JP4122594B2 - 光学装置、並びに、それを用いたプロジェクタ装置、リアプロジェクタ装置及びマルチプロジェクタ装置 - Google Patents

光学装置、並びに、それを用いたプロジェクタ装置、リアプロジェクタ装置及びマルチプロジェクタ装置 Download PDF

Info

Publication number
JP4122594B2
JP4122594B2 JP29941798A JP29941798A JP4122594B2 JP 4122594 B2 JP4122594 B2 JP 4122594B2 JP 29941798 A JP29941798 A JP 29941798A JP 29941798 A JP29941798 A JP 29941798A JP 4122594 B2 JP4122594 B2 JP 4122594B2
Authority
JP
Japan
Prior art keywords
light source
light
lens
projector
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29941798A
Other languages
English (en)
Other versions
JP2000121998A5 (ja
JP2000121998A (ja
Inventor
伸二 岡森
信介 鹿間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP29941798A priority Critical patent/JP4122594B2/ja
Priority to US09/413,865 priority patent/US6322219B1/en
Publication of JP2000121998A publication Critical patent/JP2000121998A/ja
Priority to US09/963,562 priority patent/US6527396B2/en
Publication of JP2000121998A5 publication Critical patent/JP2000121998A5/ja
Application granted granted Critical
Publication of JP4122594B2 publication Critical patent/JP4122594B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3111Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources
    • H04N9/3114Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources by using a sequential colour filter producing one colour at a time
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/28Reflectors in projection beam
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3152Modulator illumination systems for shaping the light beam

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Projection Apparatus (AREA)
  • Microscoopes, Condenser (AREA)
  • Lenses (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光学装置、並びに、それを用いたプロジェクタ装置、リアプロジェクタ装置及びマルチプロジェクタ装置に関するものである。
【0002】
【従来の技術】
近年、大画面の画像表示装置としてプロジェクタ装置が注目されている。小型で高精細・高輝度のCRTを用いたCRTプロジェクタ装置、液晶パネルを用いた液晶プロジェクタ装置、DMD(Digital Micromirror Device)を用いたDMDプロジェクタ装置等が製品化されている。中でもDMDはディジタル駆動素子であるため原理的にコンピュータ情報の表示、ディジタルテレビ放送との相性が良く、現在もっとも期待されているプロジェクタ装置用ライトバルブの一つである。
【0003】
まず、DMDの構造を説明する。DMDは半導体の製造技術を用い、シリコン基板上に例えば16μm×16μmの微小なミラーを多数配列し、これらを電気的に制御することにより入射光の反射方向をミラー毎にコントロールするもので、各微小ミラーが画素に相当し、投写レンズを介してスクリーンに投写することによって映像情報を表示する。図18は、2ピクセルのDMD素子の構成を示す斜視図である。図において510、511はマイクロミラーで、素子600の法線からそれぞれ+10度あるいは−10度に傾いているところを示している。
【0004】
マイクロミラー510、511の表面にはアルミニウムが蒸着され、高い反射率を持つ例えば正方形のミラーとして作用する。このマイクロミラーを傾ける角度により光が反射する方向を切り替え、さらに切り替え時間の調整により階調表現が実現できる。このようなマイクロミラーが所定のフォーマットに従って、例えば480×640、600×800というように2次元配列されライトバルブとして構成される。DMDの詳細については、Larry J. Hornbeck, ”Digital Light Processing for High-Brightness, High-Resolution Applications.”, SPIE Vol.3013, pp.27-40,等に詳しく紹介されているので、ここではこれ以上の詳しい説明は省略する。
【0005】
次に、DMDをライトバルブとして用いたビデオプロジェクタの光学系の原理を図19で説明する。図19は単板式DMDプロジェクタ装置によるDMDの表示原理を説明する概念図であり、150はメタルハライドランプなどの光源、601はDMD、このうち512、513は+10度に回転したマイクロミラー、514は−10度に回転したマイクロミラーを拡大して概念的に示している。また、602は不要光を吸収する光アブソーバ、80は投写レンズである。図19において光源150から出射された光は、DMD601の法線方向から+20度傾いた方向からDMD素子に入射される。−10度に回転したマイクロミラー514の反射光は投写レンズから外れて光アブソーバ602に吸収され、図示しないスクリーン上では黒点の画素となる。一方、+10度に回転したマイクロミラー512、513の反射光は投写レンズで集光されてスクリーン上で明点の画素となり、DMD601上のマイクロミラー像がスクリーンに映像として拡大投写される。なお、回転カラーフィルタを光路中に配置した単板式プロジェクタ装置や、ダイクロイックプリズムやダイクロイックフィルタを配列して、RGB3原色に分解して各色毎に変調する3板式のプロジェクタ装置などにより、カラー画像の表示を行なうことも可能である。
【0006】
さて、以上に述べたDMDの動作原理から明らかなように、DMDを照明する際の最も特徴的な条件は、被照明面の法線方向から所定の角度をもって照明光を入射させなければならないということである。図20はDMDを用いてカラー画像を表示する従来のカラー画像表示装置を示す模式的構成図であり、例えば特開平10−039240号に開示されている。図20において、603はDMD、515、516はDMDを構成するマイクロミラー、151は平行白色光を出射する平行白色光源、400は入射角度に対応して特定波長の透過光を生じさせる光学薄膜、800は結像レンズ、900はスクリーンである。
【0007】
ここで最も注目すべきは、DMD603に対する平行白色光源151の配置であり、DMD603の2次元配列された各ミラーに平行白色光を入射させるべく、平行白色光源151はDMD603に対して所定の角度α1だけ傾いた方向に配置されている。DMD603に入射した白色光は、傾斜角度θ1が制御されたミラー515、516で反射され、結像レンズ800によってスクリーン900に導かれる。光学薄膜400はカラー画像を表示させるために挿入されているが、ここでは動作の説明は省略する。以上説明したような斜方照明は、本例のような単板式プロジェクタ装置に限ったことではなく、複数板式のDMDプロジェクタ装置の場合でも共通して要求されるものである。
【0008】
同心円状、すなわち光軸に対して回転対称な強度分布を持つ照明光束により、被照明面をその法線より傾いた方向から照明すると、被照明面での照明光分布が同心円状にならないことは明らかである。図21は同心円状の強度分布を持つ照明光束により照明されたDMD604を法線方向から見たところを模式的に示しており、図中の曲線は同じ光強度の点を結んだ等強度線を概念的に表したものである。ここで、照明光束は、DMD604に対して図中矢印に示すように一辺から45度傾いた方向、かつ照明光束の光軸とDMD面の法線が20度の傾きを持つように入射される。よってDMD面での光強度の分布は図に示すようにDMD604の中心点に対して同心円状にはならず、プロジェクタ装置として非常に不適当な上下左右非対称の照明むらがスクリーン上で発生するという問題がある。なお、本明細書において、強度分布とはこの光束の光軸に垂直な平面内における光強度の分布を意味する。
【0009】
DMDプロジェクタ装置の場合、上記のような照明むらはディジタル信号処理によって低減することが比較的容易である。すなわち最も強度の低い照明光が入射する画素を基準にして、画面全体が均一な照度分布となるような、画素毎の投写光強度の規格化を行なえば良い。しかしこのような減光処理による画像品質の改善は、光の利用効率の点から望ましくない。また、DMDは反射型ライトバルブであるので、透過型のライトバルブに比べて比較的熱に強いという利点があり、数100から2、3kWクラスのキセノンランプやメタルハライドランプなどの高出力光源を用いることが可能である。しかしながら、他のライトバルブを用いたプロジェクタ装置と同様、光源光が最終的にスクリーンに到達する割合、すなわち光の利用効率は数%程度に留まっていた。従って、各構成要素における光利用効率を向上させるためにも、光学系による照明むらの軽減が重要な課題であった。
【0010】
そこで、ライトバルブの照明均一性を向上させるために、例えばミキシングロッド等を用いた照明光学系が従来のプロジェクタ装置に用いられている。
【0011】
図22は矩形状の入出射端面を有するミキシングロッドを用いた照明光学系の概念図であり、152は光源、200は反射鏡、300はミキシングロッド、401はレンズ、605はライトバルブである。光源152から発生した光は反射鏡200で集光され、集光点近傍に入射端面が位置するよう配置されたミキシングロッド300に入射される。光はガラス/空気の界面で数回程度の全反射をくり返しながらミキシングロッド300内を伝播しミキシングされる。このミキシングによって光源152および反射鏡200に固有の照明光束の明るさむらが軽減され、ミキシングロッド300の出射端面において断面が矩形でかつ、均一性の高い発散光束を得ることができる。よって後段のレンズ401によって、ミキシングロッド出射端面をライトバルブ605近傍に結像すれば、ライトバルブ605の照明均一性を効率よく向上させることができる。このようにミキシングロッド300による方法は所望の均一性と光束形状を持った照明光束を、後段の照明光学系とは全く独立させて設定することができるところに特徴がある。このようなミキシングロッドを用いた照明系の詳細についてはUS.Patent5,634,704を参照されたい。なお、本明細書において、光束形状とは光束の光軸に関して垂直な平面内における断面形状のことである。
【0012】
上記のようなミキシングロッドによる均一照明方式は、ライトバルブ(即ち、被照明面)が照明光軸に垂直に配置される場合には最大の効果を得ることができる。しかしながら、例えば平面ミラーを照明光路中に配置し、DMDに対して所定の方向から照明光束を入射させても、結局ミキシングロッドの出射端面像とDMD面の角度が一致せず、照明むらの発生が避けられないという問題が発生する。
【0013】
【発明が解決しようとする課題】
本発明は上記のような問題点に鑑み、上記DMDの照明に代表される任意平面の斜方照明に関して、被照明面の法線方向に対して所定の傾きを持った方向から照明光束を入射させた場合においても、被照明面において均一かつ対称性に優れた照度分布を得ることができる光学装置、並びに、それを用いたプロジェクタ装置、リアプロジェクタ装置及びマルチプロジェクタ装置を提供するものである。
【0014】
特に、複数のプロジェクタ装置(もしくは、リアプロジェクタ装置)を縦横に配列して大画面を構成するマルチプロジェクタ装置においては、光利用効率の向上のみならず、各画面間の明るさと色の差、とりわけ配列された投写画面の境界近傍における明るさと色の差を最小にし画面の継目を目立たなくさせることが厳しく求められる。よって各単位プロジェクタ装置(もしくは、リアプロジェクタ装置)の投写画面内においては明るさ、ならびに色の均一性を最大限に高め、前記照明むらを除去しなければならないという課題がある。
【0015】
【課題を解決するための手段】
本発明に係る光源装置は、1次光源である光源手段と、該光源手段からの出射光を集光して2次光源を形成する集光手段と、入射端面が前記2次光源の形成される位置近傍に配置され、出射端面から均一性の高い強度分布を有する発散光束を出射する均一化手段と、前記均一化手段の出射光を集光して、光路中に複数の3次光源を形成する第1のレンズ手段と、前記複数の3次光源の形成される位置近傍に配置され、前記第1のレンズ手段の出射光を所望の方向へ反射する反射光学素子とを備えたものである。
【0031】
【発明の実施の形態】
実施の形態1. 図1は本実施の形態に係る光学装置の構成を示す概略図である。本光学装置は光を放射する1次光源である光源手段1、反射面形状が回転2次曲面からなる反射ミラー20と略平行光束を収束するコンデンサーレンズ(第2のレンズ手段)21から構成される集光手段2、断面が四角形のミキシングロッド(均一化手段)3、少なくとも1枚のレンズから構成される第1のレンズ手段4、以下に説明する反射光学素子5により構成される照明装置であり、照明装置の光軸70外に配置された被照明面6(例えば、DMD等のライトバルブの画像表示面)を照明する。
【0032】
図1を用いて本光学装置の動作を説明する。図1において、光源1から放射された光は回転放物面からなる反射ミラー20で略平行光束11に変換され、後方のコンデンサーレンズ21によって収束光束12となる。この収束光束12の光束径が最も小さくなる位置付近では光源1の像(即ち、2次光源)が形成される。次に、この2次光源が形成される位置の近傍に、ミキシングロッド3の入射端面31を配置する。このときミキシングロッド3は反射ミラー20の回転軸とコンデンサーレンズ21の中心軸によって規定される照明光軸70とロッドの長軸が一致するように配置される。
【0033】
ミキシングロッド3に入射した光は側面での全反射を繰り返しながらその内部を伝播し、出射端面32から出射し発散光束13となる。また、ミキシングロッド3後方の第1のレンズ手段4は、ミキシングロッド3の出射端面32の像を照明光軸70上に設定された仮想被照明面60上に結像するように配置されている。なお、簡単のために、本実施の形態においては、第1のレンズ手段4が1枚構成のレンズによりなる場合について説明する。
【0034】
5は上記反射光学素子であり、第1のレンズ手段4によって形成される照明光束14を被照明面6の方向、すなわち光軸71に沿った方向へ偏向し、さらに光軸71から所定の角度傾いた法線72を有する矩形の被照明面6へ導く。このとき、照明光軸70と照明光軸71のなす角度が被照明面の法線72と照明光軸71のなす角度と一致するように反射光学素子が配置される。このような場合、被照明面6は仮想被照明面60と同様に、ミキシングロッド3の出射端面32と相似な矩形の光束により効率よく照明される。
【0035】
さらに詳しく本光学装置の動作について説明する。図2はミキシングロッド3によって生じる仮想的な2次光源について説明する概略図である。図2において、点Pは2次光源、S0は仮想2次光源が形成される面、P1、P2は仮想的な2次光源、33、34は仮想2次光源P1とP2からそれぞれミキシングロッド3の出射端面32へ到達する仮想的な光線、130、131は仮想2次光源P1、P2によって生じる実際の発散光線を示している。また、Lはミキシングロッド3の長さを示している。その他の符号は図1と同様であるので説明を省略する。
【0036】
まず、点Pに形成される2次光源から出射した光線は、ミキシングロッド3の側面を全反射しながら伝播し、発散光線130、131となって第1のレンズ手段4に入射する。ミキシングロッド3は透明なガラスやプラスチックなどの均質な材料で構成されており、n>n0の関係を満たす媒質内に配置される。ここで、nはミキシングロッド3の屈折率、n0はミキシングロッド3が配置される媒質の屈折率である。なお、本実施の形態では、空気中(n0≒1)にミキシングロッド3が置かれているとする。
【0037】
このような屈折率の関係から、点Pに形成される2次光源から発した光線は、ミキシングロッド3と空気の界面で所定の回数だけ全反射を繰り返して伝播する。このとき、出射端面32の側からは、見かけ上光線33、34の延長上に存在する仮想2次光源P1ならびにP2から光が出射されているように観察される。同様の理由で図示した2点以外にも多数の仮想2次光源が面S0上に形成される。
【0038】
一方、ミキシングロッド3の出射端面32は、これらの多数の仮想2次光源から発せられた全ての光線が通過する開口となる。この出射端面32においては、多数の仮想2次光源からの光束が重畳され、強度均一性の高い矩形光源が形成されることになる。すなわち、ミキシングロッド3による光線のミキシングによれば、不均一な強度分布を持つ2次光源から均一性の高い矩形面光源を得ることができる。
【0039】
図3は前述の仮想2次光源とこれが結像して形成される3次光源群の関係を示す概略図である。図3において、10は2次光源、15は仮想2次光源のひとつ、100は3次光源群、50は反射光学素子5の微小反射面を、それぞれ示しており、その他の符号は図1と同様であるので説明を省略する。
【0040】
第1のレンズ手段4はミキシングロッド3の出射端面32に形成される矩形光源像を被照明面6に結像させる作用を有する。このとき、仮想2次光源15に対しても第1のレンズ手段4による結像関係が成立する。すなわち、第1のレンズ手段4全系の焦点距離と複数の仮想2次光源のそれぞれの関係から、3次光源群100が所定の位置に形成される。3次光源群100の位置付近には、それぞれの3次光源の大きさに対応した微小反射面50が配置され、入射する収束光束を被照明面6の方向に偏向する。3次光源面近傍では仮想2次光源からの光線が最も小さなスポットに収束しており、微小反射面で効率よく光線を偏向させることができる。このような微小反射面50が不連続に隣接配置され、全体として反射光学素子5の反射面を形成する。
【0041】
図3では、ひとつの仮想2次光源15とこれに対応する3次光源の結像関係と、微小反射面50によって光線が被照明面6に導かれるところを破線で示している。このようにしてミキシングロッド3の出射端面像は、複数の仮想2次光源と3次光源の関係に応じて、被照明面6においてそれぞれ独立に結像し重畳されることになる。
【0042】
図4は近軸結像関係を示す図であり、焦点距離fの第1のレンズ手段4による出射端面32と仮想被照明面60の結像関係、ならびに仮想2次光源像面S0と3次光源面S1の結像関係を示している。尚、それぞれの像高、あるいは物体高と配置は矢印で表現し、これらを前記説明と同じ符号で示している。
【0043】
さて、本来第1のレンズ手段4はミキシングロッド3の出射端面32と仮想被照明面60が結像関係にあるように配置されており、出射端面32と第1のレンズ手段4の距離をa1、第1のレンズ手段4と仮想被照明面60の距離をb1とする。一方、第1のレンズ手段4と仮想2次光源像面S0との距離をa2、これの像面すなわち3次光源面S1と第1のレンズ手段4の距離をb2とする。また、出射端面32から仮想2次光源面S0までの距離はミキシングロッド3の長さをL、屈折率をnとしてL/nで表すことができる。以上のことから次の(1)〜(4)式のような関係が成り立ち、式(4)から3次光源が形成される近軸配置(即ち、距離b2)を求めることができる。
【0044】
a1-1+b1-1=f-1 (1)
【0045】
a2-1+b2-1=f-1 (2)
【0046】
a2=L/n+a1 (3)
【0047】
(1)〜(3)式より、
【0048】
b2={a1・b1・(a1+L/n)}/{(a1+b1)・(a1+L/n)-a1・b1}(4)
【0049】
例えば、a1=50mm、b1=150mmとすると(1)式からf=37.5mm、さらに、n=1.52、L=60mmとすると式(4)からb2≒64.56mmとなる。また(3)式よりa2=89.47mmとなる。
【0050】
なお、第1のレンズ手段4は実際には複数枚構成のレンズで構成することが可能であり、この場合レンズ全系の内部に3次光源面が形成される可能性がある。しかし、上記結像関係から規定される3次光源面の位置を条件に含めることで、反射光学素子5の配置の妨げとならないように第1のレンズ手段4を設計することができる。
【0051】
また、上記の数値ではb1/a1=3であるので、ミキシングロッド3の対角長さの約3倍に相当する対角長さを持った相似形状の被照明面を照明するのに適している。このとき仮想2次光源の大きさに対する3次光源の大きさの比はb2/a2とほぼ等しくなり、上記数値の場合は約0.72倍と縮小像が形成されることがわかる。さらに、3次光源群は第1のレンズ手段4により収束され仮想被照明面60へ向かう収束光束中に形成されるため、全ての3次光源を含む実効的な3次光源面の大きさは第1のレンズ手段4の有効径よりも小さくなる。よって反射光学素子5をコンパクトに作成することができ、装置の小型化、軽量化に大きく寄与する。
【0052】
さて、実際の光学系では近軸領域から外れる光線が存在するが、上記結像関係が成立しない範囲については出射端面32の結像位置の調整が必要となる。図5は前記(1)〜(4)式から求まる3次光源面上に配置された反射光学素子5のうち、周辺部を構成する微小反射素子51と52によって反射される光線が点線で示された被照明面6へ導かれる様子を示す概略図である。図の配置のように、微小反射素子51と被照明面6の距離は、もう一方の微小反射素子52と被照明面6との距離より大きくなるため、微小反射素子51による出射端面32の像61は被照明面6より手前に、微小反射素子52による出射端面32の像62は被照明面6より奥に形成される。結果として、このような結像面のずれは照明効率を低減させることになる。
【0053】
上記の結像面の位置ずれは、複数の微小反射面が3次光源面上に配置され、各3次光源に対応して各反射面の偏向方向が設定されているため生じる現象である。例えば、反射光学素子5の代わりに単純な平面ミラーを所定の角度だけ光軸に対して傾けて挿入すると、それぞれの3次光源に対応する主光線は平面ミラーで反射された後、再び被照明面上で交差する。その結果、各照明面は被照明面上で重畳されるが、重畳照明面と被照明面は大きく傾き、均一照明の効果を得ることは困難となる。以上のことから、主光線の方向と各照明光束による出射端面像の位置を調整すること、すなわち各微小反射面の角度と位置及び反射面形状の最適化によって、被照明面を斜めから、かつ均一に照明するための最適な照明光束を形成することが可能である。
【0054】
図6は上記結像面の調整を行った微小反射光学素子の作用を説明する概略図である。微小反射面53と54による反射光の主光線をそれぞれ73、74とし、調整されたミキシングロッドの出射端面像をそれぞれ63、64とする。微小反射面53、54は調整のためにもともとの3次光源群100の面から離れた位置に配置されている。図に示されるように被照明面6から遠い微小反射面53は3次光源群100から被照明面6へ近づく方向に、逆に被照明面6に近い微小反射面54は被照明面6から遠ざかる方向へ調整される。一方、各微小反射面の角度により主光線が光軸72と交わる位置が調整されている。被照明面6の照明状態を観察、もしくは計算しながら以上のような調整を繰り返すことによって重畳照明光束の最適化を行うことができる。
【0055】
なお、3次光源の実効的な大きさを推定し、各微小反射面の大きさならびに配置を決定するには光線追跡による照明解析が有効である。まず、それぞれの3次光源に対して独立した解析を行い、全ての微小反射面による照明光束の重畳から被照明面の照明状態を推定する。そして、所望の照明特性が得られるまでこのような解析を繰り返せばよい。このとき微小反射面の形状は必ずしも平面である必要はなく、最適化のパラメータとして非球面、球面、不連続面などの面形状を用いても構わない。なお、反射光学素子全体としては反射面を規定する条件の下でいかなる形状も取ることができる。
【0056】
図7は最適設計された微小反射面による反射光学素子の具体的な構成例を示す概略図である。図において5は反射光学素子、55は微小反射面、56は最適設計の最小単位である微小反射体である。ある照明条件においてそれぞれ独立して最適化が施された微小反射面55が不連続に配列する素子として反射光学素子5を構成することができる。なお、最適設計の最小単位である微小反射体56の反射面、すなわち開口部の形状は図7のようにそれぞれ同じである必要はなく、またその大きさや配置も3次光源の特性に応じて様々な形態にすることが可能である。また、反射光学素子5は微小反射面55の精度を確保できる手法であればどのような成形法を用いてもよい。例えば、ガラスやプラスチック、セラミックなどの基材にアルミニウム等の金属薄膜や誘電体多層膜などの反射膜を成膜することで反射率の高い反射光学素子5を実現することができる。
【0057】
図8は反射光学素子5の具体的な構成の変形例を示す図である。図8において反射光学素子5は微小反射面55で構成される反射部と、基材部57から構成されており、大きさの異なる微小反射面55の組合わせによって反射面全体が構成されている。ミキシングロッド(均一化手段)の出射端面が矩形である場合、矩形の長辺方向と短辺方向で全反射の回数が異なる場合があり、3次光源の分布は中心点に関して対称とはならない。また、第1のレンズ手段が有するレンズ系の性能により3次光源群の形状も矩形から外側に歪んだ樽型になったり、逆に内側に歪んだ糸巻き型になったりするため、各微小反射面の配置や形状もこれに応じて設定する必要がある。なお、基材部57は反射光学素子5を保持するために設けているが、他の有効な保持方法を採用することによりこれを省略することも可能である。
【0058】
図9はxyz座標系における微小反射面55を示す概略図である。図9において75、76はそれぞれ微小反射面55への入射光線と反射光線を示しており、入射光線75とz軸は平行としている。また77は微小反射面55の法線であり、入射光線75となす角度はθであるとする。このとき反射光線76と微小反射面55の法線がなす角度もθとなる。
【0059】
78は入射光線75の延長線がxy平面と交わる点Qと原点Oを結んだ直線で、x軸となす角度をαとする。線78は反射光線76のxy平面への正射影と一致するので、z方向から全系を見れば微小反射面55に対してαの方向に被照明面が設定される。尚、図9には被照明面を図示していないが、被照明面とは、図1、図3などにて示す被照明面6と同様のものである。
【0060】
又、入射光線75の方向に対して反射させたい方向、すなわち角度2θが決まれば、微小反射面55を図のようにxy平面に対して角度θだけ傾ければよく、被照明面をxy平面と平行な平面に設定することで被照明面に対しては法線から2θの角度だけ傾いた方向から光線を入射させることができる。こうして全ての微小反射面に対して最適設計の初期値を求めることができる。
【0061】
例えば、反射光学素子5を前述のDMDの照明に適用した場合、照明光束に要求される条件は、DMDの法線に対する傾きが20度であること、かつ、DMDの法線回りのアジマス方向(図9においては、x軸と線78とのなす角αの方向)には、DMDの辺方向から45度回転した方向から入射する、ということである。よって、この図のような構成においては、α=45度、かつθ=10度とした微小反射面を初期値として用い、最適設計することが望ましい。
【0062】
以上のように、この反射光学素子5は、反射素子であるため熱の放散に優れるとともに、薄い平板形状に成形することができるのでさらに熱放散性に優れ、そのため、光束径が細く絞られたスポットに配置するにもかかわらず、熱破壊に強い素子として構成することができる。そして、このように反射光学素子5の耐熱性を高めることができるため、余分な冷却機構を省略することができ、軽量化、小型化に有利な装置を実現することができる。
【0063】
加えて、素子全体の厚さを部位によって著しく変化しないように設計することも可能であるため、熱変形にも強く、温度変化による光学性能劣化を最小限にとどめることが容易である。これらのことから、反射特性の向上や被照明面の均一照明に重点を置いた最適設計を行うことができ、設計の自由度も大きいという特徴がある。
【0064】
前述の説明からもわかるように、ミキシングロッド3の入射端面近傍に形成される2次光源の有効径が小さいほど光の利用効率を向上させることが容易であることが明らかであるが、集光方式は前述の回転放物面による反射ミラー20とコンデンサーレンズ21の組み合わせに限る必要はない。例えば、図10の光源装置は、キセノンランプやメタルハライドランプ、高圧水銀ランプなどの高輝度ランプ16から放射された光を回転楕円面鏡22で集光する方式であり、楕円面鏡22の第1焦点近傍に配置された高輝度ランプ16の発光部から出射した光が、楕円面鏡22の第2焦点近傍に配置されたミキシングロッド3の入射端面に到達するところを示している。さらに、図11には別の反射鏡の方式として直交放物面鏡(Orthogonal Parabolic Reflector;OPR)23を用いた例を示す。通常の放物面鏡は、焦点距離をfとした場合にその(x,y)断面が(5)式で与えられる曲線をx軸回りに回転して得られる曲面を反射面として用いる。
【0065】
2=4fx
【0066】
一方、直交放物面鏡23は、(6)及び(7)式で与えられる曲線をY軸回りに回転した曲面を反射面として用いる。
【0067】
Y=2{f(f+X)}1/2 (但し、−f≦X≦0) (6)
【0068】
Y=2{f(f−X)}1/2 (但し、0≦X≦f) (7)
【0069】
図11において、17は線状光源、23は直交放物面鏡、Fは直交放物面鏡23の焦点位置である。直交放物面鏡23はY軸(即ち、回転軸)上に、略線状光源17(例えば、メタルハライドランプの放電アーク等)を配置して、略線状光源17の線方向と直角方向に出射する光線を焦点位置Fの一点に効率よく集光する作用がある。本発明においても、略線状光源17は直交放物面鏡23の回転軸上に配置することが望ましい。
【0070】
以上のように様々な集光方式が本発明に含まれるが、例えば主鏡と副鏡の組合わせにより反射鏡の開口方向に発散し利用されていなかった光を有効活用する方式や、部位によって異なる複数の回転2次曲面を連続的に繋ぎ合わせて反射面を構成し集光効率を向上させる方式なども勿論適用することができる。また指向性の強い光源を用いれば反射鏡そのものを省略する構成も可能である。具体的には発光ダイオードや面発光レーザなどの光源を用いることができ、ミキシングロッド3により均一性の高い面光源を得た後は、上記説明と同様の照明光学系を構成することによって類似の均一照明効果を得ることができる。
【0071】
本実施の形態では被照明面の形状を矩形とし、ミキシングロッド3の出射端面形状を重畳結像させ均一照明の効果を得る方式を説明した。しかし、ミキシングロッド3の代わりに円柱ロッドや楕円柱ロッド、その他さまざまな柱状ロッドを用いることにより所定の被照明領域を均一にかつ高効率に照明することが可能である。また、このようなロッドの全部あるいは一部分が先細あるいは逆に先太の形状をなし、入射端面と出射端面が異なる面積の相似形状となるように設定することも可能である。
【0072】
図12は出射側が大きくなる先太形状の矩形ロッド35を示す図である。図12では矢印で示すように内面で全反射する光線の平行度が高くなるが、反対に先細とすれば光線の平行度は低くなる。このようにロッドにテーパ角度を設定することにより、長方形の長辺方向と短辺方向で異なる平行度の調整を行なうこともでき、後段の第1のレンズ手段が有するレンズ系の作用と組合わせることで照明光学系の設計を多様化させることができる。勿論、このようなテーパ角度の設定によって3次光源の分布は等間隔に近い状態から大きく隔たることになる可能性が高いが、反射光学素子5を構成する微小反射面の最適化によって対応可能である。
【0073】
さらに、ミキシングロッド3の出射端面をロッドの長軸に垂直な平面からわずかに傾けて、出射端面の結像面と被照明面の角度の隔たりを予め低減させておくことも可能である。図13に示すように、出射端面が光軸に垂直でないロッド36から発散する光線は、矢印で示すように光軸79に関して非対称な分布となる。よって第1のレンズ手段41による結像作用によれば、ロッド36の出射端面の像66は光軸79に対して傾くことになる。なお、被照明面が要求する照明光の斜入射の効果を全てこのようなロッド出射端面の傾斜で行うのは困難である場合が多い。例えば、出射端面の傾斜が大きすぎると光線の傾きが大きくなりすぎるために、後段の第1のレンズ手段41の径を大きくしなければならず光学装置全体の容量を増加させなければならなくなる。そこで、ロッド36の入射端面も同様に光軸79に対して傾ければ、ロッド36の断面形状や長さの条件によれば上記光線の傾きを抑制できる可能性がある。本光学装置の反射光学素子5の作用を補い、かつ装置の小型化、軽量化に支障がない範囲で用いる分には、上記のような変形は非常に有効である。
【0074】
以上説明したように、本実施の形態によれば、ミキシングロッド側面での光の全反射に基づいて仮想的に形成される2次光源群が、第1のレンズ手段により結像して複数の3次光源が形成される。そして、この複数の3次光源の位置に対応して反射光学素子を配置しているため、所定の光束分布と強度分布を有する照明光束を効率よく反射して、被照明面にミキシングロッドの出射端面の像を結像し、上記の均一な強度分布の照明光束で被照明面を照明することができる。
【0075】
したがって、本発明に係る光源装置においては、簡単な構成で、被照明面の法線から所定の傾きを持った方向から照明光束を入射させ、この被照明面を均一に照明することができる。また、光源から出射される光を効率よく集光することができるので、光利用効率の高い光学装置を提供することができる。また、ミキシングロッドの出射端面を被照明面の形状と相似にした場合、光の損失を抑えて効率よく被照明面を照明する光学装置を提供することができる。さらにまた、ミキシングロッドは、入射端面あるいは出射端面の少なくとも一方がロッドの長軸に対して垂直な面から傾いて設定することも可能であるため、被照明面の斜方照明を目的とした反射光学素子の最適化において自由度の高い設計を行うことができる。また、反射光学素子による光路の折り曲げ方向の自由度が大きいため、全体としてコンパクトな光学装置を容易に実現することができる。
【0076】
実施の形態2. 本発明の実施の形態2に係るプロジェクタ装置の照明光学系について説明する。図14は反射型ライトバルブ65を用いたプロジェクタ装置の構成を示す概略図であり、実施の形態1で述べた光学装置を照明光学系に適用したものである。反射型ライトバルブ65は法線方向以外、すなわち斜め方向からの照明を要求するデバイスが望ましく、例えば従来例で説明したDMD(Digital Micromirror Device)が好適である。反射型ライトバルブ65に対向する位置には投写レンズ手段(第3のレンズ手段)8が配置され、図示しないスクリーン手段に反射型ライトバルブ65に形成される画像が拡大投写される。また、仮想2次光源15が第1のレンズ手段4によって3次光源18を形成し、反射型ライトバルブ65で反射された後、再び光源像19を形成するところを点線で示している。この光源像19は投写レンズ手段8の入射瞳81付近に形成され、高効率で照度均一性の高いプロジェクタ装置が構成される。なお、その他の符号は図1と同様であるので説明を省略する。
【0077】
さて、反射型ライトバルブ65が前述のDMDのように微小な反射ミラーで構成されている場合、入射する照明光束が発散性ならば反射したのち光変調された光束は、発散光束となって投写レンズ8に入射する。逆に、収束性の照明光束の場合は、反射型ライトバルブ65での反射後も収束性を保ちながら投写レンズ8に入射する。入射瞳上で3次光源群の像が過不足なく形成されるために図14に示すようにフィールドレンズ44を付加することも可能である。いずれにせよ、反射光学素子5の付近に形成される3次光源群が、再び投写レンズ8の瞳上で結像するために十分な瞳径を有し、適切な瞳位置を持つ投写レンズ8であればよい。
【0078】
主光線が光軸と平行になるテレセントリックレンズでは、射出瞳位置が無限遠で瞳径が無限大である。そのため、図14に示すように投写レンズ8内部の瞳位置に3次光源群が再結像するという状態にはならないが、テレセントリックに照明された反射型ライトバルブからの光を効率よく集光することができる。このようにプロジェクタ装置として所定の光学性能を発揮するものであれば、様々なタイプの投写レンズ8を用いることができる。
【0079】
本実施の形態によるプロジェクタ装置において、いわゆる照明光学系の最も大きな特徴は、ミキシングロッド3による2次的な平面光源を反射型ライトバルブ65に結像する結像光学系が構成される点である。これまでの説明で1枚のレンズに代表されて描かれている第1のレンズ手段4の構成については、反射型ライトバルブ65が要求する照明条件を満たし、かつ反射光学素子5を挿入する空間的余裕が確保されることが最低限必要である。例えば、図15に示すアフォーカル系(afocal系:無限焦点系)は無限遠の物体に対しては無限遠像となるが、有限距離の物体に対しては有限位置に像を作るので第1のレンズ手段4に適用することができる。図15によりアフォーカル系の結像関係を説明する。
【0080】
第1レンズ42の物体側焦点Ff1より距離z1だけ後方の位置にあるミキシングロッド3の出射端面が、最終的に第2レンズ43の像側焦点Fb2より距離z2だけ後方の位置に結像するとすれば、次の式(8)、(9)が成り立つ。
【0081】
z2=−f22/z1=(f2/f1)2・z1=z1/m2 (8)
【0082】
β=(f1/z1)・(-z2/f2)=-(f1/f2)・(1/m2)=1/m (9)
【0083】
ここで、mはアフォーカル倍率(=−f1/f2)、βは横倍率であり、このアフォーカル倍率mは、ミキシングロッドの出射端面と反射型ライトバルブの画像表示面の大きさから決まる結像倍率にほぼ合致するように設定される。尚、f1、f2はそれぞれ第1、第2レンズ42、43の焦点距離である。
【0084】
よって、式(8)から求まる像位置z2に反射型ライトバルブ65を配置すれば、像倍率は物体像位置とは無関係に設定できるので、ミキシングロッド3の出射端面像を所望の大きさに拡大、あるいは縮小結像する際に光学系を構成する自由度が高くなる。また、アフォーカル系に入射する光線が光軸に平行であれば出射光線もまた光軸に平行であるので、ミキシングロッド出射端面から発散する全ての光線を効率よく被照明面に導くのに適した光学系であると言える。
【0085】
勿論、図15で説明したアフォーカル系は基本的な構成であり、実際には上記第1レンズ42ならびに第2レンズ43がそれぞれ複数のレンズから構成される第1レンズ群、第2レンズ群を形成し、それぞれの焦点を共有する構成となっていても構わない。いずれの場合でも3次光源は第1レンズ群あるいは第2レンズ群の設定にしたがって所定の位置に形成されるため、反射光学素子5のアフォーカル系内への挿入、ならびに反射光束と第1のレンズ手段4の干渉の回避を条件にして、照明光学系を最適化する必要がある。反射光束と第1のレンズ手段4の干渉を回避するためにレンズだけでなく反射ミラー等を光路中に挿入することも勿論可能である。
【0086】
また、プロジェクタ装置は小型化の目的のため、構成要素の配置を工夫したコンパクトな光路を求められることが多い。図16はプロジェクタ装置の構成を示す変形例である。符号は図14と共通であるので説明は省略する。図14では照明光学系の光軸70と反射型ライトバルブ65の法線72がほぼ平行となる配置であったが、本変形例では両者がほぼ直交するような配置となっている。反射型ライトバルブ65が要求する照明条件を満たす照明光学系であれば図16のように光軸が立体的に交差する構成を採ることは勿論構わない。
【0087】
また、実施の形態1で説明した全ての照明光学系ならびにその変形例を、実施の形態2である本プロジェクタ装置に適用可能であることは言うまでもない。
【0088】
実施の形態3. 本発明の実施の形態3に係るマルチDMDプロジェクタ装置について説明する。図17は本発明に係る光学装置を具備し、DMDを反射型ライトバルブとした4台のフロントプロジェクタ装置を用いて、マルチ(例えば、本実施の形態においては4画面)画面のプロジェクタ装置を構成したところを示している。図において、90はマルチリアプロジェクタ装置、91〜94はフロントプロジェクタ装置、95はリアスクリーンである。なお、フロントプロジェクタ装置91〜94については内部の構成を省略するが、本発明の反射光学素子を内包し、明るさの均一性に優れた投写画面を提供することができるのは前述の通りである。
【0089】
マルチリアプロジェクタ装置90は画面数や内部構成など様々な形態を取り得るが、ここでは最も単純な構成のもので説明する。各フロントプロジェクタ装置はリアスクリーン95上に目地なしで投写すべく隣接する投写画像の境界がほぼ一致するように配置され調整されているものとする。スクリーン95には便宜上の単位画面の境界線を点線で示している。
【0090】
実際のマルチ画面においては、単位画面間の目地にあたる部分がもっとも画像の品質を低減させる要因となる。さらに目地を挟んで両側の明るさに差が生じたり、目地に沿ってむらがあったりすると非常に見苦しい画面となる。そのため、実際には明るさや色調が近い角を画面中央に集めるように各プロジェクタ装置の配置を入れ替えたりすることでわずかに調子を整え、比較的むらを目立たなくさせることができる。しかし、単位画面の対角線方向に明るさのむらが生じると上記調整は非常に難しくなる。また、このような調整もマルチ画面数が増大するにつれ困難になる。したがって、単位画面に生じる上記明るさむらを低減することは、マルチ画面の画質向上にも重要である。
【0091】
このように、ひとつの筐体が複数のプロジェクタ装置を内包する形態に限らず、各々投写光学系を内蔵した複数の筐体を縦横に所定数配列することにより大画面のマルチプロジェクタ装置を構成しても良い。この場合には、それぞれの投写光学系に対応するスクリーン手段が共用されて配置されるか、もしくは各筐体毎に別個にスクリーン手段が設けられるかの形態が取られる。
【0092】
本発明の光学装置による照明光学系を具備するフロントプロジェクタ装置91〜94によれば、このような画面対角線方向の明るさむらを低減させることができ、単位プロジェクタ装置(あるいは、リアプロジェクタ装置)の配置の自由度を高め、最終画面の画質を向上させることが可能となる。このような効果はマルチの画面数やスクリーンの種類、またプロジェクタ装置90の内部構成に直接影響を受けないので、所望の大きさ、画面数のマルチプロジェクタ装置を構成することができ、例えば装置の奥行き低減のために各フロントプロジェクタ装置とスクリーン95間に反射ミラーが挿入されるような構成をはじめ、種々の構成に対して同様の効果を得ることが可能である。即ち、筐体内部には、目的に応じて画像反転あるいは筐体寸法低減を可能な反射手段を配置しても良い。
【0093】
なお、本発明は上記の実施の形態に限定されるものではなく、本発明の目的を逸脱せず、その要旨を変更しない範囲において様々な変形例が可能であることも勿論である。
【0094】
【発明の効果】
本発明に係る光源装置は、1次光源である光源手段と、該光源手段からの出射光を集光して2次光源を形成する集光手段と、入射端面が前記2次光源の形成される位置近傍に配置され、出射端面から均一性の高い強度分布を有する発散光束を出射する均一化手段と、前記均一化手段の出射光を集光して、光路中に複数の3次光源を形成する第1のレンズ手段と、前記複数の3次光源の形成される位置近傍に配置され、前記第1のレンズ手段の出射光を所望の方向へ反射する反射光学素子とを備えたので、被照明面の法線方向に対して所定の傾きを持った方向から照明光束を入射させた場合に、前記均一化手段の出射端面の像が形成される位置近傍に配置された被照明面において、均一かつ対称性に優れた照度分布を得ることができるという効果を奏する。
【図面の簡単な説明】
【図1】 実施の形態1に係る光学装置の構成を示す概略図。
【図2】 仮想2次光源について説明する概略図。
【図3】 仮想2次光源と3次光源群の関係を示す概略図。
【図4】 近軸結像関係を示す概念図。
【図5】 微小反射素子と被照明面の関係を示す概略図。
【図6】 微小反射光学素子の作用を説明する概略図。
【図7】 反射光学素子の具体な構成例を示す概略図。
【図8】 反射光学素子の具体的な構成の変形例を示す概略図。
【図9】 xyz座標系における微小反射面を示す概略図。
【図10】 楕円面鏡を用いた照明光学系の変形例を示す図。
【図11】 直交放物面鏡の作用を示す概略図。
【図12】 先太形状の矩形ロッドを示す図。
【図13】 出射端面が光軸に垂直でないロッドを示す図。
【図14】 実施の形態2に係るプロジェクタ装置の構成を示す概略図。
【図15】 アフォーカル系の作用を示す概略図。
【図16】 本発明に係るプロジェクタ装置の変形例の構成を示す概略図。
【図17】 本発明に係るマルチプロジェクタ装置の構成を示す概略図。
【図18】 DMD2ピクセルの構成を示す斜視図。
【図19】 DMDの表示原理を説明する概念図。
【図20】 従来のカラー画像表示装置を示す模式的構成図
【図21】 照明されたDMDを模式的に示す図。
【図22】 ミキシングロッドを用いた照明光学系の概念図。
【符号の説明】
1 光源手段、 2 集光手段、 3 ミキシングロッド(均一化手段)、
4 第1のレンズ手段、 5 反射光学素子、 6 被照明面、
8 投写レンズ(第3のレンズ手段)、 10 2次光源、
11 略平行光束、 12 収束光束、 13 発散光束、
14 照明光束、 15 仮想2次光源、 16、17 高輝度ランプ、
18 3次光源、 19 光源像、 20 反射ミラー、
21 コンデンサーレンズ(第2のレンズ手段)、 22 回転楕円面鏡、
23 直交放物面鏡、 31 入射端面、 32 出射端面、
33、34 仮想的な光線、 35 先太形状の矩形ロッド、
36 所定の傾きを有するロッド、 41 第1のレンズ手段、
42 第1レンズ、 43 第2レンズ、 44 フィールドレンズ、
50〜55 微小反射面、 56 微小反射体、 57 基材部、
60 仮想被照明面、 61〜64 出射端面の像、
65 反射型ライトバルブ、 66 出射端面の像、 70 光軸、
71 光軸、 72 法線、 73、74 反射光の主光線、
75 入射光線、 76 反射光線、 77微小反射面の法線、
78 点Qと点Oを結ぶ線、 79 光軸、 80 投写レンズ、
81 瞳、 90 マルチリアプロジェクタ装置、
91〜94 フロントプロジェクタ装置、 95 マルチスクリーン、
100 3次光源群、 130、131 発散光線、
150〜152 光源、 200 反射鏡、 300 ミキシングロッド、
400 光学薄膜、 401 レンズ、
510〜516 マイクロミラー、 600、601 DMD素子、
602 光アブソーバ、 603、604 DMD素子、
605 ライトバルブ、 800 結像レンズ、 900 スクリーン、
C 微小反射面と線分78との交点、 Ff1 第1レンズの物体側焦点、
Fb1 第1レンズの像側焦点、 Ff2 第2レンズの物体側焦点、
Fb2 第2レンズの像側焦点、 L ミキシングロッドの長さ、
O xyz座標系の原点、 P 2次光源、 P1、P2 仮想2次光源、
Q 入射光線とxy平面との交点、 S0 仮想2次光源が形成される面、
a1 出射端面と第1のレンズ手段の距離、
a2 第1のレンズ手段と仮想2次光源面との距離、
b1 第1のレンズ手段と仮想被照明面、
b2 3次光源面と第1のレンズ手段との距離、
f1 第1レンズの焦点距離、 f2 第2レンズの焦点距離、
y1 第1レンズの物体側焦点から距離z1だけ後方の位置における像高、
y2 第2レンズの像側焦点から距離z2だけ後方の位置における像高、
α 線78とx軸とのなす角、 α1 光源のミラーに対する設置角度、
θ 入射光線、反射光線と法線とのなす角、 θ1 ミラーの傾斜角度。

Claims (14)

  1. 1次光源である光源手段と、
    該光源手段からの出射光を集光して2次光源を形成する集光手段と、
    入射端面が前記2次光源の形成される位置近傍に配置され、出射端面から均一性の高い強度分布を有する発散光束を出射する均一化手段と、
    前記均一化手段の出射光を集光して、光路中に複数の3次光源を形成する第1のレンズ手段と、
    前記複数の3次光源が形成される位置近傍に配置され、各3次光源からの出射光束を当該3次光源毎に独立に被照明面に向けて反射する複数の微小反射面を有し、当該複数の微小反射面からの出射光により前記被照明面を法線に対して所定の傾きを持って照射する反射光学素子と、を備え、
    前記複数の微小反射面はそれぞれ配置及び形状が3次光源毎に独立に設定されることを特徴とする光学装置。
  2. 均一化手段は、ミキシングロッドであることを特徴とする請求項1記載の光学装置。
  3. 前記反射光学素子は、3次光源を前記被照明面に結像し、それらの結像が前記被照明面において互いに重畳されることを特徴とする請求項1または2記載の光学装置。
  4. 均一化手段は入射端面及び出射端面がそれぞれ四角形の角柱であることを特徴とする請求項1記載の光学装置。
  5. 均一化手段は入射端面及び出射端面の少なくとも一方が角柱の長軸と垂直な面に対して所定の傾きを有することを特徴とする請求項記載の光学装置。
  6. 集光手段は、光源手段からの出射光を平行光束に変換する回転放物面からなる反射鏡手段と、前記平行光束を集光する第2のレンズ手段とを有することを特徴とする請求項1乃至5のいずれか1項記載の光学装置。
  7. 集光手段は回転楕円面からなる反射鏡手段を有することを特徴とする請求項1乃至6のいずれか1項記載の光学装置。
  8. 集光手段は
    y=2×{f(f+x)}1/2 (但し、−f≦x≦0)
    y=2×{f(f−x)}1/2 (但し、0≦x≦f)
    で与えられる曲線をy軸回りに回転した回転直交放物面を反射面とした反射鏡手段を有することを特徴とする請求項1乃至5のいずれか1項記載の光学装置。
  9. 請求項1、4乃至8のいずれか1項記載の光学装置と、
    前記光学装置の均一化手段の出射端面の像が形成される位置近傍に配置され、所望の画像を形成する反射型ライトバルブと、
    該反射型ライトバルブに対向して配置され、上記画像を拡大投写する第3のレンズ手段とを備えたプロジェクタ装置。
  10. 第1のレンズ手段は焦点を共有する2群のレンズ系から構成されるアフォーカル系を含むことを特徴とする請求項9記載のプロジェクタ装置。
  11. 第3のレンズ手段の入射瞳上に形成される3次光源の像の大きさが、前記入射瞳の直径と同程度であることを特徴とする請求項10記載のプロジェクタ装置。
  12. 請求項9乃至11のいずれか1項記載のプロジェクタ装置と、
    該プロジェクタ装置の投写画像を映すスクリーン手段と、
    前記プロジェクタ装置を内包し前記スクリーン手段を保持する筐体とを備えたリアプロジェクタ装置。
  13. 請求項11記載のリアプロジェクタ装置を複数台縦横に配列して、単位画像を形成するマルチプロジェクタ装置。
  14. 請求項9乃至11のいずれか1項記載のプロジェクタ装置を複数台備えるとともに、
    前記複数台のプロジェクタ装置の投写画像を映すスクリーン手段と、
    前記複数台のプロジェクタ装置を内包し前記スクリーン手段を保持する筐体とを備えたマルチプロジェクタ装置。
JP29941798A 1998-10-21 1998-10-21 光学装置、並びに、それを用いたプロジェクタ装置、リアプロジェクタ装置及びマルチプロジェクタ装置 Expired - Fee Related JP4122594B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP29941798A JP4122594B2 (ja) 1998-10-21 1998-10-21 光学装置、並びに、それを用いたプロジェクタ装置、リアプロジェクタ装置及びマルチプロジェクタ装置
US09/413,865 US6322219B1 (en) 1998-10-21 1999-10-07 Optical device as well as projector unit and rear projector system using the same
US09/963,562 US6527396B2 (en) 1998-10-21 2001-09-27 Optical device as well as projector unit and rear projector system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29941798A JP4122594B2 (ja) 1998-10-21 1998-10-21 光学装置、並びに、それを用いたプロジェクタ装置、リアプロジェクタ装置及びマルチプロジェクタ装置

Publications (3)

Publication Number Publication Date
JP2000121998A JP2000121998A (ja) 2000-04-28
JP2000121998A5 JP2000121998A5 (ja) 2004-12-16
JP4122594B2 true JP4122594B2 (ja) 2008-07-23

Family

ID=17872300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29941798A Expired - Fee Related JP4122594B2 (ja) 1998-10-21 1998-10-21 光学装置、並びに、それを用いたプロジェクタ装置、リアプロジェクタ装置及びマルチプロジェクタ装置

Country Status (2)

Country Link
US (2) US6322219B1 (ja)
JP (1) JP4122594B2 (ja)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4122594B2 (ja) * 1998-10-21 2008-07-23 三菱電機株式会社 光学装置、並びに、それを用いたプロジェクタ装置、リアプロジェクタ装置及びマルチプロジェクタ装置
US6568814B2 (en) * 1999-03-03 2003-05-27 3M Innovative Properties Company Integrated front projection system with shaped imager and associated method
DE19948542A1 (de) * 1999-10-08 2001-05-23 Zeiss Carl Jena Gmbh Anordnung, bei der von einer Lichtquelle aus Licht auf eine Fläche gerichtet wird
JP3823659B2 (ja) 2000-02-04 2006-09-20 セイコーエプソン株式会社 プロジェクタ
JP4032658B2 (ja) * 2000-06-14 2008-01-16 三菱電機株式会社 投写型表示装置
JP4126877B2 (ja) 2001-01-30 2008-07-30 コニカミノルタオプト株式会社 照明光学系および映像投射装置
US6719429B2 (en) 2001-03-30 2004-04-13 Infocus Corporation Anamorphic illumination of micro-electromechanical display devices employed in multimedia projectors
JP2003091045A (ja) * 2001-09-17 2003-03-28 Mitsubishi Electric Corp 照明光学系及び投写型表示装置
EP1447703A1 (en) * 2001-10-01 2004-08-18 Matsushita Electric Industrial Co., Ltd. Projection display device and back projection display device using the display device
US7066609B2 (en) * 2002-10-15 2006-06-27 Konica Minolta Opto, Inc. Projection-type display apparatus
KR100765274B1 (ko) * 2003-02-27 2007-10-09 엘지전자 주식회사 투사형 디스플레이 광학계
US7380947B2 (en) * 2003-07-18 2008-06-03 Texas Instruments Incorporated Multi-step turn off mode for projection display
JP2006058859A (ja) 2004-07-23 2006-03-02 Kazuji Yoshida 画像表示装置
JP2006189538A (ja) * 2005-01-04 2006-07-20 Sharp Corp 照明光学系、投射型表示装置
KR100664325B1 (ko) * 2005-02-04 2007-01-04 삼성전자주식회사 광 터널 및 이를 포함하는 프로젝션 장치
US7387389B2 (en) * 2006-01-13 2008-06-17 Hewlett-Packard Development Company, L.P. Image display system and method
JP2008033040A (ja) * 2006-07-28 2008-02-14 Sony Corp 背面投影型表示装置
JP4978092B2 (ja) * 2006-07-28 2012-07-18 ソニー株式会社 背面投影型表示装置
US7677737B2 (en) * 2006-08-17 2010-03-16 Sony Ericsson Mobile Communications Ab Projector adaptation for self-calibration
TW200907538A (en) * 2007-08-14 2009-02-16 Benq Corp Image formation system
US7914151B2 (en) * 2007-11-30 2011-03-29 Texas Instruments Incorporated Multi-function light modulators for optical systems
WO2013153580A1 (ja) * 2012-04-13 2013-10-17 日立コンシューマエレクトロニクス株式会社 投写型映像表示装置
CN104102078B (zh) * 2014-06-16 2016-04-13 武汉市安曼特微显示科技有限公司 具光能再回收功能的数字光处理型投影机
CN109906408B (zh) * 2016-11-14 2021-02-05 三菱电机株式会社 光整形装置
JP6738746B2 (ja) * 2017-01-30 2020-08-12 株式会社日立エルジーデータストレージ 映像投影装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5321789A (en) 1990-09-18 1994-06-14 Mitsubishi Denki Kabushiki Kaisha Projection display apparatus, and light guide tube/light valve for use in the same
JP2878944B2 (ja) 1993-05-19 1999-04-05 三菱電機株式会社 光源装置及び投写型表示装置
US5592188A (en) * 1995-01-04 1997-01-07 Texas Instruments Incorporated Method and system for accentuating intense white display areas in sequential DMD video systems
JPH1039240A (ja) 1996-07-29 1998-02-13 Kobe Steel Ltd カラー画像表示装置
US5795049A (en) * 1996-08-27 1998-08-18 In Focus Systems, Inc. Image projection system
US5868481A (en) * 1996-11-08 1999-02-09 Lightware, Inc. Centrifugal illumination system
US5902033A (en) * 1997-02-18 1999-05-11 Torch Technologies Llc Projector system with hollow light pipe optics
JPH11142780A (ja) * 1997-11-12 1999-05-28 Mitsubishi Electric Corp 光源装置及び投写型表示装置
US6005722A (en) * 1998-09-04 1999-12-21 Hewlett-Packard Company Optical display system including a light valve
JP4122594B2 (ja) * 1998-10-21 2008-07-23 三菱電機株式会社 光学装置、並びに、それを用いたプロジェクタ装置、リアプロジェクタ装置及びマルチプロジェクタ装置

Also Published As

Publication number Publication date
US20020008856A1 (en) 2002-01-24
US6322219B1 (en) 2001-11-27
JP2000121998A (ja) 2000-04-28
US6527396B2 (en) 2003-03-04

Similar Documents

Publication Publication Date Title
JP4122594B2 (ja) 光学装置、並びに、それを用いたプロジェクタ装置、リアプロジェクタ装置及びマルチプロジェクタ装置
KR100382953B1 (ko) 화상표시장치
JP4274766B2 (ja) 照明装置及びその照明装置を使用した画像投影装置
JP4158317B2 (ja) 照明装置およびこの照明装置を用いた投写型表示装置
US6461001B2 (en) Illumination apparatus and projection type display apparatus
US7055959B2 (en) Projection display device and back projection display device using the display device
US5790305A (en) Projection system comprising a free form reflector and a free form lens
JP2004258666A (ja) 投射型ディスプレイ光学系
US20060126031A1 (en) Illumination optical system of projection apparatus
JPWO2006112245A1 (ja) 投写型表示装置
JP2002250894A (ja) 投写型表示装置
CN114114796A (zh) 图像投影装置
JP2008026793A (ja) 画像投影装置
CA2482005C (en) Illumination device and illumination method
JP2002040360A (ja) 照明装置およびこれを用いた投写型表示装置
JP2004126410A (ja) 投射型画像表示装置
US9638992B2 (en) Illumination optical system and image projection apparatus
JP2004177654A (ja) 投写型画像表示装置
US7290886B2 (en) Illuminating system and method for improving asymmetric projection
JP3757222B2 (ja) 投写型表示装置
JP2005189478A (ja) 投写レンズおよびこれを用いた投写型表示装置
JP2006023441A (ja) 画像表示装置
JP2006267530A (ja) 照明装置及び投写型表示装置
US7798654B2 (en) Image display apparatus
JPH08129155A (ja) 投写型画像表示装置

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080421

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees