JP4041850B2 - A novel lactic acid bacterium that shows good growth at low temperatures, high nisin production, excellent saccharide utilization, produces γ-aminobutyric acid, and uses γ-aminobutyric acid in high production methods and techniques for preventing alcohol from burning out. - Google Patents

A novel lactic acid bacterium that shows good growth at low temperatures, high nisin production, excellent saccharide utilization, produces γ-aminobutyric acid, and uses γ-aminobutyric acid in high production methods and techniques for preventing alcohol from burning out. Download PDF

Info

Publication number
JP4041850B2
JP4041850B2 JP2004246148A JP2004246148A JP4041850B2 JP 4041850 B2 JP4041850 B2 JP 4041850B2 JP 2004246148 A JP2004246148 A JP 2004246148A JP 2004246148 A JP2004246148 A JP 2004246148A JP 4041850 B2 JP4041850 B2 JP 4041850B2
Authority
JP
Japan
Prior art keywords
lactic acid
nisin
klc
aminobutyric acid
bacteria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004246148A
Other languages
Japanese (ja)
Other versions
JP2005192553A (en
Inventor
貴一 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akita Prefecture
Original Assignee
Akita Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akita Prefecture filed Critical Akita Prefecture
Priority to JP2004246148A priority Critical patent/JP4041850B2/en
Publication of JP2005192553A publication Critical patent/JP2005192553A/en
Application granted granted Critical
Publication of JP4041850B2 publication Critical patent/JP4041850B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Dairy Products (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Cereal-Derived Products (AREA)
  • Bakery Products And Manufacturing Methods Therefor (AREA)
  • Meat, Egg Or Seafood Products (AREA)
  • Alcoholic Beverages (AREA)
  • Storage Of Fruits Or Vegetables (AREA)
  • Beans For Foods Or Fodder (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

本発明は,温帯落葉広葉樹林帯より新規に分離した乳酸菌 ラクトコッカス・ラクティス・サブスピーシーズ・ラクティス・クラス 1 KLC 1527D株(本願において、「本乳酸菌」と略す。)に関するものである。   The present invention relates to a lactic acid bacterium Lactococcus lactis subspecies lactis class 1 KLC 1527D strain (abbreviated as “the present lactic acid bacterium” in the present application) newly isolated from a temperate deciduous broad-leaved forest zone.

詳しくは、ラクトコッカス・ラクティス・サブスピーシーズ・ラクティス・クラス 1 KLC 1527D株は他のナイシン生産菌に比べて、低温で良好な生育を示し、抗菌物質・ナイシンZを高生産し、糖質資化性に優れた特性を示す。また、5%以下の食塩濃度環境下で良好な生育を示し、7.5%以下のアルコール濃度環境下で良好な生育を示す。   For more details, Lactococcus lactis sub-species lactis class 1 KLC 1527D strains showed better growth at lower temperatures than other nisin-producing bacteria, produced a high antibacterial substance, nisin Z, and utilized carbohydrates Excellent properties. In addition, it shows good growth under a salt concentration environment of 5% or less and good growth under an alcohol concentration environment of 7.5% or less.

本乳酸菌をグルタミン酸もしくはその塩類存在下で培養すると、抗菌物質ナイシンの他にγ-アミノ酪酸を生成することから、γ-アミノ酪酸による機能性を有する食品の製造が可能である。さらに塩素イオンもしくは塩素イオンを含む塩類や海水、にがり等の存在下ではγ-アミノ酪酸を高生産することを見いだした。   When this lactic acid bacterium is cultured in the presence of glutamic acid or a salt thereof, γ-aminobutyric acid is produced in addition to the antibacterial substance nisin, so that it is possible to produce a food having functionality with γ-aminobutyric acid. Furthermore, they found that γ-aminobutyric acid was produced at high levels in the presence of chlorine ions or salts containing chlorine ions, seawater, and bittern.

本乳酸菌を、グルコースを主な炭素源とする培地にて培養すると低温で良好な生育を示すとともにナイシンZを高生産する。ナイシンZとその類似化合物が火落菌の生育を阻害することから、例えば本乳酸菌KLC 1527Dをはじめとするその他のナイシン生産菌を酒母やもろみ中に添加し酵母とともに発酵を行うことで、系中にナイシンを生産することから火落菌の初発菌数を低下させ、さらに清酒貯蔵中の火落ち防止と火落菌除去が可能である。さらに本乳酸菌を用いて甘酒や米糠などを発酵した場合、つわり香の原因となるジアセチルの発生が認められないことを見いだした。   When this lactic acid bacterium is cultured in a medium containing glucose as a main carbon source, it shows good growth at a low temperature and produces high nisin Z. Since nisin Z and its similar compounds inhibit the growth of fire-fung bacteria, for example, by adding other nisin-producing bacteria such as the lactic acid bacterium KLC 1527D to sake mothers and moromi and fermenting with yeast, Since Nisin is produced, it is possible to reduce the initial number of fire bacterium and to prevent fire eradication and remove fire bacterium during sake storage. Furthermore, when fermenting amazake or rice bran with this lactic acid bacterium, it was found that the occurrence of diacetyl, which causes morning sickness, was not observed.

乳酸菌は、我が国においてきわめて需要の高い漬け物、みそ、しょうゆ、清酒をはじめとする酒類、乳発酵製品などの発酵食品の分野で広く活用されており、化学的に合成された食品保存料に比べて安全な抗菌物質を生産し、発酵力に優れた乳酸菌が強く求められている。本発明に係わる新規乳酸菌はこの要望に応えるものである。   Lactic acid bacteria are widely used in the field of fermented foods such as pickles, miso, soy sauce, sake, and other fermented foods that are in great demand in Japan, compared to chemically synthesized food preservatives. There is a strong demand for lactic acid bacteria that produce safe antibacterial substances and have excellent fermentability. The novel lactic acid bacteria according to the present invention meet this need.

従来の技術では、乳酸菌は古来より漬け物、みそ、しょうゆ、清酒をはじめとする酒類、乳発酵製品などの発酵食品や発酵飲料の製造に利用されている有用な微生物であり、古来より食習慣がある安全な微生物といえる。発酵食品などの製造過程において、乳酸菌による乳酸発酵が行われ、系のpHが低下することで系中の雑菌の増殖を抑制し、製品の風味と品質が向上する。また、系中に抗菌物質を産生することで製造過程や製品において雑菌などの増殖阻害が可能となり、腐敗や品質低下を防ぐことが可能である。食品の腐敗や品質低下を防止する目的で食品保存料が使用される。これまで用いられた食品保存料の多くは主に化学合成されたものが用いられている。しかしながら、化学的に合成された食品保存料は、人体内で容易に分解されにくい性質を持ち、大量摂取は人間にとって健康面から好ましくない。乳酸菌は古来より食習慣があることから安全性の面で問題がなく、乳酸菌由来の抗菌物質は化学的に合成された物質よりも安全性が高いと考えられる。   In conventional technology, lactic acid bacteria have been useful microorganisms for the production of fermented foods and fermented beverages such as pickles, miso, soy sauce, sake, and fermented milk products since ancient times. It can be called a safe microorganism. In the process of producing fermented foods, lactic acid fermentation by lactic acid bacteria is performed, and the pH of the system is lowered to suppress the growth of miscellaneous bacteria in the system, improving the flavor and quality of the product. In addition, by producing an antibacterial substance in the system, it becomes possible to inhibit the growth of germs and the like in the production process and product, and it is possible to prevent spoilage and quality degradation. Food preservatives are used to prevent food spoilage and quality degradation. Many of the food preservatives used so far are mainly chemically synthesized. However, chemically synthesized food preservatives have a property that they are not easily decomposed in the human body, and large intake is not preferable for human health. Since lactic acid bacteria have a dietary habit since ancient times, there is no problem in terms of safety, and antibacterial substances derived from lactic acid bacteria are considered to be safer than chemically synthesized substances.

酒類のうち清酒を例としてあげると、酒母・もろみ製造工程において特に酵母と乳酸菌の共存・発酵が認められている。清酒はアルコール濃度が15%程度と高いため、一般に腐敗しないと考えられるが、火落菌と呼ばれる乳酸菌により貯蔵中に腐敗することが問題となっている。   Taking sake as an example of liquors, the coexistence and fermentation of yeast and lactic acid bacteria are recognized especially in the sake mother and moromi manufacturing process. Sake has a high alcohol concentration of about 15%, so it is generally considered that it does not rot. However, it has become a problem that it rots during storage by lactic acid bacteria called fire-fung bacteria.

γ-アミノ酪酸には、機能性食品の第三次機能として高血圧症の改善作用や精神安定作用などがあることが知られている。γ-アミノ酪酸の機能性を発揮するには、100mg/day程度の摂取が必要と言われている。(例えば、非特許文献 日本農芸化学会 2003年度大会 p53, 2003)高濃度γ-アミノ酪酸の生産法としては、乳酸菌、麹菌、米胚芽のもつグルタミン酸脱炭酸酵素を利用し、グルタミン酸ナトリウムを添加することによりγ-アミノ酪酸を高生産(100mg/100g以上)できることが報告されている(例えば特許文献1)。   It is known that γ-aminobutyric acid has a hypertension ameliorating action and a tranquilizing action as a tertiary function of functional foods. In order to demonstrate the functionality of γ-aminobutyric acid, it is said that intake of about 100 mg / day is necessary. (For example, non-patent literature Japanese Society of Agricultural Chemistry 2003 Annual Meeting p53, 2003) As a method for producing high-concentration γ-aminobutyric acid, glutamic acid decarboxylase of lactic acid bacteria, koji mold, and rice germ is used, and sodium glutamate is added. Thus, it has been reported that γ-aminobutyric acid can be produced at high production (100 mg / 100 g or more) (for example, Patent Document 1).

一方、乳酸菌のグルタミン酸脱炭酸酵素の合成は、塩化ナトリウムを用いた実験から塩素イオンによって誘導されることが報告されている(非特許文献1)。これは乳酸菌のもつ耐酸性機構の一つと考えられている。   On the other hand, it has been reported that the synthesis of glutamic acid decarboxylase of lactic acid bacteria is induced by chloride ions from an experiment using sodium chloride (Non-patent Document 1). This is considered to be one of the acid resistance mechanisms of lactic acid bacteria.

生鮮畜肉類や魚類をはじめとする水産品の保存技術としては、冷蔵、冷凍、塩蔵、いずしなどの発酵による低pH化によって保存が行われているが、風味に変化を起こしにくいことから主に冷蔵や冷凍で保存されている。近年冷蔵流通において低温で増殖する雑菌による汚染が問題になっている。   Preservation technology for marine products such as fresh livestock meat and fish is preserved by lowering the pH by fermentation such as refrigeration, freezing, salt storage, and izushi, but it is difficult to cause changes in flavor. Mainly stored refrigerated or frozen. In recent years, contamination by germs that grow at low temperatures in refrigerated distribution has become a problem.

生鮮畜肉類や魚類をはじめとする水産品をもちいた発酵ソーセージは日本ではあまり例がないが、主にドライソーセージ、又は、セミドライソーセージと呼ばれサラミなどが該当し、水分を減少させたソーセージである。適切な乳酸菌を原材料に接種後、摂氏25度前後で培養し、風乾した物を言う。地方によっては続いてカビを付着させたものもある。雑菌の増殖速度が添加する乳酸菌の増殖速度よりも速い場合が多々あり、その場合は製造中に腐敗する。乳酸発酵による独特の風味があるため、日本人にはあまり好まれない。   Fermented sausages that use marine products such as fresh livestock meat and fish are rare in Japan, but are mainly dry sausages or semi-dry sausages, such as salami. is there. After inoculating appropriate lactic acid bacteria into the raw material, it is cultured at around 25 degrees Celsius and then air-dried. Some regions have molds attached to them. In many cases, the growth rate of miscellaneous bacteria is faster than the growth rate of lactic acid bacteria to be added. Because it has a unique flavor due to lactic acid fermentation, it is not preferred by Japanese people.

豆乳ヨーグルトとは、豆乳に乳酸菌を接種して培養することで、牛乳ヨーグルトと類似した豆乳のヨーグルトである。主に生食用として製造されるが、一般には牛乳と豆乳を混合したもので風味を改善している。   Soymilk yogurt is a soymilk yogurt similar to cow's milk yogurt by inoculating and cultivating lactic acid bacteria in soymilk. Manufactured mainly for raw consumption, but generally has a mixed flavor of milk and soy milk to improve the flavor.

野菜の漬物とは浅漬けや一夜漬け、麹漬け、ぬか漬け、キムチなど多岐にわたるが、浅漬けや一夜漬けとは野菜類を約2.5%から5%の低い食塩濃度で低温で漬けた漬け物で、漬け後一晩で食べられることから名付けられている。しかし、食品の保存性に重大な意義をもつ食塩の濃度が低いことから、原材料に付着して混入した乳酸菌や酵母により酸敗やセメダイン臭などの異臭を発生するため消費期間は極端に短く、日持ち向上剤や保存料を添加しない限り製品化は困難である。また、麹漬けとは野菜類を塩と米と米麹からなる漬け床に漬け込み熟成された食品である。塩分が低いことや糖分が高く栄養価が高いことから微生物汚染を受けやすく、安定した品質の食品を長期間安定して供給することは困難であった。ぬか漬けとは、精米時に発生する米ぬかと食塩をはじめとする漬け床につけ込み熟成させて食品であり、手入れの手間や塩分が高いことから製品化が困難である。低塩化を検討した場合、食品の保存性に重大な意義をもつ食塩の濃度が低いことから、原材料に付着して混入した乳酸菌や酵母により酸敗やセメダイン臭などの異臭を発生するため消費期間は極端に短く、日持ち向上剤や保存料を添加しない限り製品化は困難である。   Vegetable pickles range from a wide range of pickles, such as pickles, overnight pickles, pickles, bran pickles, and kimchi, but pickles are pickled vegetables that are pickled at a low salt concentration of about 2.5% to 5% at low temperatures. It is named because it can be eaten overnight. However, since the concentration of sodium chloride, which has a significant significance in the preservation of food, is low, the consumption period is extremely short because the lactic acid bacteria and yeast adhering to the raw materials generate odors such as rancidity and cemedine odor. Commercialization is difficult unless an improver or preservative is added. In addition, pickled cucumber is a food that has been aged by pickling vegetables on a pickled floor made of salt, rice and rice bran. Due to its low salinity and high sugar content and high nutritional value, it is susceptible to microbial contamination, and it has been difficult to stably supply a stable quality food for a long period of time. Rice bran pickles are foods that are ripened by immersing them in rice pickles such as rice bran and salt generated during milling, and are difficult to commercialize due to their high care and salt content. When considering low salinity, the concentration of sodium salt, which has a significant significance for the preservation of food, is low, so the lactic acid bacteria and yeast adhering to the raw material will generate a strange odor such as rancidity and cemedine odor. It is extremely short and difficult to commercialize unless a shelf life improver or preservative is added.

天然酵母パン種とはサワーブレッドとも呼ばれる天然酵母パン製造に使用される添加酵母のうち、パン製造に使用する添加酵母を自ら培養及び育種及び継代する必要があるものを言い、酵母をドライフルーツなどから分離し、優先的に増殖させる作業を「種おこし」という。種おこしが必要なパンを天然酵母パンという。種おこしは、主に以前使用した天然酵母パン種に水や小麦粉などを加えて種継ぎを行う。この時、原材料に付着して乳酸菌などが混入し、天然酵母パン種中で増殖し、焼成後のパンに酸味等をはじめとする独特の風味が付与されるが、制御が困難なため過剰な酸味を発生することが問題とされてきた。その他、一般雑菌やカビが混入し、天然酵母パン種が腐敗することもある。この雑菌汚染や過剰な酸味の発生を抑制するため、従来の解決手段として、乳酸菌添加で解決する方法(特許文献2)や生米等の乳酸菌発酵物を磨砕して得た乳液状の発酵種を、パンの第一次原料粉に添加混捏し、乳酸発酵のみを先行させて乳酸生地を一旦製出し、この乳酸生地に、第二次原料を添加混合してパン生地を製出し、常法通り製パンを行う方法(特許文献3)、さらに乳酸発酵を先行させる方法として茶葉中で増殖させた茶葉エキスで乳酸菌のみの発酵を行わせる方法(特許文献4)がある。しかしながら、根本的な混入乳酸菌の抑制や雑菌汚染の予防につながっているとは言えない。   The natural yeast bread type is an additive yeast used for the production of natural yeast bread, also called sour bread, which means that it is necessary to cultivate, breed and pass the added yeast used for bread production. The work of separating and preferentially proliferating is called “seeding”. Bread that needs to be seeded is called natural yeast bread. Seeding is mainly carried out by adding water or flour to the previously used natural yeast bread. At this time, lactic acid bacteria and the like adhere to the raw material and grow in natural yeast bread seeds, and the baked bread is given a unique flavor such as acidity, but it is difficult to control, so excessive sourness Has been a problem. In addition, general bacteria and mold may be mixed, and the natural yeast bread may be spoiled. In order to suppress this contamination and generation of excessive sourness, as a conventional solution, a method of solving by adding lactic acid bacteria (Patent Document 2) and a milky fermentation obtained by grinding lactic acid bacteria fermented products such as raw rice The seeds are added and kneaded to the primary raw flour of bread, and only lactic acid fermentation is preceded to produce a lactic acid dough once. The secondary ingredients are added to and mixed with this lactic acid dough to produce a bread dough. There is a method of performing breadmaking (Patent Document 3), and a method of causing fermentation of only lactic acid bacteria with a tea leaf extract grown in tea leaves as a method of preceding lactic acid fermentation (Patent Document 4). However, it cannot be said that it has led to the suppression of fundamentally mixed lactic acid bacteria and the prevention of various bacteria contamination.

ハタハタずしやいずし類をはじめとする水産加工品とは、魚類などを塩と米と米麹をはじめとする漬け床につけ込み熟成した食品である。ぬか漬けとは、精米時に発生する米ぬかと食塩をはじめとする漬け床につけ込み熟成させた食品である。塩辛とは原材料を食塩でつけ込んだ食品である。これらはいずれも原材料に付着して混入した乳酸菌によるpHの低下や塩分を高くすることで保存性を向上していた。しかし、時間の経過とともに原材料に付着して混入した乳酸菌や酵母により酸敗やセメダイン臭などの異臭を発生するため安定した品質の食品を提供するのは困難である。また、近年の低塩分志向から低塩化が進められているが、その場合日持ちが極端に短く、日持ち向上剤や保存料を添加しない限り製品化は困難である。
特開平11−56276号公報 特開2000−189041号公報 特開平11−266775号公報 特開平11−27607号公報 Sanders JW, Leenhouts K, Burghoorn J, Brands JR, Venema G, Kok J. : Mol Microbiol. 1998 Jan;27(2):299-310
Processed marine products such as grouper and sardines are foods that have been aged by soaking fish in a pickled bed such as salt, rice and rice bran. Rice bran pickles are foods that have been aged by immersing them in rice pickles such as rice bran and salt generated during rice milling. Salted food is a food that is made with salt added to the ingredients. All of these improved storage stability by lowering the pH and increasing the salinity due to lactic acid bacteria adhering to the raw material. However, it is difficult to provide a food of stable quality because odors such as rancidity and cemedine odor are generated by lactic acid bacteria and yeast adhering to and mixed with raw materials over time. In addition, low salinization has been promoted in recent years for low salt content. In this case, the shelf life is extremely short, and it is difficult to commercialize the product unless a shelf life improver or a preservative is added.
JP-A-11-56276 JP 2000-189041 A JP-A-11-266775 Japanese Patent Laid-Open No. 11-27607 Sanders JW, Leenhouts K, Burghoorn J, Brands JR, Venema G, Kok J .: Mol Microbiol. 1998 Jan; 27 (2): 299-310

乳酸菌は古来より食習慣があることから安全性の面で心配がない。従って、乳酸菌の生産する抗菌物質は化学的に合成された物質よりも安全性が高いと考えられる。さらに低温で増殖が可能であり、糖質資化能に優れた乳酸菌は発酵能力に優れていると言え、かような乳酸菌を見いだすことで様々な発酵食品に利用できる。本発明の目的は、低温増殖能と糖質資化能をはじめとした発酵能力に優れ、抗菌物質生産能を持ち、グルタミン酸もしくはその塩類存在下で乳酸発酵によりγ-アミノ酪酸及び抗菌物質を生産する乳酸菌を開発することにある。   Lactic acid bacteria have a habit of eating since ancient times, so there is no worry in terms of safety. Therefore, the antibacterial substance produced by lactic acid bacteria is considered to be safer than the chemically synthesized substance. Furthermore, it can be said that a lactic acid bacterium that can grow at a low temperature and has an excellent ability to assimilate carbohydrates is excellent in fermentation ability, and can be used for various fermented foods by finding such a lactic acid bacterium. The purpose of the present invention is excellent in fermentation ability such as low temperature growth ability and carbohydrate utilization ability, has ability to produce antibacterial substances, and produces γ-aminobutyric acid and antibacterial substances by lactic acid fermentation in the presence of glutamic acid or its salts It is to develop lactic acid bacteria.

さらに、本発明の他の目的は、開発された乳酸菌の特長を生かし、食品の腐敗に関連する微生物汚染を抑制しながらγ-アミノ酪酸による機能性を付与した食品の開発にある。   Furthermore, another object of the present invention is to develop a food imparted with functionality by γ-aminobutyric acid while taking advantage of the developed lactic acid bacteria and suppressing microbial contamination related to food spoilage.

酒類のうち清酒を例に挙げると、清酒は火落菌と呼ばれる乳酸菌により貯蔵中に腐敗することが問題となっている。本発明の目的は、本乳酸菌が従来のナイシン生産菌に比べて低温で抗菌物質を高生産することを生かし、本乳酸菌を酒母またはもろみ中に添加し、酵母とともに発酵を行わせることで酒母やもろみ中にナイシンを生産させる。その結果、酒類を腐敗させる火落菌の初発菌数が減少し、さらに生育を阻害することで、火落菌防除技術を開発することにある。従来の技術として「抗腐敗清酒の製造方法」(特開平4−262774)がありナイシンを用いているが、これは「プロテアーゼ失活もしくは除去した清酒にナイシンまたはナイシン含有液を添加すること」とされ、本発明における「本乳酸菌を酒母仕込み時から添加し酵母とともに発酵を行わせ、酒母またはもろみ中でナイシンを生産させる」点で異なる。また、「抗腐敗清酒の製造方法」(特許公開平6-319516)や「抗腐敗酒の製造方法」(特許公開2000-157250)があるが、これらも特開平4−262774と同様に、プロテアーゼ失活もしくは除去した清酒に対して添加することから、本発明とは異なる。   Taking sake as an example of alcoholic beverages, sake has become a problem that it rots during storage by lactic acid bacteria called fire-fung bacteria. The purpose of the present invention is to make use of the fact that the lactic acid bacteria produce a high antibacterial substance at a low temperature compared to conventional nisin producing bacteria, and add the lactic acid bacteria to a liquor or moromi to cause fermentation with yeast. Nisin is produced during moromi. As a result, the number of fire-fighting germs that spoil liquors is reduced, and the growth is inhibited to develop a fire-fighting germ control technology. As a conventional technique, there is “a method for producing anti-septic sake” (Japanese Patent Laid-Open No. Hei 4-262774), and nisin is used, which means “adding nisin or a nisin-containing liquid to the sake that has been inactivated or removed by protease”. However, the present invention is different in that “this lactic acid bacterium is added from the time of brewing the mash and fermented with yeast to produce nisin in the mash or mash”. Further, there are “a method for producing anti-septic sake” (Patent Publication No. 6-319516) and “a method for producing anti-septic sake” (Patent Publication No. 2000-157250). Since it is added to sake that has been deactivated or removed, it is different from the present invention.

高濃度γ-アミノ酪酸の製造に関して、グルタミン酸ナトリウムを高濃度添加すると未反応のグルタミン酸ナトリウムも増加することが米胚芽(糠)(特許文献 特開平6-213252号公報)で知られている。食品に利用する場合、グルタミン酸ナトリウムが多量に残存すると、その食品のもつ味に影響が出ることが考えられる。一方γ-アミノ酪酸にはほとんど味がない。以上のことから、グルタミン酸ナトリウムの残存量が少なく、且つγ-アミノ酪酸を高濃度で生産させる技術が求められている。本発明は乳酸菌を用いた従来の高濃度γ-アミノ酪酸製造技術にある問題点を解消し添加するグルタミン酸もしくはその塩類の残存量が少なく、且つγ-アミノ酪酸を高濃度で含有する組成物並びにその製造法を提供することを目的とするものである。   Regarding the production of high-concentration γ-aminobutyric acid, it is known from rice germ (糠) (Patent Document 6-213252) that unreacted sodium glutamate increases when sodium glutamate is added at a high concentration. When used in foods, if a large amount of sodium glutamate remains, the taste of the food may be affected. On the other hand, γ-aminobutyric acid has almost no taste. In view of the above, there is a demand for a technique for producing a high concentration of γ-aminobutyric acid with a small residual amount of sodium glutamate. The present invention solves the problems in the conventional high-concentration γ-aminobutyric acid production technology using lactic acid bacteria and has a small residual amount of glutamic acid or a salt thereof to be added, and a composition containing γ-aminobutyric acid at a high concentration, and The object is to provide a manufacturing method thereof.

生鮮畜肉類や魚類をはじめとする水産品の保存技術としては、冷蔵、冷凍、塩蔵、いずしなどの発酵による低pH化によって保存が行われているが、風味に変化を起こしにくいことから主に冷蔵や冷凍で保存されている。近年冷蔵流通において低温で増殖する雑菌による汚染が問題になっており、これらを極短時間の乳酸発酵により抗菌物質を含有させることで抑制する方法を開発する。さらに、グルタミン酸もしくはその塩類存在下で乳酸発酵を行いγ-アミノ酪酸による機能性を付与した食品の開発にある。   Preservation technology for marine products such as fresh livestock meat and fish is preserved by lowering the pH by fermentation such as refrigeration, freezing, salt storage, and izushi, but it is difficult to cause changes in flavor. Mainly stored refrigerated or frozen. In recent years, contamination by bacteria that grow at low temperatures in refrigerated distribution has become a problem, and a method for suppressing these by incorporating an antibacterial substance by lactic acid fermentation in an extremely short time will be developed. Furthermore, it is in the development of foods that are functionalized with γ-aminobutyric acid by lactic acid fermentation in the presence of glutamic acid or its salts.

生鮮畜肉類や魚類をはじめとする水産品をもちいた発酵ソーセージは酸味が強く風味に特徴があるため日本人にあまり好まれないが、添加する乳酸菌の増殖速度よりも早い雑菌が増殖する場合が多々あるため、低温で増殖速度が速く、さらに抗菌物質をつくる乳酸菌で短時間発酵させることで雑菌の増殖を抑制し、酸味が少なく日本人の味覚に好ましい発酵ソーセージ類を開発する。さらに、グルタミン酸もしくはその塩類存在下で乳酸発酵を行いγ-アミノ酪酸による機能性を付与した食品の開発にある。   Fermented sausages using fishery products such as fresh livestock meat and fish are not so much preferred by Japanese people because of their strong acidity and flavor, but there are cases in which miscellaneous bacteria grow faster than the growth rate of the added lactic acid bacteria. Therefore, fermented sausages with low acidity and good taste for Japanese taste are developed by fermenting for a short time with lactic acid bacteria that produce antibacterial substances, and by slow fermentation at low temperatures. Furthermore, it is in the development of foods that are functionalized with γ-aminobutyric acid by lactic acid fermentation in the presence of glutamic acid or its salts.

豆乳ヨーグルトは主に生食用として製造されるが、抗菌物質をつくる乳酸菌で発酵させることで豆乳ヨーグルトの品質保持期間を延長し、食品原料として使用することで最終製品の品質保持期間延長を実現させる方法を開発する。さらに、グルタミン酸もしくはその塩類存在下で乳酸発酵を行いγ-アミノ酪酸による機能性を付与した食品の開発にある。   Soymilk yoghurt is mainly produced for raw consumption, but the quality retention period of soymilk yogurt is extended by fermenting with lactic acid bacteria that produce antibacterial substances, and the quality retention period of the final product is extended by using it as a food ingredient Develop a method. Furthermore, it is in the development of foods that are functionalized with γ-aminobutyric acid by lactic acid fermentation in the presence of glutamic acid or its salts.

野菜の漬物とは浅漬けや一夜漬け、麹漬け、ぬか漬け、キムチなど多岐にわたるが、浅漬けや一夜漬けとは野菜類を約2.5%ないし5%の低い食塩濃度で低温で漬けた漬け物で、漬け後一晩で食べられることから名付けられている。しかし、食品の保存性に重大な意義をもつ食塩の濃度が低いことから、原材料に付着して混入した乳酸菌や酵母により酸敗やセメダイン臭などの異臭を発生するため消費期間は極端に短く、日持ち向上剤や保存料を添加しない限り製品化は困難である。また、麹漬けとは野菜類を塩と米と米麹からなる漬け床に漬け込み熟成された食品である。塩分が低いことや糖分が高く栄養価が高いことから微生物汚染を受けやすく、安定した品質の食品を長期間安定して供給することは困難であった。ぬか漬けとは、精米時に発生する米ぬかと食塩をはじめとする漬け床につけ込み熟成させて食品であり、手入れの手間や塩分が高いことから製品化が困難である。低塩化を検討した場合、食品の保存性に重大な意義をもつ食塩の濃度が低いことから、原材料に付着して混入した乳酸菌や酵母により酸敗やセメダイン臭などの異臭を発生するため消費期間は極端に短く、日持ち向上剤や保存料を添加しない限り製品化は困難である。そこで、抗菌物質をつくる乳酸菌で野菜漬物を発酵させることで雑菌の増殖を抑制し、日持ち向上剤や保存料を使用せず低食塩で日持ちする低塩化野菜漬物の開発を目指す。さらに、グルタミン酸もしくはその塩類存在下で乳酸発酵を行いγ-アミノ酪酸による機能性を付与した食品の開発にある。   Vegetable pickles include a variety of pickles, such as pickles, overnight pickles, pickles, rice bran pickles, and kimchi, but pickles that are pickled vegetables at a low salt concentration of about 2.5% to 5% at low temperatures. It is named because it can be eaten overnight. However, since the concentration of sodium chloride, which has a significant significance in the preservation of food, is low, the consumption period is extremely short because the lactic acid bacteria and yeast adhering to the raw materials generate odors such as rancidity and cemedine odor. Commercialization is difficult unless an improver or preservative is added. In addition, pickled cucumber is a food that has been aged by pickling vegetables on a pickled floor made of salt, rice and rice bran. Due to its low salinity and high sugar content and high nutritional value, it is susceptible to microbial contamination, and it has been difficult to stably supply a stable quality food for a long period of time. Rice bran pickles are foods that are ripened by immersing them in rice pickles such as rice bran and salt generated during milling, and are difficult to commercialize due to their high care and salt content. When considering low salinity, the concentration of sodium salt, which has a significant significance for the preservation of food, is low, so the lactic acid bacteria and yeast adhering to the raw material will generate a strange odor such as rancidity and cemedine odor. It is extremely short and difficult to commercialize unless a shelf life improver or preservative is added. Therefore, fermenting vegetable pickles with lactic acid bacteria that produce antibacterial substances suppresses the growth of miscellaneous bacteria, and aims to develop low-chlorinated vegetable pickles that can be kept for a long time with low salt without using shelf life improvers or preservatives. Furthermore, it is in the development of foods that are functionalized with γ-aminobutyric acid by lactic acid fermentation in the presence of glutamic acid or its salts.

天然酵母パン種とはサワーブレッドとも呼ばれる天然酵母パン製造に使用される添加酵母のうち、パン製造に使用する添加酵母を自ら培養及び育種する必要があるものを言い、これを種おこし作業という。種おこし作業が必要なパンを天然酵母パンという。種おこし作業は、酵母の分離源となる果実や穀物などを醗酵させる事を言い、この様にしておこした種や以前使用した天然酵母パン種に水や小麦粉などを加えて種継ぎを行う。この時、原材料に付着して乳酸菌などが混入し、天然酵母パン種中で増殖し、焼成後のパンに酸味等をはじめとする独特の風味が付与されるが、制御が困難なため過剰な酸味を発生することが問題とされてきた。その他、一般雑菌やカビが混入し、天然酵母パン種が腐敗することもある。この雑菌汚染や過剰な酸味の発生を抑制するため、従来の解決手段として、乳酸菌添加で解決する方法(特許公開2000−189041)や生米等の乳酸菌発酵物を磨砕して得た乳液状の発酵種を、パンの第一次原料粉に添加混捏し、乳酸発酵のみを先行させて乳酸生地を一旦製出し、この乳酸生地に、第二次原料を添加混合してパン生地を製出し、常法通り製パンを行う方法(特許公開平11−266775)、さらに乳酸発酵を先行させる方法として茶葉中で増殖させた茶葉エキスで乳酸菌のみの発酵を行わせる方法(特許公開平11−27607)がある。しかしながら、根本的な混入乳酸菌の抑制や雑菌汚染の予防につながっているとは言えない。そこで、抗菌物質をつくる乳酸菌を添加した継代用培地を開発し、天然酵母種の継代を行うことで雑菌の増殖を抑制し、常に安定した品質で酸味が少なく好ましい風味を維持できる天然酵母種の開発を目指す。さらに、グルタミン酸もしくはその塩類存在下で乳酸発酵を行いγ-アミノ酪酸による機能性を付与した食品の開発にある。   The natural yeast bread type refers to an added yeast used for producing natural yeast bread, also called sour bread, that needs to be cultivated and bred by itself, and is referred to as seeding work. Bread that requires seeding work is called natural yeast bread. The seeding operation refers to fermenting fruits, grains, and the like that are the source of yeast separation, and seeding is carried out by adding water, flour, etc. to the seeds thus produced and the previously used natural yeast bread seeds. At this time, lactic acid bacteria and the like adhere to the raw material and grow in natural yeast bread seeds, and the baked bread is given a unique flavor such as acidity, but it is difficult to control, so excessive sourness Has been a problem. In addition, general bacteria and mold may be mixed, and the natural yeast bread may be spoiled. In order to suppress the generation of this contamination and excessive sourness, as a conventional solution, a method of solving by adding lactic acid bacteria (patent publication 2000-189041) and an emulsion obtained by grinding lactic acid bacteria fermentation products such as raw rice The fermented seeds are added and kneaded to the primary raw material flour of bread, and only lactic acid fermentation is preceded to produce lactic acid dough once, and the lactic acid dough is added and mixed with secondary ingredients to produce bread dough, A method of making bread as usual (Patent Publication No. 11-266775), and a method of fermenting only lactic acid bacteria with tea leaf extract grown in tea leaves as a method to precede lactic acid fermentation (Patent Publication No. 11-27607) There is. However, it cannot be said that it has led to the suppression of fundamentally mixed lactic acid bacteria and the prevention of various bacteria contamination. Therefore, we developed a subculture medium with the addition of lactic acid bacteria that produce antibacterial substances, and by suppressing the growth of miscellaneous bacteria by subculturing natural yeast species, natural yeast species that can always maintain a favorable flavor with low acidity and stable quality. Aiming to develop. Furthermore, it is in the development of foods that are functionalized with γ-aminobutyric acid by lactic acid fermentation in the presence of glutamic acid or its salts.

ハタハタずしやいずし類をはじめとする水産加工品とは、魚類などを塩と米と米麹をはじめとする漬け床につけ込み熟成した食品である。ぬか漬けとは、精米時に発生する米ぬかと食塩をはじめとする漬け床につけ込み熟成させた食品である。塩辛とは原材料を食塩でつけ込んだ食品である。これらはいずれも原材料に付着して混入した乳酸菌によるpHの低下や塩分を高くすることで保存性を向上していた。しかし、時間の経過とともに原材料に付着して混入した乳酸菌や酵母により酸敗やセメダイン臭などの異臭を発生するため安定した品質の食品を提供するのは困難である。また、近年の低塩分志向から低塩化が進められているが、その場合日持ちが極端に短く、日持ち向上剤や保存料を添加しない限り製品化は困難である。そこで、抗菌物質をつくる乳酸菌で水産加工品を発酵させることで雑菌の増殖を抑制し、日持ち向上剤や保存料を使用せず低食塩で日持ちする低塩化水産加工品の開発を目指す。さらに、グルタミン酸もしくはその塩類存在下で乳酸発酵を行いγ-アミノ酪酸による機能性を付与した食品の開発にある。   Processed marine products such as grouper and sardines are foods that have been aged by soaking fish in a pickled bed such as salt, rice and rice bran. Rice bran pickles are foods that have been aged by immersing them in rice pickles such as rice bran and salt generated during rice milling. Shiokara is a food that is made with salt added to the ingredients. All of these improved storage stability by lowering the pH and increasing the salinity due to lactic acid bacteria adhering to the raw material. However, it is difficult to provide a food of stable quality because odors such as rancidity and cemedine odor are generated by lactic acid bacteria and yeast adhering to and mixed with raw materials over time. In addition, low salinization has been promoted in recent years for low salt content. In this case, the shelf life is extremely short, and it is difficult to commercialize the product unless a shelf life improver or a preservative is added. Therefore, we aim to develop a low-chlorinated fishery product that can be preserved with low salt without using a shelf-life improver or preservatives by suppressing the growth of miscellaneous bacteria by fermenting fishery products with lactic acid bacteria that produce antibacterial substances. Furthermore, it is in the development of foods that are functionalized with γ-aminobutyric acid by lactic acid fermentation in the presence of glutamic acid or its salts.

本発明者は、発酵食品用乳酸菌を自然界より分離するにあたり、自然からのストレス負荷が大きく且つ未開の土壌である北緯40度以北の温帯落葉広葉樹林帯の腐葉土を分離源とし、低温で良好な生育を示し、糖質資化能に優れた抗菌物質を生産する乳酸菌について鋭意研究した結果、抗菌物質ナイシンZを高生産する乳酸菌 ラクトコッカス・ラクティス・サブスピーシーズ・ラクティス・クラス 1 KLC 1527D株を新規に分離し、さらにその培養液が火落菌の生育を抑制することを確認したことで、本発明を完成した。   When separating lactic acid bacteria for fermented foods from nature, the present inventor uses humus soil of a temperate deciduous broad-leaved forest zone north of latitude 40 degrees north, which is an unexplored soil with a large stress load from nature, and is good at low temperatures As a result of earnest research on lactic acid bacteria that produce an antibacterial substance that shows excellent growth and has an excellent ability to assimilate carbohydrates, the lactic acid bacterium that produces the antibacterial substance Nisin Z, Lactococcus lactis subspices lactis class 1 KLC 1527D strain The present invention was completed by newly separating and confirming that the culture solution suppresses the growth of fire-fung bacteria.

本発明は、抗菌物質であるナイシンを高生産する新規に分離した乳酸菌 ラクトコッカス・ラクティス・サブスピーシーズ・ラクティス・クラス 1 KLC 1527D株に関するものである。上記したように、乳酸菌は古来より食習慣があるため安全性の面で心配がなく、本乳酸菌は漬け物、みそ、しょうゆ、清酒をはじめとする酒類、乳発酵食品、乳発酵飲料など様々な発酵食品や発酵飲料に利用可能である。また本乳酸菌は低温で良好な生育を示し、抗菌物質であるナイシンZを高生産することから、発酵食品や発酵飲料製造中において系中に抗菌物質を産生することで製造過程や製品において雑菌などの増殖阻害が可能となり、腐敗や品質低下を防ぐことが可能である。さらに本乳酸菌は従来のナイシン生産菌と比較して糖質資化能が優れていることから、さまざまな食品へ利用可能である。   The present invention relates to a newly isolated lactic acid bacterium, Lactococcus lactis subspecies lactis class 1 KLC 1527D strain, which produces nisin, an antibacterial substance. As mentioned above, since lactic acid bacteria have traditionally had a habit of eating, there is no worry in terms of safety, and this lactic acid bacterium is a variety of fermented foods such as pickles, miso, soy sauce, sake and other sake, fermented milk, and fermented milk. It can be used for food and fermented beverages. In addition, this lactic acid bacterium shows good growth at low temperatures and produces a high level of antibacterial substance, Nisin Z. It is possible to inhibit the growth of potato and prevent spoilage and quality degradation. Furthermore, since this lactic acid bacterium has a higher ability to assimilate carbohydrates than conventional nisin-producing bacteria, it can be used for various foods.

また、本乳酸菌はグルタミン酸又はその塩類の存在下で培養したときγ-アミノ酪酸を従来の抗菌物質ナイシンを生産する同種の乳酸菌と比較して高生産すること見いだした。さらに、本乳酸菌をグルタミン酸又はその塩類の存在下で培養する際、塩素イオンやその塩類、海水やにがり等を添加することでγ-アミノ酪酸の生産能が著しく上昇することを見いだし、本発明を完成した。   In addition, the present lactic acid bacteria were found to produce higher amounts of γ-aminobutyric acid when cultured in the presence of glutamic acid or its salts compared to the same type of lactic acid bacteria producing the conventional antibacterial substance nisin. Furthermore, when the present lactic acid bacterium is cultured in the presence of glutamic acid or a salt thereof, it has been found that the production ability of γ-aminobutyric acid is remarkably increased by adding chloride ions, salts thereof, seawater, bittern, etc. completed.

また、ナイシンZをはじめとするナイシン類似化合物が、火落菌の増殖を良好に阻害することを確認した。さらに、本乳酸菌は低温で良好な生育を示し、抗菌物質・ナイシンZを高生産することを確認した。例えば本乳酸菌KLC 1527D株を用いて、酒類の製造中において、本乳酸菌を酒母やもろみ中に添加し、酵母とともに発酵を行わせることで酒母やもろみ中にナイシンを生産させる。その結果、酒類を腐敗させる火落菌の初発菌数が減少し、さらに生育を阻害することで、製造過程や製品において火落菌や雑菌などの増殖阻害が可能となり、腐敗や品質低下を防ぐことが可能である。 It was also confirmed that nisin-like compounds such as nisin Z satisfactorily inhibited the growth of fire bacterium. Furthermore, it was confirmed that this lactic acid bacterium showed good growth at low temperatures and produced a high antibacterial substance, Nisin Z. For example , using the present lactic acid bacterium KLC 1527D strain , during the production of alcoholic beverages, the present lactic acid bacterium is added to mash and mash and fermented with yeast to produce nisin in the mash and mash. As a result, the number of fire-cold germs that spoil liquors is reduced, and growth is further inhibited, making it possible to inhibit the growth of fire-killed and miscellaneous bacteria in the manufacturing process and products, and to prevent decay and quality degradation. Is possible.

さらに、本乳酸菌は低温での増殖に優れ幅広い糖質をすばやく資化できることから、生鮮畜肉や魚類をはじめとする水産品、塩漬け野菜、豆乳に本乳酸菌を接種したところ、良好に生育し抗菌活性を確認することで本発明を完成した。またこれら原料をグルタミン酸又はその塩類の存在下で乳酸発酵したとき抗菌物質の他に、機能性物質であるγ-アミノ酪酸を高生産すること見いだした。さらに、本乳酸菌をグルタミン酸又はその塩類の存在下で培養する際、塩素イオンやその塩類、海水やにがり等を添加することで抗菌物質の他、機能性物質であるγ-アミノ酪酸の生産能が著しく上昇することを見いだし、本発明を完成した。   Furthermore, since this lactic acid bacterium has excellent growth at low temperatures and can quickly assimilate a wide range of carbohydrates, when the lactic acid bacterium is inoculated into marine products such as fresh meat and fish, salted vegetables, and soy milk, it grows well and has antibacterial activity. By confirming the above, the present invention was completed. Moreover, when these raw materials were lactic acid fermented in the presence of glutamic acid or a salt thereof, it was found that in addition to the antibacterial substance, γ-aminobutyric acid, which is a functional substance, was highly produced. Furthermore, when cultivating this lactic acid bacterium in the presence of glutamic acid or its salts, the addition of chloride ions, their salts, seawater, bittern, etc. can produce γ-aminobutyric acid, which is a functional substance, in addition to antibacterial substances. It was found that it rose significantly, and the present invention was completed.

本乳酸菌を甘酒に接種し発酵させた後加熱殺菌を行って製造した乳酸発酵甘酒から抗菌活性を確認し、この乳酸発酵甘酒を用いて天然酵母種の種おこしを行ったところ、原材料に由来する乳酸菌の増殖を抑制するため良好な経過を得た。さらに乳酸発酵甘酒を用いて天然酵母種の継代を行ったところ、良好な酸味の天然酵母パン種及びパンを製造できた。また、この乳酸発酵甘酒にて継代した天然酵母種を水と小麦粉を用いて継代したところ、乳酸発酵甘酒を用いて継代したときと同等の安定した品質の天然酵母パン種及びパンを製造できた事で発明を完成した。またこれら原料にグルタミン酸又はその塩類の存在下で乳酸発酵したとき抗菌物質の他、機能性物質であるγ-アミノ酪酸を高生産すること見いだした。さらに、本乳酸菌をグルタミン酸又はその塩類の存在下で培養する際、塩素イオンやその塩類、海水やにがり等を添加することで抗菌物質の他、機能性物質であるγ-アミノ酪酸の生産能が著しく上昇することを見いだし、本発明を完成した。   After inoculating this lactic acid bacterium into amazake and fermenting it, antibacterial activity was confirmed from the lactic acid fermented amazake produced by heat sterilization, and seeding of natural yeast species using this lactic acid fermented amazake was derived from the raw materials A good course was obtained to suppress the growth of lactic acid bacteria. Furthermore, when natural yeast seeds were subcultured using lactic acid fermented amazake, good sour natural yeast bread seeds and bread could be produced. In addition, when the natural yeast species subcultured with this lactic acid fermented amazake were subcultured using water and flour, the same stable quality natural yeast bread species and bread were produced as when subcultured using the lactic acid fermented amazake. We were able to complete the invention. In addition, when lactic acid fermentation was performed on these raw materials in the presence of glutamic acid or its salts, it was found that γ-aminobutyric acid, which is a functional substance, was produced at a high yield in addition to antibacterial substances. Furthermore, when cultivating this lactic acid bacterium in the presence of glutamic acid or its salts, the addition of chloride ions, their salts, seawater, bittern, etc. can produce γ-aminobutyric acid, which is a functional substance, in addition to antibacterial substances. It was found that it rose significantly, and the present invention was completed.

本発明のラクトコッカス・ラクティス・サブスピーシーズ・ラクティス・クラス 1 KLC 1527D株は抗菌物質ナイシンZを生産し、その他のナイシン生産菌と比較して、低温増殖性に優れ、低温培養時における抗菌物質生産性も優れていた。さらに、糖質資化能にも優れていたことから、様々な環境において優勢に生育することが可能である。本乳酸菌はつわり香や菌臭といった異臭の発生がほとんど無いという特性を持つ。その他、γ-アミノ酪酸生成能も従来のナイシン生産菌よりも高く、グルタミン酸及びその塩類より効率よく生産できるため、食品に抗菌物質による日持ち向上と低塩化を実現する他、γ-アミノ酪酸による機能性を付与することが可能である。さらに本乳酸菌を含めた一般的な乳酸菌において、塩化マグネシウムをはじめとする塩素イオンやその塩類、海水、にがりの存在下でγ-アミノ酪酸の生産能が著しく向上することを見いだした。本乳酸菌のつくる抗菌物質は、火落菌をはじめ様々な細菌に対して生育阻害効果を示す。そのため、本乳酸菌を発酵食品等の製造時に添加し発酵を行わせたり、食品等に添加することによって、雑菌等の生育を阻害し、食品の腐敗や品質の低下、さらに火落菌による清酒などの腐敗を有効に防止することができる。菌臭やつわり香を発生せず抗菌物質とγ-アミノ酪酸を作る本乳酸菌を使用することによって、日持ちが向上しγ-アミノ酪酸による機能性が付与されるといった、従来に比べて高品質な食品の製造及び開発が可能である。ここでは、その例として、野菜や畜肉、魚類の低塩化と日持ち向上技術及び天然酵母パンの安全製造法を例示した。今後、この様な食品への利用がすすみ、化学的に合成された保存料を使わず発酵を利用した安全な食品の提供が可能となる。
乳酸菌は古来より食習慣があるため安全性の面では問題がなく、この抗菌性物質は乳酸菌に由来しており、しかも人体内で容易に分解されるため、従来の化学合成された食品保存料と比べ、大量に摂取しても安全性の上で心配がなく、健康面から好ましいものである。
The Lactococcus lactis sub-species lactis class 1 KLC 1527D strain of the present invention produces the antibacterial substance nisin Z, which is superior to other nisin-producing bacteria in terms of low-temperature growth and produces antibacterial substances during low-temperature culture. The property was also excellent. Furthermore, since it was also excellent in carbohydrate assimilation ability, it can grow predominantly in various environments. This lactic acid bacterium has a characteristic that there is almost no off-flavor such as morning sickness and fungus odor. In addition, the ability to produce γ-aminobutyric acid is higher than that of conventional nisin-producing bacteria, and it can be produced more efficiently than glutamic acid and its salts. It is possible to impart sex. Furthermore, in general lactic acid bacteria including this lactic acid bacterium, it was found that the production ability of γ-aminobutyric acid was remarkably improved in the presence of chloride ions such as magnesium chloride, salts thereof, seawater and bittern. The antibacterial substance produced by this lactic acid bacterium exhibits growth inhibitory effects against various bacteria including fire eradicating bacteria. Therefore, by adding this lactic acid bacterium during the production of fermented foods, etc., allowing fermentation or adding to foods, etc., the growth of miscellaneous bacteria etc. is inhibited, and food rot, quality deterioration, and sake by burning bacteria etc. Corruption can be effectively prevented. By using this lactic acid bacterium that produces antibacterial substances and γ-aminobutyric acid without generating a fungus odor or puffy scent, the shelf life is improved and the functionality provided by γ-aminobutyric acid is given. The production and development of food is possible. Here, as an example, low salinization and shelf life improvement technology for vegetables, livestock meat, and fish and a method for safely producing natural yeast bread are illustrated. In the future, it will be possible to provide safe foods using fermentation without using chemically synthesized preservatives.
Since lactic acid bacteria have traditionally had a dietary habit, there is no problem in terms of safety, and since this antibacterial substance is derived from lactic acid bacteria and is easily decomposed in the human body, conventional chemically synthesized food preservatives Compared to the above, even if it is ingested in a large amount, there is no safety concern and it is preferable from the viewpoint of health.

本発明に用いられる乳酸菌KLC 1527D株は次の方法で腐葉土より分離した。
[菌株の分離と同定]
本乳酸菌は秋田県山本郡八森町の世界自然遺産「白神山地」緩衝地域より所管官庁の許可を得て採取した腐葉土0.1gをアジ化ナトリウム20ppm,クロラムフェニコール20ppm,塩化ナトリウム0.9%, 蒸留水5mlの組成からなる生理食塩水中に縣濁した後、この縣濁液1mlを、アジ化ナトリウム20ppm,クロラムフェニコール20ppm,炭酸カルシウム0.8%, 寒天1%を加えたLactobacilli MRS培地(組成:プロテオースペプトン1%、牛肉エキス1%、酵母エキス0.5%、ブドウ糖2%、Tween 80 0.1%、クエン酸アンモニウム0.5%、硫酸マグネシウム0.01%、硫酸マンガン0.005%、リン酸二カリウム0.2%、ディフコ社製)20mlの組成からなるMRS寒天培地で混釈培養を行い、30℃,3日間培養し純粋に分離したものである。
Lactic acid bacteria KLC 1527D strain used in the present invention was isolated from humus by the following method.
[Segregation and identification of strains]
This lactic acid bacterium is distilled from 0.1 g of humus soil collected from the buffer area of the World Natural Heritage “Shirakami Mountains” in Yamamori-gun, Yamamoto-gun, Akita Prefecture, with 20 ppm sodium azide, 20 ppm chloramphenicol, 0.9% sodium chloride, distilled After suspending in physiological saline consisting of 5 ml of water, 1 ml of this suspension was added to Lactobacilli MRS medium containing 20 ppm sodium azide, 20 ppm chloramphenicol, 0.8% calcium carbonate, and 1% agar (composition: Proteose peptone 1%, beef extract 1%, yeast extract 0.5%, glucose 2%, Tween 80 0.1%, ammonium citrate 0.5%, magnesium sulfate 0.01%, manganese sulfate 0.005% (2) Potassium phosphate 0.2%, manufactured by Difco Co., Ltd.) The mixture was cultured on an MRS agar medium having a composition of 20 ml, cultured at 30 ° C. for 3 days, and purely separated.

このように分離した乳酸菌から、ラクトバシラス・ブレビス IFO 12005に対する抗菌活性を指標として、ペーパーディスク検定法(Hoover, D.G. & Harlander, S.K., In Bacteriocins of lactic acid bacteria, Academic Press 社刊、23-39 、1993) によって抗菌性物質生産能を有する乳酸菌を選択した。選択した乳酸菌の菌学的性質を調べたところ、16SリボソームDNA(rDNA)の塩基配列の相同性の解析(Mori, K. et al.:Int. J. Syst. Bacteriol., 47巻、54-57 、1997) によりラクトコッカス・ラクティス・サブスピーシーズ・ラクティス・クラス 1と100%の相同性を示したこと、糖質資化能による分類をAPI50 CH / CHL(日本ビオメリュー社製)により行ったところ、ラクトコッカス・ラクティス・サブスピーシーズ・ラクティス・クラス 1と99.9%以上一致した等の性質から、本菌はラクトコッカス・ラクティス・サブスピーシーズ・ラクティス・クラス 1に属する菌株と同定し、菌株番号をKLC 1527Dとした。   From the thus isolated lactic acid bacteria, antibacterial activity against Lactobacillus brevis IFO 12005 is used as an index, and a paper disk assay (Hoover, DG & Harlander, SK, In Bacteriocins of lactic acid bacteria, published by Academic Press, 23-39, 1993 ) Selected lactic acid bacteria having the ability to produce antibacterial substances. The bacteriological properties of the selected lactic acid bacteria were examined. Analysis of the homology of the base sequence of 16S ribosomal DNA (rDNA) (Mori, K. et al .: Int. J. Syst. Bacteriol., 47, 54- 57, 1997) showed 100% homology with Lactococcus lactis subspecies lactis class 1 and was classified by API50 CH / CHL (manufactured by Biomelieu, Japan) according to carbohydrate assimilation ability. , Lactococcus lactis sub-species, lactis class 1 and more than 99.9% of the nature of this strain, the strain is identified as belonging to Lactococcus lactis sub-species lactis class 1, and the strain number is KLC It was set to 1527D.

Sneath, P. H. A.らの方法[Bergey's Manual of Systematic Bacteriology volume 2]で調べた本乳酸菌KLC 1527D株のその他の菌学的性質は、菌体の形:球菌、グラム染色性:陽性、胞子形成:陰性、カタラーゼ活性:陰性、運動性:陰性、であった。その他、ガス発生:陰性である。   The other mycological properties of the lactic acid bacteria KLC 1527D strain examined by the method of Sneath, PHA et al. [Bergey's Manual of Systematic Bacteriology volume 2] Catalase activity: negative, motility: negative. In addition, gas generation: negative.

本菌株は独立行政法人産業技術総合研究所 特許生物寄託センターに15 産生寄 第 1561号(FERM P−19608)として寄託されている。   This strain is deposited as 15 Production No. 1561 (FERM P-19608) at the Patent Organism Depositary, National Institute of Advanced Industrial Science and Technology.

本発明に用いられる乳酸菌KLC 1527D株の生産する抗菌物質ナイシン類似化合物は次の方法により決定した。   The antibacterial nisin analog produced by the lactic acid bacterium KLC 1527D strain used in the present invention was determined by the following method.

Lactobacilli MRS培地にて純粋培養した菌体から全DNAを抽出し、ナイシンに特異的なプライマーを設計してPCRによりナイシンを暗号化した領域を含む934bpの増幅断片を得た。得られた断片をダイレクトシーケンス法を用いて塩基配列を解析し、相同性比較を行ったところ、ナイシンZと100%一致したことから、乳酸菌KLC 1527D株の抗菌物質をナイシンZと同定した。   Total DNA was extracted from bacterial cells purely cultured in Lactobacilli MRS medium, a primer specific for nisin was designed, and an amplified fragment of 934 bp containing a region encoding nisin by PCR was obtained. When the nucleotide sequence of the obtained fragment was analyzed using the direct sequencing method and the homology was compared, it was 100% identical with nisin Z. Therefore, the antimicrobial substance of the lactic acid bacterium KLC 1527D strain was identified as nisin Z.

本乳酸菌の生産するナイシンZとその他のナイシン類似化合物が火落菌の生育を阻害することは次の方法で決定した。   It was determined by the following method that nisin Z and other nisin-like compounds produced by this lactic acid bacterium inhibit the growth of fire bacterium.

複数の火落菌を検定菌として、本乳酸菌とその他のナイシン生産菌の培養上清、さらに試薬ナイシンを用意し、アガーウェル法にて抗菌活性を調べた。その結果、火落菌に対して生育を良好に阻害する効果が認められた。   The culture supernatant of this lactic acid bacterium and other nisin-producing bacteria and the reagent nisin were prepared using a plurality of fire-fed bacteria as test bacteria, and the antibacterial activity was examined by the agarwell method. As a result, an effect of favorably inhibiting the growth of fire-fung bacteria was observed.

本乳酸菌をはじめとするその他のナイシン生産菌が酒類の製造中において系中に抗菌物質を産生することは、次の方法にて確認した。   It was confirmed by the following method that other nisin producing bacteria including this lactic acid bacterium produced an antibacterial substance in the system during the production of alcoholic beverages.

酒類のうち清酒を例とし、酒母やもろみのモデル系として甘酒を作成した。甘酒は、米と米麹と水を1:1:2の割合で混合し、60℃で4時間糖化後、80℃で2時間殺菌して調整した。この甘酒に本乳酸菌やその他のナイシン生産菌を植菌し、30℃で12時間培養したところ、甘酒から抗菌活性が認められた。さらに、米と米麹と水を1:1:3の割合で混合し、55℃で2時間糖化後15℃まで冷却した甘酒に、本乳酸菌やその他のナイシン生産菌を植菌し、15℃で24時間培養したところ、甘酒から抗菌活性が認められた。さらに、ジアセチルの発生は官能的に認められず、乳酸菌の菌臭などもない、非常に高品質な乳酸発酵甘酒ができたことから、清酒においてもつわり香などのない高品質な発酵を行うことができる。   Using sake as an example of liquor, Amazake was created as a model system for sake mothers and moromi. Amazake was prepared by mixing rice, rice bran and water in a ratio of 1: 1: 2, saccharified at 60 ° C. for 4 hours, and then sterilized at 80 ° C. for 2 hours. When this amazake was inoculated with the present lactic acid bacteria and other nisin-producing bacteria and cultured at 30 ° C for 12 hours, antibacterial activity was observed from amazake. Furthermore, rice, rice bran, and water were mixed at a ratio of 1: 1: 3, and the lactic acid bacteria and other nisin-producing bacteria were inoculated into amazake that was saccharified at 55 ° C for 2 hours and then cooled to 15 ° C. When cultivated for 24 hours, antibacterial activity was observed from Amazake. Furthermore, since the generation of diacetyl was not sensorially recognized and there was no odor of lactic acid bacteria, a very high quality lactic acid fermentation sweet sake was produced. Can do.

本発明に用いられる乳酸菌KLC 1527D株の生産するグルタミン酸脱炭酸酵素によるγ-アミノ酪酸生産能力は次の方法により決定した。   The ability to produce γ-aminobutyric acid by glutamic acid decarboxylase produced by the lactic acid bacterium KLC 1527D strain used in the present invention was determined by the following method.

Lactobacilli MRS培地にて純粋培養した菌体を、0.5%(w/v)になるようにグルタミン酸ナトリウムを加えたLactobacilli MRS培地にて培養し、上清中に含まれるグルタミン酸ナトリウムとγ-アミノ酪酸を薄層クロマトグラフィーにて展開した後ニンヒドリンにより染色を行い、グルタミン酸ナトリウムの減少量とγ-アミノ酪酸の増加量を比較した。必要に応じて0.5%(w/v)グルタミン酸ナトリウムを含む培地に塩化ナトリウムや塩化マグネシウムなどの塩素イオンを含む塩類や、滅菌した海水やにがりを加えた。γ-アミノ酪酸生成量の定量は、全自動アミノ酸分析機 JLC-500V-GA(日本電子株式会社製)を用いて行った。その結果、0.5%(w/v)になるようにグルタミン酸ナトリウムを加えたLactobacilli MRS培地のみでもγ-アミノ酪酸の生成を確認した。さらに1ないし2%(w/v)となるように塩化ナトリウムを加えた場合は加えない場合に比べてγ-アミノ酪酸生成量が約3倍増加し、0.1ないし0.3Mとなるように塩化マグネシウムを加えた場合は加えない場合に比べてγ-アミノ酪酸生成量が約6倍増加したことから、γ-アミノ酪酸生成量の著しい増加を確認した。   Cells cultured pure in Lactobacilli MRS medium are cultured in Lactobacilli MRS medium supplemented with sodium glutamate to 0.5% (w / v), and sodium glutamate and γ-aminobutyric acid contained in the supernatant are After developing by thin layer chromatography, staining was performed with ninhydrin, and the amount of sodium glutamate decreased and the amount of γ-aminobutyric acid increased were compared. As needed, salts containing chloride ions such as sodium chloride and magnesium chloride, sterilized seawater and bittern were added to a medium containing 0.5% (w / v) sodium glutamate. The amount of γ-aminobutyric acid produced was quantified using a fully automatic amino acid analyzer JLC-500V-GA (manufactured by JEOL Ltd.). As a result, the production of γ-aminobutyric acid was confirmed only in a Lactobacilli MRS medium supplemented with sodium glutamate so as to be 0.5% (w / v). Furthermore, when sodium chloride is added so as to be 1 to 2% (w / v), the amount of γ-aminobutyric acid produced is increased about 3 times as compared with the case where sodium chloride is not added, so that magnesium chloride is 0.1 to 0.3M. The amount of γ-aminobutyric acid produced increased by about 6 times compared to the case where γ-aminobutyric acid was not added, confirming a significant increase in the amount of γ-aminobutyric acid produced.

本発明に用いられる乳酸菌KLC 1527D株の食塩耐性やアルコール耐性は次の方法により決定した。   The salt resistance and alcohol resistance of the lactic acid bacteria KLC 1527D strain used in the present invention were determined by the following methods.

食塩耐性は、Lactobacilli MRS培地にて純粋培養した菌体を、0ないし8%(w/v)になるように1%刻みで塩化ナトリウムを加えたLactobacilli MRS培地にて培養し、上清中の濁度の変化を調べた。アルコール耐性は、Lactobacilli MRS培地にて純粋培養した菌体を、0ないし12.5%(w/v)になるように2.5%刻みで99.5%エタノールを加えたLactobacilli MRS培地にて培養し、上清中の濁度の変化を調べた。その結果、食塩濃度5%、アルコール濃度7.5%まで良好に生育することがわかった。   For salt tolerance, cells cultured purely in Lactobacilli MRS medium were cultured in Lactobacilli MRS medium supplemented with sodium chloride in 1% increments to be 0 to 8% (w / v). The change in turbidity was investigated. Alcohol resistance is obtained by culturing cells cultured in Lactobacilli MRS medium purely in Lactobacilli MRS medium in Lactobacilli MRS medium supplemented with 99.5% ethanol in increments of 2.5% to be 0 to 12.5% (w / v). The change of turbidity of was investigated. As a result, it was found that the cells grew well up to a salt concentration of 5% and an alcohol concentration of 7.5%.

次に実施例をあげて本発明をさらに具体的に説明するが、本発明はこれらにより限定されるものではない。   EXAMPLES Next, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.

以下、その他のナイシン生産菌とは、ラクトコッカス・ラクティス IFO 12007株(以下、IFO 12007株)と、ラクトコッカス・ラクティス ATCC 11454株(以下、ATCC 11454株)を用いた。   Hereinafter, Lactococcus lactis IFO 12007 strain (hereinafter referred to as IFO 12007 strain) and Lactococcus lactis ATCC 11454 strain (hereinafter referred to as ATCC 11454 strain) were used as other nisin-producing bacteria.

以下、火落菌とは、ラクトバシラス・フルクチボランス IFO 13954株(以下、IFO 13954株)、ラクトバシラス・ホモヒオチ JCM 1199株 (以下、JCM 1199株)、清酒製造場より入手した3株の未同定株を用いた。   Hereinafter, the fungus was Lactobacillus fructivorans IFO 13954 (hereinafter referred to as IFO 13954), Lactobacillus homohio JCM 1199 (hereinafter referred to as JCM 1199), 3 unidentified strains obtained from Sake Factory .

ラクトコッカス・ラクティス・サブスピーシーズ・ラクティス・クラス 1 KLC 1527Dの分離と同定   Isolation and identification of Lactococcus lactis subspecies lactis class 1 KLC 1527D

秋田県山本郡八森町の世界自然遺産「白神山地」緩衝地域より所管官庁の許可を得て採取した腐葉土0.1gをアジ化ナトリウム20ppm,クロラムフェニコール20ppm,塩化ナトリウム0.9%, 蒸留水5mlの組成からなる生理食塩水中に縣濁した後、この縣濁液1mlを、アジ化ナトリウム20ppm,クロラムフェニコール20ppm,炭酸カルシウム0.8%, 寒天1%を加えたLactobacilli MRS培地(組成:プロテオースペプトン1%、牛肉エキス1%、酵母エキス0.5%、ブドウ糖2%、Tween 80 0.1%、クエン酸アンモニウム0.5%、硫酸マグネシウム0.01%、硫酸マンガン0.005%、リン酸二カリウム0.2%、ディフコ社製)20mlの組成からなるMRS寒天培地で混釈培養を行い、30℃,3日間培養し純粋に分離した。   0.1 g of humus soil collected from the World Natural Heritage `` Shirakami Mountains '' buffer area in Yamamori-gun, Yamamoto-gun, Akita Prefecture, with the permission of the competent authorities, 20 ppm sodium azide, 20 ppm chloramphenicol, 0.9% sodium chloride, 5 ml distilled water After suspending in physiological saline consisting of the composition, 1 ml of this suspension was added to Lactobacilli MRS medium containing 20 ppm sodium azide, 20 ppm chloramphenicol, 0.8% calcium carbonate, and 1% agar (composition: proteose peptone) 1%, beef extract 1%, yeast extract 0.5%, glucose 2%, Tween 80 0.1%, ammonium citrate 0.5%, magnesium sulfate 0.01%, manganese sulfate 0.005%, phosphoric acid The mixture was cultured on an MRS agar medium having a composition of 20 ml (dipotassium 0.2%, manufactured by Difco), and cultured purely at 30 ° C. for 3 days.

このように分離した乳酸菌から、ラクトバシラス・ブレビス IFO 12005に対する抗菌活性を指標として、ペーパーディスク検定法(Hoover, D.G. & Harlander, S.K., In Bacteriocins of lactic acid bacteria, Academic Press 社刊、23-39 、1993) によって抗菌性物質生産能を有する乳酸菌を選択した。選択した乳酸菌の菌学的性質を調べたところ、16SリボソームDNA(rDNA)の塩基配列の相同性の解析(Mori, K. et al.:Int. J. Syst. Bacteriol., 47巻、54-57 、1997) によりラクトコッカス・ラクティス・サブスピーシーズ・ラクティス・クラス 1と100%の相同性を示したこと、糖質資化能による分類をAPI50 CH / CHL(日本ビオメリュー社製)により行ったところ、ラクトコッカス・ラクティス・サブスピーシーズ・ラクティス・クラス 1と99.9%以上一致した等の性質から、本菌はラクトコッカス・ラクティス・サブスピーシーズ・ラクティス・クラス 1に属する菌株と同定し、菌株番号をKLC 1527Dとした。   From the thus isolated lactic acid bacteria, antibacterial activity against Lactobacillus brevis IFO 12005 is used as an index, and a paper disk assay (Hoover, DG & Harlander, SK, In Bacteriocins of lactic acid bacteria, Academic Press, 23-39, 1993 ) To select lactic acid bacteria having the ability to produce antibacterial substances. The bacteriological properties of the selected lactic acid bacteria were examined. Analysis of the homology of the base sequence of 16S ribosomal DNA (rDNA) (Mori, K. et al .: Int. J. Syst. Bacteriol., 47, 54- 57, 1997) showed 100% homology with Lactococcus lactis subspecies lactis class 1 and was classified by API50 CH / CHL (manufactured by Biomeryu Japan) according to the ability to assimilate carbohydrates. , Lactococcus lactis sub-species, lactis class 1 and more than 99.9% of the nature of this strain, the strain is identified as belonging to Lactococcus lactis sub-species lactis class 1, and the strain number is KLC 1527D.

Sneath, P. H. A.らの方法[Bergey's Manual of Systematic Bacteriology volume 2]で調べた本乳酸菌KLC 1527D株のその他の菌学的性質は、菌体の形:球菌、グラム染色性:陽性、胞子形成:陰性、カタラーゼ活性:陰性、運動性:陰性、であった。その他、ガス発生:陰性である。   The other bacteriological properties of this lactic acid bacterium KLC 1527D strain examined by the method of Sneath, PHA et al. [Bergey's Manual of Systematic Bacteriology volume 2] are as follows: Cell shape: cocci, Gram staining: positive, spore formation: negative, Catalase activity: negative, motility: negative. In addition, gas generation: negative.

本菌の同定に関する知見を表1に示す。
The findings regarding the identification of this bacterium are shown in Table 1.

Figure 0004041850
Figure 0004041850

抗菌物質ナイシンZの決定   Determination of antibacterial substance Nisin Z

本発明に用いられる乳酸菌KLC 1527D株の生産する抗菌物質ナイシン類似化合物は次の方法により決定した。   The antibacterial nisin analog produced by the lactic acid bacterium KLC 1527D strain used in the present invention was determined by the following method.

Lactobacilli MRS培地にて純粋培養した菌体から全DNAを抽出し、ナイシンに特異的なプライマーを設計してPCRによりナイシンを暗号化した領域を含む934bpの増幅断片を得た。得られた断片をダイレクトシーケンス法を用いて塩基配列を解析し、相同性比較を行ったところ、ナイシンZと100%一致したことから、乳酸菌KLC 1527D株の抗菌物質をナイシンZと同定した。ナイシンの同定に関する知見を表2に示す。   Total DNA was extracted from bacterial cells purely cultured in Lactobacilli MRS medium, a primer specific for nisin was designed, and an amplified fragment of 934 bp containing a region encoding nisin by PCR was obtained. When the nucleotide sequence of the obtained fragment was analyzed using the direct sequencing method and the homology was compared, it was 100% identical with nisin Z. Therefore, the antimicrobial substance of the lactic acid bacterium KLC 1527D strain was identified as nisin Z. The findings regarding the identification of nisin are shown in Table 2.

Figure 0004041850
Figure 0004041850

本乳酸菌KLC 1527D株とその他のナイシン生産菌の培養温度を変えた生育速度の比較   Comparison of growth rate of the lactic acid bacteria KLC 1527D and other nisin-producing bacteria at different culture temperatures

本乳酸菌KLC 1527D株とその他のナイシン生産菌で、培養温度を10℃、15℃、20℃、25℃、30℃、37℃に設定したのち所定時間静置培養し、本菌の生育状態について調べた。培養温度を変化させた場合の増殖量をOD 660 で測定した。   With the lactic acid bacteria KLC 1527D strain and other nisin-producing bacteria, set the culture temperature to 10 ° C, 15 ° C, 20 ° C, 25 ° C, 30 ° C, 37 ° C, and leave it for a predetermined period of time. Examined. The amount of growth when the culture temperature was changed was measured at OD 660.

培養温度を10℃、15℃、20℃で培養した結果を図1に、培養温度を25℃、30℃、37℃で培養した結果を図2に示した。KLC 1527D株とATCC 11454株は温度にかかわらずIFO 12007株と比較して生育が良かった。また、KLC 1527D株とATCC 11454株の間では、KLC 1527D株の方が初期生育が良好であった。最高濁度はATCC 11454株の方がKLC 1527D株を上回ることがあった。   The results of culturing at 10 ° C., 15 ° C., and 20 ° C. are shown in FIG. 1, and the results of culturing at 25 ° C., 30 ° C., and 37 ° C. are shown in FIG. KLC 1527D and ATCC 11454 grew better than IFO 12007 regardless of temperature. In addition, between the KLC 1527D strain and the ATCC 11454 strain, the KLC 1527D strain had better initial growth. The maximum turbidity of ATCC 11454 was higher than that of KLC 1527D.

いずれの温度条件においてもKLC 1527D株はその他のナイシン生産菌と比較して初期生育がよいことがわかった。この結果から、どんな環境下においても環境中で優先的に増殖することがわかった。   It was found that the KLC 1527D strain had better initial growth than any other nisin-producing bacteria under any temperature condition. From this result, it was found that the cells proliferate preferentially in any environment.

図1は、本乳酸菌とその他のナイシン生産菌を摂氏10度、15度、20度で培養した結果の生育状態を示すグラフである。   FIG. 1 is a graph showing the growth state as a result of culturing the present lactic acid bacterium and other nisin-producing bacteria at 10, 15 and 20 degrees Celsius.

図2は、本乳酸菌とその他のナイシン生産菌を摂氏25度、30度、37度で培養した結果の生育状態を示すグラフである。   FIG. 2 is a graph showing the growth state as a result of culturing the present lactic acid bacterium and other nisin-producing bacteria at 25, 30 and 37 degrees Celsius.

本乳酸菌KLC 1527D株とその他のナイシン生産菌の培養温度を変えた抗菌活性の比較   Comparison of antibacterial activity of the lactic acid bacteria KLC 1527D and other nisin-producing bacteria at different culture temperatures

本乳酸菌KLC 1527D株とその他のナイシン生産菌で、培養温度を15℃、25℃、37℃に設定したのち所定時間静置培養し、抗菌性ペプチドの生産性について調べた。抗菌活性をラクトバシラス・サケイ IFO 3541に対する抗菌活性を指標としたアガーウェル法によって調べた。抗菌活性単位は、抗菌活性を含む溶液を段階的に希釈し、検定菌に滴下し、生育阻止円を形成したもっとも希釈率の高い溶液の活性を1とし、その逆数をArbitrary Unit (以下、AUと略す)と定義した。1mlの溶液中に含まれる抗菌活性をAU /mlとして示した。   With this lactic acid bacterium KLC 1527D strain and other nisin-producing bacteria, the culture temperature was set to 15 ° C., 25 ° C., and 37 ° C., followed by static culture for a predetermined time, and the antimicrobial peptide productivity was examined. Antibacterial activity was examined by the Agarwell method using the antibacterial activity against Lactobacillus salmon IFO 3541 as an index. The antibacterial activity unit is obtained by stepwise diluting a solution containing antibacterial activity, dripping the solution into a test bacterium, and setting the activity of the solution with the highest dilution ratio forming a growth inhibition circle as 1, and reciprocal of the inverse unit as an Arbitrary Unit (hereinafter referred to as AU). Abbreviated). The antibacterial activity contained in 1 ml of solution is shown as AU / ml.

その結果を図3に示す。図1より15℃にて培養した場合、IFO 12007株のみきわめて生育が遅く、ATCC 11454株とKLC 1527D株はKLC 1527D株の方が生育が良かった。その培養上清中に含まれる抗菌活性は、培養開始後24時間目でKLC 1527D株は800 AU/mlの抗菌活性に対し、ATCC 11454株、IFO 12007株は200 AU / mlであった。図2より25℃にて培養した場合、IFO 12007株のみきわめて生育が遅く、ATCC 11454株とKLC 1527D株ではKLC 1527D株の方が初期生育が良好であった。その培養上清中に含まれる抗菌活性は、培養開始後24時間目でKLC 1527D株は1600 AU/mlの抗菌活性に対し、ATCC 11454株、IFO 12007株は800 AU / mlであった。図2より37℃にて培養した場合、IFO 12007株のみ若干生育が遅く、ATCC 11454株とKLC 1527D株ではKLC 1527D株の方が初期生育が良好であり、最高濁度ではATCC 11454の方が高かった。その培養上清中に含まれる抗菌活性は、培養開始後24時間目でKLC 1527D
株は1600 AU/mlの抗菌活性に対し、ATCC 11454株は400 AU / ml、IFO 12007株は800 AU / mlであった。
The result is shown in FIG. As shown in FIG. 1, when cultured at 15 ° C., only the IFO 12007 strain grew very slowly, and the ATCC 11454 and KLC 1527D strains grew better with the KLC 1527D strain. The antibacterial activity contained in the culture supernatant was ATCC 11454 and IFO 12007 were 200 AU / ml, whereas the KLC 1527D strain had 800 AU / ml of antibacterial activity 24 hours after the start of the culture. As shown in FIG. 2, when cultured at 25 ° C., only the IFO 12007 strain grew very slowly, and the ATCC 11454 and KLC 1527D strains showed better initial growth of the KLC 1527D strain. The antibacterial activity contained in the culture supernatant at 24 hours after the start of the culture was 1600 AU / ml for the KLC 1527D strain, and 800 AU / ml for the ATCC 11454 strain and the IFO 12007 strain. Figure 2 shows that when cultured at 37 ° C, only the IFO 12007 strain grew slightly slower, with the ATCC 11454 and KLC 1527D strains showing better initial growth with the KLC 1527D strain, and the highest turbidity with the ATCC 11454. it was high. The antibacterial activity contained in the culture supernatant is KLC 1527D 24 hours after the start of culture.
The antimicrobial activity of the strain was 1600 AU / ml, while the ATCC 11454 strain was 400 AU / ml and the IFO 12007 strain was 800 AU / ml.

いずれの培養条件においてもKLC 1527D株の抗菌活性はその他のナイシン生産菌と比較して活性が高く、抗菌物質生産性が高いことがわかった。   Under any culture condition, the antibacterial activity of KLC 1527D strain was higher than that of other nisin producing bacteria, and the antibacterial substance productivity was high.

図3は、本乳酸菌とその他のナイシン生産菌とで、培養温度を変えた抗菌活性を比較したグラフである。   FIG. 3 is a graph comparing the antibacterial activity of this lactic acid bacterium and other nisin-producing bacteria with different culture temperatures.

本乳酸菌KLC 1527D株とその他ナイシン生産菌の糖質資化性の比較   Comparison of carbohydrate utilization by the lactic acid bacteria KLC 1527D and other nisin-producing bacteria

本乳酸菌KLC 1527D株とその他のナイシン生産菌で、糖質資化能をAPI50 CH / CHL(日本ビオメリュー社製)により比較した結果を表3に示す。   Table 3 shows the results of comparison of carbohydrate utilization by API50 CH / CHL (manufactured by Biomelieu, Japan) between the lactic acid bacteria KLC 1527D strain and other nisin-producing bacteria.

その結果、KLC 1527D株はATCC 11454株、IFO 12007株と比較して糖質資化性の点で劣っている点はなく、逆にL-Arabinose、D-Xylose、Galactose、Mannitol、Amygdaline、Arbutine、Lactose、Trehalose、Gluconateの資化性において優れていることがわかった。   As a result, the KLC 1527D strain is not inferior in terms of carbohydrate utilization compared to the ATCC 11454 strain and IFO 12007 strain, and conversely L-Arabinose, D-Xylose, Galactose, Mannitol, Amygdaline, Arbutine , Lactose, Trehalose and Gluconate were found to be excellent in utilization.

Figure 0004041850
Figure 0004041850

本乳酸菌KLC 1527D株の生産するナイシンZとその他のナイシン生産菌が生産するナイシンの火落菌に対する効果   Effects of Nisin Z produced by this lactic acid bacterium KLC 1527D strain and nisin produced by other nisin producing bacteria on fire eradication

本乳酸菌KLC 1527D株とその他のナイシン生産菌をLactobacilli MRS培地にて24時間培養した培養上清と、試薬ナイシン(シグマ社製)を用いて、火落菌に対する増殖阻害効果をアガーウェル法にて調べた。増殖阻害効果は形成された阻止円の大きさから相対的に示した。火落菌の培養は、火落菌検査液(SI検査液、(財)日本醸造協会製)を用い、必要で有れば、1%となるように寒天を加え、煮沸溶解し、平板培地として使用した。   Using the culture supernatant of this lactic acid bacterium KLC 1527D strain and other nisin-producing bacteria cultured in Lactobacilli MRS medium for 24 hours and the reagent nisin (manufactured by Sigma), the growth inhibitory effect on fire-fung bacteria was examined by the Agarwell method. . The growth inhibitory effect was shown relatively from the size of the formed inhibition circle. For the culture of fire-fung bacteria, use a fire-fung bacteria test solution (SI test solution, manufactured by Japan Brewing Association). If necessary, add agar to 1%, boil and dissolve, and use as a plate medium did.

その結果、本乳酸菌の生産するナイシンZをはじめとする全てのナイシン類似物質から火落菌の生育阻害効果が認められた。得られた知見を表4に記す。   As a result, the growth inhibitory effect of the fallen fungus was observed from all nisin-like substances including nisin Z produced by this lactic acid bacterium. The obtained findings are shown in Table 4.

Figure 0004041850
Figure 0004041850

本乳酸菌KLC 1527D株とその他のナイシン生産菌の酒母における抗菌物質の生産性   Productivity of antibacterial substances in the lactic acid bacteria KLC 1527D strain and other nisin-producing fungi

本乳酸菌をはじめとするその他のナイシン生産菌が酒類の製造中において系中に抗菌物質を産生することは、次の方法にて確認した。   It was confirmed by the following method that other nisin producing bacteria including this lactic acid bacterium produced an antibacterial substance in the system during the production of alcoholic beverages.

酒類のうち清酒を例とし、酒母やもろみのモデル系として甘酒を作成した。甘酒は、米と米麹と水を1:1:2の割合で混合し、60℃で4時間糖化後、80℃で2時間殺菌して調整した。この甘酒に本乳酸菌やその他のナイシン生産菌を植菌し、30℃で12時間静置培養した。さらに、米と米麹と水を1:1:3の割合で混合し、55℃で2時間糖化後15℃まで冷却した甘酒に、本乳酸菌やその他のナイシン生産菌を植菌し、15℃で所定時間培養した。抗菌活性の検出はアガーウェル法にて行った。また、できあがった乳酸発酵甘酒を官能試験を行った。   Using sake as an example of liquor, Amazake was created as a model system for sake mothers and moromi. Amazake was prepared by mixing rice, rice bran and water in a ratio of 1: 1: 2, saccharified at 60 ° C. for 4 hours, and then sterilized at 80 ° C. for 2 hours. The lactic acid bacterium and other nisin-producing bacteria were inoculated into this amazake and cultured at 30 ° C. for 12 hours. Furthermore, rice, rice bran, and water were mixed at a ratio of 1: 1: 3, and the lactic acid bacteria and other nisin-producing bacteria were inoculated into amazake that was saccharified at 55 ° C for 2 hours and then cooled to 15 ° C. For a predetermined time. Antibacterial activity was detected by the Agarwell method. In addition, a sensory test was performed on the finished lactic acid fermented amazake.

その結果、甘酒から抗菌活性が認められた。実施例6の結果と本結果より、貯蔵中清酒の火落ち防止効果が認められた。得られた知見を表5に記す。さらに、ジアセチルの発生は官能的に認められず、乳酸菌の菌臭などもない、非常に高品質な乳酸発酵甘酒ができたことから、清酒においてもつわり香などのない高品質な清酒製造を行うことができる。   As a result, antibacterial activity was recognized from amazake. From the results of Example 6 and the results, it was confirmed that sake during storage was effective in preventing fire from falling. The obtained findings are shown in Table 5. Furthermore, the generation of diacetyl was not detected sensuously, and there was no odor of lactic acid bacteria, so a very high quality lactic acid fermented sweet sake was produced. be able to.

Figure 0004041850
Figure 0004041850

本乳酸菌KLC 1527D株とその他のナイシン生産性乳酸菌におけるγ-アミノ酪酸生産性 Γ-Aminobutyric acid productivity in this lactic acid bacterium KLC 1527D and other nisin-producing lactic acid bacteria

本乳酸菌をはじめとするその他の乳酸菌が系中のグルタミン酸及びその塩類よりγ-アミノ酪酸を生成することは次の方法により確認した。   It was confirmed by the following method that other lactic acid bacteria including this lactic acid bacterium produced γ-aminobutyric acid from glutamic acid and its salts in the system.

その他の乳酸菌として本乳酸菌と同種でナイシン生産菌として知られているATCC 11454株とIFO 12007株を用いた。本乳酸菌とその他の乳酸菌を、0.5%のグルタミン酸ナトリウムを含むLactobacilli MRS培地にて30℃で4日間培養した。培養上清に含まれるγ-アミノ酪酸生成量の定量は、全自動アミノ酸分析機 JLC-500V-GA(日本電子株式会社製)を用いて行った。さらに、上清中に含まれる抗菌活性をアガーウェル法にて行った。   As other lactic acid bacteria, ATCC 11454 strain and IFO 12007 strain, which are the same species as this lactic acid bacterium and are known as nisin-producing bacteria, were used. This lactic acid bacterium and other lactic acid bacteria were cultured at 30 ° C. for 4 days in a Lactobacilli MRS medium containing 0.5% sodium glutamate. The amount of γ-aminobutyric acid produced in the culture supernatant was quantified using a fully automatic amino acid analyzer JLC-500V-GA (manufactured by JEOL Ltd.). Furthermore, the antibacterial activity contained in the supernatant was performed by the Agarwell method.

その結果、本乳酸菌とATCC 11454株、IFO 12007株からγ-アミノ酪酸の生成を確認した。結果を図4に示す。γ-アミノ酪酸の生成量は本乳酸菌がわずかにATCC株を上回った。さらに、本乳酸菌の培養上清からは抗菌活性が確認された。   As a result, production of γ-aminobutyric acid was confirmed from this lactic acid bacterium, ATCC 11454 strain and IFO 12007 strain. The results are shown in FIG. The amount of γ-aminobutyric acid produced was slightly higher than that of the ATCC strain in this lactic acid bacterium. Furthermore, antibacterial activity was confirmed from the culture supernatant of this lactic acid bacterium.

図4は、本乳酸菌とその他のナイシン生産性乳酸菌におけるγ−アミノ酪酸生産性を示すグラフである。   FIG. 4 is a graph showing γ-aminobutyric acid productivity in the present lactic acid bacterium and other nisin-producing lactic acid bacteria.

本乳酸菌KLC 1527D株の食塩耐性とアルコール耐性   Salt and alcohol tolerance of the lactic acid bacteria KLC 1527D

本乳酸菌とその他ナイシン生産乳酸菌の食塩耐性とアルコール耐性は次のようにして調べた。   The salt resistance and alcohol resistance of this lactic acid bacterium and other nisin-producing lactic acid bacteria were examined as follows.

食塩耐性は、Lactobacilli MRS培地にて純粋培養した菌体を、0ないし8%(w/v)になるように1%刻みで塩化ナトリウムを加えたLactobacilli MRS培地にて培養し、上清中の濁度の変化を調べた。アルコール耐性は、Lactobacilli MRS培地にて純粋培養した菌体を、0ないし12.5%(w/v)になるように2.5%刻みで99.5%エタノールを加えたLactobacilli MRS培地にて培養し、上清中の濁度の変化を調べた。   For salt tolerance, cells cultured purely in Lactobacilli MRS medium were cultured in Lactobacilli MRS medium supplemented with sodium chloride in 1% increments to be 0 to 8% (w / v). The change in turbidity was investigated. Alcohol resistance is obtained by culturing cells cultured in Lactobacilli MRS medium purely in Lactobacilli MRS medium in Lactobacilli MRS medium supplemented with 99.5% ethanol in increments of 2.5% to be 0 to 12.5% (w / v). The change of turbidity of was investigated.

その結果、食塩濃度5%、アルコール濃度7.5%まで良好に生育することがわかった。また、全ての条件において本乳酸菌がその他のナイシン生産菌に比べて生育が早かった。図5は本乳酸菌の食塩耐性試験における濁度変化を示す。図6は本乳酸菌と他のナイシン生産菌の食塩濃度4ないし6%における濁度変化を示している。この結果より、従来のナイシン生産菌に比べて食塩ストレス環境下での生育が良く、漬物など食塩を多く使用する食品への利用が可能だと認められた。   As a result, it was found that the cells grew well up to a salt concentration of 5% and an alcohol concentration of 7.5%. In all conditions, the lactic acid bacteria grew faster than other nisin-producing bacteria. FIG. 5 shows the turbidity change in the salt tolerance test of this lactic acid bacterium. FIG. 6 shows the turbidity change of this lactic acid bacterium and other nisin producing bacteria at a salt concentration of 4 to 6%. From these results, it was recognized that the growth under salt stress environment was better than that of conventional nisin producing bacteria and that it could be used for foods such as pickles that use a lot of salt.

図5は、本乳酸菌の食塩耐性試験における濁度変化を示すグラフである。   FIG. 5 is a graph showing changes in turbidity in a salt tolerance test of the present lactic acid bacteria.

図6は、本乳酸菌と他のナイシン生産菌の食塩濃度4ないし6%における濁度変化を示すグラフである。   FIG. 6 is a graph showing changes in turbidity of the lactic acid bacteria and other nisin-producing bacteria at a salt concentration of 4 to 6%.

本乳酸菌KLC 1527D株とその他のナイシン生産乳酸菌の食塩ストレス環境下における増殖性比較とγ-アミノ酪酸生産性   Comparison of growth and γ-aminobutyric acid productivity of this lactic acid bacterium KLC 1527D and other nisin-producing lactic acid bacteria under salt stress environment

本乳酸菌をはじめとするその他のナイシン生産菌が食塩ストレス環境下における系中のグルタミン酸及びその塩類よりγ-アミノ酪酸を生成することは次の方法により確認した。   It was confirmed by the following method that other nisin producing bacteria including this lactic acid bacterium produced γ-aminobutyric acid from glutamic acid and its salts in the system under a salt stress environment.

その他の乳酸菌として、本乳酸菌と同種でナイシン生産菌として知られているATCC 11454株とIFO 12007株を用いた。本乳酸菌とその他の乳酸菌を、0.5%のグルタミン酸ナトリウムを含むLactobacilli MRS培地に塩化ナトリウムを加えない非添加区と、1%の塩化ナトリウムを加えた1%塩化ナトリウム添加区の2種類の培地で、30℃で4日間培養した。培養上清に含まれるγ-アミノ酪酸生成量の定量は、全自動アミノ酸分析機 JLC-500V-GA(日本電子株式会社製)を用いて行った。さらに、上清中に含まれる抗菌活性をアガーウェル法にて行った。   As other lactic acid bacteria, ATCC 11454 strain and IFO 12007 strain, which are the same species as this lactic acid bacterium and are known as nisin-producing bacteria, were used. This lactic acid bacterium and other lactic acid bacteria can be used in two types of media: a non-addition group where sodium chloride is not added to a Lactobacilli MRS medium containing 0.5% sodium glutamate, and a 1% sodium chloride addition group where 1% sodium chloride is added. The cells were cultured at 30 ° C for 4 days. The amount of γ-aminobutyric acid produced in the culture supernatant was quantified using a fully automatic amino acid analyzer JLC-500V-GA (manufactured by JEOL Ltd.). Furthermore, the antibacterial activity contained in the supernatant was performed by the Agarwell method.

その結果、全ての乳酸菌からγ-アミノ酪酸の生成を確認した。結果を図7に示す。全ての乳酸菌において、塩化ナトリウムを加えて培養したときの方がγ-アミノ酪酸の生成量が増大することがわかった。また、本乳酸菌において、γ-アミノ酪酸生成量が最も多いのは食塩濃度2%の時であり、1ないし3%で効率よくγ-アミノ酪酸を生成することがわかった。同様の実験をγ-アミノ酪酸高生産菌として知られるラクトバシラス・ブレビス IFO 12005株を用いて行ったところ、γ-アミノ酪酸の生産量が向上することを確認した。さらに、本乳酸菌の培養上清からは抗菌活性が確認されたため、系中に抗菌物質ナイシンとγ-アミノ酪酸を同時に生成することが確認された。   As a result, the production of γ-aminobutyric acid was confirmed from all lactic acid bacteria. The results are shown in FIG. In all lactic acid bacteria, it was found that the amount of γ-aminobutyric acid produced increased when cultured with sodium chloride. Moreover, in this lactic acid bacterium, the amount of γ-aminobutyric acid produced was highest when the salt concentration was 2%, and it was found that γ-aminobutyric acid was efficiently produced at 1 to 3%. A similar experiment was carried out using Lactobacillus brevis IFO 12005 strain known as a γ-aminobutyric acid high-producing bacterium, and it was confirmed that the production amount of γ-aminobutyric acid was improved. Furthermore, since antibacterial activity was confirmed from the culture supernatant of this lactic acid bacterium, it was confirmed that the antibacterial substances nisin and γ-aminobutyric acid were simultaneously produced in the system.

図7は、本乳酸菌とその他のナイシン生産乳酸菌の食塩ストレス環境下における増殖性比較とγ-アミノ酪酸生産性を示すグラフである。   FIG. 7 is a graph showing growth comparison and γ-aminobutyric acid productivity of the present lactic acid bacterium and other nisin-producing lactic acid bacteria in a salt stress environment.

本乳酸菌KLC 1527D株の増殖とγ-アミノ酪酸生産性に対する塩素イオンもしくは塩素イオンを含む塩類が与える効果   Effects of chloride ions or salts containing chloride ions on growth and γ-aminobutyric acid productivity of the lactic acid bacterium KLC 1527D

本乳酸菌KLC 1527D株の増殖とγ-アミノ酪酸生産性について、塩素イオンもしくは塩素イオンを含む塩類の効果は次の方法により確認した。   Regarding the growth and γ-aminobutyric acid productivity of this lactic acid bacterium KLC 1527D strain, the effect of chloride ions or salts containing chloride ions was confirmed by the following method.

塩素イオンもしくは塩素イオンを含む塩類として、塩化ナトリウムの他、塩化カリウム、塩化アンモニウム、塩化マグネシウム、塩化カルシウムを使用した。塩濃度は全て0.2Mとなるように調整し、各塩類を0.5%のグルタミン酸ナトリウムを含むLactobacilli MRS培地に加えた後、30℃で4日間培養した。カルシウム及びマグネシウムは2価のイオンであることから、0.1Mとなるように塩類を添加した培地も用意した。コントロールとして塩類を加えない非添加区を用意した。30℃で4日間培養した培養上清に含まれるγ-アミノ酪酸生成量の定量を、全自動アミノ酸分析機 JLC-500V-GA(日本電子株式会社製)を用いて行った。さらに、上清中に含まれる抗菌活性をアガーウェル法にて行った。各塩類における増殖性について上清中の濁度の変化を調べた。塩化カルシウムは水に完全には溶解しないため、濁度は測定できなかった。   As chloride ions or salts containing chloride ions, potassium chloride, ammonium chloride, magnesium chloride and calcium chloride were used in addition to sodium chloride. All salt concentrations were adjusted to 0.2 M, and each salt was added to a Lactobacilli MRS medium containing 0.5% sodium glutamate, followed by culturing at 30 ° C. for 4 days. Since calcium and magnesium are divalent ions, a medium supplemented with salts to prepare 0.1M was also prepared. As a control, a non-addition zone in which no salt was added was prepared. The amount of γ-aminobutyric acid produced in the culture supernatant cultured at 30 ° C. for 4 days was quantified using a fully automatic amino acid analyzer JLC-500V-GA (manufactured by JEOL Ltd.). Furthermore, the antibacterial activity contained in the supernatant was performed by the Agarwell method. The change in turbidity in the supernatant was examined for the growth of each salt. Since calcium chloride was not completely dissolved in water, turbidity could not be measured.

本乳酸菌の増殖に伴う濁度変化は図8に示す。γ-アミノ酪酸の生成量は図9に示す。図8より、各塩類は本乳酸菌の生育に影響を与えないことがわかった。図9より、γ-アミノ酪酸の生成量は0.2M の塩化マグネシウムを加えた場合が最も多かった。0.1Mの塩化マグネシウム添加時でも、0.2Mの塩化ナトリウムに比べて約2倍のγ-アミノ酪酸を生成することがわかった。塩化ナトリウムや塩化マグネシウムは海水に多く含まれる成分であり、塩化マグネシウムを主体として海水から抽出された混合物がにがりとして市販されている。海水やにがりの使用で同様の効果が得られることが示唆された。系中に添加したグルタミン酸ナトリウムは0.5%だが、グルタミン酸残量と生成したγ-アミノ酪酸量を合計すると0.5%に満たない。これは、本乳酸菌の生育に伴いグルタミン酸及びγ-アミノ酪酸が消費されたためと思われた。また、培養上清から抗菌活性が認められた。また、同様の実験をその他のナイシン生産菌やIFO 12005株にて行ったところ、塩素イオンもしくはその塩類を加えることでγ-アミノ酪酸生成量向上効果があることがわかった。   The turbidity change accompanying the growth of the lactic acid bacteria is shown in FIG. The amount of γ-aminobutyric acid produced is shown in FIG. From FIG. 8, it was found that each salt does not affect the growth of the lactic acid bacteria. From FIG. 9, the amount of γ-aminobutyric acid produced was highest when 0.2M magnesium chloride was added. It was found that even when 0.1M magnesium chloride was added, γ-aminobutyric acid was produced approximately twice as much as 0.2M sodium chloride. Sodium chloride and magnesium chloride are components that are abundant in seawater, and a mixture of magnesium chloride as a main component and extracted from seawater is commercially available as bittern. It was suggested that the same effect can be obtained by using seawater and bittern. Sodium glutamate added to the system is 0.5%, but the total amount of glutamic acid remaining and the amount of γ-aminobutyric acid produced is less than 0.5%. This was probably because glutamic acid and γ-aminobutyric acid were consumed with the growth of the lactic acid bacteria. Moreover, antibacterial activity was recognized from the culture supernatant. Similar experiments were conducted with other nisin-producing bacteria and IFO 12005 strain, and it was found that adding γ-aminobutyric acid produced an effect of improving the production amount of γ-aminobutyric acid.

図8は、本乳酸菌の増殖に伴う濁度変化を示すグラフである。   FIG. 8 is a graph showing changes in turbidity associated with the growth of the lactic acid bacteria.

図9は、γ-アミノ酪酸の生成量を示すグラフである。   FIG. 9 is a graph showing the amount of γ-aminobutyric acid produced.

本乳酸菌KLC 1527D株をはじめとするその他の乳酸菌におけるγ-アミノ酪酸生産性に及ぼす塩化マグネシウム濃度及び海水またはにがりの効果   Effects of magnesium chloride concentration and seawater or bittern on γ-aminobutyric acid productivity in other lactic acid bacteria including the lactic acid bacteria KLC 1527D

本乳酸菌KLC 1527D株をはじめとするその他の乳酸菌の増殖とγ-アミノ酪酸生産性に対して最も効果が高かった塩素イオンもしくは塩素イオンを含む塩類は塩化マグネシウムであった。また、海水やにがりの使用でγ-アミノ酪酸の生産性を向上させる可能性が示唆された。そこで次の方法により最適な塩化マグネシウム濃度と海水又はにがりの効果を確認した。   Magnesium chloride was the chloride ion or chloride-containing salt that had the highest effect on the growth and γ-aminobutyric acid productivity of other lactic acid bacteria, including the lactic acid bacterium KLC 1527D. In addition, the use of seawater and bittern suggests the possibility of improving the productivity of γ-aminobutyric acid. Therefore, the optimum magnesium chloride concentration and the effect of seawater or bittern were confirmed by the following method.

塩素イオンもしくは塩素イオンを含む塩類として、塩化マグネシウムを使用した。塩濃度は0ないし0.5Mの間を0.1M刻みに調整し、各濃度になるよう0.5%のグルタミン酸ナトリウムを含むLactobacilli MRS培地に加えた後、30℃で7日間培養した。コントロールとして塩類を加えない非添加区を用意した。30℃で4日間及び7日間培養した培養上清に含まれるγ-アミノ酪酸生成量の定量を、全自動アミノ酸分析機 JLC-500V-GA(日本電子株式会社製)を用いて行った。海水は、八森沖の海水を採水し、0.45マイクロメートルのフィルターにて濾過したものを3倍希釈にて使用した。にがりは市販のにがり「瀬戸内の海水にがり」(錦海ソルト株式会社製)を10倍希釈して使用した。海水やにがり添加していない非添加区を用意し、薄層クロマトグラフィーにてγ-アミノ酪酸の生成を確認した。さらに、それぞれの上清中に含まれる抗菌活性をアガーウェル法にて行った。各塩濃度における増殖性について上清中の濁度の変化を調べた。   Magnesium chloride was used as chloride ions or salts containing chloride ions. The salt concentration was adjusted between 0.1 and 0.5M in increments of 0.1M, added to a Lactobacilli MRS medium containing 0.5% sodium glutamate at each concentration, and then cultured at 30 ° C. for 7 days. As a control, a non-addition zone in which no salt was added was prepared. The amount of γ-aminobutyric acid produced in the culture supernatant cultured at 30 ° C. for 4 days and 7 days was quantified using a fully automatic amino acid analyzer JLC-500V-GA (manufactured by JEOL Ltd.). The seawater was sampled from seawater off Yamori and filtered through a 0.45 micrometer filter at a 3-fold dilution. For the bittern, commercially available bittern "Setouchi seawater bittern" (manufactured by Kinkai Salt Co., Ltd.) was diluted 10 times and used. A non-added section without seawater or bittern was prepared, and the production of γ-aminobutyric acid was confirmed by thin layer chromatography. Furthermore, the antibacterial activity contained in each supernatant was performed by the Agarwell method. Changes in turbidity in the supernatant were examined for growth at each salt concentration.

塩化マグネシウム濃度を変化させたときの濁度の変化を図10に示す。また、培養4日目と7日目の培養上清中に含まれるγ-アミノ酪酸生成量を図11に示す。図10より、塩化マグネシウム濃度は0.2M以下では非添加区とほぼ同様の生育だったが、0.3M添加区では生育が若干低下した。しかし、非添加区から明確な差があるものの、濁度が1.5を超えることから、生育に問題はないと考えられた。0.4M以上では明らかに生育が低下し、塩による生育阻害が考えられた。すなわち、塩化マグネシウム濃度が0.3M以下で有れば、本乳酸菌の生育に影響を与えないことがわかった。図11より、γ-アミノ酪酸の生成は0.2M の塩化マグネシウムを加えた場合が最も効率が良かった。培養を7日間行った場合、0.1Mの塩化マグネシウム添加時でも、0.2Mの塩化マグネシウム添加時とほぼ同量のγ-アミノ酪酸を生成することがわかった。海水やにがりを使用した場合、非添加区に比べてγ-アミノ酪酸の生成量が明確に増加した。この結果より、にがりや海水を使用することで塩化マグネシウムや塩化ナトリウムを使用せずに発酵食品などの製品中にγ-アミノ酪酸を効率よく生産できることがわかった。また、抗菌活性は0.3M以下の塩化マグネシウムを添加した場合に確認できた。海水やにがりを使用したときも同様に上清から抗菌活性を確認した。   FIG. 10 shows the change in turbidity when the magnesium chloride concentration is changed. Moreover, the production amount of γ-aminobutyric acid contained in the culture supernatants on the 4th and 7th days of culture is shown in FIG. From FIG. 10, the growth was almost the same as in the non-added group when the magnesium chloride concentration was 0.2M or less, but the growth was slightly reduced in the 0.3M-added group. However, although there was a clear difference from the non-added group, the turbidity exceeded 1.5, so it was considered that there was no problem with growth. At 0.4M and above, the growth was clearly reduced, and growth inhibition by salt was considered. That is, it was found that if the magnesium chloride concentration was 0.3 M or less, the growth of the lactic acid bacteria was not affected. From FIG. 11, the production of γ-aminobutyric acid was most efficient when 0.2 M magnesium chloride was added. When culturing was carried out for 7 days, it was found that even when 0.1 M magnesium chloride was added, almost the same amount of γ-aminobutyric acid was produced as when 0.2 M magnesium chloride was added. When seawater and bittern were used, the amount of γ-aminobutyric acid produced was clearly increased compared to the non-added zone. From these results, it was found that γ-aminobutyric acid can be efficiently produced in products such as fermented foods without using magnesium chloride or sodium chloride by using bittern or seawater. Antibacterial activity was confirmed when 0.3 M or less of magnesium chloride was added. Similarly, antibacterial activity was confirmed from the supernatant when seawater or bittern was used.

図10は、塩化マグネシウム濃度を変化させたときの濁度の変化を示すグラフである。   FIG. 10 is a graph showing changes in turbidity when the magnesium chloride concentration is changed.

図11は、培養4日目と7日目の培養上清中に含まれるγ-アミノ酪酸生成量を示すグラフである。   FIG. 11 is a graph showing the amount of γ-aminobutyric acid produced in the culture supernatants on the 4th and 7th days of culture.

以上、実施例10、11及び12によって新規に得られた知見をまとめると、本乳酸菌KLC 1527Dをはじめ、その他のナイシン生産菌やγ-アミノ酪酸高生産菌として知られているIFO 12005株などその他の乳酸菌を用いて、グルタミン酸又はその塩類からγ-アミノ酪酸を生産する場合、塩化マグネシウムや塩化ナトリウムなどをはじめとする塩素イオンもしくはその塩類を同時に添加することでγ-アミノ酪酸の生産性を向上させることができた。また、海水やにがりを用いた場合も同様にγ-アミノ酪酸の生産性を効果的に向上させることができた。さらに、本乳酸菌をはじめとするその他のナイシン生産菌を用いた場合、γ-アミノ酪酸の生産と同時に抗菌物質ナイシンを生産させることができた。これらより、本乳酸菌やその他のナイシン生産菌を用いて発酵食品製造を行った場合、食品中に高濃度のγ-アミノ酪酸を生産させγ-アミノ酪酸による機能性を付与すると同時に抗菌物質ナイシンによる保存性向上効果が期待された。   As described above, the findings newly obtained in Examples 10, 11 and 12 are summarized. In addition to the lactic acid bacterium KLC 1527D, other nisin-producing bacteria and IFO 12005 strain known as a high γ-aminobutyric acid-producing bacterium, etc. When γ-aminobutyric acid is produced from glutamic acid or its salts using lactic acid bacteria, the productivity of γ-aminobutyric acid is improved by simultaneously adding chloride ions such as magnesium chloride and sodium chloride or its salts. I was able to. Similarly, the productivity of γ-aminobutyric acid could be effectively improved when seawater or bittern was used. Furthermore, when other nisin-producing bacteria including this lactic acid bacterium were used, the antibacterial substance nisin could be produced simultaneously with the production of γ-aminobutyric acid. Therefore, when fermented foods are manufactured using this lactic acid bacterium or other nisin-producing bacteria, high-concentration γ-aminobutyric acid is produced in the food to add functionality by γ-aminobutyric acid and at the same time, the antibacterial substance nisin. Expected to improve shelf life.

本乳酸菌KLC 1527D株における畜肉及び魚類をはじめとする水産品での増殖性と抗菌物質生産性及びγ-アミノ酪酸生産性とそれらを用いた発酵ソーセージの製造   Proliferation and antibacterial productivity and γ-aminobutyric acid productivity in livestock products such as meat and fish in the lactic acid bacteria strain KLC 1527D and production of fermented sausages using them

本乳酸菌KLC 1527D株を用いた生鮮食品保存技術の開発を目的に、生の畜肉及び魚類に本乳酸菌を接種し、その増殖特性と抗菌物質生産性及びγ-アミノ酪酸生産性について次の方法で確認した。また、畜肉を使用した発酵ソーセージの製造法についても検討した。   In order to develop fresh food preservation technology using this lactic acid bacterium KLC 1527D strain, inoculate this live lactic acid bacterium into live meat and fish, and the growth characteristics, antibacterial productivity and γ-aminobutyric acid productivity are as follows. confirmed. Moreover, the manufacturing method of the fermented sausage using livestock meat was also examined.

生畜肉として豚の挽肉を、また、生魚としてハタハタを用意し、それぞれに対して3%塩化ナトリウム、1%塩化マグネシウム、0.5%グルタミン酸ナトリウムを加えた。あらかじめ、本乳酸菌KLC 1527D株を5mlのLactobacilli MRS培地で30℃にて一晩培養した培養液の全量を遠心分離にて集菌しておいた。100gの豚肉及びハタハタに対して本乳酸菌KLC 1527D株の5ml一晩培養液分の菌体を添加し、25℃で16時間培養を行い、発酵肉又は発酵魚を製造した。これらの発酵肉または発酵魚を4℃にて保存し、保存試験を行った。対照として、乳酸菌非添加区を用意した。さらに、豚挽肉に3%塩化ナトリウム、1%塩化マグネシウム、0.5%グルタミン酸ナトリウムを加え、豚挽肉100gに対して5ml分の一晩培養液から集菌した本乳酸菌の菌体のみを加え、良く混合した後、羊の腸または豚の腸に詰め、25℃にて16時間培養することで、発酵ソーセージを作った。γ-アミノ酪酸の生成は薄層クロマトグラフィーにて確認した。抗菌物質の生産はアガーウェル法にて確認した。   Minced pork as raw livestock and grouper as raw fish were prepared, and 3% sodium chloride, 1% magnesium chloride and 0.5% sodium glutamate were added to each. The whole amount of the culture solution obtained by culturing the lactic acid bacteria KLC 1527D strain in 5 ml of Lactobacilli MRS medium overnight at 30 ° C. was collected in advance by centrifugation. To 100 g of pork and grouper, 5 ml of an overnight culture of this lactic acid bacterium KLC 1527D strain was added and cultured at 25 ° C. for 16 hours to produce fermented meat or fermented fish. These fermented meat or fermented fish were stored at 4 ° C. and subjected to a storage test. As a control, a lactic acid bacteria-free group was prepared. Furthermore, add 3% sodium chloride, 1% magnesium chloride, 0.5% sodium glutamate to minced pork, add only the cells of this lactic acid bacterium collected from an overnight culture for 5ml to 100g minced pork and mix well. After that, it was packed in the intestines of sheep or pigs and cultured at 25 ° C. for 16 hours to prepare fermented sausages. The production of γ-aminobutyric acid was confirmed by thin layer chromatography. Antibacterial production was confirmed by the Agarwell method.

乳酸菌を添加した発酵肉や発酵魚は発酵終了後、やや酸臭を伴ったがフライパン又は焼き網で焼いて試食したところ、酸臭や酸味は感じられなかった。一方、乳酸菌を添加しなかった肉や魚では強い酸臭と腐敗臭が感じられたため、試食を行わなかった。乳酸菌を添加した肉や魚からは抗菌活性が検出され、pHの低下が認められた。また、挽肉において4℃で1週間保存したところで乳酸菌添加区からγ-アミノ酪酸を確認した。さらに、4℃で1ヶ月保存したところ、乳酸菌添加区は特に変化が認められなかったが、非添加区では保存後2日間で表面に微生物の繁殖と思われる白い粘質の物質が付着し、腐敗した。発酵ソーセージは、発酵終了後軽い酸臭が認められたが、沸騰水中で10分間煮た後試食したところ、香りや味の変化は認められなかった。   Fermented meat and fermented fish to which lactic acid bacteria had been added had a slight acid odor after fermentation, but when they were baked in a frying pan or grill, they did not feel acid odor or acidity. On the other hand, the meat and fish to which lactic acid bacteria were not added had a strong acid odor and rot odor, so no tasting was performed. Antibacterial activity was detected in meat and fish supplemented with lactic acid bacteria, and a decrease in pH was observed. In addition, γ-aminobutyric acid was confirmed from the group added with lactic acid bacteria when the minced meat was stored at 4 ° C. for 1 week. Furthermore, when stored at 4 ° C for 1 month, there was no particular change in the lactic acid bacteria-added group, but in the non-added group, a white sticky substance that seemed to grow microorganisms adhered to the surface in two days after storage, Corrupt. The fermented sausage showed a light acid odor after fermentation, but when it was boiled in boiling water for 10 minutes and sampled, no change in aroma or taste was observed.

本乳酸菌KLC 1527D株における豆乳中での増殖性と抗菌物質生産性及びγ-アミノ酪酸生産性とそれらを用いた豆乳ヨーグルトの製造及び利用   Production and utilization of soymilk yoghurt using these lactic acid bacteria KLC 1527D strain in soybean milk with growth and antibacterial productivity and γ-aminobutyric acid productivity

本乳酸菌KLC 1527D株を用いた抗菌活性をもつ豆乳ヨーグルトの開発とこの豆乳ヨーグルトを利用した食品保存技術の開発を目的に、次の方法により検討した。   In order to develop soymilk yoghurt with antibacterial activity using this lactic acid bacterium KLC 1527D strain and to develop food preservation technology using this soymilk yoghurt, the following method was examined.

市販の豆乳「調整豆乳」または「成分無調整豆乳」(いずれも株式会社 紀文フードケミファ社製)に1%塩化マグネシウム、0.5%グルタミン酸ナトリウムを加えた。あらかじめ、本乳酸菌KLC 1527D株を1mlのLactobacilli MRS培地で30℃にて一晩培養した培養液、全量を遠心分離にて集菌しておいた。100mlの豆乳に対して本乳酸菌KLC 1527D株の1ml一晩培養液分の菌体を添加し、30℃で16時間培養を行い、豆乳ヨーグルトを作成した。この豆乳ヨーグルトを加熱殺菌した物を用いて、白菜の一夜漬けに使用し、保存性向上効果を調べた。白菜重量の3%になるように塩化ナトリウムを加えた物に、白菜重量の30%重量の3%塩化ナトリウム溶液で差し水を行った。この差し水の20%を豆乳ヨーグルトに置き換えたものと置き換えなかった物を用意し10℃で保存し、それぞれの1日目と7日目の風味について特に酸味の増加について検討した。γ-アミノ酪酸の生成は薄層クロマトグラフィーにて確認した。抗菌物質の生産はアガーウェル法にて確認した。   1% magnesium chloride and 0.5% sodium glutamate were added to commercially available soymilk “adjusted soymilk” or “unregulated soymilk” (both manufactured by Kibun Food Chemifa Co., Ltd.). In advance, the lactic acid bacteria KLC 1527D strain was cultured overnight at 30 ° C. in 1 ml of Lactobacilli MRS medium, and the whole amount was collected by centrifugation. To 100 ml of soymilk, 1 ml of an overnight culture of this lactic acid bacterium KLC 1527D strain was added and cultured at 30 ° C. for 16 hours to prepare soymilk yogurt. This soymilk yogurt was heat-sterilized and used for overnight pickles of Chinese cabbage, and the effect of improving storage stability was examined. Water was poured into a product obtained by adding sodium chloride to 3% of the Chinese cabbage weight with a 3% sodium chloride solution of 30% by weight of the Chinese cabbage. What replaced 20% of this water with soymilk yogurt and did not replace it were prepared and stored at 10 ° C., and the increase in sourness was examined for the flavors on the first and seventh days. The production of γ-aminobutyric acid was confirmed by thin layer chromatography. Antibacterial production was confirmed by the Agarwell method.

豆乳に乳酸菌を添加し30℃で12時間以上培養すると豆乳が凝固し、豆乳ヨーグルトができた。この豆乳ヨーグルトからは抗菌活性が認められた。また、30℃で4日間培養した物からはγ-アミノ酪酸が検出された。さらに、2日間培養して適度な酸味で加熱殺菌した豆乳ヨーグルトを利用して製造した白菜の一夜漬けは、1日目は適度な酸味と風味を持っており、7日間保存した後もその風味を維持していた。一方豆乳ヨーグルトを使用しなかった白菜の一夜漬けは1日目は適度な酸味と風味を持っていたが、7日目では過剰な酸味とつわり香や酸臭が強くなり、腐敗ではないが過剰発酵していることがわかったため、抗菌物質を含む豆乳ヨーグルトを利用することで食品の保存が可能だと認められた。   When lactic acid bacteria were added to soy milk and cultured at 30 ° C. for 12 hours or longer, soy milk coagulated and soy milk yogurt was formed. This soy milk yogurt was found to have antibacterial activity. In addition, γ-aminobutyric acid was detected from the product cultured at 30 ° C. for 4 days. In addition, the Chinese cabbage overnight pickled using soymilk yogurt that has been cultured for 2 days and sterilized by heating with moderate acidity has moderate acidity and flavor on the first day, and even after storage for 7 days, the flavor remains. Was maintained. On the other hand, the overnight pickled Chinese cabbage without soy milk yogurt had moderate acidity and flavor on the first day, but on the seventh day it became excessive sour, morning odor and acid smell, and it was not spoiled but overfermented It was found that food can be preserved by using soymilk yogurt containing antibacterial substances.

本乳酸菌KLC 1527D株における低塩分の塩漬け野菜中での増殖性と抗菌物質生産性及びγ-アミノ酪酸生産性とそれらを用いた野菜漬物の製造   Growth and antibacterial productivity in low-salt salted vegetables and γ-aminobutyric acid productivity and production of vegetable pickles using them in the lactic acid bacteria KLC 1527D

本乳酸菌KLC 1527D株を用いて低塩分でも抗菌活性により日持ちが向上し、さらにγ-アミノ酪酸を含有する野菜漬物の開発を目的に、次の方法により検討した。   Using this lactic acid bacterium KLC 1527D strain, the shelf life was improved by antibacterial activity even at low salinity, and the following method was used for the purpose of developing vegetable pickles containing γ-aminobutyric acid.

野菜漬物にはキュウリを使用し、ぬか漬け、米と米麹を利用した麹漬け、一夜漬けの3種類の漬け床を用意して試験を行った。全てにおいて本乳酸菌を加えない非添加区を用意した。漬け床には3%塩化ナトリウム、1%塩化マグネシウム、0.5%グルタミン酸ナトリウムを加えた。あらかじめ、本乳酸菌KLC 1527D株を5mlのLactobacilli MRS培地で30℃にて一晩培養した培養液の全量を遠心分離にて集菌しておき、乳酸菌菌体5mlとして使用した。ぬか床は、市販米ぬか1kgを80℃で2時間殺菌し、米糠100gに対し、100mlの滅菌した水道水を添加し、乳酸菌菌体5mlを加え、良く混合後、30℃で4日間培養したものをぬか床とした。米と米麹を利用した麹漬けは、米と米麹と水を例えば1:1:2の割合で混合し、55℃で糖化を行い加熱殺菌した甘酒を造り、この甘酒100gに対して乳酸菌菌体5mlを添加し、30℃で4日間培養して麹漬けの漬け床とした。ぬか漬けと麹漬けではこれらの漬け床に塩もみしたキュウリを漬け込み、4℃で保存した。それぞれの3日目と7日目の風味について特に酸味の増加について検討した。一夜漬けにはキュウリ重量に対して3%塩化ナトリウム、1%塩化マグネシウム、0.5%グルタミン酸ナトリウムを加え、さらにキュウリ100gに対して乳酸菌菌体5mlを加え、キュウリ重量の30%重量の3%塩化ナトリウム、1%塩化マグネシウム、0.5%グルタミン酸ナトリウム溶液で差し水を行った。15℃で24時間培養後10℃で7日間漬けた。一夜漬けの3日目と7日目の風味について特に酸味の増加について検討した。γ-アミノ酪酸の生成は薄層クロマトグラフィーにて確認した。抗菌物質の生産はアガーウェル法にて確認した。   The cucumbers were used for the vegetable pickles, and the test was conducted with three types of pickled floors: pickled rice bran, pickled rice using rice and rice bran, and pickled overnight. In all cases, a non-added section to which the present lactic acid bacterium was not added was prepared. 3% sodium chloride, 1% magnesium chloride, and 0.5% sodium glutamate were added to the soaking bed. In advance, the entire amount of the culture solution obtained by culturing the lactic acid bacterium KLC 1527D strain overnight at 30 ° C. in 5 ml of Lactobacilli MRS medium was collected by centrifugation and used as 5 ml of lactic acid bacteria. Rice bran 1 kg of commercial rice bran was sterilized at 80 ° C for 2 hours, 100 ml of tap water was added to 100 g of rice bran, 5 ml of lactic acid bacteria were added, mixed well, and cultured at 30 ° C for 4 days. Was a bran floor. Rice pickles using rice and rice bran are made by mixing rice, rice bran and water in a ratio of 1: 1: 2, for example, and making saccharified and sterilized by heating at 55 ° C. 5 ml of bacterial cells were added and cultured at 30 ° C. for 4 days to prepare a pickled bed. In rice bran pickles and pickles, salted cucumbers were soaked in these pickles and stored at 4 ° C. The increase of sourness was examined especially on the 3rd and 7th day of each flavor. To pickle overnight, add 3% sodium chloride, 1% magnesium chloride, 0.5% sodium glutamate to cucumber weight, add 5 ml of lactic acid bacteria to 100 g of cucumber, 3% sodium chloride at 30% weight of cucumber weight, Water was poured with a 1% magnesium chloride and 0.5% sodium glutamate solution. After culturing at 15 ° C for 24 hours, it was soaked at 10 ° C for 7 days. The increase of sourness was examined especially on the 3rd and 7th day flavor of pickled overnight. The production of γ-aminobutyric acid was confirmed by thin layer chromatography. Antibacterial production was confirmed by the Agarwell method.

本乳酸菌を加えて調整したぬか床、麹漬け床から、抗菌活性とγ-アミノ酪酸が確認された。また、一夜漬けでは15℃で24時間培養した上清から抗菌活性が認められ、さらに10℃で7日間漬けた物からは抗菌活性とγ-アミノ酪酸の生成が確認された。また、それぞれ本乳酸菌を添加した物は15日以上保存後も酸味の増大が認められず、漬け後3日目の風味を維持することができたが、非添加区では、漬け後7日以上で酸味が増大し、腐敗に似た状態となった。以上より、低塩分野菜漬物の保存が可能だと認められた。また、ぬか床及び麹漬けにキュウリを漬け込み12時間経過したキュウリをすり下ろした絞り汁から、γ-アミノ酪酸が確認できた。また、漬け終えたキュウリの一夜漬けのキュウリも同様に絞り汁からγ-アミノ酪酸が確認できたことから、これらの漬物はγ-アミノ酪酸を含有する漬物であることが確認された。また、ぬか漬け、麹漬け、一夜漬け、いずれもつわり香などの異臭が認められず、たとえば、γ-アミノ酪酸の製造を目的としてつわり香の原因物質ジアセチルを高生成するIFO
12005株を用いた場合よりも高品質な漬け物の製造が可能であった。
Antibacterial activity and γ-aminobutyric acid were confirmed from the rice bran bed and the rice bran bed prepared by adding this lactic acid bacterium. In addition, antibacterial activity was observed from the supernatant cultured at 15 ° C. for 24 hours when soaked overnight, and antibacterial activity and production of γ-aminobutyric acid were confirmed from those soaked at 10 ° C. for 7 days. In addition, each product added with this lactic acid bacterium did not show an increase in acidity even after storage for 15 days or more, and the flavor of the third day after pickling could be maintained. The sourness increased and it became a state resembling corruption. Based on the above, it was recognized that low-salt vegetable pickles can be preserved. In addition, γ-aminobutyric acid could be confirmed from the juice obtained by immersing cucumbers in the bran bed and pickled cucumbers and sipping the cucumbers after 12 hours. Moreover, since γ-aminobutyric acid was also confirmed from the juice of the cucumbers that had been pickled overnight, it was confirmed that these pickled vegetables were pickled containing γ-aminobutyric acid. Also, there is no off-flavor such as pickled rice bran pickles, pickled cucumbers, pickled overnight, or any other sticky scent. For example, IFO that produces diacetyl causative substance high for the purpose of producing γ-aminobutyric acid
It was possible to produce pickles with higher quality than when 12005 strain was used.

本乳酸菌KLC 1527D株とグルタミン酸及びその塩類を含む米と米麹混合物を用いた、抗菌物質により低塩分でも日持ちが向上し、γ-アミノ酪酸を高含有するハタハタずしとイカの塩辛の製造   Using the lactic acid bacteria KLC 1527D strain and rice and rice bran mixture containing glutamic acid and its salts, antibacterial substances improve the shelf life even at low salinity and produce scallops of scallop and squid with high content of γ-aminobutyric acid

本乳酸菌KLC 1527D株を用いて低塩分でも抗菌活性により日持ちが向上し、さらにγ-アミノ酪酸を含有する水産加工品の開発を目的に、ハタハタの麹漬けであるハタハタずしとイカの塩辛を例として、次の方法により検討を行った。   With this lactic acid bacterium KLC 1527D strain, the longevity is improved by antibacterial activity even at low salt content, and for the purpose of developing processed fishery products containing γ-aminobutyric acid, As an example, the following method was used for examination.

ハタハタは常法に従い、食酢と5%食塩にて下漬けを行った。この下漬けされたハタハタを、実施例15で製造した抗菌活性をふくみさらにγ-アミノ酪酸を含有する麹漬けの漬け床に4℃で3日間漬け込み、ハタハタずしとした。対照として乳酸菌非添加の麹漬けの漬け床に漬け込んだ。これを4℃で2週間保存し、酸味の増大や腐敗の有無を確認した。イカの塩辛は常法に10%の麹漬けの漬け床を添加して製造を行い、塩分を3.5%とした。その後4℃で貯蔵を行った。   The grouper was submerged with vinegar and 5% salt according to a conventional method. The soaked grouper was soaked at 4 ° C. for 3 days in the soaked floor containing the antibacterial activity produced in Example 15 and further containing γ-aminobutyric acid to prepare a grouper. As a control, it was soaked in a pickled sardine bed without lactic acid bacteria. This was stored at 4 ° C. for 2 weeks, and the presence or absence of increased sourness or decay was confirmed. The salted squid was produced by adding a 10% pickled potato bed in the usual way to make the salt content 3.5%. Thereafter, it was stored at 4 ° C.

本乳酸菌を加えて調整した麹漬け床を使用したハタハタずしとイカの塩辛からは、抗菌活性とγ-アミノ酪酸が確認された。それぞれ本乳酸菌を添加した物は15日以上保存後も酸味の増大が認められず、漬け後3日目の風味を維持することができたが、非添加区では、漬け後7日以上で酸味が増大した。以上より、低塩分でハタハタずしやイカの塩辛が作れたことから、ハタハタずしなどいずし類や塩辛類を低塩分で日持ち向上が実現したと認められた。いずれも、つわり香などの異臭が認められず、たとえば、γ-アミノ酪酸の製造を目的としてつわり香の原因物質ジアセチルを高生成するIFO 12005株を用いて製造した場合よりも高品質な漬け物の製造が可能であった。   Anti-bacterial activity and γ-aminobutyric acid were confirmed from the saltyness of scallops and squid using a pickled sardine bed prepared by adding this lactic acid bacterium. Each of the products added with the lactic acid bacteria did not show an increase in sourness after storage for 15 days or more, and maintained the flavor of the 3rd day after pickling. Increased. From the above, it was recognized that the long-lasting improvement was achieved with low salinity of sardines and salted sardines such as grouper sushi and squid with saltiness made from scallops and squid with low salinity. In both cases, no nasty smell such as morning sickness was observed.For example, for the purpose of producing γ-aminobutyric acid, the quality of pickled pickles is higher than that produced using IFO 12005, which produces diacetyl, the causative substance of morning sickness. Manufacture was possible.

本乳酸菌KLC 1527D株とグルタミン酸及びその塩類を含む米ぬかを用いたハタハタ糠漬けの製造   Manufacture of pickled grouper using rice bran containing this lactic acid bacterium KLC 1527D and glutamic acid and its salts

本乳酸菌KLC 1527D株を用いて低塩分でも抗菌活性により日持ちが向上し、さらにγ-アミノ酪酸を含有する水産加工品の開発を目的に、魚類の糠漬けであるハタハタのぬか漬けを例として、次の方法により検討を行った。   Using this lactic acid bacterium KLC 1527D, the shelf life is improved due to antibacterial activity even at low salinity, and for the purpose of developing processed fishery products containing γ-aminobutyric acid, The method was examined.

ハタハタは常法に従い、食酢と5%食塩にて下漬けを行った。この下漬けされたハタハタを、実施例15で製造した抗菌活性をふくみさらにγ-アミノ酪酸を含有するぬか床に4℃で3日間漬け込み、ハタハタのぬか漬けとした。対照として乳酸菌非添加のぬか床に漬け込んだ。これを4℃で2週間保存し、酸味の増大や腐敗の有無を確認した。   The grouper was submerged with vinegar and 5% salt according to a conventional method. The soaked grouper was immersed in a bran bed containing the antibacterial activity produced in Example 15 and further containing γ-aminobutyric acid at 4 ° C. for 3 days to prepare a grouper. As a control, it was soaked in a bran bed with no lactic acid bacteria added. This was stored at 4 ° C. for 2 weeks, and the presence or absence of increased sourness or decay was confirmed.

本乳酸菌を加えて調整したぬか床を使用したハタハタのぬか漬けからは、抗菌活性とγ-アミノ酪酸が確認され、それぞれ本乳酸菌を添加した物は15日以上保存後も酸味の増大が認められず、漬け後3日目の風味を維持することができたが、非添加区では、漬け後7日以上で酸味が増大した。以上より、低塩分でハタハタのぬか漬けが作れたことから、ハタハタのぬか漬けの他、ニシンのぬか漬けなどが低塩分で日持ちが向上したと認められた。また、つわり香などの異臭が認められず、たとえば、γ-アミノ酪酸の製造を目的としてつわり香の原因物質ジアセチルを高生成するIFO 12005株を用いて製造した場合よりも高品質な漬け物の製造が可能であった。   Anti-bacterial activity and γ-aminobutyric acid were confirmed from rice bran pickles using a bran bed prepared by adding this lactic acid bacterium, and anti-bacterial activity and γ-aminobutyric acid were confirmed. In addition, the flavor on the third day after pickling could be maintained, but in the non-added zone, the acidity increased after 7 days after pickling. Based on the above, it was confirmed that it was possible to pickle grouper with low salinity, so it was recognized that longevity was improved with pickled herring and other herring. Also, there is no off-flavor such as morning sickness. For example, for the production of γ-aminobutyric acid, the production of pickled vegetables with higher quality than that produced using IFO 12005 strain, which produces diacetyl, a causative substance of morning sickness, is produced. Was possible.

本乳酸菌KLC 1527D株を用いた乳酸発酵甘酒の製造と、それを用いた種おこし及び天然酵母パン種の継代及び天然酵母パン製造   Production of lactic acid fermented amazake using this lactic acid bacteria strain KLC 1527D, seeding using it, passage of natural yeast bread species and production of natural yeast bread

本乳酸菌KLC 1527D株を用いて抗菌物質を含む乳酸発酵甘酒を製造し、この乳酸発酵甘酒を利用して天然酵母パンに使用される天然酵母種の安全製造とパン種の継代、及び天然酵母パンの製造を行った。 Using this lactic acid bacterium KLC 1527D strain to produce lactic acid fermented amazake containing antibacterial substances, using this lactic acid fermented amazake, the safe production of natural yeast species used in natural yeast bread, the passage of bread species, and natural yeast bread Was manufactured.

実施例15で製造した本乳酸菌を使用し乳酸発酵を行った抗菌活性を含みさらにγ-アミノ酪酸を含有する麹漬け漬け床を非加熱で、又は加熱殺菌して乳酸発酵甘酒とした。対照として本乳酸菌を加えない甘酒を加熱殺菌し、乳酸菌非添加区とした。この乳酸発酵甘酒に天然酵母の分離源となるレーズンなどのドライフルーツを加え、15℃で3日培養したものの味や香りを確認し、腐敗の有無などを確認した。また、この様にして分離された天然酵母の継代を乳酸発酵甘酒を用いて行い、天然酵母パン種として味や香りを確認し、腐敗の有無などを確認した。また、この様にして製造した天然酵母パン種を小麦重量の10%添加し、天然酵母パンを製造した。 The lactic acid fermented amazake was prepared by non-heating or heat sterilizing the floor of a pickled rice cake containing γ-aminobutyric acid and having antibacterial activity using the present lactic acid bacterium produced in Example 15. As a control, amazake to which the present lactic acid bacterium was not added was sterilized by heating to obtain a lactic acid bacterium-free group. To this lactic acid fermented amazake, dried fruits such as raisins, which are natural yeast separation sources, were added and cultured for 3 days at 15 ° C., and the taste and aroma were confirmed. In addition, passage of the natural yeast thus isolated was performed using lactic acid fermented amazake, the taste and aroma were confirmed as a natural yeast bread type, and the presence or absence of spoilage was confirmed. Moreover, 10% of wheat weight was added to the natural yeast bread produced in this way to produce natural yeast bread.

乳酸発酵甘酒を使用して天然酵母の分離を試みたところ、酵母のみが効率よく増殖し、また、異常な酸味や臭気の発生は認められなかった。一方、非添加区の甘酒を使用した物は、酵母のみならず一般細菌も増殖するため、過剰な酸味と異常な臭気を伴い腐敗したため、天然酵母種の分離には使用できなかった。また、乳酸発酵甘酒を使用して継代した天然酵母パン種は、過剰な酸味の生成も認められず、純粋に酵母を継代することができたが、非添加区の甘酒を用いたものでは、過剰な酸味を伴い、通常の小麦を用いた継代よりも劣ることがわかった。さらに、乳酸発酵甘酒を用いて継代した天然酵母パン種を用いたパンは酸味が弱く、日本人向きなパンが作れ、また、ふっくらとした風味有るパンが焼けた。しかし、乳酸菌非添加区の甘酒で継代したパン種を用いた場合は、雑菌汚染による過剰な酸味と酸臭を伴うパンで、日本人には好まれない味となった。これらは、乳酸発酵甘酒が低pHで有ることや抗菌物質が含まれることにより、ドライフルーツに付着した一般の乳酸菌などが増殖できず、酵母のみの純粋な培養に成功したと考えられる。また、乳酸発酵甘酒に含まれるγ-アミノ酪酸が酵母の健全な発酵に良い影響を与えている可能性が示唆された。以上より、天然酵母パン種の種おこし、継代をはじめとする天然酵母パンの製造に乳酸発酵甘酒を使用する優位性が認められた。   Attempts were made to isolate natural yeast using lactic acid fermented amazake, and only the yeast grew efficiently, and no abnormal acidity or odor was observed. On the other hand, products using amazake in the non-addition zone grew not only in yeast, but also in general bacteria, and therefore decayed with excessive sourness and abnormal odor, so that they could not be used for separation of natural yeast species. In addition, the natural yeast bread that was subcultured using lactic acid fermented amazake did not produce excessive sourness, and was able to purely subculture the yeast. It was found to be inferior to the passage using normal wheat, with excessive sourness. In addition, bread using natural yeast bread that was subcultured with lactic acid fermented amazake was weak in acidity, made bread suitable for Japanese people, and baked bread with a plump flavor. However, when bread cultivated with amazake in the lactic acid bacteria non-addition zone was used, the bread with excessive sourness and acid odor due to contamination with various bacteria was unfavorable for Japanese. It is considered that these were successful in pure culture of yeast only because lactic acid-fermented amazake had a low pH and contained antibacterial substances, so that general lactic acid bacteria attached to dried fruits could not grow. Moreover, it was suggested that γ-aminobutyric acid contained in lactic acid fermented amazake may have a positive effect on the healthy fermentation of yeast. From the above, the superiority of using lactic acid fermented amazake in the production of natural yeast bread such as seeding and passage of natural yeast bread was recognized.

本乳酸菌KLC 1527D株と水と小麦粉を用いた天然酵母用培地の製造と、それを用いた種おこし及び天然酵母パン種の継代及び天然酵母パン製造   Production of natural yeast medium using the lactic acid bacteria KLC 1527D strain, water and wheat flour, seeding using it, passage of natural yeast bread seeds and production of natural yeast bread

水と小麦粉から構成される天然酵母継代用の培地(以下、継代培地)を開発し、さらに本乳酸菌KLC 1527D株を用いて抗菌物質を含む継代培地(以下、乳酸発酵継代培地)を製造し、この乳酸発酵継代培地を利用して天然酵母パンに使用される天然酵母種の安全製造とパン種の継代、及び天然酵母パンの製造を行った。   We developed a culture medium for passage of natural yeast composed of water and wheat flour (hereinafter referred to as passage medium), and further used a passage medium containing antibacterial substances (hereinafter referred to as lactic acid fermentation passage medium) using this lactic acid bacterium KLC 1527D strain. Using this lactic acid fermentation subculture medium, safe production of natural yeast species used for natural yeast bread, passage of bread types, and production of natural yeast bread were performed.

水と小麦粉を例えば2:1の割合で混合し加熱殺菌して継代培地とした。継代培地には麦芽や麦芽糖を添加しても良い。あらかじめ、本乳酸菌KLC 1527D株を5mlのLactobacilli MRS培地で30℃にて一晩培養した培養液、全量を遠心分離にて集菌しておき、乳酸菌菌体5mlとして使用した。この継代培地に乳酸菌菌体5mlを加え、30℃で1日間培養し、非加熱で又は加熱殺菌したものを乳酸発酵継代培地とした。対照として本乳酸菌を加えない継代培地を加熱殺菌し、乳酸菌非添加区とした。この乳酸発酵継代培地に天然酵母の分離源となるレーズンなどのドライフルーツを加え、15℃で3日培養したものの味や香りを確認し、腐敗の有無などを確認した。また、この様にして分離された天然酵母の継代を乳酸発酵継代培地を用いて行い、天然酵母パン種として味や香りを確認し、腐敗の有無などを確認した。また、この様にして製造した天然酵母パン種を小麦重量の20%添加し、天然酵母パンを製造した。さらに、継代培地に3%塩化ナトリウム、1%塩化マグネシウム、0.5%グルタミン酸ナトリウムを加えて乳酸発酵を行い、γ-アミノ酪酸の生成を試みた。γ-アミノ酪酸の生成は薄層クロマトグラフィーにて確認した。乳酸発酵継代培地に含まれる抗菌物質はアガーウェル法にて確認した。   For example, water and flour were mixed at a ratio of 2: 1 and sterilized by heating to obtain a passage medium. Malt or malt sugar may be added to the passage medium. In advance, the lactic acid bacteria KLC 1527D strain was cultured overnight at 30 ° C. in 5 ml of Lactobacilli MRS medium, and the whole amount was collected by centrifugation and used as 5 ml of lactic acid bacteria. To this subculture medium, 5 ml of lactic acid bacteria were added, cultured at 30 ° C. for 1 day, and non-heated or heat-sterilized to obtain a lactic acid fermentation subculture medium. As a control, the subculture medium to which the present lactic acid bacterium was not added was sterilized by heating to obtain a lactic acid bacterium-free group. Dried fruits such as raisins as a natural yeast isolation source were added to this lactic acid fermentation subculture medium, and the taste and aroma of the product cultured at 15 ° C. for 3 days were confirmed, and the presence or absence of spoilage was confirmed. In addition, passage of the natural yeast thus separated was performed using a lactic acid fermentation passage medium, and the taste and aroma were confirmed as a natural yeast bread type, and the presence or absence of spoilage was confirmed. In addition, natural yeast bread produced in this manner was added to 20% of the weight of wheat to produce natural yeast bread. Furthermore, 3% sodium chloride, 1% magnesium chloride and 0.5% sodium glutamate were added to the subculture medium for lactic acid fermentation to try to produce γ-aminobutyric acid. The production of γ-aminobutyric acid was confirmed by thin layer chromatography. Antibacterial substances contained in the lactic acid fermentation passage medium were confirmed by the Agarwell method.

乳酸発酵継代培地からは抗菌活性が確認され、pHが低下したことから、KLC 1527D株の増殖が確認された。また、継代培地に3%塩化ナトリウム、1%塩化マグネシウム、0.5%グルタミン酸ナトリウムを加えて乳酸発酵を30℃で4日間行ったところ、抗菌活性とγ-アミノ酪酸の生成が確認された。乳酸発酵時に乳酸発酵継代培地を使用して天然酵母の分離を試みたところ、酵母のみが効率よく増殖し、また、異常な酸味や臭気の発生は認められなかった。一方、非添加区の継代培地を使用した場合は、酵母のみならず一般細菌も増殖するため、過剰な酸味と異常な臭気を伴い腐敗したため、天然酵母種の分離には使用できなかった。また、乳酸発酵継代培地を使用して継代した天然酵母パン種は、過剰な酸味の生成も認められず、純粋に酵母を継代することができたが、非添加区の継代培地を用いたものでは、過剰な酸味を伴い、通常の小麦を用いた継代と変わらないことがわかった。さらに、乳酸発酵継代培地を用いて継代した天然酵母パン種を用いたパンは酸味が弱く、日本人向きなパンが作れ、また、ふっくらとした風味有るパンが焼けた。しかし、乳酸菌非添加区の継代培地で継代したパン種を用いた場合は、雑菌汚染による過剰な酸味と酸臭を伴うパンで、日本人には好まれない味となった。これらは、乳酸発酵継代培地が低pHで有ることや抗菌物質が含まれることにより、ドライフルーツに付着した一般の乳酸菌などが増殖できず、酵母のみの純粋な培養に成功したと考えられる。また、乳酸発酵継代培地に含まれるγ-アミノ酪酸が酵母の健全な発酵に良い影響を与えている可能性が示唆された。以上より、天然酵母パン種の種おこし、継代をはじめとする天然酵母パンの製造に乳酸発酵継代培地を使用する優位性が認められた。   Antibiotic activity was confirmed from the lactic acid fermentation passage medium, and the pH decreased, confirming the growth of the KLC 1527D strain. Further, when 3% sodium chloride, 1% magnesium chloride, 0.5% sodium glutamate was added to the passage medium and lactic acid fermentation was performed at 30 ° C. for 4 days, antibacterial activity and production of γ-aminobutyric acid were confirmed. Attempts were made to isolate natural yeast using a lactic acid fermentation subculture medium during lactic acid fermentation. As a result, only the yeast grew efficiently, and no abnormal acidity or odor was observed. On the other hand, when the subculture medium in the non-addition group was used, not only yeast but general bacteria grew, and it was spoiled with excessive acidity and abnormal odor, so that it could not be used for separation of natural yeast species. In addition, the natural yeast bread seeds subcultured using the lactic acid fermentation subculture medium did not produce excessive sourness, and were able to purely subculture the yeast. It was found that the one used was accompanied by excessive sourness and was not different from the passage using normal wheat. In addition, bread using natural yeast bread that was subcultured using a lactic acid fermentation subculture medium was weak in acidity, made bread suitable for Japanese people, and baked bread with a plump flavor. However, when bread cultivated in the subculture medium of the lactic acid bacteria non-addition zone was used, the bread with excessive acidity and acid odor due to contamination with various bacteria was unfavorable for Japanese. These are considered to have succeeded in the pure culture of yeast only because the lactic acid fermentation passage medium has a low pH and contains antibacterial substances, so that general lactic acid bacteria attached to dried fruits cannot grow. In addition, it was suggested that γ-aminobutyric acid contained in the lactic acid fermentation subculture medium may have a positive effect on the healthy fermentation of yeast. From the above, the advantage of using a lactic acid fermentation subculture medium for the production of natural yeast bread, including seeding and passage of natural yeast bread, was recognized.

本発明のラクトコッカス・ラクティス・サブスピーシーズ・ラクティス・クラス 1 KLC 1527D株は抗菌物質ナイシンZを生産し、その他のナイシン生産菌と比較して、低温増殖性に優れ、低温培養時における抗菌物質生産性も優れていた。さらに、糖質資化能にも優れていたことから、様々な環境において優勢に生育することが可能である。本乳酸菌はつわり香や菌臭といった異臭の発生がほとんど無いという特性を持つ。その他、γ-アミノ酪酸生成能も従来のナイシン生産菌よりも高く、グルタミン酸及びその塩類より効率よく生産できるため、食品に抗菌物質による日持ち向上と低塩化を実現する他、γ-アミノ酪酸による機能性を付与することが可能である。さらに本乳酸菌を含めた一般的な乳酸菌において、塩化マグネシウムをはじめとする塩素イオンやその塩類、海水、にがりの存在下でγ-アミノ酪酸の生産能が著しく向上することを見いだした。本乳酸菌のつくる抗菌物質は、火落菌をはじめ様々な細菌に対して生育阻害効果を示す。そのため、本乳酸菌を発酵食品等の製造時に添加し発酵を行わせたり、食品等に添加することによって、雑菌等の生育を阻害し、食品の腐敗や品質の低下、さらに火落菌による清酒などの腐敗を有効に防止することができる。菌臭やつわり香を発生せず抗菌物質とγ-アミノ酪酸を作る本乳酸菌を使用することによって、日持ちが向上しγ-アミノ酪酸による機能性が付与されるといった、従来に比べて高品質な食品の製造及び開発が可能である。ここでは、その例として、野菜や畜肉、魚類の低塩化と日持ち向上技術及び天然酵母パンの安全製造法を例示した。今後、この様な食品への利用がすすみ、化学的に合成された保存料を使わず発酵を利用した安全な食品の提供が可能となる。   Lactococcus lactis sub-species lactis class 1 KLC 1527D strain of the present invention produces the antibacterial substance nisin Z. Compared with other nisin-producing bacteria, it has low-temperature growth and produces antibacterial substances during low-temperature culture. The property was also excellent. Furthermore, since it was also excellent in carbohydrate assimilation ability, it can grow predominantly in various environments. This lactic acid bacterium has a characteristic that there is almost no off-flavor such as morning sickness and fungus odor. In addition, the ability to produce γ-aminobutyric acid is higher than that of conventional nisin-producing bacteria, and it can be produced more efficiently than glutamic acid and its salts. It is possible to impart sex. Furthermore, in general lactic acid bacteria including this lactic acid bacterium, it was found that the production ability of γ-aminobutyric acid was remarkably improved in the presence of chloride ions such as magnesium chloride, salts thereof, seawater and bittern. The antibacterial substance produced by this lactic acid bacterium exhibits growth inhibitory effects against various bacteria including fire eradicating bacteria. Therefore, by adding this lactic acid bacteria at the time of production of fermented foods, etc., and adding to foods, etc., the growth of miscellaneous bacteria etc. is inhibited, food decay and quality deterioration, and sake by fire eradication, etc. Corruption can be effectively prevented. By using this lactic acid bacterium that produces antibacterial substances and γ-aminobutyric acid without generating a fungus odor or puffy scent, the shelf life is improved and the functionality provided by γ-aminobutyric acid is given. The production and development of food is possible. Here, as an example, low salinization and shelf life improvement technology for vegetables, livestock meat, and fish and a method for safely producing natural yeast bread are illustrated. In the future, it will be possible to provide safe foods using fermentation without using chemically synthesized preservatives.

乳酸菌は古来より食習慣があるため安全性の面では問題がなく、この抗菌性物質は乳酸菌に由来しており、しかも人体内で容易に分解されるため、従来の化学合成された食品保存料と比べ、大量に摂取しても安全性の上で心配がなく、健康面から好ましいものである。   Since lactic acid bacteria have traditionally had a dietary habit, there is no problem in terms of safety, and since this antibacterial substance is derived from lactic acid bacteria and is easily decomposed in the human body, conventional chemically synthesized food preservatives Compared to the above, even if it is ingested in a large amount, there is no safety concern and it is preferable from the viewpoint of health.

本乳酸菌とその他のナイシン生産菌を摂氏10度、15度、20度で培養した結果の生育状態を示すグラフである。It is a graph which shows the growth state of the result of having culture | cultivated this lactic acid bacteria and other nisin producing bacteria at 10 degree | times, 15 degree | times, and 20 degree | times. 本乳酸菌とその他のナイシン生産菌を摂氏25度、30度、37度で培養した結果の生育状態を示すグラフである。It is a graph which shows the growth state of the result of having culture | cultivated this lactic acid bacteria and other nisin producing bacteria at 25 degree | times, 30 degree | times, and 37 degree | times. 本乳酸菌とその他のナイシン生産菌とで、培養温度を変えた抗菌活性を比較したグラフである。It is the graph which compared the antimicrobial activity which changed culture | cultivation temperature with this lactic acid bacteria and other nisin producing bacteria. 本乳酸菌とその他のナイシン生産性乳酸菌におけるγ−アミノ酪酸生産性を示すグラフである。It is a graph which shows (gamma) -aminobutyric acid productivity in this lactic acid bacterium and other nisin-producing lactic acid bacteria. 本乳酸菌の食塩耐性試験における濁度変化を示すグラフである。It is a graph which shows the turbidity change in the salt tolerance test of this lactic acid bacteria. 本乳酸菌と他のナイシン生産菌の食塩濃度4ないし6%における濁度変化を示すグラフである。It is a graph which shows the turbidity change in the salt concentration 4 to 6% of this lactic acid bacterium and another nisin producing bacterium. 本乳酸菌とその他のナイシン生産乳酸菌の食塩ストレス環境下における増殖性比較とγ-アミノ酪酸生産性を示すグラフである。It is a graph which shows the growth comparison in the salt stress environment of this lactic acid bacterium and other nisin producing lactic acid bacteria, and γ-aminobutyric acid productivity. 本乳酸菌の増殖に伴う濁度変化を示すグラフである。It is a graph which shows the turbidity change accompanying the growth of this lactic acid bacteria. γ-アミノ酪酸の生成量を示すグラフである。It is a graph which shows the production amount of γ-aminobutyric acid. 塩化マグネシウム濃度を変化させたときの濁度の変化を示すグラフである。It is a graph which shows the change of turbidity when changing a magnesium chloride density | concentration. 培養4日目と7日目の培養上清中に含まれるγ-アミノ酪酸生成量を示すグラフである。It is a graph which shows the production amount of γ-aminobutyric acid contained in the culture supernatants on the 4th and 7th days of culture.

符号の説明Explanation of symbols

AU Arbitrary Unit   AU Arbitrary Unit

Claims (14)

低温で良好な生育を示し、ナイシンZ及びγ−アミノ酪酸を同時に高生産する糖質資化性に優れ、不快な菌臭やつわり香を生成しない新規乳酸菌 ラクトコッカス・ラクティス・サブスピーシーズ・ラクティス・クラス 1 KLC 1527D。 A new lactic acid bacterium that shows good growth at low temperatures, has high saccharide utilization and simultaneously produces nisin Z and γ-aminobutyric acid, and does not produce an unpleasant fungus odor or morning odor. Lactococcus Class 1 KLC 1527D. 請求項1に記載した新規乳酸菌 ラクトコッカス・ラクティス・サブスピーシーズ・ラクティス・クラス 1 KLC 1527Dを酒母仕込み時から添加し酵母とともに発酵を行わせ、酒母またはもろみ中でナイシンを生産させる酒類の火落ち防止方法。 The novel lactic acid bacterium according to claim 1 Lactococcus lactis subspecies lactis class 1 KLC 1527D is added from the beginning of the sake mother and fermented with yeast to prevent the burning of alcoholic beverages that produce nisin in the sake mother or mash. Method. グルタミン酸もしくはその塩類存在下で塩素イオンもしくは塩素イオンを含む塩類及び/又は海水及び/又はにがり等を共存させた系中で培養することによりγ-アミノ酪酸を高生産し且つナイシンを高生産する請求項1に記載した新規乳酸菌 ラクトコッカス・ラクティス・サブスピーシーズ・ラクティス・クラス 1 KLC 1527D。 Claims for high production of γ-aminobutyric acid and high production of nisin by culturing in a system coexisting with chlorine ions or salts containing chloride ions and / or seawater and / or bittern in the presence of glutamic acid or its salts The novel lactic acid bacterium described in Item 1, Lactococcus lactis subspecies lactis class 1 KLC 1527D. グルタミン酸もしくはその塩類存在下で塩素イオンもしくは塩素イオンを含む塩類及び/又は海水及び/又はにがり等を共存させた系中で請求項1に記載した乳酸菌を用いてγ-アミノ酪酸とナイシンを生産し且つ発酵産物にγ-アミノ酪酸による機能性とナイシンによる日持ち向上効果を同時に付与する方法。 Producing γ-aminobutyric acid and nisin using lactic acid bacteria according to claim 1 in a system coexisting with chlorine ions or salts containing chloride ions and / or seawater and / or bittern in the presence of glutamic acid or a salt thereof. A method of simultaneously imparting the functionality of γ-aminobutyric acid to the fermentation product and the effect of improving the shelf life of nisin. 請求項1に記載した新規乳酸菌 ラクトコッカス・ラクティス・サブスピーシーズ・ラクティス・クラス 1 KLC 1527Dを用いて、抗菌物質ナイシンにより安定した酵母育種が可能な天然酵母パン種を製造する方法。 A method for producing a natural yeast bread seed capable of stable yeast breeding with the antibacterial substance nisin using the novel lactic acid bacterium Lactococcus lactis subspecies lactis class 1 KLC 1527D. 請求項1に記載した新規乳酸菌 ラクトコッカス・ラクティス・サブスピーシーズ・ラクティス・クラス 1 KLC 1527Dを用いて製造してなる、抗菌物質ナイシンにより保存性が向上し且つ低塩化されたハタハタずしやいずし類をはじめとする水産加工品。 The novel lactic acid bacterium Lactococcus lactis sub-species lactis class 1 KLC 1527D manufactured according to claim 1, which has been preserved by the antibacterial substance nisin and is low-salt salt. Processed marine products such as sea bream. 請求項1に記載した新規乳酸菌 ラクトコッカス・ラクティス・サブスピーシーズ・ラクティス・クラス 1 KLC 1527Dを用いて乳酸発酵させることにより、低塩分且つγ-アミノ酪酸による機能性を有する生鮮畜肉加工品または魚類をはじめとする水産加工品を製造する方法。 A novel lactic acid bacterium according to claim 1, which is subjected to lactic acid fermentation using Lactococcus lactis subspecies lactis class 1 KLC 1527D, to produce a processed fresh meat product or fish having low salinity and functionality with γ-aminobutyric acid. A method of manufacturing processed fishery products. 請求項1に記載した新規乳酸菌 ラクトコッカス・ラクティス・サブスピーシーズ・ラクティス・クラス 1 KLC 1527Dを用いて乳酸発酵させることにより、低塩分且つγ-アミノ酪酸による機能性を有する畜肉及び/又は魚類をはじめとする水産品を用いた発酵ソーセージを製造する方法。 A novel lactic acid bacterium according to claim 1 lactic acid fermented using Lactococcus lactis subspecies lactis class 1 KLC 1527D, so that meat and / or fish having low salinity and functionality by γ-aminobutyric acid can be used. A method for producing fermented sausages using marine products. 請求項1に記載した新規乳酸菌 ラクトコッカス・ラクティス・サブスピーシーズ・ラクティス・クラス 1 KLC 1527Dを用いて乳酸発酵させることにより、ナイシンによる保存性が向上し且つγ-アミノ酪酸による機能性を有する豆乳ヨーグルトを製造する方法。 Lactic acid fermentation using the novel lactic acid bacterium Lactococcus lactis subspecies lactis class 1 KLC 1527D according to claim 1, soy milk yogurt having improved storage stability by nisin and functionality by γ-aminobutyric acid How to manufacture. 請求項9に記載した製造方法により製造された豆乳ヨーグルトを用いて食品を製造する方法。 The method to manufacture a foodstuff using the soymilk yogurt manufactured by the manufacturing method of Claim 9. 請求項1に記載した新規乳酸菌 ラクトコッカス・ラクティス・サブスピーシーズ・ラクティス・クラス 1 KLC 1527Dを用いて乳酸発酵させることにより、低塩分且つγ-アミノ酪酸による機能性を有する野菜類の漬物を製造する方法。 A novel lactic acid bacterium according to claim 1 is produced by lactic acid fermentation using Lactococcus lactis subspecies lactis class 1 KLC 1527D to produce pickles of vegetables having low salinity and functionality by γ-aminobutyric acid Method. 請求項1に記載した新規乳酸菌 ラクトコッカス・ラクティス・サブスピーシーズ・ラクティス・クラス 1 KLC 1527Dを用いて乳酸発酵させることにより、ナイシンによる保存性が向上し安定した酵母育種が可能な天然酵母パン種を製造する方法。 The novel lactic acid bacterium according to claim 1 Lactococcus lactis subspecies lactis class 1 KLC 1527D is used for lactic acid fermentation to produce a natural yeast bread that has improved storage stability with nisin and enables stable yeast breeding. how to. 請求項1に記載した新規乳酸菌 ラクトコッカス・ラクティス・サブスピーシーズ・ラクティス・クラス 1 KLC 1527Dを用いて乳酸発酵させることにより、ナイシンによる保存性が向上し安定した酵母育種が可能であり、さらに、γ-アミノ酪酸による機能性を有する天然酵母パン種を製造する方法。 The novel lactic acid bacterium according to claim 1 can be lactic acid fermented using Lactococcus lactis subspecies lactis class 1 KLC 1527D to improve storage stability with nisin and enable stable yeast breeding. -A method for producing a natural yeast bread seed having functionality by aminobutyric acid. 請求項1に記載した新規乳酸菌 ラクトコッカス・ラクティス・サブスピーシーズ・ラクティス・クラス 1 KLC 1527Dを用いて乳酸発酵させることにより製造してなる、低塩分且つγ-アミノ酪酸による機能性を有するハタハタずしやいずし類またはぬか漬けまたは塩辛をはじめとする水産加工品。 A novel lactic acid bacterium according to claim 1, which is produced by lactic acid fermentation using Lactococcus lactis subspecies lactis class 1 KLC 1527D, and has a low salinity and a functionality based on γ-aminobutyric acid. Processed marine products such as sea cucumbers, pickles or salted fish.
JP2004246148A 2003-12-10 2004-08-26 A novel lactic acid bacterium that shows good growth at low temperatures, high nisin production, excellent saccharide utilization, produces γ-aminobutyric acid, and uses γ-aminobutyric acid in high production methods and techniques for preventing alcohol from burning out. Expired - Fee Related JP4041850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004246148A JP4041850B2 (en) 2003-12-10 2004-08-26 A novel lactic acid bacterium that shows good growth at low temperatures, high nisin production, excellent saccharide utilization, produces γ-aminobutyric acid, and uses γ-aminobutyric acid in high production methods and techniques for preventing alcohol from burning out.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003411214 2003-12-10
JP2004246148A JP4041850B2 (en) 2003-12-10 2004-08-26 A novel lactic acid bacterium that shows good growth at low temperatures, high nisin production, excellent saccharide utilization, produces γ-aminobutyric acid, and uses γ-aminobutyric acid in high production methods and techniques for preventing alcohol from burning out.

Publications (2)

Publication Number Publication Date
JP2005192553A JP2005192553A (en) 2005-07-21
JP4041850B2 true JP4041850B2 (en) 2008-02-06

Family

ID=34828954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004246148A Expired - Fee Related JP4041850B2 (en) 2003-12-10 2004-08-26 A novel lactic acid bacterium that shows good growth at low temperatures, high nisin production, excellent saccharide utilization, produces γ-aminobutyric acid, and uses γ-aminobutyric acid in high production methods and techniques for preventing alcohol from burning out.

Country Status (1)

Country Link
JP (1) JP4041850B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5044769B2 (en) * 2006-03-10 2012-10-10 秋田県 Lactic acid bacteria Lactobacillus sakei strain, beverage manufacturing method, food manufacturing method, pickled bed manufacturing method, bread making raw material manufacturing method
JP4644815B2 (en) * 2006-03-31 2011-03-09 秋田県 Mixed powder for foods containing yeast and lactic acid bacteria and foods using the same
JP4732970B2 (en) * 2006-06-22 2011-07-27 株式会社トロピカルテクノセンター Distilled liquor production method
JP2009225695A (en) * 2008-03-21 2009-10-08 Univ Of Fukui Method for producing fish seasoned in salted rice bran
JP5218041B2 (en) * 2008-12-22 2013-06-26 福井県 Rice lactic acid fermented food and drink and method for producing the same
JP5472591B2 (en) * 2009-03-04 2014-04-16 花王株式会社 Seasoning liquid for pickles
JP5537075B2 (en) * 2009-06-29 2014-07-02 三栄源エフ・エフ・アイ株式会社 Method for manufacturing pickles
JP4605299B1 (en) * 2009-07-27 2011-01-05 学校法人北里研究所 Isada edible material manufacturing method
CN102212564A (en) * 2010-04-02 2011-10-12 财团法人中华谷类食品工业技术研究所 Fermentation method for producing gamma-aminobutyric acid and fermentation culture medium thereof
JP5472763B2 (en) * 2012-03-21 2014-04-16 高橋 将太 Two-layer yogurt with rice yogurt and soy milk yogurt
CN105105216A (en) * 2015-08-21 2015-12-02 浙江海洋学院 Processing method of lactobacillus fermented mussel sausage
CN105400652B (en) * 2015-12-29 2018-06-29 泸州品创科技有限公司 The method for quickly preparing artificial distiller's yeast using the functional microorganism flora of high yield butyric acid and caproic acid
JP7092572B2 (en) * 2018-06-25 2022-06-28 群栄化学工業株式会社 Lactic acid fermented beverage or food, and its manufacturing method
CN112352043A (en) * 2018-06-29 2021-02-09 3M创新有限公司 Culture and/or enumeration of fire and fire-shedding nature bacteria and kits useful therefor
JP7207804B1 (en) 2022-10-23 2023-01-18 規雄 酒井 Lactic acid bacteria strain, method for obtaining lactic acid bacteria, method for producing yogurt, starter for yogurt, yogurt and lactic acid fermented soymilk food
CN117965397B (en) * 2024-03-29 2024-05-28 烟台欣和企业食品有限公司 Pediococcus acidilactici and application thereof

Also Published As

Publication number Publication date
JP2005192553A (en) 2005-07-21

Similar Documents

Publication Publication Date Title
JP5044769B2 (en) Lactic acid bacteria Lactobacillus sakei strain, beverage manufacturing method, food manufacturing method, pickled bed manufacturing method, bread making raw material manufacturing method
Buckenhüskes Selection criteria for lactic acid bacteria to be used as starter cultures for various food commodities
Todorov et al. Lactobacillus plantarum: Characterization of the species and application in food production
JP4041850B2 (en) A novel lactic acid bacterium that shows good growth at low temperatures, high nisin production, excellent saccharide utilization, produces γ-aminobutyric acid, and uses γ-aminobutyric acid in high production methods and techniques for preventing alcohol from burning out.
JP5114770B2 (en) Novel lactic acid bacteria and method for producing fermented foods using the lactic acid bacteria
Kröckel Bacterial fermentation of meats
CN104560802A (en) Fermentation strain and fermentation agent for canned meat products
Pierre et al. Survey of the improvement of fish fermentation for lanhouin production in Benin
Muzaddadi et al. An accelerated process for fermented fish (seedal) production in Northeast region of India
JP3091196B1 (en) Method for producing pickles using lactic acid bacteria
KR20120091903A (en) Vinegar pickled radish containing lactic acid bacteria from kimchi and its process
Buckenhueskes Quality improvement and fermentation control in vegetables
ÇoN et al. Determination of antagonistic starter cultures for pickle and olive fermentation processes
JP2006518208A (en) Control of enzymatic degradation of glucosinolate by lactic acid bacteria
KR101427415B1 (en) Lactic acid bacterium separated from kimchii and fermented food using the strain
US20160143302A1 (en) Use of lactobacillus sakei for the biopreservation of products from the sea
US11974590B2 (en) Method of fermentation of fish paste by medium halophilic bacteria
JP4320757B2 (en) Method for producing γ-aminobutyric acid enriched fermented food
KR101433896B1 (en) Preparing Method of Kimchi with Improved Quality and Shelf-life Using Deep Ocean Water
KR101453837B1 (en) Starter for Fermentation of a Korean Long-Term Ripened Kimchi comprising Saccharomyces servazzii MY7 and Lactobacillus curvatus ML17 as active ingredients
KR101302465B1 (en) Lactic acid bacterium separated from kimchii and fermented food using the strain
Pulido et al. Fermentation of caper products
JP4132037B2 (en) Method for producing lactic acid fermented food
KR20150005905A (en) boza production method with starter culture
KR101414163B1 (en) Preparation Method for Korean Long-Term Ripened Kimchi Using Starter for Fermentation of a comprising Saccharomyces servazzii MY7 and Lactobacillus curvatus ML17

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051104

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20061108

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20061204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070718

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070718

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070926

R150 Certificate of patent or registration of utility model

Ref document number: 4041850

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees