JP4122941B2 - Method for producing hydrogen storage alloy powder - Google Patents

Method for producing hydrogen storage alloy powder Download PDF

Info

Publication number
JP4122941B2
JP4122941B2 JP2002336622A JP2002336622A JP4122941B2 JP 4122941 B2 JP4122941 B2 JP 4122941B2 JP 2002336622 A JP2002336622 A JP 2002336622A JP 2002336622 A JP2002336622 A JP 2002336622A JP 4122941 B2 JP4122941 B2 JP 4122941B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
ppm
alloy powder
organic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002336622A
Other languages
Japanese (ja)
Other versions
JP2004169125A (en
Inventor
泰志 小島
一行 山本
悟 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo Denki Kogyo Co Ltd
Original Assignee
Chuo Denki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo Denki Kogyo Co Ltd filed Critical Chuo Denki Kogyo Co Ltd
Priority to JP2002336622A priority Critical patent/JP4122941B2/en
Publication of JP2004169125A publication Critical patent/JP2004169125A/en
Application granted granted Critical
Publication of JP4122941B2 publication Critical patent/JP4122941B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、正極活物質がNi、負極活物質が水素吸蔵合金(MH)、電解液がアルカリ水溶液から構成されるニッケル−水素二次電池 (以下、Ni/MH電池と表記する) の負極活物質として使用するのに適した水素吸蔵合金粉末の製造方法、ならびにこの水素吸蔵合金粉末を用いたNi/MH電池に関する。
【0002】
【従来の技術】
Ni/MH電池は、作動電圧が約 1.2〜1.3 Vで、従来より用いられてきた小型二次電池であるニッケル−カドミウム電池と互換性がある上、この電池より容量およびエネルギー密度が高く、しかも有害なカドミウムを使用しないことから、携帯用通信機器、パーソナルコンピューター、ビデオカメラ等の小型電気・電子機器の電源として広く利用されている。
【0003】
また、近年においては、電動工具、電気自動車用電源としても利用されるようになり、Ni/MH電池には、今まで以上に高容量、充放電サイクル寿命および高率放電能の向上が求められている。
【0004】
下記特許文献1には、粒径25μm 以下の微細な水素吸蔵合金粉末を使用することによって、上記問題を解決できることが記載されている。即ち、微細な水素吸蔵合金粉末を使用すると、充放電時の体積変化に伴う微粉化が軽減され、水素吸蔵合金粉末の極板からの脱落が抑制されて、充放電サイクル寿命が向上すると同時に、比表面積が大きくなるため、水素吸蔵合金の水素吸蔵・放出量が増大し、放電容量が大きくなる。そのため、特に高率放電能が向上する。
【0005】
【特許文献1】
特開昭60−70665 号公報
【0006】
【発明が解決しようとする課題】
しかし、水素吸蔵合金を乾式粉砕により粉砕する場合、粒径が細かくなるにつれて、凝集性が強くなり、流動性が悪化するため、粉砕機の系内での付着、凝集や、篩いの目詰まり等で製造が困難になり、生産性が著しく低下する。湿式粉砕すれば、そのような問題はないが、湿式粉砕は溶剤の分離工程や乾燥工程が加わるため、生産性が低く、コストも非常に高くなる。
【0007】
本発明の目的は、高率放電能向上に有効な微細な水素吸蔵合金粉末を乾式粉砕方法で容易に製造でき、なおかつ粒度分布がシャープで、酸素濃度が低く、嵩密度が大きい、水素吸蔵合金粉末を製造する方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明によれば、水素吸蔵合金の乾式粉砕を、特定の有機化合物を含有する不活性ガス雰囲気中で行うことにより、上記目的を達成することができる。
【0009】
ここに、本発明は、(1)ヒドロキシル基を有する有機化合物、(2)カルボニル基を有する有機化合物、(3)アミン、(4)芳香族炭化水素、および(5)エーテルよりなる群から選んだ少なくとも1種の有機化合物を含有する不活性ガス雰囲気中で、水素吸蔵合金を粉砕し、当該雰囲気中の前記有機化合物全体の濃度は 5 10,000ppm であることを特徴とする、水素吸蔵合金粉末の製造方法である。
【0010】
上記有機化合物を含有する不活性ガス雰囲気は、さらに酸素を10〜2000 ppm含有していてもよく、その場合でも上記目的を達成できる。
本発明はまた、上記方法で製造された水素吸蔵合金粉末を負極活物質とするNi−MH二次電池電池用負極も提供する。
【0011】
【発明の実施の形態】
以下、本発明を詳しく説明する。
本発明によれば、特定の有機化合物を含有する不活性ガス雰囲気中で水素吸蔵合金を粉砕することにより水素吸蔵合金粉末を製造する。
【0012】
原料の水素吸蔵合金の種類は特に制限されない。水素吸蔵合金として、AB5 型、AB2 型、AB型、A2B型などの多様な合金系が知られているが、原則として、これらのいずれにも本発明の方法を適用することができる。
【0013】
AB5 型水素吸蔵合金は、LaNi5 を基本組成とし、Laの一部または全部は希土類金属混合物のミッシュメタル(Mm)や他の希土類金属 (例、Nd) で、Niの一部はCo、Al、Zr、Ti、Mn、Si等で置換されていてもよい。AB2 型水素吸蔵合金は、A部にTi、Ti−Zr、Ti−Cr、Zrなどの金属が存在し、B部にはNiとV、Co、Mn等から選ばれた金属とが存在する。AB型水素吸蔵合金は、TiNiを基本組成とし、A2B型水素吸蔵合金はTi2Ni またはMg2Ni を基本組成とし、Niの一部はV、Cr、Zr、Mn、Co、Cu、Feなどの金属で置換されていてもよい。
【0014】
原料の水素吸蔵合金の製造方法も特に制限されない。通常の溶製法で製造した水素吸蔵合金のインゴットでも、あるいは急冷ロール法で製造された薄板でもよい。原料がインゴットの場合には、粉砕前に予め、クラッシャー等で粗粉砕しておくことが好ましい。
【0015】
本発明の方法で利用する粉砕方法は、乾式粉砕であれば特に制限されない。例えば、衝撃式、摩砕式などの粉砕機を用いることができる。特に、ピンミル、ジェットミル等の衝撃式乾式粉砕機を使用することが好ましい。
【0016】
水素吸蔵合金の乾式粉砕は、特定の有機化合物を含有する不活性ガス雰囲気中で行う。それにより、水素吸蔵合金粉末の凝集が抑制され、流動性が向上する。特に、平均粒径が40μm以下になった時に、その効果が大きい。その結果、粉砕機系内の付着の低下、篩の分級効率の向上により、今まで製造が困難であった、微細な水素吸蔵合金粉末を生産性よく製造することが可能になる。また、得られた水素吸蔵合金粉末は、不活性ガス雰囲気中に有機化合物を含有させなかった場合に比べて、酸素濃度が低くなる。
【0017】
粉砕を2段階以上に分けて行う場合には、その少なくとも1つの粉砕工程を、本発明に従って、特定の有機化合物を含有する不活性ガス雰囲気中で実施すればよい。好ましくは、凝集性が強まり、流動性が悪化する、最後の粉砕工程を、本発明に従った雰囲気条件下で実施する。
【0018】
不活性ガスとしては、アルゴンまたは窒素の使用が現実的である。
不活性ガス中に含有させた時に上記効果を発揮する有機化合物は、▲1▼ヒドロキシル基を有する有機化合物、▲2▼カルボニル基を有する有機化合物、▲3▼アミン、▲4▼芳香族炭化水素、および▲5▼エーテルである。▲1▼の有機化合物の例は、エタノール、イソプロパノール、ブタノール、エチレングリコール、プロピレングリコール、グリセリン等の1価および多価アルコール類である。▲2▼として好ましい化合物の例は、酢酸エチル、酢酸ブチル、酪酸メチル、安息香酸エチル等のカルボン酸エステル類;酢酸ナトリウム等のカルボン酸塩類、酢酸、プロピオン酸等のカルボン酸類、ならびにアセトン、メチルイソブチルケトン等のケトン類である。▲3▼のアミンとして好ましい化合物は、イソプロパノールアミン、トリエタノールアミン等のアルカノールアミン類であるが、イソプロピルアミン、トリエチルアミン等のアルキルアミン類も使用可能である。▲4▼の芳香族炭化水素の例は、ベンゼン、トルエン、ナフタレン等である。▲5▼のエーテルの例は、ジエチルエーテル、ジイソプロピルエーテル等である。
【0019】
上記有機化合物を不活性ガス雰囲気中に含有させると、粉砕中の水素吸蔵合金粉末の凝集性が抑えられ、流動性が向上する理由については不明であるが、粉砕で得られた合金粉末の酸素濃度が低くなることから、有機化合物の官能基 (▲4▼以外の化合物の場合) または電子雲 (▲4▼の化合物の場合) により、有機化合物が水素吸蔵合金粉末の表面に吸着されるのではないかと推測される。
【0020】
上記有機化合物は、1種または2種以上を不活性ガス雰囲気中に含有させることができる。不活性ガス中の上記有機化合物の濃度 (2種以上の時は合計濃度) は、5ppm 以上、10,000 ppm以下とすることが好ましい。より好ましい濃度は10 ppm以上、5,000 ppm 以下、さらに好ましくは100 ppm 以上、2,000 ppm 以下である。
【0021】
不活性ガス雰囲気は一般に微量の酸素を含有するが、通常は酸素濃度が10 ppm未満になるように調整する。従来の粉砕方法では、不活性ガス雰囲気の酸素濃度がそれより高くなると、粉砕で得られた水素吸蔵合金粉末の酸素濃度が高くなってしまうからである。
【0022】
これに対し、本発明の粉砕方法を種々の酸素濃度の不活性ガス雰囲気中で行ったところ、10〜2000 ppmの範囲の酸素が存在していても、粉砕に悪影響はなく、かえって凝集性がやや低くなるため、生産性がやや高くなることがわかった。但し、粉砕で得られた合金粉末の酸素濃度はやや高くなるが、それでも従来の粉砕方法よりは著しく低くなる。従って、不活性ガス雰囲気の酸素濃度は、通常の10 ppm未満であってもよいが、10〜2000 ppmの範囲の酸素濃度とすることもできる。例えば、不可抗力により不活性ガス中に空気が混入して不活性ガスの酸素濃度が高くなっても、2000 ppm以下の濃度までは許容されるので、酸素濃度の低い水素吸蔵合金粉末を安定して製造することができる。もちろん、人為的に少量の空気を導入して、酸素濃度を上記範囲にすることも可能である。
【0023】
本発明の方法により製造された水素吸蔵合金粉末は、粉砕中の凝集が抑えられたため、過粉砕による微粉発生が抑制され、粒度分布がシャープになり、嵩密度が大きくなる。また、前述したように、酸素濃度が低くなる。
【0024】
従って、本発明の方法により製造された水素吸蔵合金粉末を負極活物質として用いれば、充填密度の増加により極板容量が増加し、なおかつ水素吸蔵合金粉末の低粒度化による表面積の増大と酸素濃度の低下により、高容量で高率放電能の優れたNi/MH電池を作製することが可能である。
【0025】
水素吸蔵合金粉末を負極活物質とする負極は、常法に従って、適当な結着剤を用いて成形または電極基板に塗布し、圧密化することにより作製することができる。この負極はNi/MH電池用の負極に最適である。
【0026】
【実施例】
次に、本発明の実施例および比較例を示して、本発明の効果を実証する。以下の実施例および比較例において、合金組成に関する%は、質量%である。
【0027】
(比較例1)
組成がMmNi3.35Co0.85MnO0.50Al0.30(Mmは、La:約25%、Ce:約50%、Pr:約7%、Nd:約18%からなる希土類金属混合物) であるAB5 型水素吸蔵合金を溶製し、得られたインゴットをクラッシャーで粗粉砕した。次に、粗粉砕品100 kgをピンミルを用いて粉砕した。粉砕は、酸素濃度を10 ppm未満に調整した窒素雰囲気中で、平均粒径が約20μmになるように行った。
【0028】
(比較例2)
比較例1と同様にして水素吸蔵合金の粗粉砕とピンミルによる粗粉砕品の粉砕を行った。粗粉砕品の粉砕は、空気を混入して酸素濃度を 400〜500 ppm に調整した窒素雰囲気中で、平均粒径が約20μmになるように行った。
【0029】
(実施例1)
比較例1と同様にして水素吸蔵合金の粗粉砕とピンミルによる粗粉砕品の粉砕を行った。粗粉砕品の粉砕は、エタノールを10 ppm、酸素濃度を10 ppm未満に調整した窒素雰囲気中で、平均粒径が約20μmになるように行った。
【0030】
(実施例2)
比較例1と同様にして水素吸蔵合金の粗粉砕とピンミルによる粗粉砕品の粉砕を行った。粗粉砕品の粉砕は、エタノールを1000 ppm、酸素濃度を10 ppm未満に調整した窒素雰囲気中で平均粒径が約20μmになるように行った。
【0031】
(実施例3)
比較例1と同様にして水素吸蔵合金の粗粉砕とピンミルによる粗粉砕品の粉砕を行った。粗粉砕品の粉砕は、エタノールを10,000 ppm、酸素濃度を10 ppm未満に調整した窒素雰囲気中で平均粒径が約20μmになるように行った。
【0032】
(実施例4)
比較例1と同様にして水素吸蔵合金の粗粉砕とピンミルによる粗粉砕品の粉砕を行った。粗粉砕品の粉砕は、エタノールを1000 ppm、さらに空気の混入により酸素濃度を1000 ppmに調整した窒素雰囲気中で平均粒径が約20μmになるように行った。
【0033】
(実施例5)
比較例1と同様にして水素吸蔵合金の粗粉砕とピンミルによる粗粉砕品の粉砕を行った。粗粉砕品の粉砕は、アセトンを1000 ppm、酸素濃度を10 ppm未満に調整した窒素雰囲気中で平均粒径が約20μmになるように行った。
【0034】
(実施例6)
比較例1と同様にして水素吸蔵合金の粗粉砕とピンミルによる粗粉砕品の粉砕を行った。粗粉砕品の粉砕はイソプロパノールアミンを1000 ppm、酸素濃度を10 ppm未満に調整した窒素雰囲気中で平均粒径が約20μmになるように行った。
【0035】
(実施例7)
比較例1と同様にして水素吸蔵合金の粗粉砕とピンミルによる粗粉砕品の粉砕を行った。粗粉砕品の粉砕は、ベンゼンを1000 ppm、酸素濃度を10 ppm未満に調整した窒素雰囲気中で平均粒径が約20μmになるように行った。
【0036】
(実施例8)
比較例1と同様にして水素吸蔵合金の粗粉砕とピンミルによる粗粉砕品の粉砕を行った。粗粉砕品の粉砕は、ジエチルエーテルを1000 ppm、酸素濃度を10 ppm未満に調整した窒素雰囲気中で平均粒径が約20μmになるように行った。
【0037】
(実施例9)
比較例1と同様にして水素吸蔵合金の粗粉砕とピンミルによる粗粉砕品の粉砕を行った。粗粉砕品の粉砕は、酢酸エチルを1000 ppm、酸素濃度を10 ppm未満に調整した窒素雰囲気中で平均粒径が約20μmになるように行った。
【0038】
(実施例10)
比較例1と同様にして水素吸蔵合金の粗粉砕とピンミルによる粗粉砕品の粉砕を行った。粗粉砕品の粉砕は、イソプロパノールを1000 ppm、酸素濃度を10 ppm未満に調整した窒素雰囲気中で平均粒径が約20μmになるように行った。
【0039】
(実施例11)
比較例1と同様にして水素吸蔵合金の粗粉砕とピンミルによる粗粉砕品の粉砕を行った。粗粉砕品の粉砕は、安息香酸エチルを1000 ppm、酸素濃度を10 ppm未満に調整した窒素雰囲気中で平均粒径が約20μmになるように行った。
【0040】
(比較例3)
比較例1と同様にして水素吸蔵合金の粗粉砕とピンミルによる粗粉砕品の粉砕を行った。粗粉砕品の粉砕は、アセチレンを100 ppm 、酸素濃度を10 ppm未満に調整した窒素雰囲気中で平均粒径が約20μmになるように行った。
【0041】
比較例1〜3と実施例1〜11で得られた水素吸蔵合金粉末について、酸素濃度、粒度分布、嵩密度を測定した。粒度分布の測定はレーザー光回折・散乱法を用いて、酸素濃度は不活性ガス融解赤外吸収法、また嵩密度はJIS Z 2504に準じて測定した。その結果を、生産性 (合金1kgを平均粒径約20μmまで粉砕するのに要した時間) の結果と共に表1に示す。
【0042】
【表1】

Figure 0004122941
【0043】
表1に示すように、実施例1〜11の水素吸蔵合金粉末は、比較例1、2の合金粉末に比べて、生産性が大幅に向上している。また、粉砕した合金粉末の酸素濃度が低下し、嵩密度が増加している。粒度分布に関しては、体積平均粒径(MV)は全例でほぼ同じであるが、実施例の方が、D10(累積10%での粒径)が大きく、D90(同90%での粒径)が小さくなっており、粒度分布がシャープになっていることが解る。この効果は、実施例の全てにおいて顕著に得られたが、中でもエタノールやイソプロパノールといったアルコール類ならびに酢酸エチルや安息香酸エチルといったカルボン酸エステル類の効果が最も高くなった。
【0044】
以上より、本発明に従って粉砕雰囲気に特定の有機化合物を添加することにより、粉砕中の凝集が抑制されて、生産性が向上する上、過粉砕が抑えられ、粒度分布がシャープになり、さらに酸素濃度の低い水素吸蔵合金粉末が得られるという予期し得ない効果が得られることが明らかである。
【0045】
実施例4と実施例1〜3および比較例1〜2との対比からわかるように、本発明の方法では、粉砕雰囲気に1000 ppmの酸素が混入しても (実施例4) 、粉砕後の合金酸素濃度は、粉砕雰囲気の酸素濃度が10 ppm未満であった実施例1〜3よりやや高いだけであり (合金酸素濃度の増加量は100 ppm 未満) 、生産性は実施例1〜3よりやや高くなる。
【0046】
一方、比較例1〜2では、粉砕雰囲気の酸素濃度が10 ppm未満と低い比較例1でも、粉砕後の合金粉末の酸素濃度は1800 ppmと、粉砕雰囲気に1000 ppmの酸素を含有させた実施例4の2倍以上という高さになる。粉砕雰囲気に430 ppm の酸素を含有させた比較例2では、合金粉末の酸素濃度は2650 ppmとさらに著しく高くなる。
【0047】
このように、本発明の方法では、従来の方法に比べて、酸素濃度が低い水素吸蔵合金粉末を得ることができる上、粉砕雰囲気に2000 ppmまでの酸素が混入しても、粉砕雰囲気への酸素の混入による合金粉末の酸素濃度の増大が抑えられ、酸素の混入がない場合とさほど違わない品質の水素吸蔵合金粉末が製造される。従って、粉砕雰囲気への酸素の混入による製品劣化が抑えられ、製品品質が安定化する。
【0048】
しかし、粉砕雰囲気に含有させる有機化合物が本発明の範囲外のアセチレンであった比較例3では、試験した全ての特性が、粉砕雰囲気に有機化合物を含有させない比較例1とほぼ同様の結果になり、本発明により得られる上述した効果を得ることはできなかった。
【0049】
(実施例12)
実施例2で作成した水素吸蔵合金粉末に、結着剤としてポリエチレンオキサイドを0.5 mass%添加し、さらに純水を適量添加して混練し、スラリー状にした。このスラリーをNi板 (幅25 mm 以上、長さ30 mm 以上) に塗布し、乾燥した後、25×30 mm の大きさに切断した。さらに、幅25 mm 以上、長さ30 mm 以上の平板を備える平板プレス機で、プレス圧10tで圧延し、電極を作製した。
【0050】
(比較例4)
比較例1で作成した水素吸蔵合金粉末を使用して、実施例12と同じ方法で電極を作製した。
【0051】
実施例12および比較例4で作成した電極の充填密度(g/cm3) を、電極の大きさ、厚み、重量と、基体 (Ni板) の重量および体積とを測定し、 [電極重量−基体の重量] / [電極の大きさ×厚み−基体の体積] から算出した。その結果を表2に示す。
【0052】
また、上記電極を負極とし、これをポリプロピレン不織布で包み、正極の焼結式ニッケル電極と重ねて、Hg/HgO 参照極と共に容器に入れ、容器に6M-KOH 水溶液を入れて、開放型電池を作製した。この電池を環境温度25℃で、50 mA ×8hr充電、1hr休止、50 mA で電圧が0.8 V (vs.Hg/HgO) に低下するまで放電、という充放電サイクルを容量が最大になるまで繰り返し、最大容量を求めた。以上の結果を表2に示す。
【0053】
【表2】
Figure 0004122941
【0054】
表2に示すように、比較例4に比べて、本発明の方法により製造した水素吸蔵合金粉末から負極を作製した実施例12では、極板の充填密度が高く、放電容量も大きくなった。
【0055】
【発明の効果】
以上に説明したように、本発明に従って、特定の有機化合物を含有させた不活性ガス雰囲気中で水素吸蔵合金を粉砕することにより、微細で酸素濃度が低く、粒度分布がシャープで充填密度の高い水素吸蔵合金粉末を、雰囲気中に2000 ppmまでの酸素が混入しても、安定して高い生産性で製造することができる。こうして製造された水素吸蔵合金粉末をNi/MH電池の負極に用いることで、高容量で高率放電能に優れたNi/MH電池を作製することが可能である。
【0056】
本発明は、携帯用の電子・電気機器の電源用の円筒形もしくは角型Ni/MH電池はもちろん、高率放電能、高容量化が求められている自動車用の大型角型Ni/MH電池に有効である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a negative electrode active material of a nickel-hydrogen secondary battery (hereinafter referred to as a Ni / MH battery) in which the positive electrode active material is Ni, the negative electrode active material is a hydrogen storage alloy (MH), and the electrolytic solution is an alkaline aqueous solution. The present invention relates to a method for producing a hydrogen storage alloy powder suitable for use as a substance, and a Ni / MH battery using the hydrogen storage alloy powder.
[0002]
[Prior art]
The Ni / MH battery has an operating voltage of about 1.2 to 1.3 V and is compatible with a nickel-cadmium battery, which is a small secondary battery that has been used in the past, and has a higher capacity and energy density than this battery. Since it does not use harmful cadmium, it is widely used as a power source for small electric / electronic devices such as portable communication devices, personal computers, and video cameras.
[0003]
In recent years, it has also been used as a power source for electric tools and electric vehicles, and Ni / MH batteries are required to have higher capacity, charge / discharge cycle life and higher rate discharge capability than ever before. ing.
[0004]
The following Patent Document 1 describes that the above problem can be solved by using a fine hydrogen storage alloy powder having a particle size of 25 μm or less. That is, when a fine hydrogen storage alloy powder is used, pulverization associated with the volume change during charge / discharge is reduced, and dropping of the hydrogen storage alloy powder from the electrode plate is suppressed, and at the same time, the charge / discharge cycle life is improved. Since the specific surface area is increased, the hydrogen storage / release amount of the hydrogen storage alloy is increased, and the discharge capacity is increased. As a result, the high rate discharge performance is particularly improved.
[0005]
[Patent Document 1]
JP-A-60-70665 [0006]
[Problems to be solved by the invention]
However, when the hydrogen storage alloy is pulverized by dry pulverization, as the particle size becomes finer, the cohesiveness becomes stronger and the fluidity deteriorates, so adhesion, aggregation, clogging of the sieve, etc. in the pulverizer system This makes it difficult to manufacture and significantly reduces productivity. If wet pulverization is performed, such a problem does not occur. However, wet pulverization adds a solvent separation step and a drying step, so that the productivity is low and the cost is very high.
[0007]
It is an object of the present invention to easily produce fine hydrogen storage alloy powder effective for improving high-rate discharge capacity by a dry pulverization method, sharp particle size distribution, low oxygen concentration, high bulk density, hydrogen storage alloy It is to provide a method for producing a powder.
[0008]
[Means for Solving the Problems]
According to the present invention, the above object can be achieved by dry pulverizing the hydrogen storage alloy in an inert gas atmosphere containing a specific organic compound.
[0009]
Here, the present invention is selected from the group consisting of (1) an organic compound having a hydroxyl group, (2) an organic compound having a carbonyl group, (3) an amine, (4) an aromatic hydrocarbon, and (5) an ether. I in an inert gas atmosphere containing at least one organic compound, pulverizing the hydrogen-absorbing alloy, wherein the overall organic compound concentration in the atmosphere is 5 ~ 10,000 ppm, the hydrogen storage alloy It is a manufacturing method of powder.
[0010]
The inert gas atmosphere containing the organic compound may further contain 10 to 2000 ppm of oxygen, and even in that case, the above object can be achieved.
The present invention also provides a negative electrode for a Ni-MH secondary battery using the hydrogen storage alloy powder produced by the above method as a negative electrode active material.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below.
According to the present invention, a hydrogen storage alloy powder is produced by pulverizing a hydrogen storage alloy in an inert gas atmosphere containing a specific organic compound.
[0012]
The type of the raw material hydrogen storage alloy is not particularly limited. Various alloy systems such as AB 5 type, AB 2 type, AB type, A 2 B type and the like are known as hydrogen storage alloys. In principle, the method of the present invention can be applied to any of these alloys. it can.
[0013]
AB 5 type hydrogen storage alloy has a basic composition of LaNi 5 , and a part or all of La is a misch metal (Mm) or other rare earth metal (eg, Nd) of a rare earth metal mixture, and a part of Ni is Co, It may be substituted with Al, Zr, Ti, Mn, Si or the like. In the AB type 2 hydrogen storage alloy, metals such as Ti, Ti-Zr, Ti-Cr, and Zr exist in the A part, and metals selected from Ni, V, Co, Mn, and the like exist in the B part. . The AB type hydrogen storage alloy has a basic composition of TiNi, the A 2 B type hydrogen storage alloy has a basic composition of Ti 2 Ni or Mg 2 Ni, and a part of Ni is V, Cr, Zr, Mn, Co, Cu, It may be substituted with a metal such as Fe.
[0014]
The method for producing the raw material hydrogen storage alloy is not particularly limited. It may be a hydrogen storage alloy ingot manufactured by a normal melting method or a thin plate manufactured by a quenching roll method. When the raw material is an ingot, it is preferable to coarsely pulverize with a crusher or the like before pulverization.
[0015]
The pulverization method used in the method of the present invention is not particularly limited as long as it is dry pulverization. For example, an impact type or grinding type grinder can be used. In particular, it is preferable to use an impact dry pulverizer such as a pin mill or a jet mill.
[0016]
The dry pulverization of the hydrogen storage alloy is performed in an inert gas atmosphere containing a specific organic compound. Thereby, aggregation of hydrogen storage alloy powder is suppressed and fluidity | liquidity improves. In particular, the effect is great when the average particle size is 40 μm or less. As a result, it becomes possible to produce a fine hydrogen storage alloy powder, which has been difficult to produce, with high productivity by reducing adhesion in the grinder system and improving the classification efficiency of the sieve. Moreover, the obtained hydrogen storage alloy powder has a lower oxygen concentration than when no organic compound is contained in the inert gas atmosphere.
[0017]
When pulverization is performed in two or more steps, at least one pulverization step may be performed in an inert gas atmosphere containing a specific organic compound according to the present invention. Preferably, the final pulverization step, in which the cohesiveness increases and the fluidity deteriorates, is carried out under atmospheric conditions according to the invention.
[0018]
As the inert gas, it is practical to use argon or nitrogen.
Organic compounds that exhibit the above effects when incorporated in an inert gas are: (1) organic compounds having hydroxyl groups, (2) organic compounds having carbonyl groups, (3) amines, (4) aromatic hydrocarbons , And (5) ether. Examples of the organic compound (1) are monohydric and polyhydric alcohols such as ethanol, isopropanol, butanol, ethylene glycol, propylene glycol and glycerin. Examples of preferable compounds as (2) are carboxylic acid esters such as ethyl acetate, butyl acetate, methyl butyrate and ethyl benzoate; carboxylates such as sodium acetate; carboxylic acids such as acetic acid and propionic acid; and acetone and methyl Ketones such as isobutyl ketone. Preferred compounds as the amine of (3) are alkanolamines such as isopropanolamine and triethanolamine, but alkylamines such as isopropylamine and triethylamine can also be used. Examples of the aromatic hydrocarbon of (4) are benzene, toluene, naphthalene and the like. Examples of the ether (5) are diethyl ether, diisopropyl ether and the like.
[0019]
When the organic compound is contained in an inert gas atmosphere, the cohesiveness of the hydrogen storage alloy powder during pulverization is suppressed and the reason why the fluidity is improved is unknown, but the oxygen of the alloy powder obtained by pulverization is unknown. Since the concentration is low, the organic compound is adsorbed on the surface of the hydrogen storage alloy powder by the functional group of the organic compound (in the case of a compound other than (4)) or the electron cloud (in the case of the compound of (4)). I guess that.
[0020]
The said organic compound can be contained in 1 type, or 2 or more types in inert gas atmosphere. The concentration of the organic compound in the inert gas (the total concentration when there are two or more) is preferably 5 ppm or more and 10,000 ppm or less. A more preferable concentration is 10 ppm or more and 5,000 ppm or less, and further preferably 100 ppm or more and 2,000 ppm or less.
[0021]
The inert gas atmosphere generally contains a small amount of oxygen, but is usually adjusted so that the oxygen concentration is less than 10 ppm. This is because, in the conventional pulverization method, if the oxygen concentration in the inert gas atmosphere is higher than that, the oxygen concentration of the hydrogen storage alloy powder obtained by pulverization is increased.
[0022]
On the other hand, when the pulverization method of the present invention was performed in an inert gas atmosphere having various oxygen concentrations, there was no adverse effect on the pulverization even if oxygen in the range of 10 to 2000 ppm was present. It was found that productivity was slightly higher because it was slightly lower. However, although the oxygen concentration of the alloy powder obtained by pulverization is slightly higher, it is still significantly lower than the conventional pulverization method. Therefore, the oxygen concentration in the inert gas atmosphere may be less than the usual 10 ppm, but may be an oxygen concentration in the range of 10 to 2000 ppm. For example, even if air is mixed into the inert gas due to force majeure and the oxygen concentration of the inert gas increases, a concentration of 2000 ppm or less is allowed, so stable hydrogen storage alloy powder with a low oxygen concentration can be obtained. Can be manufactured. Of course, it is also possible to artificially introduce a small amount of air so that the oxygen concentration falls within the above range.
[0023]
In the hydrogen storage alloy powder produced by the method of the present invention, since aggregation during pulverization is suppressed, generation of fine powder due to excessive pulverization is suppressed, the particle size distribution becomes sharp, and the bulk density increases. Further, as described above, the oxygen concentration is lowered.
[0024]
Therefore, if the hydrogen storage alloy powder produced by the method of the present invention is used as the negative electrode active material, the electrode plate capacity increases due to the increase in packing density, and the surface area increases and the oxygen concentration by reducing the particle size of the hydrogen storage alloy powder. As a result of this decrease, it is possible to produce a Ni / MH battery with a high capacity and excellent high rate discharge capability.
[0025]
The negative electrode using the hydrogen storage alloy powder as the negative electrode active material can be produced by molding or applying to an electrode substrate using an appropriate binder, followed by consolidation according to a conventional method. This negative electrode is most suitable as a negative electrode for Ni / MH batteries.
[0026]
【Example】
Next, examples and comparative examples of the present invention will be shown to demonstrate the effects of the present invention. In the following examples and comparative examples,% relating to the alloy composition is mass%.
[0027]
(Comparative Example 1)
AB 5 type hydrogen occlusion with a composition of MmNi 3.35 Co 0.85 MnO 0.50 Al 0.30 (Mm is a rare earth metal mixture comprising La: about 25%, Ce: about 50%, Pr: about 7%, Nd: about 18%) The alloy was melted and the resulting ingot was coarsely pulverized with a crusher. Next, 100 kg of the coarsely pulverized product was pulverized using a pin mill. The pulverization was performed in a nitrogen atmosphere in which the oxygen concentration was adjusted to less than 10 ppm so that the average particle size was about 20 μm.
[0028]
(Comparative Example 2)
In the same manner as in Comparative Example 1, the hydrogen storage alloy was coarsely pulverized and the coarsely pulverized product was pulverized by a pin mill. The coarsely pulverized product was pulverized in a nitrogen atmosphere in which air was mixed and the oxygen concentration was adjusted to 400 to 500 ppm so that the average particle size was about 20 μm.
[0029]
(Example 1)
In the same manner as in Comparative Example 1, the hydrogen storage alloy was coarsely pulverized and the coarsely pulverized product was pulverized by a pin mill. The coarsely pulverized product was pulverized in a nitrogen atmosphere in which ethanol was adjusted to 10 ppm and the oxygen concentration was adjusted to less than 10 ppm so that the average particle size was about 20 μm.
[0030]
(Example 2)
In the same manner as in Comparative Example 1, the hydrogen storage alloy was coarsely pulverized and the coarsely pulverized product was pulverized by a pin mill. The coarsely pulverized product was pulverized so that the average particle size was about 20 μm in a nitrogen atmosphere in which ethanol was adjusted to 1000 ppm and the oxygen concentration was adjusted to less than 10 ppm.
[0031]
Example 3
In the same manner as in Comparative Example 1, the hydrogen storage alloy was coarsely pulverized and the coarsely pulverized product was pulverized by a pin mill. The coarsely pulverized product was pulverized in an atmosphere of nitrogen adjusted to ethanol of 10,000 ppm and oxygen concentration of less than 10 ppm so that the average particle size was about 20 μm.
[0032]
Example 4
In the same manner as in Comparative Example 1, the hydrogen storage alloy was coarsely pulverized and the coarsely pulverized product was pulverized by a pin mill. The coarsely pulverized product was pulverized so that the average particle diameter was about 20 μm in a nitrogen atmosphere in which ethanol was adjusted to 1000 ppm and the oxygen concentration was adjusted to 1000 ppm by mixing air.
[0033]
(Example 5)
In the same manner as in Comparative Example 1, the hydrogen storage alloy was coarsely pulverized and the coarsely pulverized product was pulverized by a pin mill. The coarsely pulverized product was pulverized in a nitrogen atmosphere adjusted to 1000 ppm for acetone and less than 10 ppm for oxygen so that the average particle size was about 20 μm.
[0034]
Example 6
In the same manner as in Comparative Example 1, the hydrogen storage alloy was coarsely pulverized and the coarsely pulverized product was pulverized by a pin mill. The coarsely pulverized product was pulverized in an atmosphere of nitrogen adjusted to 1000 ppm isopropanolamine and less than 10 ppm oxygen so that the average particle size was about 20 μm.
[0035]
(Example 7)
In the same manner as in Comparative Example 1, the hydrogen storage alloy was coarsely pulverized and the coarsely pulverized product was pulverized by a pin mill. The coarsely pulverized product was pulverized in a nitrogen atmosphere with benzene adjusted to 1000 ppm and oxygen concentration adjusted to less than 10 ppm so that the average particle size was about 20 μm.
[0036]
(Example 8)
In the same manner as in Comparative Example 1, the hydrogen storage alloy was coarsely pulverized and the coarsely pulverized product was pulverized by a pin mill. The coarsely pulverized product was pulverized in a nitrogen atmosphere with diethyl ether adjusted to 1000 ppm and oxygen concentration less than 10 ppm so that the average particle size was about 20 μm.
[0037]
Example 9
In the same manner as in Comparative Example 1, the hydrogen storage alloy was coarsely pulverized and the coarsely pulverized product was pulverized by a pin mill. The coarsely pulverized product was pulverized in an atmosphere of nitrogen adjusted to 1000 ppm ethyl acetate and oxygen concentration less than 10 ppm so that the average particle size was about 20 μm.
[0038]
(Example 10)
In the same manner as in Comparative Example 1, the hydrogen storage alloy was coarsely pulverized and the coarsely pulverized product was pulverized by a pin mill. The coarsely pulverized product was pulverized in an atmosphere of nitrogen adjusted to 1000 ppm isopropanol and oxygen concentration less than 10 ppm so that the average particle size was about 20 μm.
[0039]
Example 11
In the same manner as in Comparative Example 1, the hydrogen storage alloy was coarsely pulverized and the coarsely pulverized product was pulverized by a pin mill. The coarsely pulverized product was pulverized so that the average particle size was about 20 μm in a nitrogen atmosphere in which ethyl benzoate was adjusted to 1000 ppm and the oxygen concentration was adjusted to less than 10 ppm.
[0040]
(Comparative Example 3)
In the same manner as in Comparative Example 1, the hydrogen storage alloy was coarsely pulverized and the coarsely pulverized product was pulverized by a pin mill. The coarsely pulverized product was pulverized in a nitrogen atmosphere adjusted to 100 ppm acetylene and less than 10 ppm oxygen so that the average particle size was about 20 μm.
[0041]
For the hydrogen storage alloy powders obtained in Comparative Examples 1 to 3 and Examples 1 to 11, the oxygen concentration, the particle size distribution, and the bulk density were measured. The particle size distribution was measured using a laser beam diffraction / scattering method, the oxygen concentration was measured according to an inert gas melting infrared absorption method, and the bulk density was measured according to JIS Z 2504. The results are shown in Table 1 together with the results of productivity (the time required to grind 1 kg of alloy to an average particle size of about 20 μm).
[0042]
[Table 1]
Figure 0004122941
[0043]
As shown in Table 1, the productivity of the hydrogen storage alloy powders of Examples 1 to 11 is significantly improved as compared with the alloy powders of Comparative Examples 1 and 2. Further, the oxygen concentration of the pulverized alloy powder is decreased, and the bulk density is increased. Regarding the particle size distribution, the volume average particle size (MV) is almost the same in all examples, but D10 (particle size at 10% cumulative ) is larger in the examples, and D90 (particle size at 90%). ) Is smaller and the particle size distribution is sharper. This effect was remarkably obtained in all of the examples, but among them, the effects of alcohols such as ethanol and isopropanol and carboxylic acid esters such as ethyl acetate and ethyl benzoate were the highest.
[0044]
From the above, by adding a specific organic compound to the pulverizing atmosphere according to the present invention, aggregation during pulverization is suppressed, productivity is improved, over-pulverization is suppressed, particle size distribution is sharpened, and oxygen is further reduced. It is clear that the unexpected effect of obtaining a low concentration hydrogen storage alloy powder is obtained.
[0045]
As can be seen from the comparison between Example 4 and Examples 1 to 3 and Comparative Examples 1 and 2, in the method of the present invention, even when 1000 ppm of oxygen is mixed in the pulverizing atmosphere (Example 4), The alloy oxygen concentration is only slightly higher than those in Examples 1 to 3 in which the oxygen concentration in the pulverization atmosphere was less than 10 ppm (the increase amount of the alloy oxygen concentration is less than 100 ppm), and the productivity is from Examples 1 to 3. Slightly higher.
[0046]
On the other hand, in Comparative Examples 1 and 2, even in Comparative Example 1 where the oxygen concentration in the pulverization atmosphere is as low as less than 10 ppm, the oxygen concentration of the alloy powder after pulverization was 1800 ppm, and the pulverization atmosphere contained 1000 ppm oxygen. The height is more than twice that of Example 4. In Comparative Example 2 in which 430 ppm of oxygen was included in the pulverizing atmosphere, the oxygen concentration of the alloy powder was further significantly increased to 2650 ppm.
[0047]
Thus, in the method of the present invention, it is possible to obtain a hydrogen storage alloy powder having a lower oxygen concentration than in the conventional method, and even if oxygen up to 2000 ppm is mixed in the pulverizing atmosphere, An increase in the oxygen concentration of the alloy powder due to oxygen mixing is suppressed, and a hydrogen storage alloy powder having a quality that is not so different from that when oxygen is not mixed is manufactured. Therefore, the product deterioration due to the mixing of oxygen into the pulverizing atmosphere is suppressed, and the product quality is stabilized.
[0048]
However, in Comparative Example 3 in which the organic compound contained in the pulverizing atmosphere was acetylene outside the scope of the present invention, all the characteristics tested were almost the same as those in Comparative Example 1 in which no organic compound was contained in the pulverizing atmosphere. The above-described effects obtained by the present invention could not be obtained.
[0049]
(Example 12)
To the hydrogen storage alloy powder prepared in Example 2, 0.5 mass% of polyethylene oxide was added as a binder, and an appropriate amount of pure water was added and kneaded to form a slurry. This slurry was applied to a Ni plate (width 25 mm or more, length 30 mm or more), dried, and then cut into a size of 25 × 30 mm. Furthermore, it was rolled with a flat plate press equipped with a flat plate having a width of 25 mm or more and a length of 30 mm or more at a press pressure of 10 t to produce an electrode.
[0050]
(Comparative Example 4)
An electrode was produced in the same manner as in Example 12 using the hydrogen storage alloy powder produced in Comparative Example 1.
[0051]
For the packing density (g / cm 3 ) of the electrode prepared in Example 12 and Comparative Example 4, the size, thickness, and weight of the electrode and the weight and volume of the substrate (Ni plate) were measured. Substrate weight] / [electrode size × thickness−substrate volume] The results are shown in Table 2.
[0052]
In addition, the above electrode is used as a negative electrode, wrapped in polypropylene nonwoven fabric, overlapped with a sintered nickel electrode of the positive electrode, placed in a container together with a Hg / HgO reference electrode, and a 6M-KOH aqueous solution is placed in the container to form an open battery. Produced. Charge and discharge cycles of this battery at an ambient temperature of 25 ° C, 50 mA x 8 hr charge, 1 hr pause, discharge until the voltage drops to 0.8 V (vs.Hg / HgO) at 50 mA until the capacity reaches maximum Sought the maximum capacity. The results are shown in Table 2.
[0053]
[Table 2]
Figure 0004122941
[0054]
As shown in Table 2, as compared with Comparative Example 4, in Example 12 in which the negative electrode was produced from the hydrogen storage alloy powder produced by the method of the present invention, the packing density of the electrode plate was high and the discharge capacity was also large.
[0055]
【The invention's effect】
As described above, according to the present invention, by pulverizing a hydrogen storage alloy in an inert gas atmosphere containing a specific organic compound, it is fine and has a low oxygen concentration, a sharp particle size distribution, and a high packing density. Even when oxygen up to 2000 ppm is mixed in the atmosphere, the hydrogen storage alloy powder can be stably produced with high productivity. By using the thus produced hydrogen storage alloy powder for the negative electrode of a Ni / MH battery, it is possible to produce a Ni / MH battery having a high capacity and excellent high rate discharge capability.
[0056]
The present invention is not limited to a cylindrical or prismatic Ni / MH battery for a power source of portable electronic / electric equipment, but also a large prismatic Ni / MH battery for automobiles which is required to have a high rate discharge capacity and a high capacity. It is effective for.

Claims (3)

ヒドロキシル基を有する有機化合物、カルボニル基を有する有機化合物、アミン、芳香族炭化水素、およびエーテルよりなる群から選ばれた少なくとも1種の有機化合物を含有する不活性ガス雰囲気中で水素吸蔵合金を粉砕し、当該雰囲気中の前記有機化合物全体の濃度は 5 10,000ppm であることを特徴とする、水素吸蔵合金粉末の製造方法。Grinding the hydrogen storage alloy in an inert gas atmosphere containing at least one organic compound selected from the group consisting of an organic compound having a hydroxyl group, an organic compound having a carbonyl group, an amine, an aromatic hydrocarbon, and an ether and, wherein the organic compound total concentration in the atmosphere is 5 ~ 10,000 ppm, the production method of the hydrogen storage alloy powder. 前記不活性ガス雰囲気が、さらに10〜2000ppmの酸素を含有する、請求項1記載の水素吸蔵合金粉末の製造方法。  The method for producing a hydrogen storage alloy powder according to claim 1, wherein the inert gas atmosphere further contains 10 to 2000 ppm of oxygen. 請求項1または2に記載の方法により製造された水素吸蔵合金粉末を負極活物質とする、ニッケル−水素二次電池用負極。  The negative electrode for nickel-hydrogen secondary batteries which uses the hydrogen storage alloy powder manufactured by the method of Claim 1 or 2 as a negative electrode active material.
JP2002336622A 2002-11-20 2002-11-20 Method for producing hydrogen storage alloy powder Expired - Fee Related JP4122941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002336622A JP4122941B2 (en) 2002-11-20 2002-11-20 Method for producing hydrogen storage alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002336622A JP4122941B2 (en) 2002-11-20 2002-11-20 Method for producing hydrogen storage alloy powder

Publications (2)

Publication Number Publication Date
JP2004169125A JP2004169125A (en) 2004-06-17
JP4122941B2 true JP4122941B2 (en) 2008-07-23

Family

ID=32700407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002336622A Expired - Fee Related JP4122941B2 (en) 2002-11-20 2002-11-20 Method for producing hydrogen storage alloy powder

Country Status (1)

Country Link
JP (1) JP4122941B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007018883A (en) * 2005-07-07 2007-01-25 Toshiba Corp Negative electrode active material, nonaqueous electrolyte battery and battery pack
JP5354970B2 (en) * 2008-06-17 2013-11-27 三洋電機株式会社 Hydrogen storage alloy and alkaline storage battery

Also Published As

Publication number Publication date
JP2004169125A (en) 2004-06-17

Similar Documents

Publication Publication Date Title
JP2011065934A (en) Silicon oxide and negative electrode material for lithium ion secondary battery
JP2004087264A (en) Negative electrode material for non-water electrolysis liquid secondary battery, and its manufacturing method
JP3992075B1 (en) Hydrogen storage alloy and electrode for nickel-hydrogen battery
EP0755898B1 (en) Hydrogen storage alloy and electrode therefrom
JP4122941B2 (en) Method for producing hydrogen storage alloy powder
JP2004079463A (en) Negative electrode active material for lithium ion secondary battery, its manufacturing method, negative electrode for the same, and lithium ion secondary battery
JP4372451B2 (en) Method for producing negative electrode active material for non-aqueous electrolyte secondary battery
JP5769578B2 (en) Method for producing negative electrode active material for lithium secondary battery
JP2972919B2 (en) Method for producing hydrogen storage alloy powder for storage battery and hydrogen storage electrode
JP2001126724A (en) Method for manufacturing hydrogen-occlusion alloy powder
JP3016064B2 (en) Method for producing hydrogen storage alloy powder for battery
JP3369226B2 (en) Metal oxide / hydrogen secondary batteries
JP3307176B2 (en) Hydrogen storage alloy, method for producing the same, and hydrogen storage alloy electrode using the same
JP7235984B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same
WO2024029267A1 (en) Lithium carbonate powder
JPH07118711A (en) Hydrogen storage alloy powder, nickel-hydrogen battery having the powder in negative-electrode active material and production of the powder
JP2001303101A (en) Hydrogen storage alloy powder having high magnetization and excellent in initial charging and discharging characteristics
JPH0644965A (en) Manufacture of hydrogen storage electrode
JPH10172546A (en) Hydrogen storage alloy powder and electrode for battery
JPH04318106A (en) Production of hydrogen storage alloy powder
JP2001303110A (en) Hydrogen storage alloy powder improved in magnetization due to pulverizing
JPH0883614A (en) Manufacture of slurry for hydrogen storage alloy electrode
JP2002146458A (en) Low-cost rare earth-based hydrogen storage alloy and its use
WO2013132996A1 (en) Negative electrode active material for lithium secondary battery and method for manufacturing same
JP2000268819A (en) Hydrogen storage alloy electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080421

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees