JP6159867B1 - Transparent conductive film forming target, transparent conductive film forming target manufacturing method, and transparent conductive film manufacturing method - Google Patents

Transparent conductive film forming target, transparent conductive film forming target manufacturing method, and transparent conductive film manufacturing method Download PDF

Info

Publication number
JP6159867B1
JP6159867B1 JP2016250119A JP2016250119A JP6159867B1 JP 6159867 B1 JP6159867 B1 JP 6159867B1 JP 2016250119 A JP2016250119 A JP 2016250119A JP 2016250119 A JP2016250119 A JP 2016250119A JP 6159867 B1 JP6159867 B1 JP 6159867B1
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive film
target
crystal phase
film forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016250119A
Other languages
Japanese (ja)
Other versions
JP2018104743A (en
Inventor
正章 秀島
正章 秀島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2016250119A priority Critical patent/JP6159867B1/en
Application granted granted Critical
Publication of JP6159867B1 publication Critical patent/JP6159867B1/en
Priority to CN201711341245.0A priority patent/CN108220893B/en
Priority to TW106144010A priority patent/TWI644867B/en
Priority to KR1020170177830A priority patent/KR102089842B1/en
Publication of JP2018104743A publication Critical patent/JP2018104743A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3488Constructional details of particle beam apparatus not otherwise provided for, e.g. arrangement, mounting, housing, environment; special provisions for cleaning or maintenance of the apparatus
    • H01J37/3491Manufacturing of targets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Abstract

【課題】相対密度が高く、スパッタ成膜時のアーキングやパーティクルの発生を抑制することが可能な透明導電膜形成用ターゲット、透明導電膜、透明導電膜形成用ターゲットの製造方法及び透明導電膜の製造方法の提供。【解決手段】In、Sn、Zn、Oを含み、Sn/(In+Sn+Zn)=7〜17at%,Zn/(In+Sn+Zn)=0.5〜12at%、SnとZnの原子数比(Sn/Zn)が1.3以上であり、且つXRD測定によるIn2O3結晶相に対するSn3In4O12結晶相のピーク強度比(Sn3In4O12/In2O3)が0.10以下であり、相対密度が97%以上である透明導電膜形成用ターゲット。【選択図】なしA transparent conductive film forming target having a high relative density and capable of suppressing arcing and generation of particles during sputtering film formation, a transparent conductive film, a method for producing a transparent conductive film forming target, and a transparent conductive film Providing manufacturing methods. SO includes In, Sn, Zn and O, Sn / (In + Sn + Zn) = 7 to 17 at%, Zn / (In + Sn + Zn) = 0.5 to 12 at%, Sn / Zn atomic ratio (Sn / Zn) Is a transparent conductive film forming target having a peak intensity ratio (Sn3In4O12 / In2O3) of Sn3In4O12 crystal phase to In2O3 crystal phase by XRD measurement of 0.10 or less and a relative density of 97% or more . [Selection figure] None

Description

本発明は、透明導電膜形成用ターゲット、透明導電膜、透明導電膜形成用ターゲットの製造方法及び透明導電膜の製造方法に関する。   The present invention relates to a transparent conductive film forming target, a transparent conductive film, a method for manufacturing a transparent conductive film forming target, and a method for manufacturing a transparent conductive film.

透明導電膜(ITO膜)は、低抵抗率、高透過率、微細加工容易性などの特徴を有していることから、液晶やプラズマなどのフラットパネルディスプレイの電極等に広く利用されている。ITO膜は一般に、ITO焼結体をターゲットとして用いるスパッタ成膜法により製造されるが、スパッタにより得られるITO膜の一部が結晶化する場合がある。そのため、成膜したITO膜をエッチングして回路や電極を形成する際に、結晶化した膜の一部が、いわゆるエッチング残渣として残り、配線ショート等の問題を引き起こす場合がある。   Transparent conductive films (ITO films) are widely used for electrodes of flat panel displays such as liquid crystal and plasma because they have features such as low resistivity, high transmittance, and ease of fine processing. In general, an ITO film is manufactured by a sputtering film forming method using an ITO sintered body as a target, but a part of the ITO film obtained by sputtering may be crystallized. For this reason, when the formed ITO film is etched to form a circuit or an electrode, a part of the crystallized film remains as a so-called etching residue, which may cause problems such as a wiring short circuit.

膜の結晶化を防ぎ、膜全体を非晶質にする方法として、スパッタ時にスパッタガスに加えて水や水素ガスを添加する方法が知られている。しかしながら、水添加でのスパッタにより、スパッタ成膜時にアーキング及びパーティクルが発生し、ITO膜の平坦性や結晶性を悪化させる場合がある。また、ITOターゲットはIn23相とIn4Sn312相からなるが、各結晶相で抵抗が異なるため、スパッタ成膜時にバルク体として電圧をかけた際に、その抵抗差がアーキング及びパーティクルの要因となる可能性がある。 As a method for preventing crystallization of the film and making the entire film amorphous, a method of adding water or hydrogen gas in addition to the sputtering gas at the time of sputtering is known. However, by sputtering with water, arcing and particles are generated at the time of sputtering film formation, which may deteriorate the flatness and crystallinity of the ITO film. The ITO target consists of an In 2 O 3 phase and an In 4 Sn 3 O 12 phase, but each crystal phase has a different resistance. Therefore, when a voltage is applied as a bulk body during sputtering film formation, the resistance difference is arcing. And may cause particles.

特許第4947942号(特許文献1)では、インジウム、スズ、亜鉛及び酸素を含有するスパッタリングターゲットであって、実質的にIn23で表されるビックスバイト構造化合物からなるスパッタリングターゲットが記載されている。 In Japanese Patent No. 4947942 (Patent Document 1), a sputtering target containing indium, tin, zinc and oxygen, which is substantially composed of a bixbite structure compound represented by In 2 O 3 is described. Yes.

特許第3961172号(特許文献2)では、亜鉛、インジウム、錫の含有量を所定の範囲に調整したインジウム酸化物とスズ酸化物と亜鉛酸化物とを含む複合酸化物からなる透明導電膜形成用ターゲットの例が記載されている。   In Japanese Patent No. 3961172 (Patent Document 2), for forming a transparent conductive film made of a composite oxide containing indium oxide, tin oxide and zinc oxide in which the contents of zinc, indium and tin are adjusted to a predetermined range. Examples of targets are described.

特許第4947942号公報Japanese Patent No. 4947942 特許第3961172号公報Japanese Patent No. 3961172

しかしながら、特許文献1に記載されたターゲットは理論相対密度が高いと記載されてはいるものの、最大でも96%程度であり、膜の抵抗率も高く、現在求められるターゲットの特性としては十分ではない。特許文献2には、組成以外のターゲットの情報が記載されておらず、アーキング及びパーティクルの発生の影響に関しても十分に検討されていない。   However, although the target described in Patent Document 1 is described as having a high theoretical relative density, it is about 96% at the maximum, and the resistivity of the film is high, so that it is not sufficient as the target characteristics currently required. . Patent Document 2 does not describe target information other than the composition, and does not sufficiently examine the effects of arcing and particle generation.

一方、近年のフラットパネルディスプレイやスマートフォンなどの高精細化及びITO膜の製造歩留まり向上の観点から、得られるITO膜中の小さい欠陥等も無視できなくなってきており、従来に比べてより一層、アーキングやパーティクルの発生を抑制し、より高品質なITO膜の製造に適した透明導電膜形成用ターゲットが要求されてきている。   On the other hand, from the viewpoint of high definition of flat panel displays and smartphones in recent years and improvement in the production yield of ITO films, small defects in the obtained ITO films are no longer negligible. There is a demand for a target for forming a transparent conductive film that suppresses generation of particles and particles and is suitable for production of a higher quality ITO film.

上記課題を鑑み、本発明は、相対密度が高く、スパッタ成膜時のアーキングやパーティクルの発生を抑制することが可能で、より高品質なITOの製造に適した透明導電膜形成用ターゲット、透明導電膜、透明導電膜形成用ターゲットの製造方法及び透明導電膜の製造方法を提供する。   In view of the above problems, the present invention has a high relative density, can suppress the generation of arcing and particles during sputtering film formation, and is a transparent conductive film forming target suitable for the production of higher-quality ITO. A conductive film, a method for manufacturing a transparent conductive film forming target, and a method for manufacturing a transparent conductive film are provided.

本発明者は鋭意検討を重ねた結果、透明導電膜形成用ターゲットとして、In、Sn、Zn、Oを含むターゲットであって、ターゲット中のIn23結晶相に対するSn3In412結晶相の割合を小さくすることが有効であるとの知見を得た。 As a result of intensive studies, the inventor of the present invention is a target containing In, Sn, Zn, O as a target for forming a transparent conductive film, and an Sn 3 In 4 O 12 crystal corresponding to an In 2 O 3 crystal phase in the target. It was found that reducing the phase ratio was effective.

以上の知見を基礎として完成した本発明は一側面において、In、Sn、Zn、Oを含み、Sn/(In+Sn+Zn)=7〜17at%,Zn/(In+Sn+Zn)=0.5〜12at%、SnとZnの原子数比(Sn/Zn)が1.3以上であり、且つXRD測定によるIn23結晶相に対するSn3In412結晶相のピーク強度比(Sn3In412/In23)が0.10以下であり、相対密度が97%以上である透明導電膜形成用ターゲットが提供される。 The present invention completed on the basis of the above knowledge includes, in one aspect, In, Sn, Zn, O, Sn / (In + Sn + Zn) = 7 to 17 at%, Zn / (In + Sn + Zn) = 0.5 to 12 at%, Sn The atomic ratio (Sn / Zn) of Zn to Zn is 1.3 or more, and the peak intensity ratio of the Sn 3 In 4 O 12 crystal phase to the In 2 O 3 crystal phase (Sn 3 In 4 O 12 / A target for forming a transparent conductive film having an In 2 O 3 ) of 0.10 or less and a relative density of 97% or more is provided.

本発明に係る透明導電膜形成用ターゲットは一実施態様において、バルク抵抗が0.1〜0.5mΩcmである。   In one embodiment, the target for forming a transparent conductive film according to the present invention has a bulk resistance of 0.1 to 0.5 mΩcm.

本発明に係る透明導電膜形成用ターゲットは一実施態様において、バルク抵抗が0.1〜0.4mΩcmである。   In one embodiment, the target for forming a transparent conductive film according to the present invention has a bulk resistance of 0.1 to 0.4 mΩcm.

本発明は別の一側面において、In、Sn、Zn、Oを含み、Sn/(In+Sn+Zn)=7〜17at%,Zn/(In+Sn+Zn)=0.5〜12at%、SnとZnの原子数比(Sn/Zn)が1.3以上であり、抵抗率が0.1〜0.5mΩcmである透明導電膜が提供される。   In another aspect, the present invention includes In, Sn, Zn, and O, Sn / (In + Sn + Zn) = 7 to 17 at%, Zn / (In + Sn + Zn) = 0.5 to 12 at%, and the atomic ratio of Sn and Zn A transparent conductive film having (Sn / Zn) of 1.3 or more and a resistivity of 0.1 to 0.5 mΩcm is provided.

本発明は更に別の一側面において、上記透明導電膜形成用ターゲットを用いてスパッタリングすることにより形成される非晶質の透明導電膜が提供される。   In yet another aspect of the present invention, there is provided an amorphous transparent conductive film formed by sputtering using the transparent conductive film forming target.

本発明に係る透明導電膜は一実施態様において、結晶化温度が180〜230℃である。   In one embodiment, the transparent conductive film according to the present invention has a crystallization temperature of 180 to 230 ° C.

本発明に係る透明導電膜は別の一実施態様において、上記透明導電膜形成用ターゲットを用いてスパッタリングし、熱処理して結晶化させることにより形成される結晶質の透明導電膜であって、結晶化温度が180〜230℃である。   In another embodiment, the transparent conductive film according to the present invention is a crystalline transparent conductive film formed by sputtering using the target for forming a transparent conductive film and crystallizing by heat treatment. The conversion temperature is 180 to 230 ° C.

本発明は更に別の一側面において、酸化インジウム、酸化スズ及び酸化亜鉛を個別に粉砕した後、Sn/(In+Sn+Zn)=7〜17at%,Zn/(In+Sn+Zn)=0.5〜12at%、かつSnとZnの原子数比(Sn/Zn)が1.3以上となるように配合し、これを酸素雰囲気中で1300〜1600℃で5〜40時間焼成することにより、In、Sn、Zn、Oを含み、XRD測定によるIn23結晶相に対するSn3In412結晶相のピーク強度比(Sn3In412/In23)が0.10以下である透明導電膜形成用ターゲットを得ることを含む透明導電膜形成用ターゲットの製造方法が提供される。 In yet another aspect of the present invention, Sn / (In + Sn + Zn) = 7 to 17 at%, Zn / (In + Sn + Zn) = 0.5 to 12 at% after individually grinding indium oxide, tin oxide and zinc oxide, and By blending so that the atomic ratio of Sn and Zn (Sn / Zn) is 1.3 or more and firing this in an oxygen atmosphere at 1300 to 1600 ° C. for 5 to 40 hours, In, Sn, Zn, Formation of transparent conductive film containing O and having a peak intensity ratio (Sn 3 In 4 O 12 / In 2 O 3 ) of Sn 3 In 4 O 12 crystal phase to In 2 O 3 crystal phase by XRD measurement is 0.10 or less A method for producing a target for forming a transparent conductive film including obtaining a target for use is provided.

本発明は更に別の一側面において、透明導電膜形成用ターゲットをスパッタリングして非晶質の透明導電膜を形成することを含む透明導電膜の製造方法が提供される。   In still another aspect of the present invention, there is provided a method for producing a transparent conductive film, comprising sputtering a transparent conductive film forming target to form an amorphous transparent conductive film.

本発明に係る透明導電膜の製造方法は一実施態様において、非晶質の透明導電膜をエッチング後、結晶化温度以上で熱処理して結晶化させることにより、結晶質の透明導電膜を形成することを含む。   In one embodiment, the method for producing a transparent conductive film according to the present invention forms a crystalline transparent conductive film by etching and crystallizing an amorphous transparent conductive film at a temperature equal to or higher than the crystallization temperature. Including that.

本発明によれば、相対密度が高く、スパッタ成膜時のアーキングやパーティクルの発生を抑制することが可能で、より高品質なITOの製造に適した透明導電膜形成用ターゲット、透明導電膜、透明導電膜形成用ターゲットの製造方法及び透明導電膜の製造方法が提供できる。   According to the present invention, the relative density is high, it is possible to suppress the generation of arcing and particles during sputtering film formation, a transparent conductive film forming target suitable for the production of higher quality ITO, a transparent conductive film, The manufacturing method of the target for transparent conductive film formation and the manufacturing method of a transparent conductive film can be provided.

以下に、本発明の実施の形態に係る透明導電膜形成用ターゲット、透明導電膜、透明導電膜形成用ターゲットの製造方法及び透明導電膜の製造方法について説明する。   Below, the manufacturing method of the target for transparent conductive film formation which concerns on embodiment of this invention, a transparent conductive film, the target for transparent conductive film formation, and the manufacturing method of a transparent conductive film are demonstrated.

(透明導電膜形成用ターゲット)
本発明の実施の形態に係る透明導電膜形成用ターゲットは、インジウム(In)、スズ(Sn)、亜鉛(Zn)、酸素(O)を含むターゲットである。典型的には、酸化インジウム(In23)と酸化錫(SnO2)の無機化合物からなる酸化インジウムスズ(ITO)をベースとしたターゲットであり、ターゲット中のSn3In412結晶相の存在比を小さくしたターゲットである。
(Target for forming transparent conductive film)
The target for forming a transparent conductive film according to the embodiment of the present invention is a target containing indium (In), tin (Sn), zinc (Zn), and oxygen (O). Typically, the target is based on indium tin oxide (ITO) made of an inorganic compound of indium oxide (In 2 O 3 ) and tin oxide (SnO 2 ), and the Sn 3 In 4 O 12 crystal phase in the target This is a target with a small abundance ratio.

InとSnとZnの合計量に対するスズの原子数率(Sn/(In+Sn+Zn))を7〜17at%とする。これにより、ターゲット中のIn23結晶相に対するSn3In412結晶相の割合を小さくすることができ、スパッタ成膜時のアーキングやパーティクルの発生を抑制することができる。ターゲットに含まれるスズ(Sn)の含有量が多すぎるとSn3In412結晶相が多くなり、アーキングが増える場合がある一方で、Snの含有量が少なすぎると膜の抵抗率が上がる。そのため、Sn/(In+Sn+Zn)=7.5〜15at%とすることがより好ましく、更に好ましくは、Sn/(In+Sn+Zn)=8〜12at%である。 The atomic ratio of tin (Sn / (In + Sn + Zn)) with respect to the total amount of In, Sn, and Zn is 7 to 17 at%. As a result, the ratio of the Sn 3 In 4 O 12 crystal phase to the In 2 O 3 crystal phase in the target can be reduced, and arcing and particle generation during sputter deposition can be suppressed. When the tin (Sn) content in the target is too large, the Sn 3 In 4 O 12 crystal phase increases and arcing may increase. On the other hand, when the Sn content is too small, the resistivity of the film increases. . Therefore, it is more preferable to set it as Sn / (In + Sn + Zn) = 7.5-15at%, More preferably, it is Sn / (In + Sn + Zn) = 8-12at%.

InとSnとZnの合計量に対する亜鉛の原子数率(Zn/(In+Sn+Zn))を0.5〜12at%とすることで、ターゲット中のIn23結晶相に対するSn3In412結晶相の割合を小さくし、スパッタ成膜時のアーキングやパーティクルの発生を抑制することができる。ターゲットに含まれる亜鉛(Zn)の含有量が多すぎると、膜の抵抗率が上がる場合があるが、Snの含有量が少なすぎるとSn3In412相が多くなり、アーキングが増える。そのため、Zn/(In+Sn+Zn)=0.6〜10at%とすることがより好ましく、更に好ましくは、Zn/(In+Sn+Zn)=0.7〜6at%である。 The atomic ratio of zinc to the total amount of In, Sn, and Zn (Zn / (In + Sn + Zn)) is set to 0.5 to 12 at%, so that the Sn 3 In 4 O 12 crystal with respect to the In 2 O 3 crystal phase in the target By reducing the phase ratio, arcing and generation of particles during sputtering film formation can be suppressed. If the content of zinc (Zn) contained in the target is too large, the resistivity of the film may increase. However, if the content of Sn is too small, the Sn 3 In 4 O 12 phase increases and arcing increases. Therefore, Zn / (In + Sn + Zn) = 0.6 to 10 at% is more preferable, and Zn / (In + Sn + Zn) = 0.7 to 6 at% is more preferable.

更に、本実施形態では、ターゲットのスズと亜鉛の原子数比(Sn/Zn)を調整することにより、抵抗率が低く、Sn3In412結晶相の少ないターゲットが得られる。ターゲットのスズと亜鉛の原子数比(Sn/Zn)は1.3以上であることが必要でありターゲットのスズ及び亜鉛の適切な含有量を考慮すれば、スズと亜鉛の原子数比(Sn/Zn)は、1.4以上、更には1.5以上とすることが好ましい。 Furthermore, in this embodiment, by adjusting the atomic ratio (Sn / Zn) of tin and zinc of the target, a target having a low resistivity and a small Sn 3 In 4 O 12 crystal phase can be obtained. The atomic ratio (Sn / Zn) of the target tin and zinc needs to be 1.3 or more, and considering the appropriate content of the target tin and zinc, the atomic ratio of tin and zinc (Sn) / Zn) is preferably 1.4 or more, more preferably 1.5 or more.

ターゲットバルク体の内部に元素の偏析があると、バルク体の密度低下やスパッタ中のアーキングの要因となる。本実施形態に係る透明導電膜形成用ターゲットでは、原料組成比と製造条件を調整することで、従来のターゲットに比べてSn3In412結晶相の生成を抑えることができる。 If there is segregation of elements inside the target bulk body, it will cause a decrease in density of the bulk body and arcing during sputtering. In the target for forming a transparent conductive film according to the present embodiment, the generation of Sn 3 In 4 O 12 crystal phase can be suppressed as compared with the conventional target by adjusting the raw material composition ratio and the manufacturing conditions.

具体的には、本実施形態に係る透明導電膜形成用ターゲットは、XRD測定によるIn23結晶相に対するSn3In412結晶相のピーク強度比(Sn3In412/In23)が0.10以下であり、より好ましくは0.09以下、更に好ましくは0.05以下である。 Specifically, the target for forming a transparent conductive film according to the present embodiment has a peak intensity ratio (Sn 3 In 4 O 12 / In 2) of the Sn 3 In 4 O 12 crystal phase to the In 2 O 3 crystal phase by XRD measurement. O 3 ) is 0.10 or less, more preferably 0.09 or less, still more preferably 0.05 or less.

本実施形態に係る透明導電膜形成用ターゲットを構成する酸化物のXRD測定による同定は、BRUKER製の全自動多目的X線回折装置(型式:D8−ADVANCE)を用いて行うことができる。まず、測定試料を粉末状にし、目開き100μmで篩った篩下の粉末を圧粉して測定サンプルとし、粉末X線回折法を用いて、X線回折プロファイルを得る。次に、得られたX線回折プロファイルにKα2除去などのデータ処理を施した後、ICDD(International Centre for Diffraction Data)のPDF(Powder Diffraction File)を用いて、結晶相の同定を行う。尚、ピーク強度比の算出は、Sn3In412結晶相は2θ=23.9°付近より、In23結晶相は2θ=21.5°付近よりピーク強度を読み取り求めた際のピーク強度比を示す。管電圧:40kV、管電流:30mA、スキャンスピード:5°/min、ステップ:0.02°とする。実際のピークは歪等によるピークシフトが起こることがあるため、ICDDカードを参照し、±0.2°付近の最大のピークをピークとして採用する。バックグラウンドの除去は行わない。 Identification of the oxide constituting the target for forming a transparent conductive film according to the present embodiment by XRD measurement can be performed using a fully automatic multipurpose X-ray diffraction apparatus (model: D8-ADVANCE) manufactured by BRUKER. First, the measurement sample is made into a powder form, and the powder under the sieve sieved with an opening of 100 μm is compressed to obtain a measurement sample, and an X-ray diffraction profile is obtained using a powder X-ray diffraction method. Next, the obtained X-ray diffraction profile is subjected to data processing such as Kα2 removal, and then the crystal phase is identified using a PDF (Powder Diffraction File) of ICDD (International Center for Diffraction Data). The peak intensity ratio was calculated by reading the peak intensity from around 2θ = 23.9 ° for the Sn 3 In 4 O 12 crystal phase and about 2θ = 21.5 ° for the In 2 O 3 crystal phase. The peak intensity ratio is shown. Tube voltage: 40 kV, tube current: 30 mA, scan speed: 5 ° / min, step: 0.02 °. Since an actual peak may cause a peak shift due to distortion or the like, a maximum peak near ± 0.2 ° is adopted as a peak with reference to an ICDD card. There is no background removal.

本発明によれば、XRD測定によるIn23結晶相に対するSn3In412結晶相のピーク強度比(Sn3In412/In23)が0.10以下である透明導電膜形成用ターゲットが得られるため、透明導電膜形成用ターゲットの抵抗が均一になり、これを用いてスパッタリング成膜する際のアーキング及びパーティクルの発生を低減することができる。特に本発明によれば、従来のディスプレイなどでは特に問題にならなかった特に1.0〜3.0μm程度の微小サイズのパーティクルの発生を100個以下、更には45個以下、更には30個以下に抑制することができるため、従来のディスプレイだけでなく、より高機能化・高精細化した2K、4Kディスプレイやスマートフォンなどのような中小型ディスプレイで問題となるような微細なパーティクルの発生抑制の問題にも対応することができる。 According to the present invention, the transparent conductive having a peak intensity ratio (Sn 3 In 4 O 12 / In 2 O 3 ) of the Sn 3 In 4 O 12 crystal phase to the In 2 O 3 crystal phase measured by XRD is 0.10 or less. Since the film forming target is obtained, the resistance of the transparent conductive film forming target becomes uniform, and it is possible to reduce arcing and generation of particles during sputtering film formation using the target. In particular, according to the present invention, generation of particles having a very small size of about 1.0 to 3.0 μm, which is not particularly a problem in conventional displays or the like, is 100 or less, further 45 or less, and further 30 or less. In addition to conventional displays, it is possible to suppress the generation of fine particles that can cause problems in small and medium-sized displays such as 2K, 4K displays and smartphones with higher functionality and higher definition. It can also deal with problems.

本実施形態に係る透明導電膜形成用ターゲットは、相対密度が97%以上である。以下に制限されるものではないが、相対密度は98%以上であることが好ましく、より好ましくは99%以上である。尚、焼結体の密度は相対密度で示す。相対密度は、測定された密度及び理論密度によって、相対密度=(測定密度/理論密度)×100(%)で表される。理論密度とは、焼結体の各構成元素において、酸素を除いた元素の酸化物の理論密度から算出される密度の値である。例えば、ITOターゲットであれば、各構成元素であるインジウム、スズ、酸素のうち、酸素を除いたインジウム、スズの酸化物として、酸化インジウム(In23)と酸化スズ(SnO2)を理論密度の算出に用いる。ここで、焼結体中のインジウムとスズの元素分析値(at%、又は質量%)から、酸化インジウム(In23)と酸化スズ(SnO2)の質量比に換算する。例えば、換算の結果、酸化インジウムが90質量%、酸化スズが10質量%のITOターゲットの場合、理論密度は、(In23の密度(g/cm3)×90+SnO2の密度(g/cm3)×10)/100(g/cm3)として算出する。In23の理論密度は7.18g/cm3、SnO2の理論密度は6.95g/cm3として計算し、理論密度は7.157(g/cm3)と算出される。また、構成元素がZnであればZnOの理論密度は5.67g/cm3として計算する。一方、測定密度とは、重量を体積で割った値である。焼結体の場合は、アルキメデス法により体積を求めて算出する。 The target for forming a transparent conductive film according to this embodiment has a relative density of 97% or more. Although not limited to the following, the relative density is preferably 98% or more, and more preferably 99% or more. In addition, the density of a sintered compact is shown by a relative density. The relative density is expressed by relative density = (measured density / theoretical density) × 100 (%) according to the measured density and the theoretical density. The theoretical density is a density value calculated from the theoretical density of an oxide of an element excluding oxygen in each constituent element of the sintered body. For example, in the case of an ITO target, indium oxide (In 2 O 3 ) and tin oxide (SnO 2 ) are theoretically considered as oxides of indium and tin excluding oxygen among the constituent elements of indium, tin, and oxygen. Used for density calculation. Here, indium and elemental analysis values of the tin in the sintered body (at%, or mass%) from converted to mass ratio of indium oxide (In 2 O 3) and tin oxide (SnO 2). For example, in the case of an ITO target with 90% by mass of indium oxide and 10% by mass of tin oxide as a result of conversion, the theoretical density is (density of In 2 O 3 (g / cm 3 ) × 90 + SnO 2 (g / cm 3 ) × 10) / 100 (g / cm 3 ) The theoretical density of In 2 O 3 is calculated as 7.18 g / cm 3 , the theoretical density of SnO 2 is calculated as 6.95 g / cm 3 , and the theoretical density is calculated as 7.157 (g / cm 3 ). If the constituent element is Zn, the theoretical density of ZnO is calculated as 5.67 g / cm 3 . On the other hand, the measured density is a value obtained by dividing weight by volume. In the case of a sintered body, the volume is calculated by the Archimedes method.

更に、本実施形態に係る透明導電膜形成用ターゲットは、バルク抵抗が0.1〜0.5mΩcmであり、より典型的には0.1〜0.4mΩcmである。バルク抵抗は、四探針法を用いてターゲットのスパッタ面内の中心及び周辺部3点を測定し、その平均値とする。   Furthermore, the target for transparent conductive film formation according to the present embodiment has a bulk resistance of 0.1 to 0.5 mΩcm, and more typically 0.1 to 0.4 mΩcm. The bulk resistance is an average value obtained by measuring the center and three peripheral portions in the sputtering surface of the target using the four-probe method.

本実施形態では、ターゲットの各元素の組成は、例えばICP−MSにより分析することができる。   In the present embodiment, the composition of each element of the target can be analyzed by, for example, ICP-MS.

なお、本実施形態に係る透明導電膜形成用ターゲットは、上記元素以外に、不純物として不可避的不純物を含んでも良い。不可避的不純物とは、原料や製造工程で混入する恐れのある不純物で、本願の特性を損なわない程度に含んでいても良い。なお、代表的な不純物としては、ジルコニウムを200ppm以下で含んでも良い。   In addition, the target for transparent conductive film formation concerning this embodiment may contain an unavoidable impurity as an impurity other than the said element. The inevitable impurities are impurities that may be mixed in the raw material or the manufacturing process, and may be included so as not to impair the characteristics of the present application. As a typical impurity, zirconium may be contained at 200 ppm or less.

(ターゲットの製造方法)
本実施形態に係る透明導電膜形成用ターゲットは、酸化インジウム、酸化スズ及び酸化亜鉛を混合し、Sn/(In+Sn+Zn)=7〜17at%,Zn/(In+Sn+Zn)=0.5〜12at%、スズと亜鉛の原子数比(Sn/Zn)が1.3以上となるように配合し、これを酸素雰囲気中で1300〜1600℃で5〜40時間焼成することにより得ることができる。
(Target manufacturing method)
The transparent conductive film forming target according to the present embodiment is a mixture of indium oxide, tin oxide and zinc oxide, Sn / (In + Sn + Zn) = 7 to 17 at%, Zn / (In + Sn + Zn) = 0.5 to 12 at%, tin. It can be obtained by blending so that the atomic ratio (Sn / Zn) of zinc and zinc is 1.3 or more, and baking this at 1300 to 1600 ° C. for 5 to 40 hours in an oxygen atmosphere.

本実施形態では、酸化インジウム、酸化スズ及び酸化亜鉛の各原料粉を個別粉砕法により個別に粉砕する。「個別粉砕法」とは、具体的には酸化インジウムと酸化スズと酸化亜鉛を各々個別に粉砕して異なる粒径に調整し、その後混合することで最密充填に好適な粒度分布を持たせるものである。最密充填に好適な粒度分布を持たせることで、各原料粉間の接触界面が増え、高い焼結性及び高密度のターゲットを得ることが出来る。   In the present embodiment, each raw material powder of indium oxide, tin oxide and zinc oxide is individually pulverized by an individual pulverization method. The “individual pulverization method” specifically refers to indium oxide, tin oxide, and zinc oxide that are individually pulverized, adjusted to different particle sizes, and then mixed to give a particle size distribution suitable for closest packing. Is. By providing a particle size distribution suitable for close-packing, the contact interface between the raw material powders increases, and a high sinterability and high density target can be obtained.

原料粉の粉砕方法には求める粒度、被粉砕物質に応じて様々な方法があるが、ビーズミル等の湿式媒体攪拌ミルが適している。これは、粉体を水に分散させたスラリーを、硬度の高い材料であるジルコニア、アルミナ等の粉砕媒体と共に強制的に攪拌するものであり、高効率で粉砕粉を得ることが出来る。しかし、この際に粉砕媒体も磨耗するために、粉砕粉に粉砕媒体自身が不純物として混入するので、長時間の処理は好ましくない。   There are various methods for pulverizing the raw material powder depending on the desired particle size and the material to be pulverized, but a wet medium stirring mill such as a bead mill is suitable. In this method, a slurry in which powder is dispersed in water is forcibly stirred together with a grinding medium such as zirconia or alumina, which is a material with high hardness, and a pulverized powder can be obtained with high efficiency. However, since the pulverizing medium is also worn at this time, the pulverizing medium itself is mixed as an impurity in the pulverized powder.

粉砕量を粉砕前後の比表面積の差で定義すれば、湿式媒体攪拌ミルでは粉砕量は粉体に対する投入エネルギーにほぼ比例する。従って、粉砕を行う際には、湿式媒体攪拌ミルは積算電力を管理することが重要である。粉砕前後の比表面積の差(ΔBET)は、各原料粉ともに0.5〜5.0m2/g、粉砕後のメジアン径(D50)は、2.0μm以下とすることができる。 If the pulverization amount is defined by the difference in specific surface area before and after pulverization, the pulverization amount is almost proportional to the input energy to the powder in the wet medium stirring mill. Therefore, when performing pulverization, it is important that the wet medium stirring mill manages the integrated power. The difference in specific surface area (ΔBET) before and after pulverization can be 0.5 to 5.0 m 2 / g for each raw material powder, and the median diameter (D 50 ) after pulverization can be 2.0 μm or less.

個別破砕法により得られる原料粉特性としては、酸化インジウム粉は、かさ密度:0.3〜0.8g/cm3、メジアン径(D50):0.5〜2.5μm、比表面積:3.0〜6.0m2/gのものを使用し、酸化錫粉は、かさ密度:0.2〜0.6g/cm3、メジアン径(D50):1.0〜2.5μm、比表面積:3.0〜6.0m2/g、酸化亜鉛粉は、かさ密度:0.3〜0.6g/cm3、メジアン径(D50):0.3〜2.0μm、比表面積:2.0〜6.0m2/gを使用し、これらを混合した場合に最密充填に好適な粒度分布を持たせるようにする。 As raw material powder characteristics obtained by the individual crushing method, indium oxide powder has a bulk density of 0.3 to 0.8 g / cm 3 , a median diameter (D 50 ) of 0.5 to 2.5 μm, and a specific surface area of 3. 1.0 to 6.0 m 2 / g, tin oxide powder has a bulk density of 0.2 to 0.6 g / cm 3 , a median diameter (D 50 ) of 1.0 to 2.5 μm, a ratio Surface area: 3.0 to 6.0 m 2 / g, zinc oxide powder, bulk density: 0.3 to 0.6 g / cm 3 , median diameter (D 50 ): 0.3 to 2.0 μm, specific surface area: 2.0 to 6.0 m 2 / g is used, and when these are mixed, a particle size distribution suitable for closest packing is provided.

次に、微粉砕したスラリーの造粒を行う。これは、造粒により粉体の流動性を向上させることで、次工程のプレス成型時に粉体を均一に金型へ充填し、均質な成形体を得るためである。造粒には様々な方式があるが、プレス成型に適した造粒粉を得る方法の一つに、噴霧式乾燥装置(スプレードライヤー)を用いる方法がある。これは粉体をスラリーとして、熱風中に液滴として分散させ、瞬間的に乾燥させる方法であり、10〜500μmの球状の造粒粉を連続的に得ることが出来る。   Next, the finely pulverized slurry is granulated. This is because by improving the fluidity of the powder by granulation, the powder is uniformly filled in the mold at the time of press molding in the next step, and a homogeneous molded body is obtained. There are various types of granulation, and one method for obtaining granulated powder suitable for press molding is a method using a spray-type drying device (spray dryer). This is a method in which powder is dispersed as slurry in hot air and dried instantaneously, and a spherical granulated powder of 10 to 500 μm can be continuously obtained.

また、スラリー中にポリビニルアルコール(PVA)等のバインダーを添加し造粒粉中に含有させることで、成形体強度を向上させることが出来る。例えば、PVA4〜10wt%含有水溶液を原料粉に対して50〜250cc/kg添加する。   Moreover, a molded object intensity | strength can be improved by adding binders, such as polyvinyl alcohol (PVA), in a slurry, and making it contain in granulated powder. For example, 50 to 250 cc / kg of an aqueous solution containing 4 to 10 wt% PVA is added to the raw material powder.

さらに、バインダーに適した可塑剤も添加することで、プレス成型時の造粒粉の圧壊強度を調節することも出来る。また、得られた造粒粉に、少量の水を添加し湿潤させることで成形体強度を向上する方法もある。スプレードライヤーによる乾燥では熱風の入口温度、および出口温度の管理が重要である。   Furthermore, the crushing strength of the granulated powder during press molding can be adjusted by adding a plasticizer suitable for the binder. There is also a method for improving the strength of the molded body by adding a small amount of water to the obtained granulated powder and moistening it. In drying with a spray dryer, it is important to control the inlet temperature and outlet temperature of hot air.

入口と出口との温度差が大きければ単位時間当たりの乾燥量が増加し生産性が向上するが、入口温度が高すぎる場合には粉体、および添加したバインダーが熱により変質し、望まれる特性が得られない場合がある。また、出口温度が低すぎる場合は造粒粉が十分に乾燥されない場合がある。   If the temperature difference between the inlet and outlet is large, the amount of drying per unit time will increase and the productivity will improve, but if the inlet temperature is too high, the powder and added binder will change in quality due to heat, and the desired characteristics May not be obtained. In addition, when the outlet temperature is too low, the granulated powder may not be sufficiently dried.

次に、プレス成型を行う。造粒粉を金型に充填し、400〜1000kgf/cm2の圧力を、1〜3分間保持して成形する。圧力400kgf/cm2未満であると、充分な強度と密度の成形体を得ることができず、また圧力1000kgf/cm2を超えると、成形体を金型から取り出す際に、成形体自身が圧力から解放されることによる変形のため破壊される場合があり、生産上好ましくない場合がある。 Next, press molding is performed. The granulated powder is filled into a mold, and molded by holding a pressure of 400 to 1000 kgf / cm 2 for 1 to 3 minutes. If the pressure is less than 400 kgf / cm 2 , a molded body having sufficient strength and density cannot be obtained. If the pressure exceeds 1000 kgf / cm 2 , the molded body itself is pressurized when taken out from the mold. May be destroyed due to deformation caused by being released from, and may be undesirable in production.

その後、電気炉を使用し、酸素雰囲気中で成形体を焼結し、焼結体を得る。焼結温度は1300〜1600℃で焼結する。この場合、焼結温度が1600℃を超えると、焼結体の組織が単相となってしまい、結晶粒径も粗大化してしまうため、上限は1600℃とすることが望ましい。焼結温度までの昇温途中で、必要に応じて脱バインダー工程等を導入しても良い。1300℃未満で焼結すると、抵抗の高い他の結晶が形成される場合や、ターゲットの相対密度が低下し、アーキングやパーティクルの発生頻度が高くなる場合がある。   Thereafter, the compact is sintered in an oxygen atmosphere using an electric furnace to obtain a sintered body. Sintering temperature is 1300-1600 degreeC. In this case, if the sintering temperature exceeds 1600 ° C., the structure of the sintered body becomes a single phase and the crystal grain size becomes coarse, so the upper limit is preferably set to 1600 ° C. A binder removal step or the like may be introduced as needed during the temperature rise to the sintering temperature. When sintering at less than 1300 ° C., other crystals with high resistance may be formed, or the relative density of the target may be reduced, and arcing and particle generation frequency may increase.

焼結温度における保持時間が5時間より短いと、焼結が充分進まず、焼結体の密度が充分高くならなかったり、焼結体が反ってしまったりする。保持時間が40時間を越えても、不必要なエネルギーと時間を要する無駄が生じて生産上好ましくない場合がある。   If the holding time at the sintering temperature is shorter than 5 hours, the sintering does not proceed sufficiently, and the density of the sintered body does not increase sufficiently, or the sintered body warps. Even if the holding time exceeds 40 hours, unnecessary energy and time is wasted, which may be undesirable in production.

上記焼結によって得られた焼結体を所定の形状にカットすることにより、本実施形態に係る透明導電膜用ターゲットが得られる。従来は数十〜数百μmオーダーのパーティクルを問題視し、これを抑制する対策が講じられてきたが、本発明によれば、原料粉を個別粉砕して最密充填に好適な粒度分布を持たせるようにすることによって、従来よりもターゲットの相対密度が向上し、粒径の小さいパーティクル、特に1.0〜3.0μmの微細なパーティクルの発生を100個/hr程度に抑制することができる。これにより、従来のディスプレイ製造においては問題にならなかった程度の微細なパーティクルの発生を抑制することができ、従来求められてきたものよりも更に高品質なITO膜の製造に適した透明導電膜形成用ターゲットが提供できる。   The transparent conductive film target according to the present embodiment is obtained by cutting the sintered body obtained by the sintering into a predetermined shape. Conventionally, the problem of particles of the order of several tens to several hundreds of μm has been taken, and measures to suppress this have been taken, but according to the present invention, the raw material powder is individually pulverized to provide a particle size distribution suitable for closest packing. By making it have, the relative density of the target is improved as compared with the conventional case, and generation of particles having a small particle diameter, particularly fine particles of 1.0 to 3.0 μm, can be suppressed to about 100 particles / hr. it can. As a result, it is possible to suppress the generation of fine particles that have not been a problem in conventional display manufacturing, and a transparent conductive film suitable for manufacturing a higher quality ITO film than what has been required in the past. A forming target can be provided.

(透明導電膜)
本実施形態に係る透明導電膜は、Sn/(In+Sn+Zn)=7〜17at%,Zn/(In+Sn+Zn)=0.5〜12at%、スズと亜鉛の原子数比(Sn/Zn)が1.3以上であり、本実施形態に係る透明導電膜形成用ターゲットをスパッタリングすることで形成することができる。
(Transparent conductive film)
The transparent conductive film according to this embodiment has Sn / (In + Sn + Zn) = 7 to 17 at%, Zn / (In + Sn + Zn) = 0.5 to 12 at%, and the atomic ratio of tin to zinc (Sn / Zn) is 1.3. As described above, the transparent conductive film forming target according to this embodiment can be formed by sputtering.

本実施形態に係る透明電極膜を製造するためのスパッタリング法及びスパッタリング条件は、特定の方法に限定されるものではなく、用途、目的に応じて適宜変更しても良い。   The sputtering method and sputtering conditions for producing the transparent electrode film according to the present embodiment are not limited to specific methods, and may be appropriately changed according to the use and purpose.

以下に制限されるものではないが、基板への成膜条件は、例えば、スパッタ圧力を0.6Paとし、導入ガスをArとO2からなる混合ガス(O2分圧が0〜3%)とし、直流電力2〜3W/cm2条件でスパッタリングを行うことが好ましい。 Although not limited to the following, film formation conditions on the substrate are, for example, a sputtering pressure of 0.6 Pa, and a mixed gas composed of Ar and O 2 (O 2 partial pressure is 0 to 3%). And sputtering is preferably performed under the condition of DC power of 2 to 3 W / cm 2 .

従来のITO膜は一般に、ITO焼結体をターゲットとして用いるスパッタ成膜法により製造されるが、スパッタにより得られるITO膜の一部が結晶化する場合がある。そのため、成膜したITO膜をエッチングして回路や電極を形成する際に、結晶化した膜の一部が、いわゆるエッチング残渣として残り、配線ショート等の問題を引き起こす場合がある。   Conventional ITO films are generally manufactured by a sputtering film forming method using an ITO sintered body as a target, but a part of the ITO film obtained by sputtering may crystallize. For this reason, when the formed ITO film is etched to form a circuit or an electrode, a part of the crystallized film remains as a so-called etching residue, which may cause problems such as a wiring short circuit.

このため、成膜した薄膜が非晶質として安定であることが望まれてきた。本発明のスパッタリングターゲットをスパッタリングして得られる薄膜は、従来のITO膜よりも安定な非晶質膜を提供することができる。   For this reason, it has been desired that the formed thin film is stable as amorphous. The thin film obtained by sputtering the sputtering target of the present invention can provide an amorphous film that is more stable than the conventional ITO film.

従来のITOでは、成膜時に無加熱の基板にスパッタリングすることにより、非晶質の透明導電膜が形成される。この薄膜を熱処理することで結晶化させるが、ITOの結晶化温度は約150℃であり、熱処理前のプロセス(スパッタリングを含む)で一部結晶化してしまうことがある。本発明で得られる薄膜は、この結晶化温度がITO膜よりも高いことを特徴とする。すなわち、スパッタリングを含む薄膜生成プロセスにおいて、ITOよりも結晶化が抑制されている。そのため、成膜後のエッチングにおいて、残渣の発生を抑制しつつ、熱処理によって抵抗値を適切な範囲に下げることができる。   In conventional ITO, an amorphous transparent conductive film is formed by sputtering on an unheated substrate during film formation. This thin film is crystallized by heat treatment, but the crystallization temperature of ITO is about 150 ° C. and may be partially crystallized in the process (including sputtering) before the heat treatment. The thin film obtained by the present invention is characterized in that the crystallization temperature is higher than that of the ITO film. That is, crystallization is suppressed as compared with ITO in a thin film generation process including sputtering. Therefore, in etching after film formation, the resistance value can be lowered to an appropriate range by heat treatment while suppressing generation of residues.

本発明の非晶質の透明導電膜は、上記スパッタリングターゲットを無加熱の基板に上述したような所定の条件でスパッタすることにより得られる。得られた非晶質膜は、結晶化温度が従来のITOよりも高い180〜230℃を有する。この非晶質の透明導電膜をエッチング後、結晶化温度以上の温度で熱処理して結晶化させることにより、低抵抗の結晶質の透明導電膜を形成することができる。なお、本実施形態において「結晶化温度」とは、100℃〜300℃の範囲で10℃刻みに各温度で30分間熱処理し、成膜直後の非晶質状態での抵抗率R0に対し、各温度で熱処理後に測定した抵抗率R1の関係が、0.5>R1/R0となる最も低い熱処理温度とする。即ち、結晶化温度とは、成膜直後の膜の抵抗値の1/2以下となる温度で、10℃刻みの各温度のうち、最も低い温度を意味する。この透明導電膜は、配線、電極、液晶ディスプレイ基板などの電子部品の一部を構成することができ、これらを用いて電子機器を製造することができる。加熱後の薄膜が結晶膜であることはXRDにて確認できる。すなわち、上記の結晶化温度で製膜した時のIn23に相当する角度のピークと同等以上のピーク強度があれば結晶質膜と判断可能である。ピークは歪などでのピークシフトを考慮し、ICDDカードを参照し、±0.2°付近の最大のピークをピークとして採用する。薄膜であるため、測定が困難な場合は、XRDに限らず、TEMなどで直接観察することでも対応可能である。 The amorphous transparent conductive film of the present invention can be obtained by sputtering the sputtering target on a non-heated substrate under the predetermined conditions as described above. The obtained amorphous film has a crystallization temperature of 180 to 230 ° C. higher than that of conventional ITO. After this amorphous transparent conductive film is etched, it is crystallized by heat treatment at a temperature equal to or higher than the crystallization temperature, whereby a low-resistance crystalline transparent conductive film can be formed. In the present embodiment, the “crystallization temperature” refers to the resistivity R0 in the amorphous state immediately after film formation by performing heat treatment at 10 ° C. for 30 minutes in the range of 100 ° C. to 300 ° C. The relationship of resistivity R1 measured after heat treatment at each temperature is the lowest heat treatment temperature at which 0.5> R1 / R0. In other words, the crystallization temperature is a temperature that is ½ or less of the resistance value of the film immediately after film formation, and means the lowest temperature among the temperatures in increments of 10 ° C. This transparent conductive film can constitute a part of electronic components such as wiring, electrodes, and a liquid crystal display substrate, and electronic devices can be manufactured using these. It can be confirmed by XRD that the thin film after heating is a crystalline film. That is, if there is a peak intensity equal to or greater than the peak of the angle corresponding to In 2 O 3 when the film is formed at the above crystallization temperature, it can be determined as a crystalline film. In consideration of the peak shift due to distortion or the like, the peak is referred to the ICDD card, and the maximum peak near ± 0.2 ° is adopted as the peak. Since it is a thin film, when measurement is difficult, not only XRD but also direct observation with a TEM or the like can be used.

本発明の実施の形態に係る透明導電膜は、抵抗率(シート抵抗値)が0.1〜0.5mΩcmであり、より典型的には、0.1〜0.3mΩcmであり、更に典型的には0.2〜0.3mΩcmである。この抵抗値は、非晶質の透明導電膜を結晶化温度以上で熱処理して結晶化させた後の膜の抵抗値を指す。   The transparent conductive film according to the embodiment of the present invention has a resistivity (sheet resistance value) of 0.1 to 0.5 mΩcm, more typically 0.1 to 0.3 mΩcm, and more typically. Is 0.2 to 0.3 mΩcm. This resistance value refers to the resistance value of the film after the amorphous transparent conductive film is crystallized by heat treatment at a temperature equal to or higher than the crystallization temperature.

以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。   Examples of the present invention will be described below together with comparative examples, but these examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the invention.

比表面積5m2/gのインジウム化合物、スズ化合物及び亜鉛化合物を、表1に示す含有量及びSn/Zn組成比に秤量し、個別に粉砕し、粉砕により得られた混合粉を500kgf/cm2でプレス成形して成形体を作製した。得られた成形体に対し、酸素または大気雰囲気で、表1の焼結温度で5〜40時間焼結して、実施例1〜8及び比較例1〜6に係る透明導電膜用ターゲットを作製した。なお、実施例4のみ大気雰囲気で焼結し、その他は全て酸素雰囲気で焼結した。実施例1〜8に係る透明導電膜用ターゲットの原料混合時の組成、ターゲット分析値、XRDピーク強度比、製造条件及びスパッタリング特性(パーティクル、アーキング特性、結晶化温度、抵抗率)を評価した。 An indium compound, a tin compound and a zinc compound having a specific surface area of 5 m 2 / g are weighed to the contents and Sn / Zn composition ratios shown in Table 1, individually pulverized, and the mixed powder obtained by the pulverization is 500 kgf / cm 2. A molded body was produced by press molding. The obtained molded body was sintered in oxygen or air atmosphere at the sintering temperature shown in Table 1 for 5 to 40 hours to produce targets for transparent conductive films according to Examples 1 to 8 and Comparative Examples 1 to 6. did. Note that only Example 4 was sintered in an air atmosphere, and the others were all sintered in an oxygen atmosphere. The composition, target analysis value, XRD peak intensity ratio, production conditions, and sputtering characteristics (particles, arcing characteristics, crystallization temperature, resistivity) of the transparent conductive film targets according to Examples 1 to 8 were evaluated.

なお、実施例1〜8、比較例1〜4は各原料粉に対して、酸化インジウム粉をメジアン径(D50)0.2〜2.0μm、酸化錫粉をメジアン径(D50)0.1〜1.5μm、酸化亜鉛粉をメジアン径(D50)0.05〜1.0μmとなるよう個別に粉砕を行って、各原料配合に混合した。比較例5、6は個別粉砕を行わず、原料混合後にメジアン径(D50)2.0μm以下となるよう粉砕し、造粒を行った。 In Examples 1 to 8 and Comparative Examples 1 to 4, the indium oxide powder is median diameter (D 50 ) 0.2 to 2.0 μm, and the tin oxide powder is median diameter (D 50 ) 0 for each raw material powder. 0.1 to 1.5 μm, and zinc oxide powder were individually pulverized so as to have a median diameter (D 50 ) of 0.05 to 1.0 μm, and mixed with each raw material mixture. In Comparative Examples 5 and 6, the individual pulverization was not performed, but after mixing the raw materials, the median diameter (D 50 ) was pulverized to 2.0 μm or less and granulated.

実施例及び比較例においてターゲットの各元素は原料組成に基づいて記載した。ターゲットの相対密度は、既に説明したように、相対密度は、アルキメデス法により、相対密度=(測定密度/理論密度)×100(%)で算出した。ターゲットの抵抗率は、四探針法による任意の3点を測定した場合の平均値を用いた。   In the examples and comparative examples, each element of the target was described based on the raw material composition. As described above, the relative density of the target was calculated by the Archimedes method with relative density = (measured density / theoretical density) × 100 (%). As the target resistivity, an average value obtained by measuring three arbitrary points by the four-probe method was used.

XRD測定によるSn3In412/In23のピーク強度比は、BRUKER製の全自動多目的X線回折装置(型式:D8−ADVANCE)を使用し、測定試料を100μm以下の粉末状にし、粉末X線回折法を用いて、X線回折プロファイルを得た。得られたX線回折プロファイルにKα2除去などのデータ処理を施した後、ICDDのPDFを用いて、結晶相の同定を行った。Sn3In412結晶相は2θ=23.9°付近より、In23結晶相は2θ=21.5°付近よりピーク強度を読み取って、Sn3In412/In23のピーク強度比を求めた。上記全自動多目的X線回折装置による測定は、管電圧:40kV、管電流:30mA、スキャンスピード:5°/min、ステップ:0.02°とする。実際のピークは歪等によるピークシフトが起こることがあるため、ICDDカードを参照し、±0.2°付近の最大のピークをピークとして採用した。バックグラウンドの除去は行わなかった。 The peak intensity ratio of Sn 3 In 4 O 12 / In 2 O 3 by XRD measurement is a fully automatic multipurpose X-ray diffractometer (model: D8-ADVANCE) manufactured by BRUKER, and the measurement sample is made into a powder of 100 μm or less. An X-ray diffraction profile was obtained using powder X-ray diffraction. The obtained X-ray diffraction profile was subjected to data processing such as Kα2 removal, and then the crystal phase was identified using ICDD PDF. The Sn 3 In 4 O 12 crystal phase reads the peak intensity from around 2θ = 23.9 °, while the In 2 O 3 crystal phase reads the peak intensity from around 2θ = 21.5 °, and Sn 3 In 4 O 12 / In 2 O 3 The peak intensity ratio was determined. The measurement by the fully automatic multipurpose X-ray diffractometer is set to tube voltage: 40 kV, tube current: 30 mA, scan speed: 5 ° / min, step: 0.02 °. Since an actual peak may cause a peak shift due to distortion or the like, the ICDD card was referred to, and the maximum peak near ± 0.2 ° was adopted as the peak. No background removal was performed.

スパッタリング評価について、パーティクルの発生状況とアーキング特性を評価した。パーティクルの粒径及び発生個数は、チャンバー内に設置したウィックス社製パーティクルモニターで1.0〜3.0μm粒子の発生個数を測定した。アーキング特性累積回数は、ランドマークテクノロジー社製マイクロアークモニターにて、アーキング発生回数を測定した。 アーキングの判定基準は、検出電圧100V以上、放出エネルギー(アーク放電が発生している時のスパッタ電圧×スパッタ電流×発生時間)が20mJ以下のアーキングをカウントした。成膜条件は、スパッタ圧力を0.6Paとし、導入ガスをアルゴンと酸素とからなる混合ガス(酸素分圧1%)とし、直流電力2.3W/cm2としてスパッタリングを行い、透明導電膜を作製した。表1中「結晶化温度」とは、100℃〜300℃の範囲で10℃刻みに各温度で30分間熱処理し、成膜直後の非晶質状態での抵抗率R0に対し、各温度で熱処理後に測定した抵抗率R1の関係が、0.5>R1/R0となる最も低い熱処理温度を示す。透明導電膜の抵抗率は、比較例1は成膜後220℃、その他の実施例及び比較例は成膜後250℃で熱処理した後に、四端子法により測定した場合の抵抗率(シート抵抗)を測定したものである。熱処理温度は各実施例、比較例の抵抗率が最も低くなる温度もしくはその近傍の温度を選定した。なお、比較例1は、通常のITOであり、結晶化温度が本発明よりも低いため、膜の抵抗率測定前の熱処理温度も低くした。測定結果を表1に示す。 Regarding sputtering evaluation, the generation state of particles and arcing characteristics were evaluated. The particle diameter and the number of generated particles were determined by measuring the number of generated particles of 1.0 to 3.0 μm with a particle monitor manufactured by Wick Corp. installed in the chamber. The cumulative number of arcing characteristics was determined by measuring the number of arcing occurrences with a micro arc monitor manufactured by Landmark Technology. The arcing criteria were as follows: arcing with a detection voltage of 100 V or more and emission energy (sputtering voltage when sputtering occurred × sputtering current × generation time) of 20 mJ or less was counted. The film forming conditions are as follows: the sputtering pressure is 0.6 Pa, the introduced gas is a mixed gas composed of argon and oxygen (oxygen partial pressure 1%), the direct current power is 2.3 W / cm 2 , and sputtering is performed. Produced. In Table 1, “crystallization temperature” means heat treatment at a temperature of 30 ° C. for 30 minutes in the range of 100 ° C. to 300 ° C., and at each temperature relative to the resistivity R0 in the amorphous state immediately after film formation. The relationship of the resistivity R1 measured after the heat treatment indicates the lowest heat treatment temperature at which 0.5> R1 / R0. The resistivity of the transparent conductive film is 220 ° C. after film formation in Comparative Example 1, and the resistivity (sheet resistance) measured by the four-terminal method after heat treatment at 250 ° C. after film formation in the other examples and comparative examples. Is measured. As the heat treatment temperature, a temperature at which the resistivity of each of the examples and the comparative examples was lowest or a temperature in the vicinity thereof was selected. In addition, since the comparative example 1 is normal ITO and crystallization temperature is lower than this invention, the heat processing temperature before the resistivity measurement of a film | membrane was also made low. The measurement results are shown in Table 1.

Figure 0006159867
Figure 0006159867

インジウム、スズ及び亜鉛の組成及びSn/Zn比を適切な範囲内に調整し、焼結温度1300〜1600℃の範囲内で実施した実施例1〜8では、XRD測定によるSn3In412/In23のピーク強度比がいずれも0.10以下であり、アーキング特性累積回数が少なく、粒径1.0〜3.0μmのパーティクル数も少なく、相対密度も97%以上と高い。 In Examples 1 to 8 in which the composition of indium, tin and zinc and the Sn / Zn ratio were adjusted within an appropriate range and the sintering temperature was within a range of 1300 to 1600 ° C., Sn 3 In 4 O 12 by XRD measurement was used. The peak intensity ratio of / In 2 O 3 is 0.10 or less, the number of arcing characteristics is small, the number of particles having a particle size of 1.0 to 3.0 μm is small, and the relative density is as high as 97% or more.

一方、インジウム、スズ及び亜鉛の組成が適切な範囲外である比較例1及び比較例2では、XRD測定によるSn3In412/In23のピーク強度比が0.10よりも大きくなり、アーキング特性累積回数もパーティクル発生数も多くなった。比較例3は、Sn/Zn組成比が適切な範囲外であり、アーキング特性累積回数もパーティクル発生数も多くなり、抵抗率も高くなった。比較例4〜6は、原料粉の個別粉砕を行わなかった例であるが、アーキングの特性累積回数も多くなり、パーティクル発生数も増大した。比較例6は、原料組成及び組成比は満たすものの、粉砕方法が適切でなかったため、アーキング特性累積回数もパーティクル発生数も多くなり、相対密度も93%と低かった。 On the other hand, in Comparative Example 1 and Comparative Example 2 in which the compositions of indium, tin and zinc are outside the appropriate range, the peak intensity ratio of Sn 3 In 4 O 12 / In 2 O 3 by XRD measurement is larger than 0.10. As a result, the number of arcing characteristics accumulated and the number of particles generated increased. In Comparative Example 3, the Sn / Zn composition ratio was outside the appropriate range, the number of accumulated arcing characteristics and the number of particles generated increased, and the resistivity increased. Comparative Examples 4 to 6 are examples in which individual pulverization of the raw material powder was not performed, but the number of arcing characteristics accumulated increased and the number of particles generated increased. In Comparative Example 6, although the raw material composition and the composition ratio were satisfied, the pulverization method was not appropriate, so the number of arcing characteristics accumulated and the number of particles generated increased, and the relative density was as low as 93%.

Claims (7)

In、Sn、Zn、Oを含み、Sn/(In+Sn+Zn)=7〜17at%Zn/(In+Sn+Zn)=0.5〜12at%、SnとZnの原子数比(Sn/Zn)が1.3以上であり、且つXRD測定によるIn23結晶相に対するSn3In412結晶相のピーク強度比(Sn3In412/In23)が0.10以下であり、相対密度が97%以上であり、バルク抵抗が0.1〜0.5mΩcmである透明導電膜形成用ターゲット。 In / Sn / Zn / O, Sn / (In + Sn + Zn) = 7 to 17 at% , Zn / (In + Sn + Zn) = 0.5 to 12 at%, Sn / Zn atomic ratio (Sn / Zn) is 1.3 The peak intensity ratio (Sn 3 In 4 O 12 / In 2 O 3 ) of the Sn 3 In 4 O 12 crystal phase to the In 2 O 3 crystal phase by XRD measurement is 0.10 or less, and the relative density der is, the transparent conductive film forming target bulk resistance Ru 0.1~0.5mΩcm der but more than 97%. バルク抵抗が0.1〜0.4mΩcmである請求項に記載の透明導電膜形成用ターゲット。 The target for forming a transparent conductive film according to claim 1 , wherein the bulk resistance is 0.1 to 0.4 mΩcm. 酸化インジウム、酸化スズ及び酸化亜鉛を個別に粉砕した後、Sn/(In+Sn+Zn)=7〜17at%Zn/(In+Sn+Zn)=0.5〜12at%、かつSnとZnの原子数比(Sn/Zn)が1.3以上となるように配合し、
これを酸素雰囲気中で1300〜1600℃で5〜40時間焼成することにより、
In、Sn、Zn、Oを含み、XRD測定によるIn23結晶相に対するSn3In412結晶相のピーク強度比(Sn3In412/In23)が0.10以下である透明導電膜形成用ターゲットを得ることを含む透明導電膜形成用ターゲットの製造方法。
After individually pulverizing indium oxide, tin oxide and zinc oxide, Sn / (In + Sn + Zn) = 7 to 17 at% , Zn / (In + Sn + Zn) = 0.5 to 12 at%, and the atomic ratio of Sn and Zn (Sn / Zn) is blended so as to be 1.3 or more,
By baking this at 1300 to 1600 ° C. for 5 to 40 hours in an oxygen atmosphere,
The peak intensity ratio (Sn 3 In 4 O 12 / In 2 O 3 ) of the Sn 3 In 4 O 12 crystal phase to the In 2 O 3 crystal phase by XRD measurement is 0.10 or less, including In, Sn, Zn, and O The manufacturing method of the target for transparent conductive film formation including obtaining the target for transparent conductive film formation which is.
請求項1又は2に記載の透明導電膜形成用ターゲットを用いてスパッタリングすることにより形成される非晶質の透明導電膜の製造方法 The manufacturing method of the amorphous transparent conductive film formed by sputtering using the target for transparent conductive film formation of Claim 1 or 2 . 請求項1又は2に記載の透明導電膜形成用ターゲットをスパッタリングして非晶質の透明導電膜を形成し、前記非晶質の透明導電膜をエッチング後、結晶化温度以上で熱処理して結晶化させることにより、結晶質の透明導電膜を形成することを含む透明導電膜の製造方法。 A transparent conductive film forming target according to claim 1 or 2 is sputtered to form an amorphous transparent conductive film, and the amorphous transparent conductive film is etched and then heat-treated at a crystallization temperature or higher to form a crystal. A method for producing a transparent conductive film, comprising forming a crystalline transparent conductive film by forming a transparent conductive film. 結晶化温度が180〜230℃である請求項5に記載の透明導電膜の製造方法The method for producing a transparent conductive film according to claim 5, wherein the crystallization temperature is 180 to 230 ° C. 結晶質の透明導電膜の抵抗率が0.1〜0.5mΩcmである請求項5又は6に記載の透明導電膜の製造方法 The method for producing a transparent conductive film according to claim 5 or 6, wherein the resistivity of the crystalline transparent conductive film is 0.1 to 0.5 mΩcm.
JP2016250119A 2016-12-22 2016-12-22 Transparent conductive film forming target, transparent conductive film forming target manufacturing method, and transparent conductive film manufacturing method Active JP6159867B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016250119A JP6159867B1 (en) 2016-12-22 2016-12-22 Transparent conductive film forming target, transparent conductive film forming target manufacturing method, and transparent conductive film manufacturing method
CN201711341245.0A CN108220893B (en) 2016-12-22 2017-12-14 Target for forming transparent conductive film, method for producing same, transparent conductive film, and method for producing same
TW106144010A TWI644867B (en) 2016-12-22 2017-12-14 Target for forming transparent conductive film and manufacturing method thereof, transparent conductive film and manufacturing method thereof
KR1020170177830A KR102089842B1 (en) 2016-12-22 2017-12-22 Target for forming transparent conductive film, transparent conductive film, method of manufacturing target for forming transparent conductive film and method of manufacturing transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016250119A JP6159867B1 (en) 2016-12-22 2016-12-22 Transparent conductive film forming target, transparent conductive film forming target manufacturing method, and transparent conductive film manufacturing method

Publications (2)

Publication Number Publication Date
JP6159867B1 true JP6159867B1 (en) 2017-07-05
JP2018104743A JP2018104743A (en) 2018-07-05

Family

ID=59272925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016250119A Active JP6159867B1 (en) 2016-12-22 2016-12-22 Transparent conductive film forming target, transparent conductive film forming target manufacturing method, and transparent conductive film manufacturing method

Country Status (4)

Country Link
JP (1) JP6159867B1 (en)
KR (1) KR102089842B1 (en)
CN (1) CN108220893B (en)
TW (1) TWI644867B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6637948B2 (en) * 2017-11-27 2020-01-29 Jx金属株式会社 IZO target and method for manufacturing the same
TWI818210B (en) * 2020-11-30 2023-10-11 光洋應用材料科技股份有限公司 Indium zinc tin oxide sputtering target and its conductive film
TWI813161B (en) * 2022-01-28 2023-08-21 光洋應用材料科技股份有限公司 Indium-tin-oxide film, preparation method thereof and light absorption element comprising the same
WO2023189870A1 (en) * 2022-03-29 2023-10-05 出光興産株式会社 Sputtering target, method for producing sputtering target, oxide thin film, thin film transistor, and electronic device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063649A (en) * 2005-09-01 2007-03-15 Idemitsu Kosan Co Ltd Sputtering target, and transparent electrically conductive film
JP3961172B2 (en) * 1999-11-26 2007-08-22 アルプス電気株式会社 Oxide transparent conductive film, oxide transparent conductive film forming target, substrate manufacturing method, electronic apparatus, and liquid crystal display device provided with previous oxide transparent conductive film
JP2009537426A (en) * 2006-05-18 2009-10-29 イドロ−ケベック Ceramic preparation process, the ceramic thus obtained and its use as a sputtering target in particular
JP2011190542A (en) * 1999-11-25 2011-09-29 Idemitsu Kosan Co Ltd Sputtering target, transparent conductive oxide, and method for producing the sputtering target
JP4947942B2 (en) * 2005-09-20 2012-06-06 出光興産株式会社 Sputtering target
JP2013256425A (en) * 2012-06-14 2013-12-26 Sumitomo Metal Mining Co Ltd Tin oxide powder for ito sputtering target, method of manufacturing mixed powder of tin oxide and indium oxide for ito sputtering target, and sintered body for ito sputtering target
JP2014015680A (en) * 2012-07-10 2014-01-30 Solar Applied Materials Technology Corp Sputtering target and metal oxide thin film obtained thereby
JP2014152353A (en) * 2013-02-06 2014-08-25 Sumitomo Metal Mining Co Ltd Indium oxide based sintered body and method for manufacturing the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4947942B1 (en) 1969-09-20 1974-12-18
JP2000195101A (en) * 1998-12-28 2000-07-14 Japan Energy Corp Optical disk protective film and sputtering target for formation of that protective film
TWI269817B (en) * 1999-11-25 2007-01-01 Idemitsu Kosan Co Sputtering target, transparent conductive oxide, and process for producing the sputtering target
JP4646415B2 (en) * 2001-02-08 2011-03-09 株式会社倉元製作所 Ag-based thin film
US7897067B2 (en) * 2003-05-20 2011-03-01 Idemitsu Kosan Co., Ltd. Amorphous transparent conductive film, sputtering target as its raw material, amorphous transparent electrode substrate, process for producing the same and color filter for liquid crystal display
KR101335794B1 (en) * 2005-01-12 2013-12-02 이데미쓰 고산 가부시키가이샤 TFT SUBSTRATE AND PRODUCTION METHOD THEREFOR, AND TRANSPARENT CONDUCTIVE FILM LAMINATE SUBSTRATE PROVIDED WITH Al WIRING AND PRODUCTION METHOD THEREFOR, AND TRANSPARENT CONDUCTIVE FILM LAMINATE CIRCUIT BOARD PROVIDED WITH Al WIRING AND PRODUCTION METHOD THEREFOR, AND OXIDE TRANSPARENT CONDUCTIVE FILM MATERIAL
JP4761868B2 (en) * 2005-07-27 2011-08-31 出光興産株式会社 Sputtering target, manufacturing method thereof and transparent conductive film
KR101211747B1 (en) * 2005-09-22 2012-12-12 이데미쓰 고산 가부시키가이샤 Oxide material and sputtering target
CN101331095A (en) * 2005-12-13 2008-12-24 出光兴产株式会社 Sintered body for vacuum deposition
JP2010070410A (en) * 2008-09-17 2010-04-02 Idemitsu Kosan Co Ltd Method for producing oxide sintered compact
JP2010070409A (en) * 2008-09-17 2010-04-02 Idemitsu Kosan Co Ltd Method for producing oxide sintered compact

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011190542A (en) * 1999-11-25 2011-09-29 Idemitsu Kosan Co Ltd Sputtering target, transparent conductive oxide, and method for producing the sputtering target
JP3961172B2 (en) * 1999-11-26 2007-08-22 アルプス電気株式会社 Oxide transparent conductive film, oxide transparent conductive film forming target, substrate manufacturing method, electronic apparatus, and liquid crystal display device provided with previous oxide transparent conductive film
JP2007063649A (en) * 2005-09-01 2007-03-15 Idemitsu Kosan Co Ltd Sputtering target, and transparent electrically conductive film
JP4947942B2 (en) * 2005-09-20 2012-06-06 出光興産株式会社 Sputtering target
JP2009537426A (en) * 2006-05-18 2009-10-29 イドロ−ケベック Ceramic preparation process, the ceramic thus obtained and its use as a sputtering target in particular
JP2013256425A (en) * 2012-06-14 2013-12-26 Sumitomo Metal Mining Co Ltd Tin oxide powder for ito sputtering target, method of manufacturing mixed powder of tin oxide and indium oxide for ito sputtering target, and sintered body for ito sputtering target
JP2014015680A (en) * 2012-07-10 2014-01-30 Solar Applied Materials Technology Corp Sputtering target and metal oxide thin film obtained thereby
JP2014152353A (en) * 2013-02-06 2014-08-25 Sumitomo Metal Mining Co Ltd Indium oxide based sintered body and method for manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A. AMBROSINI ET AL.: "Zinc Doping in Cosubstituted In2-2xSnxZnxO3-δ", CHEMISTRY OF MATERIALS, vol. vol. 14 (2002), JPN6017002768, 13 December 2001 (2001-12-13), pages pp. 58-63 *

Also Published As

Publication number Publication date
CN108220893B (en) 2020-11-20
CN108220893A (en) 2018-06-29
JP2018104743A (en) 2018-07-05
KR20180073507A (en) 2018-07-02
TWI644867B (en) 2018-12-21
KR102089842B1 (en) 2020-03-16
TW201823160A (en) 2018-07-01

Similar Documents

Publication Publication Date Title
JP5625907B2 (en) Composite oxide sintered body, composite oxide sintered body manufacturing method, sputtering target, and thin film manufacturing method
JP6159867B1 (en) Transparent conductive film forming target, transparent conductive film forming target manufacturing method, and transparent conductive film manufacturing method
JP5349587B2 (en) Indium oxide sintered body, indium oxide transparent conductive film, and method for producing the transparent conductive film
JP6291593B2 (en) ITO sputtering target, manufacturing method thereof, and manufacturing method of ITO transparent conductive film
KR20190019104A (en) Indium zinc oxide (izo) based sputtering target, and method for producing same
JP6078189B1 (en) IZO sintered compact sputtering target and manufacturing method thereof
KR20120108062A (en) Amorphous composite oxide film,crystalline composite oxide film,process for producing amorphous composite oxide film,process for producing crystalline composite oxide film,and composite oxide sinter
KR101099414B1 (en) Oxide sintered compact for producing transparent conductive film
WO2010021274A1 (en) Sintered complex oxide, method for producing sintered complex oxide, sputtering target, and method for producing thin film
JP2010185129A (en) METHOD FOR MANUFACTURING ZnO VAPOR DEPOSITION MATERIAL
CN110317053B (en) Sputtering target member and method for producing same
JP2017014535A (en) Sputtering target and production method thereof
JP2020164957A (en) Sputtering target and manufacturing method of sputtering target
JP2023124649A (en) Sputtering target member and method for producing sputtering target member
WO2023074118A1 (en) Igzo sputtering target
JP2019178396A (en) Sputtering target
WO2015052927A1 (en) Sputtering target and method for producing same
JP2011093730A (en) Oxide sintered compact and method for producing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170612

R150 Certificate of patent or registration of utility model

Ref document number: 6159867

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250