JP4120351B2 - High concentration tin oxide ITO target and manufacturing method thereof - Google Patents

High concentration tin oxide ITO target and manufacturing method thereof Download PDF

Info

Publication number
JP4120351B2
JP4120351B2 JP2002307326A JP2002307326A JP4120351B2 JP 4120351 B2 JP4120351 B2 JP 4120351B2 JP 2002307326 A JP2002307326 A JP 2002307326A JP 2002307326 A JP2002307326 A JP 2002307326A JP 4120351 B2 JP4120351 B2 JP 4120351B2
Authority
JP
Japan
Prior art keywords
tin oxide
powder
average particle
density
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002307326A
Other languages
Japanese (ja)
Other versions
JP2004143484A (en
JP2004143484A5 (en
Inventor
昌平 水沼
剛 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2002307326A priority Critical patent/JP4120351B2/en
Publication of JP2004143484A publication Critical patent/JP2004143484A/en
Publication of JP2004143484A5 publication Critical patent/JP2004143484A5/ja
Application granted granted Critical
Publication of JP4120351B2 publication Critical patent/JP4120351B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、液晶ディスプレイ、エレクトロ・ルミネッセンス(EL)ディスプレイ、タッチパネル等に用いる透明導電膜をスパッタリング法にて形成する際に用いる透明導電膜用スパッタリングターゲットおよびその製造方法に関する。
【0002】
【従来の技術】
近年、表示素子の発達に伴い、透明導電膜が広く用いられるようになってきている。特に、低抵抗、高透過率などの長所から、酸化インジウム−酸化スズからなるITO薄膜を用いることが主流となっている。ITO薄膜を大面積に均一に得る手段としては、酸化インジウム−酸化スズからなるITOターゲットを用いたスパッタリング法が優れており、現在主流となっている。
【0003】
また、フィルム基板などの各種基板への成膜要望から、ITO膜の非晶質化、高曲げ性能などの特性が求められている。その要求を満たすために、高濃度酸化スズITOターゲットが要望されている。
【0004】
しかし、酸化スズは、酸化インジウムに比べて蒸気圧が高いため、焼結性において劣る。したがって、酸化スズ濃度が高くなるとともに、焼結性が悪くなり、ITO焼結体の密度が低下してしまう。ITO焼結体の密度が低いと、空孔が多くなり、スパッタリングによる成膜時にノジュールの発生が多く、成膜速度の低下、異常放電の発生が起こり、そのため、膜厚分布の悪化、パーティクルの生成による膜質の悪化が生じてしまう。
【0005】
特開平2001−73123号公報では、平均粒径が0.5μm以下で、粒径0.1μm以上0.8μm以下の粒子が85重量%以上を占める酸化インジウム粉末および酸化インジウム酸化スズ合成粉末からなる群より選ばれる1以上の粉末と、平均粒径2.5μm以下で、粒径が7.0μm以上の粉末が10重量%以下を占める酸化スズ粉末とを、所望比率で混合した原料粉末、あるいはその原料粉末を顆粒状に整粒した粉末を用いて、高濃度酸化スズITOターゲットを製造する方法が提案されている。
【0006】
しかし、この方法では、高濃度酸化スズITOターゲットを高密度にできるが、酸化スズが20重量%を超える組成範囲では、安定的に平均密度7.0g/cm 3 以上とすることが困難である。
【0007】
【先行文献1】
特開平2001−72123号公報
【0008】
【発明が解決しようとする課題】
本発明は、成膜時に安定した成膜速度が得られ、かつ、異常放電が少なくなり、その結果として欠陥の少ないITO膜を得ることができる、高密度化させた高濃度酸化スズITOターゲットを提供する。
【0009】
また、本発明は、高密度化させた高濃度酸化スズITOターゲットを、安定的に、かつ安価に製造できる方法を提供する。
【0010】
【課題を解決するための手段】
本発明による高濃度酸化スズITOターゲットは、酸化インジウム−酸化スズからなり、酸化スズの含有量が36質量%以上、かつ、50質量%以下であって、平均密度が7.0g/cm3以上であることを特徴とする。
【0011】
原料粉末は、比表面積値が3〜15 2 /gであって、平均粒径が0.5μm以下である酸化インジウム粉末と、比表面積値が10〜15 2 /gで、平均粒径が1.5μm以下である酸化スズ粉末を、酸化スズの含有量が36質量%以上、かつ50質量%以下となるように、混合・粉砕して得る。該原料粉末を平均粒径10μm以上の顆粒状に造粒して造粒粉末とする。さらに、該造粒粉末を98MPa以上の圧力で成形体を得て、該成形体を1400〜1600℃の温度で焼結することにより、本発明による高濃度酸化スズITOターゲットを得る。
【0012】
なお、酸化スズ粉末の平均粒径は1μm以下であることが好ましい。
【0013】
一方、本発明による高濃度酸化スズITOターゲットの製造方法は、比表面積値が3〜15 2 /gであって、平均粒径が0.5μm以下である酸化インジウム粉末と、比表面積値が10〜15 2 /gで、平均粒径が1.5μm以下である酸化スズ粉末とを、酸化スズの含有量が10〜50質量%となるように混合・粉砕して原料粉末を得た後、該原料粉末を平均粒径10μm以上の顆粒状に造粒して造粒粉末とする。
【0014】
その後、該造粒粉末を98MPa以上の圧力で加圧成形して成形体を得て、該成形体を常圧の酸素雰囲気中で1400〜1600℃の温度で焼結し、高濃度錫ITOターゲットを得る。
【0015】
【発明の実施の形態】
本発明の高濃度酸化スズITOターゲットの原料粉末は、比表面積値が3〜15 2 /g、平均粒径が0.5μm以下である酸化インジウム粉末と、比表面積値が10〜15 2 /g、平均粒径が1.5μm以下である酸化スズ粉末である。
【0016】
酸化インジウム粉末は、比表面積値が3 2 /g未満であると、一次粒子径が大きくなり、粒子間に生じる空孔も大きくなるため、焼結時にも空孔を除くことが困難となる。また、15 2 /gを超えると、一次粒子が小さすぎるために、凝集を生じやすく、成形体中に粗大空孔が生じやすく、焼結で空孔を除きがたくなる。一方、平均粒径が0.5μmを超えると、粒子間に発生している凝集が多いために、粗大空孔が多く存在する。いずれの場合も、ITO焼結体の密度低下を引き起こすことになる。
【0017】
酸化スズ粉末についても、比表面積値が10 2 /g未満、もしくは15 2 /gを超える場合には、酸化インジウム粉末の場合と同様の理由により、ITO焼結体の密度低下を引き起こす。また、平均粒径が1.5μmを超える場合には、粒子間に発生している凝集が多いために、粗大空孔が多く存在し、同様にITO焼結体の密度低下を引き起こす。
【0018】
なお、さらに安定して高密度のターゲットを得るためには、平均粒径が1μm以下であることが望ましい。
【0019】
また、酸化スズ濃度が50質量%を超えると、焼結時に酸化スズの揮発が激しくなり、体積拡散が生じにくくなるため、焼結密度を安定的に7.0g/cm 3 以上とすることが困難である。
【0020】
原料粉末を混合・粉砕する方法としては、粒子間に存在する空孔を除去できる粉砕方法が望ましく、微粒子化が可能であるボールミル、ビーズミルが望ましい。
【0021】
原料粉末を平均粒径10μm以上に造粒することが望ましい。造粒する場合には、混合・粉砕時に、分散剤、PVAなどのバインダーを加えた上で行い、また、スプレードライヤーなどの乾燥設備を用いて行い、顆粒状の造粒粉を得ることが望ましい。これにより、流動性がよくなり、成形型への充填が容易となる。造粒粉の水分量を調整し、造粒粉が固くなりすぎないようにすることが望ましい。
【0022】
原料粉末および造粒粉末を、98MPa以上の圧力で加圧成形して、成形体を得る。98MPa以下であると、粒子間に存在する空孔を除去することが困難となり、ITO焼結体の密度低下をもたらす。また、成形体強度も低くなるため、安定した製造が困難となる。高圧力が得られるCIP(Cold Isostatic Press)を用いることが望ましい。
【0023】
前記成形体を常圧雰囲気中で、焼結保持温度を1400〜1600℃として焼結する。酸素雰囲気とは、純酸素雰囲気または高濃度酸素雰囲気である。焼結温度が1400℃未満では、体積拡散・表面拡散が進まず、ITO焼結体が高密度とならない。焼結温度が1600℃を超えると、炉床板との反応が激しくなる。
【0024】
【実施例】
参考例1]
比表面積値11.4 2 /g、平均粒径0.37μmの酸化インジウム粉末を80質量%、比表面積値11.3 2 /g、平均粒径1.3μmの酸化スズ粉末20質量%となるように秤量し、これにポリビニルアルコールと分散剤を原料粉末に対し各々1.25質量%となるように加え、さらに純水を所定量加え、濃度60質量%のスラリーを作製し、ボールミルにて20時間程度混合・粉砕を行った。
【0025】
混合・粉砕後のスラリーを熱風温度150℃でスプレードライヤーで乾燥し、粒径10〜100μm、タップ密度1.56g/cm 3 の造粒粉を作製した。
【0026】
この造粒粉を常温にて196MPaの圧力で成形体を作製した。得られた成形体を、1500℃で20時間焼結し、280×130×10mmの焼結体を得た。得られた焼結体の密度は、7.12g/cm 3 であった。
【0027】
[実施例
比表面積値11.3 2 /g、平均粒径0.39μmの酸化インジウム粉末を64質量%、比表面積値11.7 2 /g、平均粒径1.2μmの酸化スズ粉末を36質量%となるようにした以外は、参考例1と同様に、造粒粉を作製した。この造粒粉の粒径は10〜100μm、タップ密度は1.51g/cm 3 であった。この造粒粉から、参考例1と同様に、焼結体を得た。得られた焼結体の密度は、7.07g/cm 3 であった。
【0028】
参考
比表面積値11.3 2 /g、平均粒径0.34μmの酸化インジウム粉末を90質量%、比表面積値11.1 2 /g、平均粒径1.2μmの酸化スズ粉末10質量%となるように秤量し、これにバインダー、分散剤を原料粉末に対し各々1.25質量%となるように加え、さらに純水を所定量加え、濃度60質量%のスラリーを作製し、ビーズミルにて所定時間混合・粉砕を行った。
【0029】
混合・粉砕後のスラリーを熱風温度140℃でスプレードライヤーで乾燥し、粒径10〜100μm、タップ密度1.54g/cm 3 の造粒粉を作製した。
【0030】
この造粒粉を常温にて294MPaの圧力で成形体を作製した。得られた成形体を、1550℃で25時間焼結し、280×130×10mmの焼結体を得た。得られた焼結体の密度は、7.140g/cm 3 であった。
【0031】
[実施例
比表面積値11.2 2 /g、平均粒径0.35μmの酸化インジウム粉末を50質量%、比表面積値12.5 2 /g、平均粒径1.2μmの酸化スズ粉末を50質量%となるようにした以外は、参考例1と同様に、造粒粉を作製した。この造粒粉の粒径は10〜100μm、タップ密度は1.49g/cm 3 であった。この造粒粉から、参考例1と同様に、焼結体を得た。得られた焼結体の密度は、7.010g/cm 3 であった。
【0032】
[実施例
比表面積値11.3 2 /g、平均粒径0.39μmの酸化インジウム粉末を64質量%、比表面積値11.8 2 /g、平均粒径0.9μmの酸化スズ粉末36質量%となるようにした以外は、参考例1と同様に、造粒粉を作製した。この造粒粉の粒径は10〜100μm、タップ密度は1.45g/cm 3 であった。この造粒粉から、参考例1と同様に、焼結体を得た。得られた焼結体の密度は、7.090g/cm 3 であり、実施例と比較し、密度上昇が確認された。
【0033】
また、媒体からの不純物量が、40ppm以下となり、実施例では50ppmを超えるのに対し、低減されることが確認された。
【0034】
[比較例1]
比表面積値11.4 2 /g、平均粒径0.37μmの酸化インジウム粉末を80質量%、比表面積値6.2 2 /g、平均粒径3.1μmの酸化スズ粉末を20質量%となるようにした以外は、参考例1と同様に、造粒粉を作製した。この造粒粉の粒径は10〜100μm、タップ密度は1.56g/cm 3 であった。この造粒粉から、参考例1と同様に、焼結体を得た。得られた焼結体の密度は、6.90g/cm 3 であった。
【0035】
[比較例2]
比表面積値11.3 2 /g、平均粒径0.39μmの酸化インジウム粉末を64質量%、比表面積値6.2 2 /g、平均粒径3.0μmの酸化スズ粉末を36質量%となるようにした以外は、参考例1と同様に、造粒粉を作製した。この造粒粉の粒径は10〜100μm、タップ密度は1.56g/cm 3 であった。この造粒粉から、参考例1と同様に、焼結体を得た。得られた焼結体の密度は、6.62g/cm 3 であった。
【0036】
[比較例3]
比表面積値11.1 2 /g、平均粒径0.35μmの酸化インジウム粉末を45質量%、比表面積値6.2 2 /g、平均粒径3.0μmの酸化スズ粉末を55質量%となるようにした以外は、参考例1と同様に、造粒粉を作製した。この造粒粉の粒径は10〜100μm、タップ密度は1.65g/cm 3 であった。この造粒粉から、参考例1と同様に、焼結体を得た。得られた焼結体の密度は、6.520g/cm 3 であった。
【0037】
比表面積値12.0 2 /g、平均粒径1.3μmの酸化スズ粉末を用いた場合、焼結体の密度は、6.850g/cm 3 であった。
【0038】
[比較例4]
比表面積値11.0 2 /g、平均粒径0.38μmの酸化インジウム粉末を64質量%、比表面積値20.2 2 /g、平均粒径2.5μmの酸化スズ粉末を36質量%となるようにした以外は、参考例1と同様に、造粒粉を作製した。この造粒粉の粒径は10〜100μm、タップ密度は1.49g/cm 3 であった。この造粒粉から、参考例1と同様に、焼結体を得た。得られた焼結体の密度は、6.750g/cm 3 であった。
【0039】
[比較例5]
比表面積値11.3 2 /g、平均粒径0.39μmの酸化インジウム粉末を64質量%、比表面積値11.7 2 /g、平均粒径1.2μmの酸化スズ粉末を36質量%となるようにした以外は、参考例1と同様に、造粒粉を作製した。この造粒粉をフルイにかけて、平均粒径が10μm以下となるようにした。この造粒粉のタップ密度は1.75g/cm 3 であった。この造粒粉から、参考例1と同様に、焼結体を得た。得られた焼結体の密度は、6.900g/cm 3 であった。
【0040】
【発明の効果】
本発明により、原料粉末スラリーを粉砕・混合する時に、媒体等の摩耗から入る不純物を減少させることが可能となる。原料粉末が99.99%以上の純度を有すれば、本発明によるITOターゲットの純度は99.99%以上を十分に満たすことができる。
【0041】
また、密度分布が少ない高密度ITOターゲットが得られるために、成膜中にノジュールの発生を抑えることができ、成膜の末期まで成膜密度の変化が小さくなるため、成膜段階での高収率が得られる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sputtering target for a transparent conductive film used when a transparent conductive film used for a liquid crystal display, an electroluminescence (EL) display, a touch panel, or the like is formed by a sputtering method, and a method for manufacturing the same.
[0002]
[Prior art]
In recent years, with the development of display elements, transparent conductive films have been widely used. In particular, due to the advantages such as low resistance and high transmittance, it is the mainstream to use an ITO thin film made of indium oxide-tin oxide. As a means for uniformly obtaining an ITO thin film over a large area, a sputtering method using an ITO target made of indium oxide-tin oxide is excellent, and is currently mainstream.
[0003]
In addition, due to the demand for film formation on various substrates such as a film substrate, characteristics such as amorphization of the ITO film and high bending performance are required. In order to satisfy the demand, a high-concentration tin oxide ITO target is desired.
[0004]
However, tin oxide is inferior in sinterability because it has a higher vapor pressure than indium oxide. Accordingly, the tin oxide concentration increases, the sinterability deteriorates, and the density of the ITO sintered body decreases. When the density of the ITO sintered body is low, the number of pores increases, and nodule is often generated during film formation by sputtering, resulting in a decrease in film formation speed and occurrence of abnormal discharge. Deterioration of the film quality due to generation occurs.
[0005]
Japanese Patent Laid-Open No. 2001-73123 comprises an indium oxide powder and an indium tin oxide synthetic powder having an average particle size of 0.5 μm or less and particles having a particle size of 0.1 μm or more and 0.8 μm or less occupying 85% by weight or more. A raw material powder in which one or more powders selected from the group and a tin oxide powder having an average particle size of 2.5 μm or less and a powder having a particle size of 7.0 μm or more occupying 10% by weight or less are mixed in a desired ratio, or There has been proposed a method for producing a high-concentration tin oxide ITO target using a powder obtained by adjusting the raw material powder into granules.
[0006]
However, with this method, the high-concentration tin oxide ITO target can be made high in density, but it is difficult to stably achieve an average density of 7.0 g / cm 3 or more in a composition range in which tin oxide exceeds 20% by weight. .
[0007]
[Prior Document 1]
Japanese Patent Laid-Open No. 2001-72123
[Problems to be solved by the invention]
The present invention provides a high-density tin oxide ITO target having a high density, which can provide a stable film formation speed during film formation and reduce abnormal discharge, resulting in an ITO film having few defects. provide.
[0009]
The present invention also provides a method by which a high-density tin oxide ITO target having a high density can be produced stably and inexpensively.
[0010]
[Means for Solving the Problems]
The high concentration tin oxide ITO target according to the present invention comprises indium oxide-tin oxide, the tin oxide content is 36 mass% or more and 50 mass% or less, and the average density is 7.0 g / cm 3 or more. It is characterized by being.
[0011]
The raw material powder has a specific surface area value of 3 to 15 m 2 / g and an average particle diameter of 0.5 μm or less, an indium oxide powder having a specific surface area value of 10 to 15 m 2 / g, and an average particle diameter Is obtained by mixing and pulverizing so that the tin oxide content is not less than 36 % by mass and not more than 50 % by mass. The raw material powder is granulated into granules having an average particle size of 10 μm or more to obtain a granulated powder. Furthermore, a molded body is obtained from the granulated powder at a pressure of 98 MPa or more, and the molded body is sintered at a temperature of 1400 to 1600 ° C. to obtain a high concentration tin oxide ITO target according to the present invention.
[0012]
In addition, it is preferable that the average particle diameter of a tin oxide powder is 1 micrometer or less.
[0013]
On the other hand, the method for producing a high-concentration tin oxide ITO target according to the present invention has a specific surface area value of 3 to 15 m 2 / g and an indium oxide powder having an average particle size of 0.5 μm or less, and a specific surface area value. A raw material powder was obtained by mixing and pulverizing a tin oxide powder having an average particle size of 10 to 15 m 2 / g and an average particle size of 1.5 μm or less so that the tin oxide content was 10 to 50% by mass. Thereafter, the raw material powder is granulated into granules having an average particle size of 10 μm or more to obtain a granulated powder.
[0014]
Thereafter, the granulated powder is pressure-molded at a pressure of 98 MPa or more to obtain a molded body, and the molded body is sintered at a temperature of 1400 to 1600 ° C. in a normal-pressure oxygen atmosphere to obtain a high-concentration tin ITO target. Get.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The raw material powder of the high-concentration tin oxide ITO target of the present invention has a specific surface area value of 3 to 15 m 2 / g, an indium oxide powder having an average particle size of 0.5 μm or less, and a specific surface area value of 10 to 15 m 2. / G, tin oxide powder having an average particle size of 1.5 μm or less.
[0016]
When the specific surface area value of the indium oxide powder is less than 3 m 2 / g, the primary particle diameter increases and the voids generated between the particles also increase, making it difficult to remove the voids even during sintering. . On the other hand, if it exceeds 15 m 2 / g, the primary particles are too small, so that aggregation is likely to occur, coarse pores are likely to be formed in the molded product, and voids are difficult to remove by sintering. On the other hand, when the average particle diameter exceeds 0.5 μm, there are many aggregations occurring between the particles, and there are many coarse pores. In either case, the density of the ITO sintered body is reduced.
[0017]
As for the tin oxide powder, when the specific surface area value is less than 10 m 2 / g or more than 15 m 2 / g, the density of the ITO sintered body is lowered due to the same reason as in the case of the indium oxide powder. Further, when the average particle diameter exceeds 1.5 μm, there are many aggregations occurring between the particles, so that there are many coarse pores, which similarly causes a decrease in the density of the ITO sintered body.
[0018]
In order to obtain a more stable and high-density target, the average particle size is desirably 1 μm or less.
[0019]
Further, if the tin oxide concentration exceeds 50% by mass, the volatilization of tin oxide becomes intense during sintering, and volume diffusion becomes difficult to occur. Therefore, the sintered density can be stably set to 7.0 g / cm 3 or more. Have difficulty.
[0020]
As a method for mixing and pulverizing the raw material powder, a pulverization method capable of removing voids existing between particles is desirable, and a ball mill and a bead mill capable of forming fine particles are desirable.
[0021]
It is desirable to granulate the raw material powder to an average particle size of 10 μm or more. When granulating, it is desirable to add a dispersing agent, a binder such as PVA at the time of mixing and pulverizing, and using a drying equipment such as a spray dryer to obtain a granular granulated powder. . Thereby, fluidity | liquidity improves and filling to a shaping | molding die becomes easy. It is desirable to adjust the moisture content of the granulated powder so that the granulated powder does not become too hard.
[0022]
The raw material powder and the granulated powder are pressure-molded at a pressure of 98 MPa or more to obtain a molded body. When it is 98 MPa or less, it becomes difficult to remove the voids existing between the particles, and the density of the ITO sintered body is lowered. In addition, since the strength of the compact is reduced, stable production becomes difficult. It is desirable to use CIP (Cold Isostatic Press) which can obtain a high pressure.
[0023]
The molded body is sintered in a normal pressure atmosphere at a sintering holding temperature of 1400 to 1600 ° C. The oxygen atmosphere is a pure oxygen atmosphere or a high concentration oxygen atmosphere. When the sintering temperature is less than 1400 ° C., volume diffusion and surface diffusion do not proceed, and the ITO sintered body does not become high density. When the sintering temperature exceeds 1600 ° C., the reaction with the hearth plate becomes intense.
[0024]
【Example】
[ Reference Example 1]
80% by mass of indium oxide powder having a specific surface area value of 11.4 m 2 / g and an average particle size of 0.37 μm, 20% by mass of tin oxide powder having a specific surface area value of 11.3 m 2 / g and an average particle size of 1.3 μm A polyvinyl alcohol and a dispersant are added to the raw material powder so that each amount is 1.25% by mass, and a predetermined amount of pure water is added to prepare a slurry having a concentration of 60% by mass. Was mixed and pulverized for about 20 hours.
[0025]
The slurry after mixing and pulverization was dried with a spray dryer at a hot air temperature of 150 ° C. to produce granulated powder having a particle size of 10 to 100 μm and a tap density of 1.56 g / cm 3 .
[0026]
A molded body was produced from this granulated powder at room temperature and a pressure of 196 MPa. The obtained molded body was sintered at 1500 ° C. for 20 hours to obtain a sintered body of 280 × 130 × 10 mm. The density of the obtained sintered body was 7.12 g / cm 3 .
[0027]
[Example 1 ]
64% by mass of indium oxide powder with a specific surface area value of 11.3 m 2 / g and an average particle size of 0.39 μm, 36% of tin oxide powder with a specific surface area value of 11.7 m 2 / g and an average particle size of 1.2 μm %. Granulated powder was prepared in the same manner as in Reference Example 1 except that the content was changed to%. The granulated powder had a particle size of 10 to 100 μm and a tap density of 1.51 g / cm 3 . A sintered body was obtained from this granulated powder in the same manner as in Reference Example 1. The density of the obtained sintered body was 7.07 g / cm 3 .
[0028]
[ Reference Example 2 ]
90% by mass of indium oxide powder having a specific surface area value of 11.3 m 2 / g and an average particle size of 0.34 μm, 10% by mass of tin oxide powder having a specific surface area value of 11.1 m 2 / g and an average particle size of 1.2 μm Then, a binder and a dispersant are added to the raw material powder so as to be 1.25% by mass, and a predetermined amount of pure water is added to prepare a slurry having a concentration of 60% by mass. Then, mixing and grinding were performed for a predetermined time.
[0029]
The slurry after mixing and pulverization was dried with a spray dryer at a hot air temperature of 140 ° C. to produce granulated powder having a particle size of 10 to 100 μm and a tap density of 1.54 g / cm 3 .
[0030]
A compact was produced from this granulated powder at room temperature and a pressure of 294 MPa. The obtained molded body was sintered at 1550 ° C. for 25 hours to obtain a sintered body of 280 × 130 × 10 mm. The density of the obtained sintered body was 7.140 g / cm 3 .
[0031]
[Example 2 ]
50% by mass of indium oxide powder having a specific surface area value of 11.2 m 2 / g and an average particle diameter of 0.35 μm, 50 mass of tin oxide powder having a specific surface area value of 12.5 m 2 / g and an average particle diameter of 1.2 μm %. Granulated powder was prepared in the same manner as in Reference Example 1 except that the content was changed to%. The granulated powder had a particle size of 10 to 100 μm and a tap density of 1.49 g / cm 3 . A sintered body was obtained from this granulated powder in the same manner as in Reference Example 1. The density of the obtained sintered body was 7.010 g / cm 3 .
[0032]
[Example 3 ]
64% by mass of indium oxide powder having a specific surface area value of 11.3 m 2 / g and an average particle size of 0.39 μm, 36% by mass of tin oxide powder having a specific surface area value of 11.8 m 2 / g and an average particle size of 0.9 μm A granulated powder was produced in the same manner as in Reference Example 1 except that the following was obtained. The granulated powder had a particle size of 10 to 100 μm and a tap density of 1.45 g / cm 3 . A sintered body was obtained from this granulated powder in the same manner as in Reference Example 1. The density of the obtained sintered body was 7.090 g / cm 3 , and an increase in density was confirmed as compared with Example 1 .
[0033]
Further, it was confirmed that the impurity amount from the medium was 40 ppm or less, and in Example 1 , it exceeded 50 ppm, but was reduced.
[0034]
[Comparative Example 1]
80% by mass of indium oxide powder with a specific surface area value of 11.4 m 2 / g and an average particle size of 0.37 μm, 20 masses of tin oxide powder with a specific surface area value of 6.2 m 2 / g and an average particle size of 3.1 μm %. Granulated powder was prepared in the same manner as in Reference Example 1 except that the content was changed to%. The granulated powder had a particle size of 10 to 100 μm and a tap density of 1.56 g / cm 3 . A sintered body was obtained from this granulated powder in the same manner as in Reference Example 1. The density of the obtained sintered body was 6.90 g / cm 3 .
[0035]
[Comparative Example 2]
64% by mass of indium oxide powder having a specific surface area value of 11.3 m 2 / g and an average particle diameter of 0.39 μm, 36 mass% of tin oxide powder having a specific surface area value of 6.2 m 2 / g and an average particle diameter of 3.0 μm %. Granulated powder was prepared in the same manner as in Reference Example 1 except that the content was changed to%. The granulated powder had a particle size of 10 to 100 μm and a tap density of 1.56 g / cm 3 . A sintered body was obtained from this granulated powder in the same manner as in Reference Example 1. The density of the obtained sintered body was 6.62 g / cm 3 .
[0036]
[Comparative Example 3]
45% by mass of indium oxide powder having a specific surface area value of 11.1 m 2 / g and an average particle diameter of 0.35 μm, 55 mass of tin oxide powder having a specific surface area value of 6.2 m 2 / g and an average particle diameter of 3.0 μm %. Granulated powder was prepared in the same manner as in Reference Example 1 except that the content was changed to%. The granulated powder had a particle size of 10 to 100 μm and a tap density of 1.65 g / cm 3 . A sintered body was obtained from this granulated powder in the same manner as in Reference Example 1. The density of the obtained sintered body was 6.520 g / cm 3 .
[0037]
When a tin oxide powder having a specific surface area value of 12.0 m 2 / g and an average particle size of 1.3 μm was used, the density of the sintered body was 6.850 g / cm 3 .
[0038]
[Comparative Example 4]
64% by mass of indium oxide powder having a specific surface area value of 11.0 m 2 / g and an average particle diameter of 0.38 μm, 36 mass% of tin oxide powder having a specific surface area value of 20.2 m 2 / g and an average particle diameter of 2.5 μm %. Granulated powder was prepared in the same manner as in Reference Example 1 except that the content was changed to%. The granulated powder had a particle size of 10 to 100 μm and a tap density of 1.49 g / cm 3 . A sintered body was obtained from this granulated powder in the same manner as in Reference Example 1. The density of the obtained sintered body was 6.750 g / cm 3 .
[0039]
[Comparative Example 5]
64% by mass of indium oxide powder with a specific surface area value of 11.3 m 2 / g and an average particle size of 0.39 μm, 36% of tin oxide powder with a specific surface area value of 11.7 m 2 / g and an average particle size of 1.2 μm %. Granulated powder was prepared in the same manner as in Reference Example 1 except that the content was changed to%. The granulated powder was sieved so that the average particle size was 10 μm or less. The tap density of this granulated powder was 1.75 g / cm 3 . A sintered body was obtained from this granulated powder in the same manner as in Reference Example 1. The density of the obtained sintered body was 6.900 g / cm 3 .
[0040]
【The invention's effect】
According to the present invention, when the raw powder slurry is pulverized and mixed, it is possible to reduce impurities entering from wear of the medium and the like. If the raw material powder has a purity of 99.99% or more, the purity of the ITO target according to the present invention can sufficiently satisfy 99.99% or more.
[0041]
In addition, since a high-density ITO target with a low density distribution can be obtained, generation of nodules can be suppressed during film formation, and the change in film formation density becomes small until the final stage of film formation. A yield is obtained.

Claims (3)

比表面積値が3〜15m2/gであって、平均粒径が0.5μm以下である酸化インジウム粉末と、比表面積値が10〜15m2/gで、平均粒径が1.5μm以下である酸化スズ粉末とを、酸化スズの含有量が36〜50質量%となるように混合・粉砕して原料粉末を得た後、該原料粉末を平均粒径10μm以上の顆粒状に造粒して造粒粉末とし、該造粒粉末を98MPa以上の圧力で加圧成形して成形体を得て、該成形体を常圧の酸素雰囲気中で1400〜1600℃の温度で焼結することを特徴とする高濃度スズITOターゲットの製造方法。A specific surface area value of 3~15m 2 / g, an average particle indium oxide powder diameter of 0.5μm or less, a specific surface area value of 10 to 15 m 2 / g, an average particle size of 1.5μm or less After mixing and pulverizing a certain tin oxide powder so that the content of tin oxide is 36 to 50% by mass, a raw material powder is obtained, and then the raw material powder is granulated into granules having an average particle size of 10 μm or more. A granulated powder, and the granulated powder is pressure-molded at a pressure of 98 MPa or more to obtain a molded body, and the molded body is sintered in a normal pressure oxygen atmosphere at a temperature of 1400 to 1600 ° C. A method for producing a high-density tin ITO target. 前記酸化スズ粉末として、平均粒径が1μm以下である酸化スズ粉末を用いる請求項に記載の高濃度酸化スズITOターゲットの製造方法。The method for producing a high-concentration tin oxide ITO target according to claim 1 , wherein a tin oxide powder having an average particle diameter of 1 μm or less is used as the tin oxide powder. 請求項1または2に記載の製造方法により得られる高濃度酸化スズITOターゲットであり、酸化インジウム−酸化スズからなり、酸化スズの含有量が36質量%以上、かつ、50質量%以下であって、平均密度が7.0g/cm3以上である高濃度酸化スズITOターゲット。A high-concentration tin oxide ITO target obtained by the production method according to claim 1, comprising indium oxide-tin oxide, and a tin oxide content of 36% by mass or more and 50% by mass or less. A high-concentration tin oxide ITO target having an average density of 7.0 g / cm 3 or more.
JP2002307326A 2002-10-22 2002-10-22 High concentration tin oxide ITO target and manufacturing method thereof Expired - Lifetime JP4120351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002307326A JP4120351B2 (en) 2002-10-22 2002-10-22 High concentration tin oxide ITO target and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002307326A JP4120351B2 (en) 2002-10-22 2002-10-22 High concentration tin oxide ITO target and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2004143484A JP2004143484A (en) 2004-05-20
JP2004143484A5 JP2004143484A5 (en) 2005-09-02
JP4120351B2 true JP4120351B2 (en) 2008-07-16

Family

ID=32453821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002307326A Expired - Lifetime JP4120351B2 (en) 2002-10-22 2002-10-22 High concentration tin oxide ITO target and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4120351B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009173469A (en) * 2008-01-22 2009-08-06 Sumitomo Metal Mining Co Ltd High concentration tin oxide ito sintered compact, and method for producing the same
KR101240167B1 (en) 2008-02-13 2013-03-07 삼성코닝정밀소재 주식회사 Indium tin oxide sintered body and indium tin oxide target
JP5199023B2 (en) * 2008-10-24 2013-05-15 三井金属鉱業株式会社 Tin oxide powder
JP2013256425A (en) * 2012-06-14 2013-12-26 Sumitomo Metal Mining Co Ltd Tin oxide powder for ito sputtering target, method of manufacturing mixed powder of tin oxide and indium oxide for ito sputtering target, and sintered body for ito sputtering target

Also Published As

Publication number Publication date
JP2004143484A (en) 2004-05-20

Similar Documents

Publication Publication Date Title
KR101274279B1 (en) Indium oxide sintered body, indium oxide transparent conductive film, and method for manufacturing the transparent conductive film
KR20160063403A (en) Amorphous composite oxide film,crystalline composite oxide film,process for producing amorphous composite oxide film,process for producing crystalline composite oxide film,and composite oxide sinter
KR20210152429A (en) Cylindrical sputtering target, cylindrical compact, manufacturing method of cylindrical sputtering target, manufacturing method of cylindrical sintered compact and manufacturing method of cylindrical compact
JP4758697B2 (en) Manufacturing method of IZO sputtering target
WO2017158928A1 (en) Oxide sintered compact
JP6159867B1 (en) Transparent conductive film forming target, transparent conductive film forming target manufacturing method, and transparent conductive film manufacturing method
CN104710163A (en) method for producing IZO sputtering target
JP4396130B2 (en) Target for producing ITO thin film and manufacturing method thereof
JP5149262B2 (en) Indium oxide-zinc oxide sintered target and method for producing the same
JP4120351B2 (en) High concentration tin oxide ITO target and manufacturing method thereof
JP4508079B2 (en) Manufacturing method of sputtering target
JP3331584B2 (en) Polycrystalline MgO deposited material
JP4734936B2 (en) ITO granulated powder, ITO sintered body and method for producing the same
JP2005126766A (en) Indium-oxide-based target and manufacturing method therefor
CN116715516A (en) Rare earth doped ITO target and preparation method thereof
JP4755453B2 (en) Manufacturing method of IZO sputtering target
JP2011105550A (en) Method for producing ito sintered compact, and method for manufacturing ito sputtering target
JP2003002749A (en) Indium oxide powder and method for manufacturing ito sputtering target
CN114853447B (en) InZr-Si oxide target material, preparation method thereof and InZr-Si oxide film
JP3424980B2 (en) Method for producing highly homogeneous ITO sintered body
JPH05209264A (en) Production of target material for electric conductive ito film
JP3922178B2 (en) ITO target and manufacturing method thereof
CN116815137A (en) High-density composite doped tin oxide tantalum target material and preparation method thereof
JP5890671B2 (en) Manufacturing method of ITO sputtering target
JP5392342B2 (en) Method for producing ZnO vapor deposition material and method for producing ZnO film

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4120351

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140509

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term