸や酢酸等の有機酸を多量に生産し、低温でも増殖する大腸菌群等のグラム陰性細菌を速やかに死滅させる。これにより、前記低温性乳酸菌は独占的な細菌叢を速やかに形成して有害細菌による汚染を阻止し、また良好な酸味を醸成して製品の呈味性を整え、製品化までの発酵熟成期間を短縮する。なお、製品の塩分濃度は、前記低温性乳酸菌の活動に悪影響を与えないようにするために7.5重量%以下にする必要がある。
【0018】
次に、上記乳酸発酵食品の製造方法及び作用について説明する。
この乳酸発酵食品は、図1(a)に示される第1の製造方法、又は図1(b)に示される第2の製造方法のいずれかに従って製造される。第1の製造方法は、食品素材に対する米麹の添加と低温性乳酸菌の接種とを同時に行い、その直後から0〜10℃の低温で発酵熟成させるものである。第2の製造方法は、食品素材に対し、まず低温性乳酸菌を接種して0〜10℃の低温で所定期間下漬けを行った後、米麹を添加してさらに0〜10℃の低温で発酵熟成(本漬け)を行うものである。
【0019】
これら第1及び第2の製造方法では、前記米麹を添加する前に製麹が完了するように米麹を調製する。この製麹を行う際には、まず、前記栄養成分を含む培地でナイシン生産性乳酸菌を培養し、その培養物を添加した蒸し米(ナイシン生産性乳酸菌が接種されている)、又は前記栄養成分を含む浸漬液に米を浸漬し、該栄養成分を含浸させた米を蒸煮した後にナイシン生産性乳酸菌を接種した蒸し米を調製する。次に、この蒸し米に、麹菌を接種して十分に混合した後、好気的条件下で15〜35℃の温度で所定期間培養する。
【0020】
このとき、前記ナイシン生産性乳酸菌は、前記培養(製麹)において終始生存し、上記アンタゴニズム(拮抗作用)とナイシンの殺菌作用とにより、主に製麹環境に由来するグラム陽性細菌(バチルス属細菌)の増殖を抑えつつ死滅させる。また、前記麹菌は、前記培養の全期間を通して、前記蒸し米中に含まれる多糖類や各種栄養分を利用しながら増殖するとともに、前記発酵熟成に必要なアミラーゼやプロテアーゼ等の各種酵素を生産し、それらを米麹中に蓄積させる。
【0021】
さて、図1(a)に示すように、第1の製造方法では、適当なサイズにカットした食品素材に前記米麹を添加するとともに低温性乳酸菌を接種した後、好ましくは嫌気的条件下において、0〜10℃の低温に保持したまま所定期間発酵熟成させる。このとき、前記低温性乳酸菌は、前記米麹に付着したナイシン生産性乳酸菌よりもその代謝及び増殖に有利な温度環境に置かれていることから、米麹及び食品素材中の各種栄養分並びに米麹中の酵素作用により生産される栄養分を利用して急速に増殖するとともに多量の有機酸を生産してpHを急激に低下させる。これにより、食品素材等に由来し低温でも増殖する大腸菌群等のグラム陰性細菌は速やかに死滅し、また前記米麹に含有されていた多量のナイシン生産性乳酸菌も死滅する。その結果、この発酵熟成開始後、前記低温性乳酸菌による独占的な細菌叢が速やかに形成され、有害細菌による汚染が阻止されるとともに乳酸発酵による酸味が付与され、また前記米麹に含まれる各種酵素作用により糖質等による甘味とアミノ酸等による旨味が引き出される。
【0022】
図1(b)に示すように、第2の製造方法では、まず、適当なサイズにカットした食品素材に予め低温性乳酸菌を接種して、嫌気的条件下で0〜10℃の低温に保持したまま所定期間下漬けを行うことにより、前記低温性乳酸菌を増殖させ、活動を活性化させる。なお、この下漬けは、通常、食品素材(特に野菜)に食塩を添加して味付けするとともに、食品素材に余剰に含まれる水分を減少させるために行われる。次に、前記米麹を添加してそのままの温度条件下、好ましくは嫌気的条件下で発酵熟成させることにより、上記第1の製造方法と同様に乳酸発酵食品が製造される。なお、この第2の製造方法において、低温性乳酸菌を接種する際の食品素材の塩分濃度は、該乳酸菌の活動に悪影響を与えないようにするために、7.5重量%以下にする必要がある。
【0023】
これら第1及び第2の製造方法により製造された乳酸発酵食品は、前記米麹が添加された部位のpHが4.5以下となった時点で食品検査を行う目安となり、米麹に由来するナイシン生産性乳酸菌が前記食品検査で検出されなくなった時点で出荷が可能となる。
【0024】
上記実施形態によって発揮される効果について、以下に記載する。
・ 実施形態の乳酸発酵食品の製造方法は、食品素材に米麹の添加と低温性乳酸菌の接種とを同時又は異なるタイミングで行った後、0〜10℃で発酵熟成を行うものである。なお、前記米麹は、ナイシン生産性乳酸菌によるバイオプリザベーションが施されたものであり、ナイシン生産性乳酸菌以外のグラム陽性細菌全般による汚染を効果的に阻止したものである。
【0025】
このため、この乳酸発酵食品の製造方法では、主に米麹から移行し、且つ最終製品において死滅させることが困難であるバチルス属細菌による汚染を効果的に阻止した乳酸発酵食品を提供することができる。また、前記発酵熟成は、低温性乳酸菌を接種して0〜10℃の低温で行うように構成されていることから、前記米麹から移行したナイシン生産性乳酸菌の増殖は抑制され、接種した低温性乳酸菌による乳酸発酵が速やかに行われる。これにより、この製造方法では、食品素材等に由来し、低温でも増殖する大腸菌群等のグラム陰性細菌を速やかに死滅させることができる。また、自然発酵に頼って行われていた前記従来の製法と比較して、低温性乳酸菌による乳酸発酵が極めて迅速且つ確実に進行するため、短期間で安定した品質の製品を製造することができる。加えて、米麹に加熱等の殺菌処理を施す必要がないため、米麹の色や風味、熟成に関与する各種酵素の活性を損ねることがなく、酵素製剤や人工調味料等を使用せずとも高品質な製品を得ることができる。
【0026】
・ 実施形態の乳酸発酵食品の第2の製造方法は、食品素材に低温性乳酸菌を接種して0〜10℃で下漬けを行った後、米麹を添加してさらに0〜10℃で発酵熟成(本漬け)を行うものである。このため、この乳酸発酵食品の製造方法は、下漬け工程で予め低温性乳酸菌を増殖させ、活性化させるように構成されていることから、第1の製造方法と比較して、発酵熟成中の乳酸発酵がより迅速に進行する。従って、この第2の製造方法によれば、グラム陰性細菌等の腐敗細菌及びナイシン生産性乳酸菌をより速やかに死滅させ、短期間の発酵熟成で高い品質の製品を製造することが容易となる。
【0027】
・ 実施形態の乳酸発酵食品の製造方法は、低温性乳酸菌としてラクトバチルス・サケを用いることにより、0〜10℃の低温で速やかに乳酸発酵させることができることから、低温でも増殖する大腸菌群等のグラム陰性細菌に対しても強い増殖阻止効果が得られる。さらにこのとき、味や風味といった呈味性に関しても良好なものとなる。
【0028】
【実施例】
以下、前記実施形態を具体化した実施例及び比較例について説明する。
(試験例1)
有害細菌による汚染がなく良好な酸味の醸成された乳酸発酵食品を製造するため、乳酸発酵させた蒸し米のバチルス属細菌に対する生育阻止効果を調べた。即ち、大豆抽出液を添加した米を蒸して製造した蒸し米にナイシン生産性乳酸菌であるラクトコッカス・ラクティスIFO12007又は低温性乳酸菌であるラクトバチルス・サケMMF−161(サンエイラクトMMF−161)を106CFU/gになるように接種し、30℃で24時間乳酸発酵させた。その後、バチルス・サブチルス(Bacillus subtillis)ATCC19659を105CFU/gになるように接種した。乳酸発酵前及びバチルス属細菌接種直後(表中では発酵前及び発酵後と記載)における乳酸菌数、バチルス属細菌数及び発酵部のpHを調べた。結果を表1に示す。
【0029】
【表1】

Figure 0004132037
表1に示すように、106CFU/gになるように接種したナイシン生産性乳酸菌及び低温性乳酸菌は、30℃で24時間乳酸発酵させることによりいずれも108CFU/gにまで増殖した。105CFU/gになるように接種したバチルス属細菌は、ナイシン生産性乳酸菌の生産したナイシンにより接種直後から速やかに102CFU/gにまで減少した。これに対し、低温性乳酸菌では、バチルス属細菌に対する生育阻止効果はほとんど見られなかった。
【0030】
(試験例2)
上記試験例1のラクトコッカス・ラクティスで乳酸発酵させバチルス・サブチルスを接種した蒸し米に種麹(菱六SR−108)を0.1%添加し、30℃で42時間製麹して米麹を得た。製麹前後の米麹中の乳酸菌数、バチルス属細菌数及び発酵部のpHを表2に示す。
【0031】
【表2】
Figure 0004132037
表2に示すように、製麹前に102CFU/g生残していたバチルス属細菌は、製麹後には検出されなくなり、ナイシン生産性乳酸菌により完全に生育が阻止されたことが示された。一方、コントロール(乳酸菌未接種)では、製麹後のバチルス属細菌数は106CFU/gにまで増殖した。
【0032】
(試験例3)
上記試験例2のラクトコッカス・ラクティスを用いて製麹した米麹を使用して、麹漬けの素(飯米:水:米麹:食塩=59:30:10:1)を調製し、これに大腸菌(Escherichia coli)ATCC14948を105CFU/gになるように接種した。続いて、ラクトバチルス・サケMMF−161又は中温性乳酸菌であるラクトバチルス・カゼイ(Lactobacillus casei)L−14を105CFU/gになるように接種した後、10℃で7日間発酵熟成させた。発酵熟成0日目及び7日目における総乳酸菌数(米麹に由来するラクトコッカス・ラクティス及び本試験で接種したラクトバチルス・サケ又はカゼイを合計した菌体数を表す)、乳酸桿菌数(ラクトバチルス・サケ又はカゼイの菌体数を表す)、大腸菌数及び発酵部のpHを調べた結果を表3に示す。
【0033】
【表3】
Figure 0004132037
表3に示すように、発酵熟成0日目のコントロール(乳酸菌未接種)の麹漬けの素には、米麹に由来するナイシン生産性乳酸菌が総乳酸菌数として106CFU/g検出され、また中温性乳酸菌を接種したものでは、その中温性乳酸菌が乳酸桿菌数として105CFU/g検出された。これらの乳酸菌はいずれも10℃での増殖力が極めて弱く、7日間発酵熟成させても大腸菌の生育を阻止することができなかった。これに対し、低温性乳酸菌を接種したものでは、その低温性乳酸菌が乳酸桿菌数として105CFU/g検出され、10℃で7日間発酵熟成させることにより108CFU/gにまで増殖してpHを3.91にまで低下させ、大腸菌を検出不能になるまで死滅させた。従って、製麹工程でナイシン生産性乳酸菌を用い、発酵熟成工程で低温性乳酸菌を用いて低温にて発酵熟成させることにより、バチルス属細菌及び大腸菌群等の有害細菌による汚染を阻止し、乳酸発酵による良好な酸味が醸成された食品が短期間で製造され得ることが示された。またこのとき、発酵熟成0日目にナイシン生産性乳酸菌が低温性乳酸菌より多く生存していたが、7日間目にはナイシン生産性乳酸菌が検出されなくなり、10℃という低温で発酵熟成を行うことにより、両者の優勢が完全に逆転したことが確認された。
【0034】
(実施例1及び比較例1)
実施形態の第1の製造方法において、ラクトコッカス・ラクティスIFO12007を利用して製麹した米麹450g及び食品素材を混合した直後に、ラクトバチルス・サケMMF−161を105CFU/gになるように接種し、5℃で発酵熟成させて「いずし」を製造したものを実施例1とした。なお、前記食品素材は、冷水中で一晩脱塩した塩蔵ベニサケの切り身1kg、3%の食塩で下漬けした後に水切りしたダイコン及びニンジンの千切り1kg、並びに飯米1.5kgを混合したものである。また、ラクトバチルス・サケMMF−161を接種しないものをコントロールとしての比較例1とした。発酵熟成0,3,7,14,21,28日後のいずしの一部をサンプリングし、表4に示される各項目について調査した。結果を表4に示す。
【0035】
【表4】
Figure 0004132037
表4に示すように、実施例1の発酵熟成0日目において、米麹に由来するナイシン生産性乳酸菌と接種した低温性乳酸菌とが総乳酸菌数として106CFU/g検出され、低温性乳酸菌が乳酸桿菌数として105CFU/g検出された。しかしながら、発酵熟成7日目には、乳酸桿菌数が総乳酸菌数とほぼ同数の108CFU/gにまで達し、ナイシン生産性乳酸菌は検出されなくなったことが確認された。このとき、発酵部のpHが4.36まで低下するとともに、熟成3日目に103〜104CFU/g検出された一般細菌、グラム陰性細菌及び大腸菌群は検出されなくなった。また、14日間発酵熟成させたものを試食したところ、酸味と甘味のバランスが整い、風味も良好であり、その後28日まで経過しても一般細菌、グラム陰性細菌及び大腸菌群が増殖しないことも確認された。
【0036】
一方、低温性乳酸菌を接種しなかった比較例1では、発酵熟成28日目でも乳酸桿菌は検出されなかった。このとき、米麹に由来するナイシン生産性乳酸菌が総乳酸菌数として106CFU/g検出されたが、それらは増殖することができず、グラム陰性細菌及び大腸菌群の増殖を阻止することもできなかったことも確認された。また、28日経過してもpHは5.70までしか低下せず、良好に乳酸発酵した製品は得られなかった。
【0037】
(実施例2,3及び比較例2,3)
実施形態の第2の製造方法により「麹漬け大根」を製造した。即ち、大根2.5kgに対し75gの食塩を加えるとともに、低温性乳酸菌であるラクトバチルス・サケ(本発明者らが分離・同定したLb.sake LG−1株)を105CFU/gになるように接種し、5℃又は10℃で3日間下漬けした。次に、ラクトコッカス・ラクティスIFO12007を利用して製麹した米麹を使用した漬け床(米飯150g、米麹100g、上白糖100g、食塩10g)を添加して、5℃又は10℃で6日間発酵熟成(本漬け)させた。なお、前記下漬け及び発酵熟成において、5℃で漬けたものを実施例2、10℃で漬けたものを実施例3とした。また、ラクトバチルス・サケLG−1を接種しないものをコントロールとしての比較例2(5℃)及び比較例3(10℃)とした。下漬け0日目,3日目,発酵熟成6日目の大根部をサンプリングし、表5に示される各項目について調査した。結果を表5に示す。
【0038】
【表5】
Figure 0004132037
表5に示すように、低温性乳酸菌を105CFU/gになるように接種した実施例2,3からは、下漬け0日目で104CFU/gの乳酸菌が検出され、下漬け3日目には、5℃で106CFU/g、10℃で107CFU/gにまで増殖した。これに対し、低温性乳酸菌を接種しなかった比較例2,3では、下漬けの前後とも乳酸菌は検出されなかった。さらに、低温性乳酸菌を接種した実施例2,3では、発酵熟成6日目に総乳酸菌数、乳酸桿菌数共に107CFU/gにまで達し、ナイシン生産性乳酸菌は検出されなくなったことも確認された。このとき、発酵部のpHが4.3以下にまで低下し、一般細菌、グラム陰性細菌及び大腸菌群はいずれも検出されなくなった。これに対し、前記比較例2,3では、発酵熟成6日目に米麹に由来するナイシン生産性乳酸菌が総乳酸菌数として105CFU/g検出されたが、乳酸桿菌は検出されず、一般細菌、グラム陰性細菌及び大腸菌群の生育を阻止できなかった。また、大根部のpHも5.7程度までしか低下しなかった。
【0039】
(実施例4)
ラクトコッカス・ラクティスIFO12007を利用して製麹した米麹100gに飯米590g、水300g及び食塩10gを混合するとともに、ラクトバチルス・サケLG−1を105CFU/gになるように接種し、10℃で3日間発酵熟成させて「麹漬けの素」を調製した。この「麹漬けの素」400gを食品素材約1.2kgに添加し、5℃で発酵熟成させて「かぶらずし」を製造した。なお、前記食品素材は、蕪重量の5%相当量の食塩で蕪を10℃で3日間漬け込んだ後に水切りしたものに、魚肉重量の6%相当量の食塩で5℃で6日間塩漬け後に水洗したブリ肉の切り身を挟み込んだものである。10℃で3日間発酵熟成させた「麹漬けの素」及び10℃で3日間漬け込んだ蕪、及び発酵熟成0,7,14日後のかぶらずしをサンプリングし、表6に示される各項目について調査した。結果を表6に示す。
【0040】
【表6】
Figure 0004132037
表6に示すように、漬け込み3日後の蕪及び発酵熟成0日後のかぶらずしには、一般細菌、グラム陰性細菌及び大腸菌群が102〜104CFU/g検出された。しかしながら、「麹漬けの素」を添加して5℃で発酵熟成することにより、7日後には乳酸菌が増殖してpHが4.5以下まで低下させ、腐敗細菌(一般細菌、グラム陰性細菌及び大腸菌群)は全く検出されなくなった。即ち、5℃,1週間の発酵熟成で腐敗細菌による汚染がなく、良好な酸味が醸成された製品がほぼ出荷可能な状態となったことが確認された。
【0041】
さらに、前記実施形態より把握できる技術的思想について以下に記載する。
請求項1に記載の乳酸発酵食品の製造方法に用いられる麹漬けの素であって、前記米麹及び低温性乳酸菌を含有することを特徴とする麹漬けの素。請求項1に記載の乳酸発酵食品の製造方法に用いられる麹漬けの素であって、前記米麹及び低温性乳酸菌を含有するとともに、それらを混合してから0〜10℃で所定期間発酵熟成させたことを特徴とする麹漬けの素。このように構成した場合、腐敗細菌による汚染を容易かつ効果的に防止することができるとともに、短期間で良好に乳酸発酵した乳酸発酵食品を非常に手軽に製造することができる。
【0042】
【発明の効果】
以上詳述したように、この発明によれば、次のような効果を奏する。
請求項1から請求項3に記載の発明の乳酸発酵食品の製造方法によれば、腐敗細菌による汚染を容易かつ効果的に防止することができるとともに、短期間で良好に乳酸発酵した乳酸発酵食品を製造することが容易である。
【図面の簡単な説明】
【図1】 (a)は実施形態の乳酸発酵食品の第1の製造方法の概略を示し、(b)は同じく乳酸発酵食品の第2の製造方法の概略を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing lactic acid fermented foods such as kabuzuzushi, izushi and nesushi. More specifically, lactic acid fermentation that makes it easy to produce a product that has been successfully lactic acid fermented in a short period of time while preventing contamination by harmful bacteria such as Bacillus and coliforms. The present invention relates to a method for producing food.
[0002]
[Prior art]
Conventionally, as a method for producing this type of lactic acid fermented food, for example, as disclosed in Non-Patent Document 1, salted turnip and yellowtail are soaked with rice bran for several days, and lactic acid fermentation is a natural fermentation. Relying on the current situation.
[0003]
[Non-Patent Document 1]
Takashi Hisada, two others, “Kanazawa-grown bacterial flora”, Journal of the Japanese Society for Food Microbiology, Tokyo Microscope, 1997, 14 (2), 111-114
[0004]
[Problems to be solved by the invention]
However, in Non-Patent Document 1, 10 bacteria belonging to the genus Bacillus are used. Three -10 Five Cells / g, coliform group 10 2 -10 Three Products detected per piece / g have been reported. Furthermore, in the same document, it is also reported that the number of lactic acid bacteria and pH are greatly different even in products of the same manufacturer, and the quality is not stable. That is, in the production method by natural fermentation described in Non-Patent Document 1, it is considered that these problems occur because the fermentation by lactic acid bacteria is probably not sufficiently stable. These Bacillus bacteria and coliforms contaminate raw materials such as rice bran, vegetables, fish meat, etc., but since the taste and texture are impaired, these raw materials and the final product cannot be heat sterilized. .
[0005]
Bacillus bacteria are typical spoilage bacteria that contaminate rice bran, but because they form spores with high heat and chemical resistance, it is difficult to kill them in the final product such as Japanese pepper. . In particular, Bacillus cereus is a food poisoning bacterium that grows even at a low temperature of 5 ° C., and needs attention. On the other hand, Escherichia coli group is regarded as a contamination indicator bacterium, and foods from which they are detected are not only preferable for food hygiene, but also must be noted because some foods spoil even under refrigerated conditions. In addition, enterohemorrhagic Escherichia coli O157 can be infected even if a few hundred live bacteria enter the oral route, and in recent years, processed fishery products such as salmon roe have become foods causing food poisoning. Therefore, vigilance is necessary.
[0006]
The present invention has been made paying attention to the problems existing in the prior art as described above. The aim is to provide a method for producing lactic acid fermented foods that can easily and effectively prevent contamination by harmful bacteria and that can easily produce lactic acid fermented foods that have been successfully lactic acid fermented in a short period of time. There is to do.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a method for producing a lactic acid fermented food according to claim 1 is a method for producing a lactic acid fermented food in which rice bran is added to a food material and fermented and matured. In addition to adding rice bran, inoculated with psychrophilic lactic acid bacteria and fermented and matured at 0-10 ° C., said rice bran was inoculated with the lactic acid bacteria by adding a culture of nisin-producing lactic acid bacteria It is characterized in that it is obtained by kneading steamed rice or by inoculating nisin-producing lactic acid bacteria into steamed rice obtained by steaming rice soaked in water containing nutrients.
[0008]
The method for producing a lactic acid fermented food according to claim 2 is a method for producing a lactic acid fermented food in which rice bran is added to the food material and fermented and matured. After being soaked at 10 ° C., the rice bran is added and fermented and matured at 0-10 ° C., and the rice bran is added with a culture of nisin-producing lactic acid bacteria. It is characterized in that it is made by steaming steamed rice inoculated with rice or by inoculating nisin-producing lactic acid bacteria into steamed rice steamed in rice that has been soaked in water containing nutrients. is there.
[0009]
The lactic acid fermented food according to claim 3 is characterized in that, in the method for producing lactic acid fermented food according to claim 1 or 2, lactobacillus sake (Lactobacillus sake) is used as the psychrophilic lactic acid bacterium. To do.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments embodying the present invention will be described in detail.
The lactic acid fermented food according to the embodiment is produced by adding rice bran to a food material and inoculating a low temperature lactic acid bacterium, followed by fermentation and aging at a low temperature of 0 to 10 ° C. for a predetermined period. This lactic acid fermented food is a food that is fermented and matured using rice bran, and examples thereof include kabazuzushi, radish zushi, izushi and nezushi. As a food material used as a raw material for these lactic acid fermented foods, at least one selected from fish meat, livestock meat, vegetables and cooked rice is used.
[0011]
The rice bran is prepared by adding a culture of nisin-producing lactic acid bacteria to form a first rice bran made from steamed rice inoculated with the lactic acid bacteria, or rice immersed in water containing nutrient components. A second rice bran prepared by inoculating nisin-producing lactic acid bacteria into steamed steamed rice is used. The first rice bran is inoculated with the lactic acid bacteria by adding a culture obtained by previously culturing nisin-producing lactic acid bacteria in a predetermined medium to the steamed rice that has been cooled after cooking. ). The second rice bran is inoculated with nisin-producing lactic acid bacteria and koji molds (seed rice cakes) into steamed rice that has been cooked with rice soaked with water containing nutrients for nisin-producing lactic acid bacteria. It is made of iron. The second rice bran is manufactured according to the manufacturing method disclosed in, for example, Japanese Patent Application Laid-Open No. 2001-224359. In addition, the inoculation amount of the nisin-producing lactic acid bacteria inoculated into the first and second rice bran is an amount (1.0 × 10 10) that can be detected by the lactic acid bacteria contained in the steamed rice immediately after the inoculation. 2 Of at least 1 piece / g).
[0012]
These first and second rice bran are inoculated with bacilli in the steamed rice and then fermented at a relatively high temperature of 15 to 35 ° C., preferably around 30 ° C. under aerobic conditions. This is a rice grown with koji mold. Furthermore, these rice bran is a harmful bacterium such as a Bacillus genus that easily propagates during koji making due to antagonism (antagonism) generated by the survival of the inoculated nisin-producing lactic acid bacteria and the action of nisin produced by the lactic acid bacteria. Biopreservation that effectively prevented contamination by Moreover, regarding the use of these rice bran, besides adding it to the food material as it is, it can be used after preparing a mixture with a seasoning such as water or salt.
[0013]
Examples of the nisin-producing lactic acid bacteria include Lactococcus lactis IFO12007 and ATCC11454. These nisin-producing lactic acid bacteria are mesophilic lactic acid cocci with high growth ability at 15 to 37 ° C. and high nisin production ability, and these growth ability and nisin production ability are remarkably low at a low temperature of 10 ° C. or less, rare. As nutrient components for growing the nisin-producing lactic acid bacteria, those suitable for the growth of microorganisms (particularly nisin-producing lactic acid bacteria) such as monosaccharides, oligosaccharides, various vitamins and minerals are used. Examples of the material containing this nutritional component include rice bran, sake lees, soybeans, corn, koji, miso, peptone, yeast extract and the like. Good) and water, preferably heated after adding water, are used as the predetermined medium or rice soaking solution.
[0014]
The culture can be detected by inoculating nisin-producing lactic acid bacteria in the medium (1.0 × 10 10). 2 Cultivated until the number of cells / g or more). Moreover, as this culture, when added to the steamed rice cooled after the steaming, nisin-producing lactic acid bacteria contained in the steamed rice can be detected (1.0 × 10 2 It is most preferable that the cells have been cultured up to the number of bacterial cells to be equal to or more than 1 / g.
[0015]
The nisin is a kind of bacteriocin having a strong bactericidal action against all Gram-positive bacteria such as Bacillus bacteria and lactic acid bacteria. This nisin does not have the same action against gram-negative bacteria such as E. coli.
[0016]
The psychrophilic lactic acid bacterium is preferably a homofermentative lactic acid bacterium having excellent growth ability at a low temperature of 0 to 10 ° C. and producing a large amount of organic acids such as lactic acid and acetic acid along with its growth. Examples of the psychrophilic lactic acid bacteria include Lactobacillus salmon and Lactobacillus curvatus, but since the taste of the product (lactic acid fermented food) is high, Lactobacillus salmon is most preferably used. It is done. These psychrophilic lactic acid bacteria are gram-positive lactobacilli. The inoculation amount of this psychrophilic lactic acid bacterium is 1.0 × 10 in the part (fermentation part) to which the lactic acid bacterium and rice bran are added in order to shorten the fermentation ripening period until commercialization. 2 It is an amount that is present in an amount of more than 1 / g, that is, an amount that can be detected by food inspection immediately after inoculation.
[0017]
The fermentation and ripening is a process after adding rice bran and inoculating psychrophilic lactic acid bacteria to the food material, and is preferably performed under anaerobic conditions. This fermentation ripening is a step of utilizing the various nutrients contained in the food material and rice bran and the nutrients produced by the action of various enzymes contained in the rice bran for the growth of the psychrophilic lactic acid bacteria. Therefore, this fermentation ripening is performed at a low temperature of 0 to 10 ° C., preferably 4 to 6 ° C., in order to suppress the growth of nisin-producing lactic acid bacteria adhering to the rice bran. As a result, the psychrotrophic lactic acid bacteria rapidly grow without being inhibited by nisin-producing lactic acid bacteria to produce a large amount of organic acids such as lactic acid and acetic acid. Immediately kill. As a result, the psychrotrophic lactic acid bacteria quickly form an exclusive bacterial flora to prevent contamination by harmful bacteria, cultivate a good acidity and adjust the taste of the product, and the fermentation ripening period until commercialization To shorten. Note that the salt concentration of the product needs to be 7.5% by weight or less so as not to adversely affect the activity of the psychrophilic lactic acid bacteria.
[0018]
Next, the production method and action of the lactic acid fermented food will be described.
This lactic acid fermented food is manufactured according to either the first manufacturing method shown in FIG. 1 (a) or the second manufacturing method shown in FIG. 1 (b). In the first production method, rice bran is added to the food material and inoculated with a low-temperature lactic acid bacterium at the same time, and immediately after that, fermented and matured at a low temperature of 0 to 10 ° C. In the second production method, the food material is first inoculated with a psychrophilic lactic acid bacterium and soaked at a low temperature of 0 to 10 ° C. for a predetermined period, and then added with rice bran and further at a low temperature of 0 to 10 ° C. Fermentation ripening (main pickled) is performed.
[0019]
In these first and second production methods, the rice bran is prepared so that the koji is completed before the rice bran is added. When this koji is made, first, nisin-producing lactic acid bacteria are cultured in a medium containing the nutrient components, and steamed rice (inoculated with nisin-producing lactic acid bacteria) to which the culture is added, or the nutrient components Rice is soaked in a soaking solution containing, and the rice impregnated with the nutrient components is cooked, and then steamed rice inoculated with nisin-producing lactic acid bacteria is prepared. Next, the steamed rice is inoculated with koji mold and mixed well, and then cultured at a temperature of 15 to 35 ° C. for a predetermined period under aerobic conditions.
[0020]
At this time, the nisin-producing lactic acid bacterium survives throughout the culture (manufacture), and is a gram-positive bacterium (Bacillus genus) derived mainly from the cocoon-making environment by the antagonism (antagonism) and the sterilization action of nisin. Bacteria are killed while suppressing growth. In addition, the koji mold grows using the polysaccharides and various nutrients contained in the steamed rice throughout the entire culture period, and produces various enzymes such as amylase and protease necessary for the fermentation and ripening, Accumulate them in rice bran.
[0021]
Now, as shown in FIG. 1 (a), in the first production method, after adding the rice bran to the food material cut to an appropriate size and inoculating the psychrophilic lactic acid bacteria, preferably under anaerobic conditions , Fermentation and aging for a predetermined period while maintaining a low temperature of 0 to 10 ° C. At this time, the psychrophilic lactic acid bacteria are placed in a temperature environment that is more advantageous for metabolism and growth than the nisin-producing lactic acid bacteria attached to the rice bran. It grows rapidly using nutrients produced by the enzyme action, and produces a large amount of organic acid to rapidly lower the pH. As a result, Gram-negative bacteria such as Escherichia coli that are derived from food materials and grow even at low temperatures are quickly killed, and a large amount of nisin-producing lactic acid bacteria contained in the rice bran are also killed. As a result, after the start of this fermentation ripening, an exclusive bacterial flora by the psychrophilic lactic acid bacteria is quickly formed, contamination by harmful bacteria is prevented and acidity by lactic acid fermentation is imparted, and various kinds of rice bran Enzymatic action draws out sweetness due to sugars and umami due to amino acids.
[0022]
As shown in FIG. 1 (b), in the second production method, first, a food material cut into an appropriate size is inoculated with a psychrophilic lactic acid bacterium in advance and kept at a low temperature of 0 to 10 ° C. under anaerobic conditions. The psychrotrophic lactic acid bacteria are proliferated by immersing under a predetermined period of time, and the activity is activated. In addition, this underpickling is normally performed in order to reduce the water | moisture content contained excessively in a food material while adding salt to food material (especially vegetable) and seasoning. Next, the rice bran is added and fermented and matured under the same temperature conditions, preferably under anaerobic conditions, to produce a lactic acid fermented food as in the first production method. In this second production method, the salt concentration of the food material when inoculating the psychrophilic lactic acid bacterium needs to be 7.5% by weight or less so as not to adversely affect the activity of the lactic acid bacterium. is there.
[0023]
The lactic acid fermented food produced by the first and second production methods is a guideline for food inspection when the pH of the portion to which the rice bran is added becomes 4.5 or less, and is derived from rice bran. Shipment is possible when nisin-producing lactic acid bacteria are no longer detected by the food inspection.
[0024]
The effects exhibited by the above embodiment will be described below.
-The manufacturing method of the lactic acid fermented food of embodiment performs fermentation aging at 0-10 degreeC, after performing the addition of rice bran and inoculation of a psychrophilic lactic acid bacteria to a food material simultaneously or at different timing. The rice bran has been biopreserved with nisin-producing lactic acid bacteria and effectively prevented contamination by gram-positive bacteria in general other than nisin-producing lactic acid bacteria.
[0025]
Therefore, in this method for producing a lactic acid fermented food, it is possible to provide a lactic acid fermented food that is effectively prevented from contamination by Bacillus bacteria that are mainly transferred from rice bran and are difficult to kill in the final product. it can. In addition, the fermentation and ripening is configured to be performed at a low temperature of 0 to 10 ° C. by inoculating the psychrophilic lactic acid bacteria, so that the growth of the nisin-producing lactic acid bacteria transferred from the rice bran is suppressed, and the inoculated low temperature Lactic acid fermentation by a functional lactic acid bacterium is performed quickly. Thereby, in this manufacturing method, Gram-negative bacteria, such as coliform bacteria which originate in food materials and grow at low temperatures, can be quickly killed. In addition, lactic acid fermentation by psychrotrophic lactic acid bacteria proceeds extremely quickly and reliably compared to the conventional production method that has been performed by relying on natural fermentation, so that products of stable quality can be produced in a short period of time. . In addition, the rice bran does not need to be sterilized by heating, etc., so it does not impair the color and flavor of rice bran, the activities of various enzymes involved in aging, and does not use enzyme preparations or artificial seasonings Both can provide high quality products.
[0026]
-The 2nd manufacturing method of the lactic-acid-fermented food of embodiment is inoculating a psychrotrophic lactic acid bacteria to a food material, and submerging at 0-10 degreeC, Then, adding rice bran and fermenting at 0-10 degreeC further Aging (main pickled) is performed. For this reason, since the manufacturing method of this lactic acid fermented food is configured to proliferate and activate the psychrophilic lactic acid bacteria in advance in the submerged step, compared to the first manufacturing method, Lactic acid fermentation proceeds more rapidly. Therefore, according to the second production method, it becomes easy to kill spoilage bacteria such as gram-negative bacteria and nisin-producing lactic acid bacteria more rapidly, and to produce a high-quality product by short-term fermentation ripening.
[0027]
-The method for producing a lactic acid-fermented food according to the embodiment allows Lactobacillus salmon to be used as a low-temperature lactic acid bacterium, so that lactic acid fermentation can be performed quickly at a low temperature of 0 to 10 ° C. A strong growth inhibitory effect is also obtained against gram-negative bacteria. At this time, the taste and flavor such as taste are also good.
[0028]
【Example】
Hereinafter, examples and comparative examples embodying the embodiment will be described.
(Test Example 1)
In order to produce a lactic acid fermented food with good acidity without contamination by harmful bacteria, the growth inhibitory effect of lactic acid fermented steamed rice on Bacillus bacteria was investigated. That is, 10 of the steamed rice produced by steaming the rice to which the soybean extract was added was added to the nisin-producing lactic acid bacterium Lactococcus lactis IFO 12007 or the psychrophilic lactic acid bacterium Lactobacillus salmon MMF-161 (Suneilac MMF-161). 6 CFU / g was inoculated and lactic acid fermentation was performed at 30 ° C. for 24 hours. Then, Bacillus subtillis ATCC 19659 10 Five Inoculated to CFU / g. The number of lactic acid bacteria, the number of bacteria belonging to the genus Bacillus, and the pH of the fermentation part before lactic acid fermentation and immediately after inoculation with Bacillus bacteria (indicated in the table as before fermentation and after fermentation) were examined. The results are shown in Table 1.
[0029]
[Table 1]
Figure 0004132037
As shown in Table 1, 10 6 Both nisin-producing lactic acid bacteria and psychrophilic lactic acid bacteria inoculated to CFU / g were 10 by performing lactic acid fermentation at 30 ° C. for 24 hours. 8 Grows to CFU / g. 10 Five Bacteria belonging to the genus Bacillus inoculated so as to have CFU / g can be rapidly recovered immediately after inoculation with nisin produced by nisin-producing lactic acid bacteria. 2 Reduced to CFU / g. In contrast, the psychrophilic lactic acid bacteria showed almost no growth inhibitory effect against Bacillus bacteria.
[0030]
(Test Example 2)
0.1% of rice bran (Ryokuroku SR-108) was added to steamed rice that had been lactic acid-fermented with Lactococcus lactis in Test Example 1 and inoculated with Bacillus subtilis, and koji at 30 ° C. for 42 hours. Got. Table 2 shows the number of lactic acid bacteria, the number of Bacillus bacteria, and the pH of the fermentation part in the rice bran before and after the koji making.
[0031]
[Table 2]
Figure 0004132037
As shown in Table 2, 10 2 Bacillus bacteria that survived CFU / g were not detected after the koji making, indicating that growth was completely inhibited by nisin-producing lactic acid bacteria. On the other hand, in the control (non-inoculated lactic acid bacteria), the number of Bacillus bacteria after the koji was 10 6 Grows to CFU / g.
[0032]
(Test Example 3)
Using rice bran prepared using Lactococcus lactis of Test Example 2 above, a rice bran pickles (rice rice: water: rice bran: salt = 59: 30: 10: 1) was prepared. Escherichia coli ATCC 14948 10 Five Inoculated to CFU / g. Subsequently, 10 Lactobacillus casei L-14 which is Lactobacillus salmon MMF-161 or mesophilic lactic acid bacterium Five After inoculating to CFU / g, it was fermented and matured at 10 ° C. for 7 days. Total number of lactic acid bacteria on fermentation ripening day 0 and day 7 (representing the total number of Lactococcus lactis derived from rice bran and Lactobacillus salmon or casei inoculated in this test), lactobacilli number (lacto Table 3 shows the results of examining the number of cells of Bacillus salmon or casei), the number of E. coli, and the pH of the fermentation part.
[0033]
[Table 3]
Figure 0004132037
As shown in Table 3, nisin-producing lactic acid bacteria derived from rice bran have 10 lactic acid bacteria as the total number of lactic acid bacteria. 6 In the case of CFU / g detected and inoculated with mesophilic lactic acid bacteria, the mesophilic lactic acid bacteria is 10 Five CFU / g was detected. All of these lactic acid bacteria had extremely weak growth ability at 10 ° C. and could not inhibit the growth of E. coli even after fermentation and ripening for 7 days. On the other hand, in the case of inoculating psychrophilic lactic acid bacteria, the psychrophilic lactic acid bacteria is 10 Five CFU / g detected and 10% by fermentation and aging at 10 ° C for 7 days 8 Growing to CFU / g, the pH was reduced to 3.91, and E. coli was killed until it was undetectable. Therefore, by using nisin-producing lactic acid bacteria in the koji making process and fermenting and aging at low temperatures using psychrophilic lactic acid bacteria in the fermentation and aging process, contamination by harmful bacteria such as Bacillus bacteria and coliforms is prevented, and lactic acid fermentation It has been shown that foods with good acidity can be produced in a short period of time. At this time, Nisin-producing lactic acid bacteria survived more than psychrophilic lactic acid bacteria on the 0th day of fermentation and ripening, but no nisin-producing lactic acid bacteria were detected on the 7th day and fermentation and ripening was performed at a low temperature of 10 ° C. It was confirmed that the dominance of both was completely reversed.
[0034]
(Example 1 and Comparative Example 1)
In the first production method of the embodiment, immediately after mixing 450 g of rice bran made using Lactococcus lactis IFO12007 and the food material, 10 Lactobacillus salmon MMF-161 Five Example 1 was prepared by inoculating to CFU / g and fermenting and aging at 5 ° C. to produce “Izushi”. The food material is a mixture of 1 kg of salted soy salmon fillet that has been desalted overnight in cold water, 1 kg of radish and carrots that have been submerged in 3% salt, and 1.5 kg of rice. . Moreover, the thing which is not inoculated with Lactobacillus salmon MMF-161 was set as Comparative Example 1 as a control. A part of Izushi after 0, 3, 7, 14, 21, and 28 days of fermentation aging was sampled, and each item shown in Table 4 was investigated. The results are shown in Table 4.
[0035]
[Table 4]
Figure 0004132037
As shown in Table 4, on the 0th day of fermentation ripening in Example 1, nisin-producing lactic acid bacteria derived from rice bran and inoculated psychrophilic lactic acid bacteria were 10 as the total number of lactic acid bacteria. 6 CFU / g is detected, and psychrophilic lactic acid bacteria is 10 Five CFU / g was detected. However, on the seventh day of fermentation and ripening, the number of lactobacilli is approximately the same as the total number of lactic acid bacteria. 8 CFU / g was reached, and it was confirmed that nisin-producing lactic acid bacteria were no longer detected. At this time, the pH of the fermented part dropped to 4.36 and 10 days on the third day of aging. Three -10 Four CFU / g detected general bacteria, gram-negative bacteria and coliforms were not detected. In addition, when a sample that had been fermented and matured for 14 days was sampled, the balance between acidity and sweetness was good, the taste was good, and general bacteria, gram-negative bacteria, and coliforms did not grow even after 28 days. confirmed.
[0036]
On the other hand, in Comparative Example 1 in which the psychrophilic lactic acid bacteria were not inoculated, no lactobacillus was detected even on the 28th day of fermentation ripening. At this time, the number of nisin-producing lactic acid bacteria derived from rice bran is 10 as the total number of lactic acid bacteria. 6 Although CFU / g was detected, it was also confirmed that they could not grow and could not prevent the growth of gram-negative bacteria and coliforms. Further, even after 28 days, the pH decreased only to 5.70, and a product that had been satisfactorily lactic acid-fermented was not obtained.
[0037]
(Examples 2 and 3 and Comparative Examples 2 and 3)
The “boiled radish” was produced by the second production method of the embodiment. That is, while adding 75 g of salt to 2.5 kg of radish, 10 Lactobacillus salmon (Lb.sake LG-1 strain isolated and identified by the present inventors), which is a psychrophilic lactic acid bacterium, was added. Five Inoculated to CFU / g and soaked at 5 ° C or 10 ° C for 3 days. Next, a pickled bed using rice koji made using Lactococcus lactis IFO 12007 (150 g of rice, 100 g of rice bran, 100 g of white sucrose, 10 g of salt) was added at 5 ° C. or 10 ° C. for 6 days. Fermented and matured (main pickled). In addition, what was pickled at 5 ° C. in Example 2 and fermented ripening was soaked in Example 2 and Example 3 was picked at 10 ° C. Moreover, the thing which does not inoculate Lactobacillus salmon LG-1 was made into the comparative example 2 (5 degreeC) and the comparative example 3 (10 degreeC) as a control. Samples of radish on the 0th, 3rd, and 6th days of fermentation and maturation were sampled and investigated for each item shown in Table 5. The results are shown in Table 5.
[0038]
[Table 5]
Figure 0004132037
As shown in Table 5, 10 psychrophilic lactic acid bacteria were used. Five From Examples 2 and 3 inoculated to give CFU / g, 10 Four CFU / g lactic acid bacteria were detected, and on the 3rd day of the soaking, it was 10 ° C at 5 ° C. 6 CFU / g, 10 at 10 ° C 7 Grows to CFU / g. On the other hand, in Comparative Examples 2 and 3 where the psychrophilic lactic acid bacteria were not inoculated, no lactic acid bacteria were detected before and after the soaking. Furthermore, in Examples 2 and 3 inoculated with a psychrophilic lactic acid bacterium, the total number of lactic acid bacteria and the number of lactobacilli were 10 on the sixth day of fermentation ripening. 7 It was also confirmed that nisin-producing lactic acid bacteria were no longer detected, reaching CFU / g. At this time, the pH of the fermentation part dropped to 4.3 or lower, and general bacteria, gram-negative bacteria, and coliform bacteria were not detected. In contrast, in Comparative Examples 2 and 3, the number of nisin-producing lactic acid bacteria derived from rice bran on the sixth day of fermentation aging was 10 as the total number of lactic acid bacteria. Five Although CFU / g was detected, lactobacilli were not detected, and growth of general bacteria, gram-negative bacteria and coliforms could not be prevented. Moreover, the pH of the radish part also decreased only to about 5.7.
[0039]
Example 4
590 g of rice, 300 g of water and 10 g of salt are mixed with 100 g of rice bran made using Lactococcus lactis IFO 12007, and 10 Lactobacillus salmon LG-1 is mixed. Five Inoculated to CFU / g and fermented and matured at 10 ° C. for 3 days to prepare “Kojizuke no Moto”. 400 g of this “boiled rice cake” was added to about 1.2 kg of food material and fermented and matured at 5 ° C. to produce “kabazuzushi”. In addition, the food material is salted in salt equivalent to 5% of the weight of the salmon for 3 days at 10 ° C, then drained, and salted in water equivalent to 6% of the weight of the fish meat at 5 ° C for 6 days for water washing. It is sandwiched between the fillet of the finished bristle meat. For each item shown in Table 6, we sampled “Kojizuke-no-Moto” that was fermented and matured at 10 ° C. for 3 days, and koji that was soaked at 10 ° C. for 3 days, and 0,7,14 days after fermentation and maturing. investigated. The results are shown in Table 6.
[0040]
[Table 6]
Figure 0004132037
As shown in Table 6, the buds after 3 days of soaking and the kaburazushi after 0 days of fermentation are 10% of general bacteria, gram-negative bacteria and coliforms. 2 -10 Four CFU / g was detected. However, by adding “Mojizuke no Moto” and fermenting and aging at 5 ° C., after 7 days, lactic acid bacteria proliferate and the pH is lowered to 4.5 or less, and spoilage bacteria (general bacteria, gram-negative bacteria and Coliform bacteria) were not detected at all. That is, it was confirmed that the product with good acidity was almost ready to be shipped without contamination by spoilage bacteria after fermentation ripening at 5 ° C. for 1 week.
[0041]
Further, the technical idea that can be grasped from the embodiment will be described below.
A rice bran pickles used in the method for producing a lactic acid fermented food according to claim 1, wherein the rice bran pickles and the low temperature lactic acid bacteria are contained. A rice bran pickle used in the method for producing a lactic acid fermented food according to claim 1, comprising the rice bran and a psychrophilic lactic acid bacterium and mixing them, followed by fermentation and aging at 0 to 10 ° C. for a predetermined period. The element of pickled rice When comprised in this way, while being able to prevent the contamination by spoilage bacteria easily and effectively, the lactic acid fermented food which carried out the lactic acid fermentation favorably in a short period can be manufactured very easily.
[0042]
【The invention's effect】
As described in detail above, the present invention has the following effects.
According to the method for producing a lactic acid fermented food of the invention according to claims 1 to 3, lactic acid fermented food that can easily and effectively prevent contamination by spoilage bacteria and that has been lactic acid fermented well in a short period of time. Is easy to manufacture.
[Brief description of the drawings]
FIG. 1 (a) shows an outline of a first production method of a lactic acid fermented food according to the embodiment, and FIG. 1 (b) shows an outline of a second production method of the lactic acid fermented food.

Claims (3)

食品素材に米麹を添加して発酵熟成を行う乳酸発酵食品の製造方法において、
前記食品素材に米麹を添加するとともに低温性乳酸菌を接種して0〜10℃で発酵熟成を行うように構成され、
前記米麹は、ナイシン生産性乳酸菌の培養物を添加することにより該乳酸菌が接種された蒸し米を製麹したもの、又は栄養成分を含む水に浸漬させた米を蒸煮した蒸し米にナイシン生産性乳酸菌を接種して製麹したものであることを特徴とする乳酸発酵食品の製造方法。
In a method for producing a lactic acid fermented food that is fermented and matured by adding rice bran to the food material,
It is configured to add rice bran to the food material and inoculate with psychrophilic lactic acid bacteria and perform fermentation aging at 0 to 10 ° C.,
The rice bran is produced by adding a culture of nisin-producing lactic acid bacteria to produce steamed rice that has been inoculated with the lactic acid bacteria, or steamed rice that has been soaked in water containing nutrient components to produce nisin. A method for producing a lactic acid fermented food, characterized by being inoculated with a fermentative lactic acid bacterium and fermented.
食品素材に米麹を添加して発酵熟成を行う乳酸発酵食品の製造方法において、
前記食品素材に低温性乳酸菌を接種して0〜10℃で下漬けを行った後、前記米麹を添加して0〜10℃で発酵熟成を行うように構成され、
前記米麹は、ナイシン生産性乳酸菌の培養物を添加することにより該乳酸菌が接種された蒸し米を製麹したもの、又は栄養成分を含む水に浸漬させた米を蒸煮した蒸し米にナイシン生産性乳酸菌を接種して製麹したものであることを特徴とする乳酸発酵食品の製造方法。
In a method for producing a lactic acid fermented food that is fermented and matured by adding rice bran to the food material,
The food material is inoculated with psychrophilic lactic acid bacteria and submerged at 0 to 10 ° C., then the rice bran is added and fermented and matured at 0 to 10 ° C.,
The rice bran is produced by adding a culture of nisin-producing lactic acid bacteria to produce steamed rice that has been inoculated with the lactic acid bacteria, or steamed rice that has been soaked in water containing nutrient components to produce nisin. A method for producing a lactic acid fermented food, characterized by being inoculated with a fermentative lactic acid bacterium and fermented.
前記低温性乳酸菌としてラクトバチルス・サケ(Lactobacillus sake)を用いることを特徴とする請求項1又は請求項2に記載の乳酸発酵食品の製造方法。The method for producing a lactic acid fermented food according to claim 1 or 2, wherein Lactobacillus sake is used as the psychrophilic lactic acid bacterium.
JP2003011563A 2003-01-20 2003-01-20 Method for producing lactic acid fermented food Expired - Fee Related JP4132037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003011563A JP4132037B2 (en) 2003-01-20 2003-01-20 Method for producing lactic acid fermented food

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003011563A JP4132037B2 (en) 2003-01-20 2003-01-20 Method for producing lactic acid fermented food

Publications (2)

Publication Number Publication Date
JP2004222542A JP2004222542A (en) 2004-08-12
JP4132037B2 true JP4132037B2 (en) 2008-08-13

Family

ID=32900434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003011563A Expired - Fee Related JP4132037B2 (en) 2003-01-20 2003-01-20 Method for producing lactic acid fermented food

Country Status (1)

Country Link
JP (1) JP4132037B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5560088B2 (en) * 2010-05-07 2014-07-23 正明 丸山 Lactic acid fermented food of rice and production method thereof
JP5577559B2 (en) * 2012-05-17 2014-08-27 新潟県 Novel lactic acid bacteria and method for producing fermented foods using the lactic acid bacteria
KR101414163B1 (en) 2013-04-12 2014-07-01 화원농업협동조합 Preparation Method for Korean Long-Term Ripened Kimchi Using Starter for Fermentation of a comprising Saccharomyces servazzii MY7 and Lactobacillus curvatus ML17
JP6360346B2 (en) * 2014-04-22 2018-07-18 夏雄 植田 Method for producing fermented product using natural fermentation system and method for expanding and using the fermented product and bacterial flora
JP2018164455A (en) * 2018-06-22 2018-10-25 夏雄 植田 Application product formed by using fermentation product using natural fermentation system
KR102568727B1 (en) * 2020-09-18 2023-08-22 전라남도 Method of fermented rice cake using low-temperature fermented rice with lactic acid bacteria

Also Published As

Publication number Publication date
JP2004222542A (en) 2004-08-12

Similar Documents

Publication Publication Date Title
Buckenhüskes Selection criteria for lactic acid bacteria to be used as starter cultures for various food commodities
KR101363735B1 (en) Agent for enhancing growth and improving viability of lactic acid bacterium
JP5044769B2 (en) Lactic acid bacteria Lactobacillus sakei strain, beverage manufacturing method, food manufacturing method, pickled bed manufacturing method, bread making raw material manufacturing method
JP4524801B2 (en) Method for producing fermented brown rice and method for producing fermented germinated brown rice
US8828459B2 (en) Method for reducing the content of pathogenic organisms present in food materials
JP2007175024A (en) Method for producing tempeh-like fermented food
CN108347928B (en) Antimicrobial agents comprising xanthohumol and their use in food products
KR20050083739A (en) Pressure treating food to reduce spoilage
JP4041850B2 (en) A novel lactic acid bacterium that shows good growth at low temperatures, high nisin production, excellent saccharide utilization, produces γ-aminobutyric acid, and uses γ-aminobutyric acid in high production methods and techniques for preventing alcohol from burning out.
WO2004040988A1 (en) Fishes treated with lactic acid bacterium culture medium having antibacterial and antixoidative effects
JP4132037B2 (en) Method for producing lactic acid fermented food
JP4729679B2 (en) Method for producing rice koji using lactic acid bacteria and method for producing rice miso
Muzaddadi et al. An accelerated process for fermented fish (seedal) production in Northeast region of India
KR101427415B1 (en) Lactic acid bacterium separated from kimchii and fermented food using the strain
KR102255983B1 (en) Method for preparing long-term fermented kimchi by using lactobacillus sakei sc1 and long-term fermented kimchi prepared thereby
Lücke Lactic acid bacteria involved in food fermentations and their present and future uses in food industry
JP4320757B2 (en) Method for producing γ-aminobutyric acid enriched fermented food
Shi et al. Control of foodborne pathogens during sufu fermentation and aging
Josephsen et al. Fermented foods and starter cultures
Guizani et al. Fermentation as a method for food preservation
EP1456350B1 (en) Lactic acid bacteria of the genus lactococcus lactis and use thereof for preserving food products
Pulido et al. Fermentation of caper products
KR101406754B1 (en) Preparing for honey pastry method
JP2002369678A (en) Method for preventing sundry germs for malted rice
JP2002330715A (en) Method for producing koji

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080430

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080530

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140606

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees