JP4127906B2 - Constant velocity universal joint - Google Patents

Constant velocity universal joint Download PDF

Info

Publication number
JP4127906B2
JP4127906B2 JP26682998A JP26682998A JP4127906B2 JP 4127906 B2 JP4127906 B2 JP 4127906B2 JP 26682998 A JP26682998 A JP 26682998A JP 26682998 A JP26682998 A JP 26682998A JP 4127906 B2 JP4127906 B2 JP 4127906B2
Authority
JP
Japan
Prior art keywords
boot
band
thickness
universal joint
constant velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26682998A
Other languages
Japanese (ja)
Other versions
JPH11166624A (en
Inventor
真一 高部
健二 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP26682998A priority Critical patent/JP4127906B2/en
Publication of JPH11166624A publication Critical patent/JPH11166624A/en
Application granted granted Critical
Publication of JP4127906B2 publication Critical patent/JP4127906B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/703Bellows

Landscapes

  • Sealing Devices (AREA)
  • Diaphragms And Bellows (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ブーツ取付部に蛇腹状の樹脂ブーツをブーツバンドで固定した固定構造を有する等速自在継手に関する。
【0002】
【従来の技術】
等速自在継手には、継手内部に封入されたグリースの漏れ出し防止や継手内部への異物侵入防止を目的として、ブーツが装着される。ブーツは、等速自在継手の外側継手部材のブーツ取付部および軸部のブーツ取付部にそれぞれブーツバンドで締付け固定される。この等速自在継手用ブーツとしては、クロロプレンゴム(CR)等のゴム材料からなるゴムブーツと、樹脂材料からなる樹脂ブーツが一般的であるが、近時では、耐回転膨張性や耐久性等の面から樹脂ブーツが多く使用される傾向にある。
【0003】
図14は、従来の蛇腹状の樹脂ブーツ12を装着した等速自在継手11を示している。樹脂ブーツ12は、蛇腹部12Cを挟んで大径側と小径側にそれぞれ円筒状のブーツ固定部12a、12bを備え、大径側のブーツ固定部12aを外側継手部材11aのブーツ取付部にブーツバンド13で締付固定され、小径側のブーツ固定部12bを軸部11eのブーツ取付部にブーツバンド14で締め付け固定される。
【0004】
樹脂ブーツは、ゴムブーツに比べて、材料硬度が高く弾性に乏しいので、十分な固定強度とシール性を確保するために、ブーツバンドとして、より大きな締付力が得られるオメガ(Ω)形状のクランプ部を有する加締めタイプのバンド(オメガバンド)13、14を使用するのが一般的である。これは、従来の樹脂ブーツでは、ゴムブーツに使用されるいわゆるレバー式ブーツバンド(レバー部材を折返して締付けるタイプのバンド)のようなものでは、十分な締付力を得ることができなかったからである。
【0005】
【発明が解決しようとする課題】
オメガバンド13、14は、レバー式ブーツバンド等に比べ、大きな締付力を得ることができる反面、クランプ部が外径側に突出した形状であるため、最大回転半径が大きく、周辺部品との干渉を避けるためのスペースを大きく取る必要がある等、設計上不利な点がある。また、クランプ部が突出しているために異物(飛石等)と遭遇する機会が増加する。さらに、バンド自体の形状が複雑であり、肉厚および幅もゴムブーツに使用されるブーツバンドよりも大きなものが必要なことから、コスト的にも不利である。一方、ブーツバンドの中には突出したクランプ部を有しないものもあるが、樹脂ブーツに適用した場合に、十分な固定強度とシール性とを確保することが困難であった。
【0006】
本発明は、突出したクランプ部がなく、かつ、樹脂ブーツの十分な固定強度とシール性とを確保し得る固定構造を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記課題を解決するため、本発明では、樹脂ブーツの少なくとも一方のブーツ固定部を締付けて等速自在継手のブーツ取付部に固定するためのブーツバンドとして、突出したクランプ部を有しない、いわゆるレバー式ブーツバンドを用いた。すなわち、ブーツバンドとして、帯状の金属材からなるバンド部材を輪状に湾曲させてその両端を掌合状態に結合すると共に、この掌合部の一方の外側面に、バンド部材よりも剛性の高い金属材からなるレバー部材を装着し、レバー部材をてこ作用を利用して折返して、ブーツ固定部を締付けた後、レバー部材をバンド部材の外側面に重ね合わせて固定するタイプのブーツバンドを用いた。さらに、ブーツバンドのバンド部材の内側面に突出部を設け、この突出部を樹脂ブーツのブーツ固定部の外周面に接触させた。この突出部は、レバー部材を折返した時に、バンド部材の折返し部分と近接する位置に設けられていると共に、突出部の幅はブーツ取付部の係合溝の幅よりも小さい。このブーツバンドは、構造が簡単で、突出したクランプ部を有しないので、設計面およびコスト面で有利である。また、異物との遭遇の機会も少ないので、安定した固定状態を維持することができる。一方、ブーツバンドのレバー部材を折返した時、バンド部材の一部がレバー部材の折返し起点によって折返され、掌合部がレバー部材の外側面に重なり合った状態になる。そのため、バンド部材の折返し部分と近接する部分(レバー部材の折返し方向と反対側の部分)に部分的な隙間が生じ、その部分でシール性の低下が起こり易い。そこで、バンド部材の内側面に突出部を設け、この突出部を樹脂ブーツのブーツ固定部の外周面に接触させて、上記隙間を詰めることにより、シール性の一層の向上を図っている。特に、この突出部は、レバー部材を折返した時に、バンド部材の折返し部分と近接する位置に設けられていると共に、突出部の幅がブーツ取付部の係合溝の幅よりも小さく設定されているので、締付時、ブーツ固定部が突出部によって係合溝側に向けて押圧されることにより、より高いシール性を得ることができる。この突出部は、少なくとも一個所以上、好ましくは、レバー部材を折返した時に、バンド部材の折返し部分と近接する位置に設ける。また、突出部の端面とバンド部材の折返し部分との間の円周方向隙間γが0<γ≦1.5mmとなるように設定することにより、シール性の向上に対してより好ましい状態となる。
【0008】
さらに、本発明では、十分な固定強度とシール性とを確保するために、以下の技術的手段を採用した。
【0009】
(1)樹脂ブーツを38≦HD <50、好ましくは、41≦HD ≦47、例えばHD =47の硬度を有する熱可塑性ポリエステル系エラストマーで形成した。これにより、従来の樹脂ブーツに比べ(従来はHD 50以上)、材料硬度が低減し、柔軟性が向上すると同時に、屈曲時、谷部にかかる応力(引張および圧縮)が減少し、谷部の耐屈曲疲労性が向上する。ここで、「HD 」はショアー硬さのDスケール(ASTMに準拠)を表している。
【0010】
(2)樹脂ブーツの蛇腹部の各山部の平均肉厚Tをそれぞれ0.5mm≦T≦1.5mm、各谷部の平均肉厚tをそれぞれ0.5mm≦t≦1.5mmで、全ての隣接する谷部と山部との肉厚比r(=t/T)を1.0≦r<1.5の範囲内とし、かつ、山部の平均肉厚Tの最大値Tmaxを最小値Tminに対してTmax≦1.5Tmin、谷部の平均肉厚tの最大値tmaxを最小値tminに対してtmax≦1.5tminとした。肉厚比r(=t/T)を上記範囲に設定することにより、従来の樹脂ブーツに比べ(従来はt/T=1.5〜2.1)、山部に対する谷部の弾性が増大すると共に(肉厚が相対的に減少するため)、谷部にかかる応力(引張および圧縮)が減少し、谷部の耐屈曲疲労性が向上する。また、山部と谷部について、それぞれ、平均肉厚の最大値を最小値の1.5倍以下とすることにより、継手取付け時の圧縮量が各谷にバランス良く分散されるので、圧縮荷重−軸方向圧縮量線図において変曲点ができない。
【0011】
(3)上記(1)(2)により、従来の樹脂ブーツと同等以上の耐久性を確保しつつ、形状のコンパクト化(外径寸法の縮小化、軸方向長さの縮小化)を図ることができる。樹脂ブーツにおける材料硬度の低減(柔軟性の向上)と薄肉コンパクト化は、等速自在継手に対する固定強度およびシール性を確保する上で有利に働く。
【0012】
(4)樹脂ブーツのブーツ固定部の肉厚S3を1mm≦S3≦1.8mmとし、かつ、下記式で表される計算締代δを0<δ≦1.6mmの範囲内とした。
【0013】
δ={φA+(2×S3)}−φD
φD: ブーツバンドの計算上の締付内径
φA:ブーツ取付部の最大外径
S3:ブーツ固定部の肉厚(締付力が負荷される前の肉厚)
ブーツバンドの締付時、バンド部材には締付力によって若干の伸びが発生する。φDは、この締付時におけるバンド部材の伸び等を無視した計算上の締付内径である。φAは、ブーツ取付部に突起部を設ける場合は、突起部の先端外径(図2〜図4参照)、突起部を設けない場合はブーツ取付部の外周面の外径になる。S3は、締付力が負荷される前の肉厚、つまりブーツ固定部の自然状態における肉厚である。
【0014】
計算締代δは、使用条件によってはゼロ近傍の値とすることができるが、充分な固定強度とシール性を確保するために、δ≧0.5mmとするのが好ましい。但し、δが過大であると、バンド部材に座屈が生じ、固定強度やシール性が却って低下する可能性が有るので、δ≦1.6mmとする。試験の結果では、(低温、高角度、低速回転)の場合、(常温、高角度、中速回転)の場合とも、計算締代δを0.2mm、0.5mm、1.0mm、1.6mmとした場合では良好なシール性が認められたが、δ=0mmの場合ではシール性が不足することが認められた。
【0015】
(5)ブーツバンドのバンド部材の肉厚S1を0.3mm≦S1≦0.6mm、幅W1を8mm≦W1≦12mmとした。バンド部材の肉厚S1が0.3mm未満であると、必要な締付力が得られにくい。一方、バンド部材の肉厚S1が0.6mmを越えると、バンド部材の剛性が高くなりすぎてレバー部材の折返しが困難となり、また、外径寸法、材料コストの面での有利性が減少する。そこで、0.3mm≦S1≦0.6mmの寸法設定とした。バンド部材の肉厚S1は、従来の樹脂ブーツ用ブーツバンド(バンド部材の肉厚は一般に1.0mm程度である。)に比較してかなり小さくなっている(ゴムブーツ用ブーツバンドと同程度の肉厚である)。このように薄肉のバンド部材の使用が可能になった主な理由は、樹脂ブーツの材料弾性の向上および形状のコンパクト化により、ブーツの回転時の捩れ剛性および遠心膨張が低減し、従来の樹脂ブーツに比べて小さな締付力で充分な固定強度とシール性を確保できるようになったことにある。
【0016】
バンド部材の幅W1を上記のように設定したのは次の理由による。すなわち、バンド部材の幅W1が8mm未満であると、締付力が不足する。一方、バンド部材の幅W1が12mmを越えても、締付け効果に差異が認められないか、あるいは、多少の差異が認められても、材料コスト面の有利性が減少する。そこで、8mm≦W1≦12mmの寸法設定とした。
【0017】
(6)レバー部材の肉厚S2をバンド部材の肉厚S1に対して2.5≦(S2/S1)≦3.5、幅W2をバンド部材の幅W1と同とした。(S2/S1)が2.5未満であると、必要な締付力が得られず、また、締代を大きくした場合、レバー部材に座屈変形が生じる可能性がある。一方、(S2/S1)が3.5を越えても、締付け効果に差異が認められないか、あるいは、多少の差異が認められても、外径寸法、コストの面での有利性が減少する。また、レバー部材の表面に、バレル処理やショットブラスト処理等による表面硬化処理を施こすことができる。レバー部材の表面硬度が向上することにより、レバー部材の座屈変形に対する強度が高まる。
【0018】
(7)樹脂ブーツのブーツ固定部の内周面に、ブーツ取付部の外周面に形成された環状の係合溝と係合する環状の凸部を設けた。また、ブーツ取付部の係合溝の両側に突起部を形成した。締付け時、ブーツバンドの締付力によって、ブーツ固定部が弾性変形を起こし、凸部が係合溝側に変位し、突起部がブーツ固定部の内周面に食い込む。この凸部と係合溝との係合、突起部の強固な食い込みで、ブーツ固定部がブーツ取付部に高い抜け止め強度とシール性をもって固定される。また、ブーツ固定部の内周面がブーツ取付部の外周面に適度に密着して、良好なシール性が得られる。
【0020】
【発明の実施の形態】
以下、本発明の実施形態を図面に従って説明する。
【0021】
図1は、等速自在継手1に樹脂ブーツ2をブーツバンド3、4で固定した状態を示している。等速自在継手1は、内周面に複数の案内溝1a1を軸方向に形成した外側継手部材1aと、外周面に複数の案内溝1b1を軸方向に形成した内側継手部材1bと、案内溝1a1と案内溝1b1とが協働して形成されるボールトラックに配された複数のボール1cと、ボール1cを保持する保持器1dと、内側継手部材1bの内周にセレーション連結(又はスプライン連結)された軸部1eとを備えている。樹脂ブーツ2は、外側継手部材1aと軸部1eにそれぞれ固定される。
【0022】
図2は、外側継手部材1aのブーツ取付部1a2を示している。ブーツ取付部1a2は、通常、外側継手部材1aの開口側の端部外周面に設けられる。ブーツ取付部1a2の外周面1a3に環状の係合溝1a4が形成され、係合溝1a4の両側にそれぞれ環状の突起部1a5が形成されている。係合溝1a4は、中央部分が軸線と平行な平坦面1a6で、この平坦面1a6から曲率半径Rの円弧面1a7を介して、突起部1a5の第2側1a9に連続する形状になっている。突起部1a5の第1側1a8は傾斜壁、第2側1a9は軸線と直交する垂直壁である。
【0023】
図3は、軸部1eのブーツ取付部1e2を示している。ブーツ取付部1e2の外周面1e3に環状の係合溝1e4が形成され、係合溝1e4の両側にそれぞれ環状の突起部1e5が形成されている。係合溝1e4と突起部1e5の第2側は、曲率半径R’の1つの円弧面1e6で描かれている。突起部1e5の第1側1e8は傾斜壁である。
【0024】
図4は、ブーツ取付部1e2の他の形状の係合溝1e4’を示している。この係合溝1e4’は溝底全体が軸線と平行な平坦面1e6’で、この平坦面1e6’から垂直壁を介して、突起部1e5の第2側1a9に連続する形状になっている。突起部1e5の第1側1e8は傾斜壁、第2側1e9は軸線と直交する垂直壁である。
【0025】
尚、外側継手部材1aのブーツ取付部1a2の係合溝を図3又は図4に示す形状にしても良いし、軸部1eのブーツ取付部1e2の係合溝を図2に示す形状にしても良い。また、図2〜図4におけるφAはブーツ取付部の最大外径を示している。これらのブーツ取付部では、係合溝の両側に突起部が形成されているので、突起部の先端外径がブーツ取付部の最大外径φAになる。
【0026】
この実施形態では、ブーツ取付部の加工性や、固定強度およびシール性を高めるため、後述するブーツ固定部の凸部の高さf(図7、図8参照)、図2〜図4に示すブーツ取付部の係合溝の深さa、幅b、突起部の高さcの間に、
[0.2mm≦c≦0.5mm]、[0.5mm≦a≦1.5mm]、[f≦(a−c)]、[(b/a)≧3]の寸法関係を設定している。
【0027】
[0.2mm≦c≦0.5mm]の寸法設定は次の理由による、すなわち、突起部の高さcが0.2mm未満であると、締め付け時にブーツ固定部の内周面がブーツ取付部の外周面に強く接触して、突起部のブーツ固定部への十分な食い込みが期待できない。逆に、突起部の高さcが0.5mmを越えると、ブーツ取付部の径を大きくしなければならず、材料コストおよび加工コストの上昇を招き、また、締付け時にブーツ固定部の内周面とブーツ取付部の外周面との間に隙間が生じてシール性が低下する可能性が有る。
【0028】
[0.5mm≦a≦1.5mm]の寸法設定は次の理由に基づく。すなわち、係合溝の深さaが1.5mmを越えると、ブーツ取付部の強度が低下すると共に、係合溝の倣い加工が難しくなって製造コスト、加工性の点で不利となる。逆に、深さaが0.5mm未満であると、締付け時に凸部が係合溝の底に接触して弾性変形し、その変形分の反力だけ突起部の食い込み性が低下する。そのため、これに応じて凸部の高さfを小さくせざるを得なくなり、凸部による係合溝への位置固定の効果が低下する。
【0029】
また、係合溝の深さaと凸部の高さfの関係は、締付け時に凸部が係合溝の底に接触しないか、接触しても突起部の食い込み性に影響を与えないようにする必要がある。この関係においては、突起部の高さcやブーツ材質にも関係があり、これらを考慮して凸部の高さfと係合溝の深さa、突起部の高さcの最良寸法関係を求めると、f≦(a−c)なる関係があることが分かった。
【0030】
[(b/a)≧3]の寸法関係は、係合溝を倣い加工可能な形状にして、加工性向上と製造コスト低減を可能とするためのものである。(b/a)<3であれば、通常の倣い加工では加工できない。
【0031】
以上の寸法設定による効果は、ブーツ取付部の係合溝や突起部の形状によって多少の差異が見られる。図2〜図4に示す各形状の突起部のブーツ固定部への食い込み性を考えた場合、図3に示す突起部よりも図2および図4に示す突起部の食い込み性が良好である。これは、図2、図4に示す突起部は、第2側が垂直壁になっているためである。ブーツ固定部を軸方向にずらそうとする力に対して、第2側がブーツ固定部の内周面、凸部と強固に係合してその力に対抗するので、高い抜け止め強度が得られる。ただし、図4に示す係合溝の形状においては、加工性に問題が生じる場合がある。ここで、食い込み性と強度及び加工性を考慮した場合、好ましいものは図2に示す形状の係合溝1a4であり、この係合溝1a4の更に良好な形状は、円弧面1a7の曲率半径をRとすると、[0.1mm≦R≦a]の寸法範囲に設定することである。曲率半径Rが0.1mm未満であると、食い込み性が増すが強度及び加工性が劣化する。逆に、曲率半径Rが深さaを越えると、強度及び加工性が良くなるが食い込み性が悪くなる。
【0032】
図5は、樹脂ブーツ2の自然状態を示している。この樹脂ブーツ2は、38≦HD <50、好ましくは41≦HD ≦47、例えばHD =47の硬度を有する熱可塑性ポリエステル系エラストマー(TPEE)で形成され、外側継手部材1aのブーツ取付部1a2にブーツバンド3で締付け固定される大径側のブーツ固定部2aと、軸部1eのブーツ取付部1e2にブーツバンド4で締付け固定される小径側のブーツ固定部2bと、ブーツ固定部2aとブーツ固定部2bとを繋ぐ蛇腹部2cとを備えている。
【0033】
蛇腹部2cは6つの山部2d(小径側より2d1、2d2、・・・、2d6)と5つの谷部2e(小径側より2e1、2e2、・・・、2e5)、および、各山部2dと谷部2eとを繋ぐ傾斜部2fとからなる。また、1山2d1は軸部1eの軸径dに対し(2.7×d)、5山2d5は軸径dに対し(4×d)であり、大径側から小径側に向かって漸次縮径した略円錐形状になっている。そのため、この樹脂ブーツ2は、従来の樹脂ブーツに比べ、径方向、軸方向ともにかなりコンパクトな形状であり、自然長L1の比較では、従来よりも約24%小さくなっている。また、この樹脂ブーツ2は、自然長L1よりやや圧縮した状態で等速自在継手1に取付けられるが{圧縮率(L1−L2)/L1は20%程度、従来の樹脂ブーツの圧縮率は23〜26%程度}、取付け時長さL2は従来よりも約16%小さく、ゴム(CR)ブーツと同程度である。尚、蛇腹部の山部の数は4〜7の範囲で任意に選択可能である。
【0034】
図6に例示するように、各山部2dの平均肉厚T(T1、T2、・・・、T6)は0.5mm≦T≦1.5mm、好ましくは0.5mm≦T≦1.1mm、各谷部2eの平均肉厚t(t1、t2、・・・、t5)は0.5mm≦t≦1.5mmで、かつ、全ての隣接する谷部2dと山部2eとの肉厚比r(=t/T)は、1.0≦r(t/T)<1.5の範囲内にある。肉厚比rの範囲の具体的内容を示すと以下のようになる。
【0035】
r1=t1/T1=1.05 r2=t1/T2=1.26
r3=t2/T2=1.26 r4=t2/T3=1.11
r5=t3/T3=1.11 r6=t3/T4=1.11
r7=t4/T4=1.41 r8=t4/T5=1.33
r9=t5/T5=1.16 r10=t5/T6=1.16
∴1.0≦r1、r2、・・・、r10<1.5
Tmax=0.9 tmax=1.2
Tmin=0.75 tmin=0.95
ちなみに、従来の樹脂ブーツは、山部、谷部の肉厚が0.55〜2.1mm、肉厚比rが1.5≦rt≦2.1であるから、この樹脂ブーツ2は従来ブーツに比べ、山部2d、谷部2eの肉厚が全体的に減少し、かつ、山部2dに対する谷部2eの肉厚が相対的に小さくなっている。また、この樹脂ブーツ2は、全ての山部2dの平均肉厚Tが同程度(Tmax≦1.5×Tminであれば良い。)、全ての谷部2eの平均肉厚tが同程度(tmax≦1.5×tminであれば良い。)になっている。尚、平均肉厚T、tを基準としているのは、樹脂ブーツの成形方法がCRブーツと異なりブロー成形が一般に多いため(CRブーツは一般にインジェクション成形である。ブロー成形では、金型は外型だけで、内型はない)、周方向で肉厚に多少のバラツキがあるためである。
【0036】
さらに、各山部2dから大径側の谷部2eに繋がる傾斜部2fのブーツ軸中心線Xに対する傾斜角α(小径側からα1、α2、・・・、α5)は、各山部2dから小径側の谷部2eに繋がる傾斜部2fの角β(小径側からβ1、β2、・・・、β6)よりも小さい。α1、・・・、α5は38°〜45°、β1、・・・、β6はαの1.3〜1.6倍(〜1.8倍でも良い)に設定するのが良い。
【0037】
図7は、大径側のブーツ固定部2aを示している。ブーツ固定部2aの内周面2a1には環状の凸部2a2が一体に形成され、外周面には環状のバンド装着溝2a3が形成されている。ブーツ固定部2aの肉厚S3は、前述した基準に基づき、1mm≦S3≦1.8mmの範囲内に設定されている。凸部2a2の内周面2a1からの高さはfである。また、バンド装着溝2a3の中央部分には、環状溝2a4が設けられている。
【0038】
図8は、小径側のブーツ固定部2bを示している。ブーツ固定部2bの内周面2b1には環状の凸部2b2が一体に形成され、外周面には環状のバンド装着溝2b3が形成されている。ブーツ固定部2bの肉厚S3は、前述した基準に基づき、1mm≦S3≦1.8mmの範囲内に設定されている。凸部2b2の内周面2b1からの高さはfである。また、バンド装着溝2b3の中央部分には、環状溝2b4が設けられている。
【0039】
上述したように、この樹脂ブーツ2は、従来の樹脂ブーツに比べて、材料硬度が小さく、全体的に薄肉で、かつ、径方向、軸方向ともにコンパクトな形状である。さらに、山部2d、谷部2eの肉厚および肉厚比が上記のような基準で設定されているので、谷部2eの耐屈曲疲労性が高く、しかも、取付け時の圧縮荷重が各谷部2eにバランス良く吸収され、各谷部2eがバランス良く圧縮されるので、圧縮荷重−軸方向圧縮量線図において変曲点ができない。そのため、この樹脂ブーツ2は、ゴム(CR)ブーツと同程度のコンパクトな形状であるにもかかわらず、従来の樹脂ブーツと同等以上の耐久性を示す。
【0040】
樹脂ブーツにおける材料硬度の低減(柔軟性の向上)と薄肉コンパクト化は、等速自在継手に対する固定強度およびシール性を確保する上で有利に働く。すなわち、材料の柔軟性が向上することにより、より小さい締付力で十分に締付け固定することが可能となる。また、ブーツ形状がコンパクトになることにより、蛇腹部に介在するグリース量が減少し、また、回転遠心力の影響が軽減するので、ブーツ固定部にかかる力が軽減する(等速自在継手の回転時、内封グリースが軸方向に押し出され、この押し出し力によって、蛇腹部に介在するグリースが軸方向に流動する現象が起こる。このグリースの軸方向への流動圧によって、ブーツ固定部が蛇腹部を介して引張力または圧縮力を受ける。特に、極低温時には、ブーツの弾性が低下すると同時に、グリースの稠度も小さくなるので、ブーツ固定部には大きな力が働く。また、回転速度が増すに従って、回転遠心力によるグリースの外径側への流動も起こり、このグリースの外径方向への流動によって、ブーツ固定部が蛇腹部を介して引張力を受ける。ブーツがコンパクトになり、蛇腹部に介在するグリース量が減少し、また、回転遠心力の影響が軽減することにより、これらの力が軽減する。)。さらに、材料硬度の低減(柔軟性の向上)と薄肉コンパクト化による影響が相俟ってブーツとしての捩れ剛性が低下する。そのため、従来、樹脂ブーツを取付けるために使用を余儀なくされていたオメガバンドに代えて、以下に説明する、突出したクランプ部を有しないブーツバンドを使用して、十分な固定強度とシール性とを確保することが可能となる。
【0041】
図9は、樹脂ブーツ2のブーツ固定部2a(2b)に装着されるブーツバンド3(4)を示している。ブーツバンド3(4)は、帯状の金属材からなるバンド部材3a(4a)を輪状に湾曲させてその両端を掌合状態に結合すると共に、この掌合部3a1(4a1)の一方の外側面に、バンド部材3a(4a)よりも厚肉で剛性の高い金属材からなるレバー部材3b(4b)を固着したものである。バンド部材3a(4a)、レバー部材3b(4b)は、例えばステンレス鋼で形成され、図9(b)(c)に示すバンド部材3a(4a)の肉厚S1、幅W1、レバー部材3b(4b)の肉厚S2、幅W2は、前述した基準に基づき、以下のように設定されている。
【0042】
バンド部材の肉厚S1:[0.3mm≦S1≦0.6mm]
バンド部材の幅W1 :[8mm≦W1≦12mm]
レバー部材の肉厚S2:[2.5≦S2/S1≦3.5
レバー部材の幅W2 :[W2=W1]
また、レバー部材3b(4b)にはバレル加工が施され、加工時のバリやエッジが除去されると共に、表面硬度の向上が図られている。バレル加工に代えてショットブラスト処理又はショットピーニング処理を施しても良い。さらに、バンド部材3a(4a)の内側面には、突出部3a2(4b2)が設けられている。この突出部3a2(4b2)は、例えばバンド部材3a(4a)の所要部位を内側に屈曲させて成形したものである。突出部をバンド部材とは別に製作し、バンド部材の内側面の所要部位に固着しても良い。
【0043】
レバー部材は、次のような曲げ剛性を有するのが好ましい。すなわち、レバー部材を支点間距離L=36mmで両持ち支持し、その中央部(L/2)に集中荷重M(5kg≦M≦25kg)を加えた時に、中央部(L/2)のたわみ量yが0.5mmとなるような曲げ剛性を有するのが好ましい。
【0044】
ブーツ固定部2a(2b)を締付けるに際しては、レバー部材3b(4b)をてこ作用を利用して強制的に折返した後、図10に示すように、レバー部材3b(4b)をバンド部材3a(4a)の外側面に重ね合わせて止め具3c(4c)で固定する。レバー部材3b(4b)を折り返すことにより、バンド部材3a(4a)の輪状部分が縮径して(計算上の締付内径はφD)、ブーツ固定部2a(2b)に所要の緊迫力(締付力)が与えられる。止め具3c(4c)は、例えば図10(b)(C)に示すように、コ字形断面の金属片をバンド部材3a(4a)の所定部位に固着したものである。レバー部材3b(4b)を固定するに際しては、その両側を叩いて折曲させ、レバー部材3b(4b)の外側面に重ね合わせる。尚、止め具はこれに限定されず、他の構造のものを採用することができる。また、レバー部材の固定手段として、止め具に代えて、スポット溶接等の固着手段を採用することもできる。
【0045】
図11および図12は、樹脂ブーツ2の大径側のブーツ固定部2aを外側継手部材1のブーツ取付部1a2にブーツバンド3で締付けて固定した時の状態を示している。図11(a)は図12における(Z1−Z1)断面、図11(b)は図12における(Z2−Z2)断面である。ブーツ固定部2aをブーツ取付部1a2の外周面1a3に嵌挿し、凸部2a2を係合溝1a4に適合させて両者を位置決めした状態で、バンド装着溝2a3に嵌着したブーツバンド3をレバー部材3bの折返しにより縮径させて、ブーツ固定部2aをブーツ取付部1a2に締付ける。そうすると、ブーツバンド3の締付力によって、ブーツ固定部2aが弾性変形を起こし、凸部2a2が係合溝1a4側に変位し、突起部1a5がブーツ固定部2aの内周面2a1に食い込む。この凸部2a2と係合溝1a4との係合、突起部1a5の強固な食い込みで、ブーツ固定部2aがブーツ取付部1a2に高い抜け止め強度とシール性をもって固定される。また、ブーツ固定部2aの内周面2a1がブーツ取付部1a2の外周面1a3に適度に密着して、良好なシール性が得られる。
【0046】
ブーツ固定部2aの良好な固定強度とシール性とを確保するために、前述した基準に基づき、下記式で表される計算締代δを0<δ≦1.6mmの範囲内とする。
【0047】
δ={φA+(2×S3)}−φD
φD: ブーツバンドの計算上の締付内径(図10参照)
φA:ブーツ取付部の最大外径(図2〜図4参照)
S3:ブーツ固定部の肉厚(締付力が負荷される前の肉厚:図7参照)図12に示すように、レバー部材3bを折返した時、バンド部材3aの一部3a3がレバー部材3bの折返し起点によって折返され、掌合部3a1がレバー部材3bの外側面に重なり合った状態になる。そのため、バンド部材3aの折返し部分3a3と近接する部分(レバー部材3bの折返し方向と反対側の部分)に部分的な隙間が生じ、その部分でシール性の低下が起こり易い。そこで、この実施形態では、バンド部材3aの内側面に突出部3a2を設け、この突出部3a2をブーツ固定部2aの外周面(バンド溝2a3)に接触させて、上記隙間を詰めることにより、シール性の一層の向上を図っている。この突出部3a2は、少なくとも一個所以上、好ましくは、レバー部材3bを折返した時に、バンド部材3aの折返し部分3a3と近接する位置に設ける。また、突出部3a2の形状、寸法、形成位置を最適設計し、突出部3a2の端面とバンド部材3aの折返し部分3a3との間の円周方向隙間γの最大値が0<γ≦1.5mmとなるように設定することにより、シール性の向上に対してより好ましい状態となる。さらに、図11(b)に示すように、突出部3a2の幅W4をブーツ取付部1a2の係合溝1a4の幅b(図2参照)よりも小さくし、締付時、ブーツ固定部2aを突出部3a2によって係合溝1a4側に向けて押圧することにより、より高いシール性を得ることができる。
【0048】
図13は、小径側のブーツ固定部2bを軸部1eブーツ取付部1e2にブーツバンド4で締付けて固定した時の状態を示している。上述した大径側の固定構造と基本的に同じであるので、重複する説明を省略する。
【0049】
尚、以上説明した固定構造は、大径側と小径側のうち一方にのみ適用しても良い。
【0050】
【発明の効果】
本発明によれば、突出したクランプ部を有しないブーツバンドを樹脂ブーツに適用でき、かつ、十分な固定強度とシール性とを確保することができる。そのため、最大回転半径の縮小化による設計自由度の向上、異物との遭遇機会が減少することによる締付け状態の安定化および信頼性の向上、バンド自体の形状等が簡略化することによるコスト低減が図られる。
【図面の簡単な説明】
【図1】樹脂ブーツを等速自在継手に取付けた時の状態を示す縦断面図である。
【図2】外側継手部材のブーツ取付部を示す側面図である。
【図3】軸部のブーツ取付部を示す側面図である。
【図4】軸部のブーツ取付部を示す側面図である。
【図5】樹脂ブーツの自然状態を示す縦断面図である。
【図6】樹脂ブーツの山部および谷部の肉厚設定の一例を示す図である。
【図7】大径側のブーツ固定部を示す断面図である。
【図8】小径側のブーツ固定部を示す断面図である。
【図9】ブーツバンドの側面図(図a)、レバー部材の断面図(図b)、バンド部材の断面図(図c)である。
【図10】ブーツバンドのレバー部材を折り返した時の状態を示す側面図(図a)、止め具を例示する断面図である(図bおよびc)。
【図11】大径側のブーツ固定部をブーツバンドで締付けて外側継手部材のブーツ取付部に固定した時の状態を示す断面図である。
【図12】大径側のブーツ固定部をブーツバンドで締付けて外側継手部材のブーツ取付部に固定した時の状態を示す断面図である。
【図13】小径側のブーツ固定部をブーツバンドで締付けて軸部のブーツ取付部に固定した時の状態を示す断面図である。
【図14】樹脂ブーツを装着した従来の等速自在継手を示す縦断面図である。
【符号の説明】
1 等速自在継手
1a 外側継手部材
1a2 ブーツ取付部
1e 軸部
1e2 ブーツ取付部
2 樹脂ブーツ
2a ブーツ固定部
2b ブーツ固定部
2c 蛇腹部
3 ブーツバンド
3a バンド部材
3b レバー部材
4 ブーツバンド
4a バンド部材
4b レバー部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a constant velocity universal joint having a fixing structure in which a bellows-shaped resin boot is fixed to a boot mounting portion with a boot band.
[0002]
[Prior art]
A boot is attached to the constant velocity universal joint for the purpose of preventing leakage of grease enclosed in the joint and preventing foreign matter from entering the joint. The boot is fastened and fixed to the boot mounting portion of the outer joint member of the constant velocity universal joint and the boot mounting portion of the shaft portion by a boot band. As this constant velocity universal joint boot, a rubber boot made of a rubber material such as chloroprene rubber (CR) and a resin boot made of a resin material are generally used. Recently, however, such as rotational expansion resistance and durability are improved. From the surface, resin boots tend to be used frequently.
[0003]
FIG. 14 shows a constant velocity universal joint 11 equipped with a conventional bellows-like resin boot 12. The resin boot 12 includes cylindrical boot fixing portions 12a and 12b on the large diameter side and the small diameter side with the bellows portion 12C interposed therebetween, and the large diameter boot fixing portion 12a serves as a boot mounting portion of the outer joint member 11a. The band 13 is fastened and fixed, and the boot fixing portion 12b on the small diameter side is fastened and fixed to the boot mounting portion of the shaft portion 11e by the boot band 14.
[0004]
Resin boots have higher material hardness and less elasticity than rubber boots, so an omega (Ω) -shaped clamp that provides greater tightening force as a boot band to ensure sufficient fixing strength and sealability It is common to use caulking type bands (omega bands) 13 and 14 having a portion. This is because a conventional resin boot cannot obtain a sufficient tightening force with a so-called lever-type boot band (a band of a type in which a lever member is folded and tightened) used for a rubber boot. .
[0005]
[Problems to be solved by the invention]
The omega bands 13 and 14 can obtain a larger tightening force than the lever-type boot band and the like. On the other hand, the clamp part has a shape protruding to the outer diameter side, so the maximum turning radius is large, There are disadvantages in design, such as a large space for avoiding interference. Moreover, since the clamp part protrudes, the opportunity to encounter a foreign material (stepping stone etc.) increases. Further, the shape of the band itself is complicated, and the wall thickness and width are larger than the boot band used for the rubber boot, which is disadvantageous in terms of cost. On the other hand, some boot bands do not have a protruding clamp portion, but when applied to resin boots, it has been difficult to ensure sufficient fixing strength and sealability.
[0006]
An object of this invention is to provide the fixing structure which does not have the clamp part which protruded and can ensure sufficient fixing strength and sealing performance of a resin boot.
[0007]
[Means for Solving the Problems]
  In order to solve the above-described problem, in the present invention, a so-called lever that does not have a protruding clamp portion as a boot band for fastening at least one boot fixing portion of a resin boot and fixing it to a boot mounting portion of a constant velocity universal joint. A type boot band was used. That is, as a boot band, a band member made of a band-shaped metal material is curved into a ring shape and both ends thereof are joined in a palmed state, and a metal having rigidity higher than that of the band member is formed on one outer surface of the palmed portion. A type of boot band is used, in which a lever member made of a material is attached, the lever member is folded using the lever action, the boot fixing part is tightened, and then the lever member is overlaid and fixed on the outer surface of the band member. . further,A protrusion was provided on the inner surface of the band member of the boot band, and this protrusion was brought into contact with the outer peripheral surface of the boot fixing portion of the resin boot. The protruding portion is provided at a position close to the folded portion of the band member when the lever member is folded, and the width of the protruding portion is smaller than the width of the engaging groove of the boot mounting portion.Since this boot band has a simple structure and does not have a protruding clamp portion, it is advantageous in terms of design and cost. Moreover, since there are few chances of encountering a foreign material, a stable fixed state can be maintained.On the other hand, when the lever member of the boot band is folded, a part of the band member is folded by the folding start point of the lever member, and the palm portion overlaps the outer surface of the lever member. Therefore, a partial gap is generated in a portion close to the folded portion of the band member (a portion on the opposite side to the folded direction of the lever member), and the sealing performance is liable to be lowered at that portion. Therefore, a projecting portion is provided on the inner side surface of the band member, and this projecting portion is brought into contact with the outer peripheral surface of the boot fixing portion of the resin boot so as to close the gap, thereby further improving the sealing performance. In particular, the protrusion is provided at a position close to the folded portion of the band member when the lever member is folded, and the width of the protrusion is set smaller than the width of the engagement groove of the boot mounting portion. Therefore, at the time of fastening, a higher sealing performance can be obtained by pressing the boot fixing portion toward the engagement groove side by the protruding portion. The projecting portion is provided at least at one or more, preferably at a position close to the folded portion of the band member when the lever member is folded. Further, by setting the circumferential clearance γ between the end face of the protruding portion and the folded portion of the band member to be 0 <γ ≦ 1.5 mm, a more preferable state is obtained for improving the sealing performance. .
[0008]
Furthermore, in the present invention, the following technical means are employed in order to ensure sufficient fixing strength and sealing performance.
[0009]
(1) Resin boot is 38 ≦ HD<50, preferably 41 ≦ HD≦ 47, for example HDIt was formed of a thermoplastic polyester elastomer having a hardness of 47. As a result, compared to conventional resin boots (conventional HD50 or more), the hardness of the material is reduced and the flexibility is improved. At the same time, the stress (tensile and compression) applied to the valley is reduced during bending, and the bending fatigue resistance of the valley is improved. Here, “HD"Represents the D scale (according to ASTM) of Shore hardness.
[0010]
(2) The average thickness T of each peak portion of the bellows portion of the resin boot is 0.5 mm ≦ T ≦ 1.5 mm, and the average thickness t of each valley portion is 0.5 mm ≦ t ≦ 1.5 mm. The thickness ratio r (= t / T) between all adjacent valleys and peaks is within the range of 1.0 ≦ r <1.5, and the maximum value Tmax of the average thickness T of the peaks is Tmax ≦ 1.5 Tmin with respect to the minimum value Tmin, and the maximum value tmax of the average thickness t at the valley portion was set to tmax ≦ 1.5 tmin with respect to the minimum value tmin. By setting the thickness ratio r (= t / T) within the above range, the elasticity of the valley with respect to the peak increases compared to the conventional resin boot (t / T = 1.5 to 2.1 in the past). (Because the thickness is relatively reduced), the stress (tensile and compression) applied to the valley is reduced, and the bending fatigue resistance of the valley is improved. In addition, for the peaks and troughs, the maximum amount of average thickness is 1.5 times or less the minimum value, so that the amount of compression at the time of fitting is distributed in a balanced manner in each trough. -Inflection points are not possible in the axial compression diagram.
[0011]
(3) By the above (1) and (2), while ensuring the durability equal to or higher than that of the conventional resin boot, the shape is made compact (the outer diameter is reduced and the axial length is reduced). Can do. Reduction of material hardness (improvement of flexibility) and reduction in thickness and thickness in the resin boot are advantageous in securing the fixing strength and the sealing performance for the constant velocity universal joint.
[0012]
(4) The thickness S3 of the boot fixing portion of the resin boot was set to 1 mm ≦ S3 ≦ 1.8 mm, and the calculated tightening allowance δ represented by the following formula was set to a range of 0 <δ ≦ 1.6 mm.
[0013]
δ = {φA + (2 × S3)} − φD
φD: Calculated tightening inner diameter of the boot band
φA: Maximum outer diameter of the boot mounting part
S3: Thickness of the boot fixing part (thickness before the tightening force is applied)
When the boot band is tightened, the band member is slightly stretched by the tightening force. φD is a calculated tightening inner diameter ignoring the elongation of the band member at the time of tightening. φA is the outer diameter of the tip end of the protrusion (see FIGS. 2 to 4) when the protrusion is provided on the boot attachment portion, and the outer diameter of the outer peripheral surface of the boot attachment portion when the protrusion is not provided. S3 is the thickness before the tightening force is applied, that is, the thickness of the boot fixing portion in the natural state.
[0014]
The calculation allowance δ can be a value close to zero depending on the use conditions, but it is preferable to satisfy δ ≧ 0.5 mm in order to ensure sufficient fixing strength and sealability. However, if δ is excessive, buckling occurs in the band member, and there is a possibility that the fixing strength and the sealing performance may be lowered. Therefore, δ ≦ 1.6 mm. As a result of the test, the calculated tightening allowance δ is 0.2 mm, 0.5 mm, 1.0 mm in both cases of (low temperature, high angle, low speed rotation) and (normal temperature, high angle, medium speed rotation). In the case of 6 mm, good sealability was recognized, but in the case of δ = 0 mm, it was recognized that the sealability was insufficient.
[0015]
(5) The thickness S1 of the band member of the boot band was set to 0.3 mm ≦ S1 ≦ 0.6 mm, and the width W1 was set to 8 mm ≦ W1 ≦ 12 mm. When the thickness S1 of the band member is less than 0.3 mm, it is difficult to obtain a necessary tightening force. On the other hand, if the thickness S1 of the band member exceeds 0.6 mm, the rigidity of the band member becomes too high, making it difficult to turn the lever member, and the advantages in terms of outer diameter and material cost are reduced. . Therefore, the dimension is set to 0.3 mm ≦ S1 ≦ 0.6 mm. The thickness S1 of the band member is considerably smaller than the conventional boot band for resin boots (the thickness of the band member is generally about 1.0 mm) (the same thickness as the boot band for rubber boots). Is thick). The main reason for the use of such thin band members is that the torsional rigidity and centrifugal expansion during rotation of the boot are reduced by improving the material elasticity of the resin boot and making the shape compact. This is because sufficient fixing strength and sealing performance can be secured with a small tightening force compared to boots.
[0016]
The reason why the width W1 of the band member is set as described above is as follows. That is, if the width W1 of the band member is less than 8 mm, the tightening force is insufficient. On the other hand, even if the width W1 of the band member exceeds 12 mm, the advantage in terms of material cost is reduced even if there is no difference in tightening effect or even a slight difference is recognized. Therefore, the dimension is set to 8 mm ≦ W1 ≦ 12 mm.
[0017]
(6) The thickness S2 of the lever member is 2.5 ≦ (S2 / S1) ≦ 3.5 with respect to the thickness S1 of the band member, and the width W2 is the same as the width W1 of the band member. When (S2 / S1) is less than 2.5, the necessary tightening force cannot be obtained, and when the tightening margin is increased, the lever member may be buckled. On the other hand, even if (S2 / S1) exceeds 3.5, there is no difference in tightening effect, or even if some difference is observed, the advantage in terms of outer diameter and cost is reduced. To do. Further, the surface of the lever member can be subjected to surface hardening treatment such as barrel treatment or shot blast treatment. By improving the surface hardness of the lever member, the strength against buckling deformation of the lever member is increased.
[0018]
(7) An annular convex portion that engages with an annular engaging groove formed on the outer peripheral surface of the boot mounting portion is provided on the inner peripheral surface of the boot fixing portion of the resin boot. Moreover, the protrusion part was formed in the both sides of the engagement groove | channel of a boot attachment part. During tightening, the boot fixing portion causes elastic deformation of the boot fixing portion, the convex portion is displaced toward the engaging groove, and the protrusion bites into the inner peripheral surface of the boot fixing portion. The boot fixing portion is fixed to the boot mounting portion with high retaining strength and sealing properties by the engagement between the convex portion and the engaging groove and the strong biting of the projection portion. In addition, the inner peripheral surface of the boot fixing portion is in close contact with the outer peripheral surface of the boot mounting portion, and a good sealing property is obtained.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0021]
FIG. 1 shows a state in which a resin boot 2 is fixed to a constant velocity universal joint 1 with boot bands 3 and 4. The constant velocity universal joint 1 includes an outer joint member 1a in which a plurality of guide grooves 1a1 are formed in the axial direction on the inner peripheral surface, an inner joint member 1b in which a plurality of guide grooves 1b1 are formed in the axial direction on the outer peripheral surface, and a guide groove. A plurality of balls 1c arranged on a ball track formed by cooperation of 1a1 and a guide groove 1b1, a cage 1d for holding the balls 1c, and a serration connection (or spline connection) to the inner periphery of the inner joint member 1b ) Shaft portion 1e. The resin boot 2 is fixed to the outer joint member 1a and the shaft portion 1e, respectively.
[0022]
FIG. 2 shows the boot mounting portion 1a2 of the outer joint member 1a. The boot attaching portion 1a2 is usually provided on the outer peripheral surface of the end portion on the opening side of the outer joint member 1a. An annular engagement groove 1a4 is formed on the outer peripheral surface 1a3 of the boot mounting portion 1a2, and annular protrusions 1a5 are formed on both sides of the engagement groove 1a4. The engaging groove 1a4 is a flat surface 1a6 whose central portion is parallel to the axis, and has a shape that continues from the flat surface 1a6 to the second side 1a9 of the protruding portion 1a5 via an arc surface 1a7 having a radius of curvature R. . The first side 1a8 of the protrusion 1a5 is an inclined wall, and the second side 1a9 is a vertical wall orthogonal to the axis.
[0023]
FIG. 3 shows the boot mounting portion 1e2 of the shaft portion 1e. An annular engagement groove 1e4 is formed on the outer peripheral surface 1e3 of the boot mounting portion 1e2, and annular protrusions 1e5 are formed on both sides of the engagement groove 1e4. The engagement groove 1e4 and the second side of the protrusion 1e5 are depicted by one circular arc surface 1e6 having a curvature radius R '. The first side 1e8 of the protrusion 1e5 is an inclined wall.
[0024]
FIG. 4 shows an engagement groove 1e4 'having another shape of the boot attachment portion 1e2. The engagement groove 1e4 'is a flat surface 1e6' whose entire groove bottom is parallel to the axis, and is continuous from the flat surface 1e6 'to the second side 1a9 of the protrusion 1e5 via a vertical wall. The first side 1e8 of the protrusion 1e5 is an inclined wall, and the second side 1e9 is a vertical wall orthogonal to the axis.
[0025]
Note that the engagement groove of the boot attachment portion 1a2 of the outer joint member 1a may have the shape shown in FIG. 3 or FIG. 4, and the engagement groove of the boot attachment portion 1e2 of the shaft portion 1e has the shape shown in FIG. Also good. 2 to 4 indicate the maximum outer diameter of the boot mounting portion. In these boot mounting portions, since the protrusions are formed on both sides of the engagement groove, the outer diameter of the tip of the protrusion becomes the maximum outer diameter φA of the boot mounting portion.
[0026]
In this embodiment, in order to improve the workability of the boot mounting portion, the fixing strength and the sealing performance, the height f of the convex portion of the boot fixing portion described later (see FIGS. 7 and 8), shown in FIGS. Between the depth a of the engagement groove of the boot mounting portion, the width b, and the height c of the protrusion,
[0.2 mm ≦ c ≦ 0.5 mm], [0.5 mm ≦ a ≦ 1.5 mm], [f ≦ (ac)], [(b / a) ≧ 3] Yes.
[0027]
The dimension setting of [0.2 mm ≦ c ≦ 0.5 mm] is for the following reason, that is, when the height c of the protrusion is less than 0.2 mm, the inner peripheral surface of the boot fixing portion is the boot mounting portion when tightening It is difficult to expect the protrusions to sufficiently bite into the boot fixing portion due to strong contact with the outer peripheral surface of the projection. On the contrary, if the height c of the protrusion exceeds 0.5 mm, the diameter of the boot mounting portion must be increased, leading to an increase in material cost and processing cost, and the inner periphery of the boot fixing portion during tightening There is a possibility that a gap is generated between the surface and the outer peripheral surface of the boot mounting portion, and the sealing performance is lowered.
[0028]
The dimension setting of [0.5 mm ≦ a ≦ 1.5 mm] is based on the following reason. That is, when the depth a of the engagement groove exceeds 1.5 mm, the strength of the boot mounting portion is lowered, and it is difficult to copy the engagement groove, which is disadvantageous in terms of manufacturing cost and workability. On the other hand, when the depth a is less than 0.5 mm, the convex portion comes into contact with the bottom of the engaging groove at the time of tightening and is elastically deformed, and the biting property of the protruding portion is lowered by the reaction force of the deformation. Therefore, the height f of the convex portion must be reduced accordingly, and the effect of fixing the position to the engagement groove by the convex portion is reduced.
[0029]
Further, the relationship between the depth a of the engaging groove and the height f of the convex portion is such that the convex portion does not contact the bottom of the engaging groove at the time of tightening or does not affect the biting property of the protruding portion even if it contacts. It is necessary to. In this relationship, there is also a relationship with the height c of the protrusion and the boot material, and taking these into consideration, the best dimensional relationship between the height f of the protrusion, the depth a of the engaging groove, and the height c of the protrusion. Was found to have a relationship of f ≦ (ac).
[0030]
The dimension relationship of [(b / a) ≧ 3] is to make the engagement groove a shape that can be copied and to improve the workability and reduce the manufacturing cost. If (b / a) <3, it cannot be processed by normal copying.
[0031]
The effect by the above dimension setting is somewhat different depending on the shape of the engagement groove and the protrusion of the boot mounting portion. When considering the biting property of the protrusions of the respective shapes shown in FIGS. 2 to 4 into the boot fixing portion, the biting properties of the protrusions shown in FIGS. 2 and 4 are better than those of the protrusions shown in FIG. This is because the protrusions shown in FIGS. 2 and 4 have a vertical wall on the second side. The second side firmly engages with the inner peripheral surface and the convex portion of the boot fixing portion to counter the force against the force to shift the boot fixing portion in the axial direction, so that a high retaining strength can be obtained. . However, the shape of the engagement groove shown in FIG. 4 may cause a problem in workability. Here, in consideration of biting property, strength, and workability, the preferred one is the engaging groove 1a4 having the shape shown in FIG. 2, and the better shape of the engaging groove 1a4 is that the radius of curvature of the circular arc surface 1a7 is set. When R, it is set to a size range of [0.1 mm ≦ R ≦ a]. When the curvature radius R is less than 0.1 mm, the bite property is increased, but the strength and workability are deteriorated. On the contrary, when the curvature radius R exceeds the depth a, the strength and workability are improved, but the biting property is deteriorated.
[0032]
FIG. 5 shows the natural state of the resin boot 2. This resin boot 2 has 38 ≦ HD<50, preferably 41 ≦ HD≦ 47, for example HDA large-diameter-side boot fixing portion 2a, which is formed of a thermoplastic polyester elastomer (TPEE) having a hardness of 47, and is fastened and fixed to the boot mounting portion 1a2 of the outer joint member 1a by the boot band 3, and the shaft portion 1e. A small-diameter-side boot fixing portion 2b that is fastened and fixed to the boot attachment portion 1e2 by a boot band 4 and a bellows portion 2c that connects the boot fixing portion 2a and the boot fixing portion 2b are provided.
[0033]
The bellows portion 2c includes six peak portions 2d (2d1, 2d2,..., 2d6 from the small diameter side), five valley portions 2e (2e1, 2e2,..., 2e5 from the small diameter side), and each peak portion 2d. And an inclined portion 2f that connects the trough portion 2e. Further, one peak 2d1 is (2.7 × d) with respect to the shaft diameter d of the shaft portion 1e, and five peaks 2d5 are (4 × d) with respect to the shaft diameter d, and gradually increase from the large diameter side toward the small diameter side. It has a substantially conical shape with a reduced diameter. Therefore, the resin boot 2 has a considerably compact shape in both the radial direction and the axial direction as compared with the conventional resin boot, and is about 24% smaller than the conventional length in comparison with the natural length L1. The resin boot 2 is attached to the constant velocity universal joint 1 in a state slightly compressed from the natural length L1, but {compression ratio (L1-L2) / L1 is about 20%, and the compression ratio of the conventional resin boot is 23. ˜26%}, and the attached length L2 is about 16% smaller than the conventional one, which is about the same as the rubber (CR) boot. In addition, the number of the peak parts of a bellows part can be arbitrarily selected in the range of 4-7.
[0034]
As illustrated in FIG. 6, the average thickness T (T1, T2,..., T6) of each peak 2d is 0.5 mm ≦ T ≦ 1.5 mm, preferably 0.5 mm ≦ T ≦ 1.1 mm. The average thickness t (t1, t2,..., T5) of each valley 2e is 0.5 mm ≦ t ≦ 1.5 mm, and the thickness of all adjacent valleys 2d and peaks 2e. The ratio r (= t / T) is in the range of 1.0 ≦ r (t / T) <1.5. The specific contents in the range of the thickness ratio r are as follows.
[0035]
r1 = t1 / T1 = 1.05 r2 = t1 / T2 = 1.26
r3 = t2 / T2 = 1.26 r4 = t2 / T3 = 1.11
r5 = t3 / T3 = 1.11 r6 = t3 / T4 = 1.11
r7 = t4 / T4 = 1.41 r8 = t4 / T5 = 1.33
r9 = t5 / T5 = 1.16 r10 = t5 / T6 = 1.16
∴1.0 ≦ r1, r2,..., R10 <1.5
Tmax = 0.9 tmax = 1.2
Tmin = 0.75 tmin = 0.95
Incidentally, the conventional resin boot has a thickness of 0.55 to 2.1 mm at the crests and valleys and a thickness ratio r of 1.5 ≦ rt ≦ 2.1. As compared with the above, the thickness of the peak 2d and the valley 2e is reduced as a whole, and the thickness of the valley 2e with respect to the peak 2d is relatively small. Further, in this resin boot 2, the average thickness T of all the crests 2d is approximately the same (Tmax ≦ 1.5 × Tmin), and the average thickness t of all the troughs 2e is approximately the same ( tmax ≦ 1.5 × tmin is sufficient). The average wall thicknesses T and t are based on the fact that the resin boot molding method is generally different from the CR boot because blow molding is generally used (the CR boot is generally injection molding. In the blow molding, the mold is the outer mold). This is because there is some variation in the wall thickness in the circumferential direction.
[0036]
Furthermore, the inclination angle α (α1, α2,..., Α5 from the small diameter side) to the boot axis center line X of the inclined portion 2f connected from each peak portion 2d to the large diameter valley portion 2e is from each peak portion 2d. It is smaller than the angle β (β1, β2,..., Β6 from the small diameter side) of the inclined portion 2f connected to the valley portion 2e on the small diameter side. α1,..., α5 are preferably set to 38 ° to 45 °, and β1,..., β6 are set to 1.3 to 1.6 times (or to 1.8 times) α.
[0037]
FIG. 7 shows the boot fixing portion 2a on the large diameter side. An annular convex portion 2a2 is integrally formed on the inner peripheral surface 2a1 of the boot fixing portion 2a, and an annular band mounting groove 2a3 is formed on the outer peripheral surface. The wall thickness S3 of the boot fixing portion 2a is set within a range of 1 mm ≦ S3 ≦ 1.8 mm based on the above-described criteria. The height of the convex portion 2a2 from the inner peripheral surface 2a1 is f. In addition, an annular groove 2a4 is provided in the central portion of the band mounting groove 2a3.
[0038]
FIG. 8 shows the boot fixing portion 2b on the small diameter side. An annular convex portion 2b2 is integrally formed on the inner peripheral surface 2b1 of the boot fixing portion 2b, and an annular band mounting groove 2b3 is formed on the outer peripheral surface. The thickness S3 of the boot fixing portion 2b is set within a range of 1 mm ≦ S3 ≦ 1.8 mm based on the above-described criteria. The height of the convex part 2b2 from the inner peripheral surface 2b1 is f. In addition, an annular groove 2b4 is provided in the central portion of the band mounting groove 2b3.
[0039]
As described above, the resin boot 2 is smaller in material hardness than the conventional resin boot, is generally thin, and has a compact shape in both the radial direction and the axial direction. Furthermore, since the thickness and thickness ratio of the crest 2d and the trough 2e are set according to the above criteria, the trough 2e has high bending fatigue resistance, and the compressive load during mounting is different for each trough. Since the portion 2e is absorbed in a well-balanced manner and each valley portion 2e is compressed in a well-balanced manner, an inflection point cannot be made in the compression load-axial compression amount diagram. Therefore, although this resin boot 2 has a compact shape comparable to that of a rubber (CR) boot, it exhibits durability equal to or higher than that of a conventional resin boot.
[0040]
Reduction of material hardness (improvement of flexibility) and reduction in thickness and thickness in the resin boot are advantageous in securing the fixing strength and the sealing performance for the constant velocity universal joint. That is, by improving the flexibility of the material, it is possible to sufficiently fasten and fix with a smaller tightening force. In addition, the compact boot shape reduces the amount of grease intervening in the bellows part and reduces the effect of rotational centrifugal force, thus reducing the force applied to the boot fixing part (rotating the constant velocity universal joint). The internal grease is pushed out in the axial direction, and this pushing force causes the grease intervening in the bellows part to flow in the axial direction. In particular, at extremely low temperatures, the elasticity of the boot decreases and the consistency of the grease also decreases, so that a large force acts on the boot fixing part. The grease also flows toward the outer diameter side due to the rotational centrifugal force, and the boot fixing portion receives a tensile force via the bellows portion due to the flow of the grease in the outer diameter direction. Over tree becomes compact, the grease volume is reduced interposed bellows portion, also, by the effect of centrifugal force is reduced, these forces are reduced.). In addition, the torsional rigidity of the boot decreases due to the combined effects of reduced material hardness (improved flexibility) and thin-walled compactness. Therefore, instead of the omega band that has been used for attaching resin boots conventionally, a boot band described below, which does not have a protruding clamp part, has sufficient fixing strength and sealability. It can be secured.
[0041]
FIG. 9 shows the boot band 3 (4) that is attached to the boot fixing portion 2 a (2 b) of the resin boot 2. The boot band 3 (4) is formed by bending a band member 3a (4a) made of a band-shaped metal material into a ring shape and connecting both ends thereof in a palm-joined state, and one outer surface of the palm-joining portion 3a1 (4a1). Further, a lever member 3b (4b) made of a metal material which is thicker and more rigid than the band member 3a (4a) is fixed. The band member 3a (4a) and the lever member 3b (4b) are made of, for example, stainless steel, and the thickness S1, the width W1, the lever member 3b (the band member 3a (4a) shown in FIGS. The thickness S2 and the width W2 of 4b) are set as follows based on the above-mentioned criteria.
[0042]
Band member thickness S1: [0.3 mm ≦ S1 ≦ 0.6 mm]
Band member width W1: [8 mm ≦ W1 ≦ 12 mm]
Lever member thickness S2: [2.5 ≦ S2 / S1 ≦ 3.5
Lever member width W2: [W2 = W1]
The lever member 3b (4b) is subjected to barrel processing to remove burrs and edges at the time of processing and to improve surface hardness. Instead of barrel processing, shot blast processing or shot peening processing may be performed. Furthermore, the protrusion part 3a2 (4b2) is provided in the inner surface of the band member 3a (4a). This protrusion 3a2 (4b2) is formed, for example, by bending a required portion of the band member 3a (4a) inward. The protruding portion may be manufactured separately from the band member and fixed to a required portion on the inner side surface of the band member.
[0043]
The lever member preferably has the following bending rigidity. That is, when the lever member is supported at both fulcrum distances L = 36 mm and the concentrated load M (5 kg ≦ M ≦ 25 kg) is applied to the central portion (L / 2), the deflection of the central portion (L / 2) It is preferable to have bending rigidity such that the amount y is 0.5 mm.
[0044]
When tightening the boot fixing portion 2a (2b), the lever member 3b (4b) is forcibly turned back by utilizing the lever action, and then the lever member 3b (4b) is moved to the band member 3a (see FIG. 10). 4a) is superposed on the outer surface of 4a) and fixed with a stopper 3c (4c). When the lever member 3b (4b) is folded back, the ring-shaped portion of the band member 3a (4a) is reduced in diameter (calculated tightening inner diameter is φD), and a required tightening force (tightening) is applied to the boot fixing portion 2a (2b). Force). For example, as shown in FIGS. 10B and 10C, the stopper 3c (4c) is obtained by fixing a metal piece having a U-shaped cross section to a predetermined portion of the band member 3a (4a). When the lever member 3b (4b) is fixed, the lever member 3b (4b) is overlapped on the outer surface of the lever member 3b (4b). In addition, a stopper is not limited to this, The thing of another structure can be employ | adopted. Further, as a fixing means of the lever member, a fixing means such as spot welding can be employed instead of the stopper.
[0045]
11 and 12 show a state in which the large-diameter-side boot fixing portion 2a of the resin boot 2 is fastened and fixed to the boot mounting portion 1a2 of the outer joint member 1 with the boot band 3. FIG. 11A is a (Z1-Z1) cross section in FIG. 12, and FIG. 11B is a (Z2-Z2) cross section in FIG. The boot band 3 fitted in the band mounting groove 2a3 is positioned in a state where the boot fixing part 2a is fitted on the outer peripheral surface 1a3 of the boot mounting part 1a2, the convex part 2a2 is fitted to the engagement groove 1a4, and both are positioned. The diameter is reduced by turning back 3b, and the boot fixing portion 2a is fastened to the boot mounting portion 1a2. Then, due to the tightening force of the boot band 3, the boot fixing portion 2a is elastically deformed, the convex portion 2a2 is displaced toward the engaging groove 1a4, and the protruding portion 1a5 bites into the inner peripheral surface 2a1 of the boot fixing portion 2a. The boot fixing portion 2a is fixed to the boot mounting portion 1a2 with a high retaining strength and a sealing property by the engagement between the convex portion 2a2 and the engaging groove 1a4 and the strong biting of the protruding portion 1a5. In addition, the inner peripheral surface 2a1 of the boot fixing portion 2a is in close contact with the outer peripheral surface 1a3 of the boot mounting portion 1a2, and a good sealing property is obtained.
[0046]
In order to ensure good fixing strength and sealing performance of the boot fixing portion 2a, the calculated tightening allowance δ represented by the following formula is set in the range of 0 <δ ≦ 1.6 mm based on the above-described criteria.
[0047]
δ = {φA + (2 × S3)} − φD
φD: Calculated inner diameter of boot band (see Fig. 10)
φA: Maximum outer diameter of the boot mounting part (see Figs. 2 to 4)
S3: Thickness of the boot fixing portion (thickness before the tightening force is applied: see FIG. 7) As shown in FIG. 12, when the lever member 3b is folded back, a part 3a3 of the band member 3a becomes the lever member. The folding portion 3b1 is folded back by the folding start point 3b, and the palm portion 3a1 overlaps the outer surface of the lever member 3b. Therefore, a partial gap is generated in a portion (a portion on the side opposite to the folding direction of the lever member 3b) close to the folded portion 3a3 of the band member 3a, and the sealing performance is likely to be lowered at that portion. Therefore, in this embodiment, the projecting portion 3a2 is provided on the inner surface of the band member 3a, and the projecting portion 3a2 is brought into contact with the outer peripheral surface (band groove 2a3) of the boot fixing portion 2a so as to close the gap. We are trying to further improve the nature. The projecting portion 3a2 is provided at least at one place, preferably at a position close to the folded portion 3a3 of the band member 3a when the lever member 3b is folded. Further, the shape, size, and formation position of the protruding portion 3a2 are optimally designed, and the maximum value of the circumferential clearance γ between the end surface of the protruding portion 3a2 and the folded portion 3a3 of the band member 3a is 0 <γ ≦ 1.5 mm. By setting so that it becomes, it will be in a more preferable state for the improvement of sealing performance. Furthermore, as shown in FIG. 11 (b), the width W4 of the protrusion 3a2 is made smaller than the width b (see FIG. 2) of the engagement groove 1a4 of the boot mounting portion 1a2, and the boot fixing portion 2a is tightened during tightening. By pressing toward the engagement groove 1a4 by the protrusion 3a2, higher sealing performance can be obtained.
[0048]
FIG. 13 shows a state in which the boot fixing portion 2b on the small diameter side is fixed to the shaft portion 1e boot mounting portion 1e2 by fastening with the boot band 4. Since it is basically the same as the fixing structure on the large-diameter side described above, a duplicate description is omitted.
[0049]
Note that the fixing structure described above may be applied to only one of the large diameter side and the small diameter side.
[0050]
【The invention's effect】
According to the present invention, a boot band having no protruding clamp portion can be applied to a resin boot, and sufficient fixing strength and sealing performance can be ensured. Therefore, the design flexibility is improved by reducing the maximum turning radius, the tightening state is stabilized and the reliability is improved by reducing the chance of encountering foreign objects, and the cost is reduced by simplifying the shape of the band itself. Figured.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a state when a resin boot is attached to a constant velocity universal joint.
FIG. 2 is a side view showing a boot mounting portion of an outer joint member.
FIG. 3 is a side view showing a boot mounting portion of a shaft portion.
FIG. 4 is a side view showing a boot mounting portion of a shaft portion.
FIG. 5 is a longitudinal sectional view showing a natural state of a resin boot.
FIG. 6 is a diagram showing an example of setting the thickness of the crest and trough of the resin boot.
FIG. 7 is a cross-sectional view showing a boot fixing portion on the large diameter side.
FIG. 8 is a cross-sectional view showing a boot fixing portion on the small diameter side.
9 is a side view of the boot band (FIG. A), a cross-sectional view of the lever member (FIG. B), and a cross-sectional view of the band member (FIG. C).
FIG. 10 is a side view showing a state when a lever member of a boot band is folded back (FIG. A), and a cross-sectional view illustrating a stopper (FIGS. B and c).
FIG. 11 is a cross-sectional view showing a state when a large-diameter side boot fixing portion is fastened with a boot band and fixed to a boot mounting portion of an outer joint member.
FIG. 12 is a cross-sectional view showing a state when the large-diameter side boot fixing portion is fastened with a boot band and fixed to the boot mounting portion of the outer joint member.
FIG. 13 is a cross-sectional view showing a state when the boot fixing portion on the small diameter side is fastened with a boot band and fixed to the boot mounting portion of the shaft portion.
FIG. 14 is a longitudinal sectional view showing a conventional constant velocity universal joint equipped with a resin boot.
[Explanation of symbols]
1 Constant velocity universal joint
1a Outer joint member
1a2 Boot mounting part
1e Shaft
1e2 Boot mounting part
2 Resin boots
2a Boot fixing part
2b Boot fixing part
2c bellows
3 Boot band
3a Band member
3b Lever member
4 Boot band
4a Band member
4b Lever member

Claims (9)

蛇腹状の樹脂ブーツの蛇腹部を挟んで大径側と小径側にそれぞれ設けられた円筒状のブーツ固定部をブーツ取付部に嵌合し、ブーツ固定部の外周面に装着したブーツバンドの締付力によって、ブーツ固定部を締付けてブーツ取付部に固定した固定構造を有する等速自在継手において、
樹脂ブーツの少なくとも一方のブーツ固定部に装着されるブーツバンドが、帯状の金属材からなるバンド部材を輪状に湾曲させてその両端を掌合状態に結合すると共に、この掌合部の一方の外側面に、バンド部材よりも剛性の高い金属材からなるレバー部材を装着し、レバー部材をてこ作用を利用して折返して、ブーツ固定部を締付けた後、レバー部材をバンド部材の外側面に重ね合わせて固定するものであり、
上記ブーツバンドのバンド部材の内側面に突出部を設け、この突出部を樹脂ブーツのブーツ固定部の外周面に接触させ、
上記突出部は、レバー部材を折返した時に、バンド部材の折返し部分と近接する位置に設けられていると共に、上記突出部の幅がブーツ取付部の係合溝の幅よりも小さいことを特徴とする等速自在継手。
The cylindrical boot fixing part provided on the large diameter side and the small diameter side of the bellows-shaped resin boot is fitted to the boot mounting part, and the boot band attached to the outer peripheral surface of the boot fixing part is tightened. In the constant velocity universal joint having a fixing structure in which the boot fixing portion is fastened and fixed to the boot mounting portion by the applied force.
A boot band to be attached to at least one boot fixing portion of the resin boot is formed by bending a band member made of a band-shaped metal material into a ring shape and connecting both ends thereof in a palm-shaped state. A lever member made of a metal material that is stiffer than the band member is attached to the side surface, the lever member is folded using the lever action, the boot fixing part is tightened, and then the lever member is overlaid on the outer surface of the band member all SANYO to fix together,
Providing a protrusion on the inner surface of the band member of the boot band, contacting the protrusion with the outer peripheral surface of the boot fixing part of the resin boot,
The protruding portion is provided at a position close to the folded portion of the band member when the lever member is folded, and the width of the protruding portion is smaller than the width of the engagement groove of the boot mounting portion. the constant velocity universal joint that.
樹脂ブーツが38≦HD <50の硬度を有する熱可塑性ポリエステル系エラストマーで形成され、ブーツ固定部の肉厚S3が1mm≦S3≦1.8mmで、かつ、下記式で表される計算締代δが0<δ≦1.6mmである請求項1記載の等速自在継手。
δ={φA+(2×S3)}−φD
φD: ブーツバンドの計算上の締付内径
φA:ブーツ取付部の最大外径
S3:ブーツ固定部の肉厚(締付力が負荷される前の肉厚)
The resin boot is formed of a thermoplastic polyester elastomer having a hardness of 38 ≦ HD <50, the thickness S3 of the boot fixing portion is 1 mm ≦ S3 ≦ 1.8 mm, and the calculated tightening allowance δ represented by the following formula: The constant velocity universal joint according to claim 1, wherein 0 <δ ≦ 1.6 mm.
δ = {φA + (2 × S3)} − φD
φD: Calculated tightening inner diameter of boot band φA: Maximum outer diameter of boot mounting part S3: Thickness of boot fixing part (thickness before the tightening force is applied)
樹脂ブーツの蛇腹部の各山部の平均肉厚Tがそれぞれ0.5mm≦T≦1.5mm、各谷部の平均肉厚tがそれぞれ0.5mm≦t≦1.5mmで、全ての隣接する谷部と山部との肉厚比r(=t/T)が1.0≦r<1.5の範囲内であり、かつ、山部の平均肉厚Tの最大値Tmaxが最小値Tminに対してTmax≦1.5Tmin、谷部の平均肉厚tの最大値tmaxが最小値tminに対してtmax≦1.5tminである請求項2記載の等速自在継手。  The average thickness T of each peak portion of the bellows portion of the resin boot is 0.5 mm ≦ T ≦ 1.5 mm, and the average thickness t of each valley portion is 0.5 mm ≦ t ≦ 1.5 mm. The wall thickness ratio r (= t / T) between the valley portion and the peak portion is within the range of 1.0 ≦ r <1.5, and the maximum value Tmax of the average thickness T of the peak portion is the minimum value. 3. The constant velocity universal joint according to claim 2, wherein Tmax ≦ 1.5 Tmin with respect to Tmin, and the maximum value tmax of the average thickness t of the valley portion is tmax ≦ 1.5 tmin with respect to the minimum value tmin. ブーツバンドのバンド部材の肉厚S1が0.3mm≦S1≦0.6mm、幅W1が8mm≦W1≦12mmである請求項1、2又は3記載の等速自在継手。  4. The constant velocity universal joint according to claim 1, wherein the thickness S1 of the band member of the boot band is 0.3 mm ≦ S1 ≦ 0.6 mm and the width W1 is 8 mm ≦ W1 ≦ 12 mm. ブーツバンドのレバー部材の肉厚S2がバンド部材の肉厚S1に対して2.5≦(S2/S1)≦3.5、幅W2がバンド部材の幅W1と同じである請求項4記載の等速自在継手。  The thickness S2 of the lever member of the boot band is 2.5 ≦ (S2 / S1) ≦ 3.5 with respect to the thickness S1 of the band member, and the width W2 is the same as the width W1 of the band member. Constant velocity universal joint. ブーツバンドのレバー部材の表面に表面硬化処理が施されている請求項5記載の等速自在継手。  The constant velocity universal joint according to claim 5, wherein the surface of the lever member of the boot band is subjected to surface hardening treatment. 樹脂ブーツのブーツ固定部の内周面に、ブーツ取付部の外周面に形成された環状の係合溝と係合する環状の凸部を有する請求項1、2又は3記載の等速自在継手。  4. The constant velocity universal joint according to claim 1, wherein the inner peripheral surface of the boot fixing portion of the resin boot has an annular convex portion that engages with an annular engaging groove formed on the outer peripheral surface of the boot mounting portion. . 上記係合溝の両側に突起部が形成されている請求項7記載の等速自在継手。  The constant velocity universal joint according to claim 7, wherein protrusions are formed on both sides of the engagement groove. 上記突出部の端面とバンド部材の折返し部分との間の円周方向隙間γが0<γ≦1.5mmである請求項記載の等速自在継手。Circumferential clearance constant velocity universal joint according to claim 1, wherein gamma is 0 <γ ≦ 1.5mm between the end face and the folded-back portion of the band member of the protruding portion.
JP26682998A 1997-09-30 1998-09-21 Constant velocity universal joint Expired - Lifetime JP4127906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26682998A JP4127906B2 (en) 1997-09-30 1998-09-21 Constant velocity universal joint

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP26642797 1997-09-30
JP9-266427 1997-09-30
JP26682998A JP4127906B2 (en) 1997-09-30 1998-09-21 Constant velocity universal joint

Publications (2)

Publication Number Publication Date
JPH11166624A JPH11166624A (en) 1999-06-22
JP4127906B2 true JP4127906B2 (en) 2008-07-30

Family

ID=26547437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26682998A Expired - Lifetime JP4127906B2 (en) 1997-09-30 1998-09-21 Constant velocity universal joint

Country Status (1)

Country Link
JP (1) JP4127906B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006104083A1 (en) * 2005-03-29 2006-10-05 Kaneka Corporation Method of injection-molding hollow molded article, mold for injection molding, and boot made of resin
JP2006329297A (en) * 2005-05-25 2006-12-07 Honda Motor Co Ltd Uniform joint
JP2006329291A (en) * 2005-05-25 2006-12-07 Honda Motor Co Ltd Rotation drive force transmission mechanism
EP1890047A4 (en) * 2005-05-16 2010-07-07 Honda Motor Co Ltd Rotation drive force transmission mechanism, constant velocity universal joint and resin joint boot constructing the mechanism, and method of tightening clamp band for constant velocity universal joint
JP2006329299A (en) * 2005-05-25 2006-12-07 Honda Motor Co Ltd Uniform joint
JP4608398B2 (en) * 2005-09-05 2011-01-12 カヤバ工業株式会社 Dust boots
DE102006039861A1 (en) * 2006-08-25 2008-03-13 Zf Friedrichshafen Ag Sealing or bellows
JP5139221B2 (en) * 2008-09-26 2013-02-06 豊田合成株式会社 Seal structure of constant velocity joint boot
JP2011252594A (en) * 2010-06-04 2011-12-15 Ntn Corp Boot band
JP6159669B2 (en) * 2014-02-27 2017-07-05 豊田合成株式会社 Tightening band

Also Published As

Publication number Publication date
JPH11166624A (en) 1999-06-22

Similar Documents

Publication Publication Date Title
JP4127906B2 (en) Constant velocity universal joint
KR100554577B1 (en) Constant velocity joint
JP2002013546A (en) Resin boot for constant velocity joint
JP5666092B2 (en) Constant velocity universal joint boot and constant velocity universal joint
JPH08109966A (en) Boot
JP6517042B2 (en) Constant velocity universal joint
JP2007056995A (en) Flexible boot for constant velocity universal joint
JP3333310B2 (en) Mounting structure for resin boots
JP4527581B2 (en) Constant velocity universal joint with boots
JP3821934B2 (en) Constant velocity universal boots
JP3977975B2 (en) Constant velocity universal joint
JP5363855B2 (en) Flexible boots for plastic constant velocity joints
WO2006085418A1 (en) Constant velocity universal joint and boot for the same
WO2019142705A1 (en) Constant velocity universal joint boot
JP4652098B2 (en) Drive shaft
JP4527578B2 (en) Constant velocity universal joint and constant velocity universal joint boot
JPH11190358A (en) Boot for constant speed unversal coupling
JP3309227B2 (en) boots
JP2006258122A (en) Slide type constant velocity universal joint
JPH08135675A (en) Boot for shaft coupling
JP5188897B2 (en) Constant velocity universal joint boot and constant velocity universal joint
JP2009270628A (en) Constant velocity universal joint boot, and constant velocity universal joint
JPH10274330A (en) Resin boot fitting structure
JP2024031436A (en) Boot for constant velocity universal joint, and constant velocity universal joint comprising the same
JP2004156706A (en) Resin boot for constant velocity joint, and fixture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080423

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080513

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term